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Near-zero dispersion flattened, low-loss porous-core
waveguide design for terahertz signal transmission

Jakeya Sultana,a Md. Saiful Islam,b,* Javid Atai,c Muhammad Rakibul Islam,a and Derek Abbottb
aIslamic University of Technology, Department of Electrical and Electronic Engineering, Gazipur, Bangladesh
bUniversity of Adelaide, School of Electrical and Electronic Engineering, Adelaide, Australia
cUniversity of Sydney, School of Electrical and Information Engineering, Sydney, Australia

Abstract. We demonstrate a photonic crystal fiber with near-zero flattened dispersion, ultralower effective
material loss (EML), and negligible confinement loss for a broad spectrum range. The use of cyclic olefin copoly-
mer Topas with improved core confinement significantly reduces the loss characteristics and the use of higher air
filling fraction results in flat dispersion characteristics. The properties such as dispersion, EML, confinement loss,
modal effective area, and single-mode operation of the fiber have been investigated using the full-vector finite
element method with the perfectly matched layer absorbing boundary conditions. The practical implementation
of the proposed fiber is achievable with existing fabrication techniques as only circular-shaped air holes have
been used to design the waveguide. Thus, it is expected that the proposed terahertz waveguide can potentially
be used for flexible and efficient transmission of terahertz waves. © 2017 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.OE.56.7.076114]
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1 Introduction
The terahertz frequency range 0.1 to 10 THz in the electro-
magnetic frequency spectrum is notable for its growing num-
ber of applications including short-range higher data rate
wireless communication,1 medical imaging,2 pharmaceutical
drug testing,3 security,4 biotechnology,5 sensing,6 etc. It
bridges the gap between the microwave and infrared fre-
quency bands and spans the transition between electrical
and optical frequencies. But, due to a number of practical
difficulties, the commercial deployment of terahertz systems
is still challenging. Many current terahertz transmission sys-
tems are bulky and depend largely on free-space propaga-
tion. But air moisture degrades the signal quality, thus it
is a challenge to improve the signal-to-noise ratio. The
design of low-loss terahertz waveguides can be a solution
to improve the signal quality for a number of key applica-
tions. Thus, researchers have proposed several optical
waveguides7–11 for efficient and flexible transmission of tera-
hertz waves. Most of them are disregarded due to higher loss,
lower coupling efficiency, higher absorption, and bulky
properties. Recently, porous-core photonic crystal fiber
(PCF) has gained much attention due to the ability to create
desired transmission properties by design. In a PCF, the air
hole diameter, pitch size, and the perfectly matched layer
(PML) radius are the freely chosen design parameters. In
recent years, various studies using porous-core PCF have
been proposed. In 2000, in a single-crystal sapphire fiber,
the waveguide propagation of sub-ps terahertz pulses was
reported by Jaminson et al.12 In 2008, a cylindrical hollow
core-based metallic waveguide consisting of polystyrene
deposited on the inner coating was proposed by Bowden
et al.13 They were able to show a loss <1 dB∕m for terahertz
wave propagation. Later, a hybrid refractometer-based

plasmonic terahertz fiber that features two metallic wires
inserted into a porous dielectric cladding was proposed by
Markov and Skorobogatiy.14 Kaijage et al.15 proposed a
porous-core octagonal PCF and showed an effective material
loss (EML) of 0.07 cm−1, but the dispersion properties of
this fiber were not reported. Hasan et al.16 proposed a circular
PCF and showed an EML of 0.056 cm−1 with a dispersion
flatness of 0.71� 0.18 ps∕THz∕cm within the frequency
range of 1 to 1.8 THz. Islam et al.17 proposed a hexagonal
PCF and showed an EML of 0.066 cm−1 with a dispersion
variation of 1.06� 0.12 ps∕THz∕cm. In 2016, using the
EFG/Stepanov technique, the capability for highly efficient
terahertz waveguiding in multimode sapphire crystals was
reported by Zaytsev et al.18 Furthermore, Islam et al.19 pro-
posed a rotated hexagonal PCF and reduced the EML to
0.053 cm−1, but with a large dispersion variation of 1.20�
0.25 ps∕THz∕cm within the frequency range of 1 to
1.55 THz. Later, researchers20 proposed a modified octago-
nal PCF and reduced the EML to 0.047 cm−1 with a
dispersion variation of 1.95� 0.15 ps∕THz∕cm within a
short frequency range of 0.95 to 1.25 THz. Recently,
a hybrid core PCF has been proposed by Islam et al.21

which shows an EML of 0.040 cm−1 with a dispersion
variation of 1.25� 0.10 ps∕THz∕cm within a very short fre-
quency range of 0.95 to 1.15 ps∕THz∕cm. The above-cited
studies indicate that there is a significant possibility for the
development of terahertz waveguide designs considering the
dispersion and loss.

In this paper, a Topas-based PCF consisting of a hybrid
structure in the core and a conventional hexagonal structure
in the cladding has been proposed. The resulting proposed
PCF shows a near-zero flattened dispersion, ultralow
EML, and negligible confinement loss in a broad frequency
range. In addition, ease of fabrication is supported via use of
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a typical hexagonal structure with all circular air holes.
Modified total internal reflection guides the light throughout
the fiber so that perturbations due to external surroundings
can be neglected.

2 Design Methodology
Figure 1 shows the schematic cross section of the proposed
waveguide. The entire mesh consists of 18,613 boundary ele-
ments, 548 vertex elements, and the minimum element qual-
ity is 0.04255. In Fig. 1, Λ indicates the spacing between
two adjacent air holes in two adjacent rings whereas Λ1 rep-
resents the spacing of two adjacent air holes in the same ring.
Note that Λ and Λ1 are related to one another by
Λ1 ¼ 0.95 Λ. For the core region, the distances are
named as Λc. The diameter of air holes in the cladding is
denoted by d. Maximum possible air filling fraction d∕Λ
of 0.95 has been used for a better confinement factor and
also to make the dispersion properties flat. Meanwhile,
porosity determines the variation of core air holes that can
be defined as the ratio of air hole area to the total area of
the core. Note that Λc is related to Λ by a factor of 7.5.
Due to some unique and useful characteristics suitable for
terahertz transmission, cyclic olefin copolymer Topas has
been chosen as the base material for the proposed PCF.
Throughout the simulation, the frequency-dependent charac-
ter of the absorption coefficient of TOPAS is used. The inher-
ent characteristics include: (i) constant index of refraction
(nmat ¼ 1.525) over a broad frequency range of 0.1 to
1.5 THz,22 (ii) suited for biosensing,23 (iii) lower material
absorption loss varies in the range of about 0.1 to
2.0 dB∕cm in the frequency range of 0.1 to 1.5 THz, (iv) high
glass transition temperature Tg,

24 and (v) negligible
hygroscopicity.25

3 Results and Discussion
The key propagation properties of the proposed waveguide
have been investigated using the full-vector finite element
method-based commercially available software package
COMSOL version 4.3b. The main concern of the proposed
waveguide is to reduce the EML and flatten the dispersion
properties. To achieve this goal, it has been possible to use a
maximum porosity of 83% because any further increment in
porosity may result in overlapping air holes, making fabri-
cation a challenge. After that, the porosity values are
changed to a lower level (73% and 63%) to observe the char-
acteristics of the fiber at lower porosities. An antireflective
layer that is also known as PML has been used at the outer

boundary of the waveguide. The radius of the PML has been
set to 9% of the total fiber radius. The values of PML were
pretested before starting the final simulation. Actually, we set
it to 9% to make the fabrication possibilities easier. If we set
it much lower, it could be a problem during fabrication. The
electric field distribution of the proposed waveguide is
shown in Fig. 2 which confirms the single-mode operation
of the proposed PCF.

Dispersion is one of the factors that limit the quality of
signal transmission over optical links. For a single-mode
optical links, dispersion can occur either for the used bulk
material (material dispersion) or for the physical structure
of the waveguide (waveguide dispersion). But in Topas,
the material absorption loss is negligible22 so only wave-
guide dispersion has been considered for our proposed
fiber. Dispersion mostly depends on the effective refractive
index variation of the waveguide with respect to frequency.
The dispersion should be as low as possible because if the
pulse broadening of optical signals increases the bits of adja-
cent slots can overlap which may increase the bit error rate.
Pulse broadening of a single-mode PCF can be calculated
as26

EQ-TARGET;temp:intralink-;e001;326;386β2 ¼
2

c
dneff
dw

þ w
c
d2neff
dw2

; ps∕THz∕cm; (1)

where w is the angular frequency, c is the speed of light into
free space, and neff is called the effective refractive index
of the material. Figure 3 indicates that a near-zero ultraflat-
tened dispersion is obtained within the frequency range of
0.67 to 1.22 THz. The obtained dispersion variation is 0.6�
0.05 ps∕THz∕cm which is the best (to the best of our knowl-
edge) in the terahertz regime as compared to any previously
proposed terahertz waveguide. It is also found that for a
broad frequency range 0.6 to 1.6 THz the dispersion

Fig. 1 Schematic diagram of the proposed waveguide.

Fig. 2 E-field distribution of the proposed PCF for (a) 63%, (b) 73%,
and (c) 83% porosity.
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Fig. 3 Characteristics of dispersion variation with frequency at 83%
porosity.
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variation is 0.52� 0.09 ps∕THz∕cmwhich is useful for long
distance terahertz signal transmission. When a light pulse
propagates along the fiber, the guided mode experiences
some undesirable losses. This is because a number of poly-
mer materials are lossy. The most important effect to be con-
sidered is the material absorption loss or EML. The material
absorption loss of a fiber can be quantified as26

EQ-TARGET;temp:intralink-;e002;63;675αeff ¼
ffiffiffiffiffi
ϵ0
μ0

r �R
mat nmatjEj2αmatdA

j Rall SzdAj
�
; (2)

where ϵ0 is the relative permittivity, μ0 is defined as relative
permeability into free space, αmat is the bulk absorption loss,
nmat is the refractive index of Topas, and Sz ¼ 1

2
ðE ×H�Þz

can be defined as the z component of Poynting vector, where
E and H� are the complex conjugate of the electric field and
magnetic field components, respectively. At 1-THz fre-
quency, the characteristics of EML with respect to Dcore

are shown in Fig. 4. It can be observed that EML decreases
with the increase of porosity because increased porosity
means enlarging the air hole diameter inside the core,
thus trimming down the amount of material which in conse-
quence reduces the EML. At optimum design parameters, the
obtained EML is 0.03 cm−1 which is improved over previ-
ously proposed12–21 waveguides.

Confinement loss of an optical link is also a critical factor
that limits the propagation length of the transmitted signal
through the terahertz waveguide. Confinement loss has a
direct relationship with the number of air holes used, the
spacing between adjacent air holes, and the number of
rings in the cladding.27 It approaches zero if the number
of air holes in the cladding is infinite. In practice, to
make the design simple, the number of air holes in the clad-
ding should be finite. Confinement loss should be as low as
possible because if it becomes larger, the propagation length
of terahertz PCF will be smaller. It can be calculated as26

EQ-TARGET;temp:intralink-;e003;63;354Lc ¼ 8.686

�
2πf
c

�
ImðneffÞdB∕cm; (3)

where ImðneffÞ indicates the imaginary part of the complex
refractive index, f is the operating frequency, and c is the
speed of light into free space. At 1-THz frequency, the
amount of confinement loss with respect to Dcore is shown
in Fig. 5. It can be seen that confinement loss is boosted
down with the decrease of porosity because such decrements
cause an increment of the index difference between the core

and cladding that increases the value of the imaginary part of
the complex refractive index which in consequence reduces
the confinement loss.

We considered 340 μm and 83% porosity as an optimum
operating point considering both EML and confinement loss
because at this point the obtained EML is 0.03 cm−1 which is
85% lower than the bulk absorption loss of Topas and also
the obtained confinement loss is negligible which is calcu-
lated as 10−6.5 cm−1.

Now the frequency response of both EML and confine-
ment loss has been investigated in Fig. 6. From Fig. 6, it
can be observed that the EML increases linearly with
frequency which meets the theoretical consequences of
calculating EML using the empirical equation, αðνÞ ¼
ν2 þ 0.63ν − 0.13ðdB∕cmÞ. This is because the electromag-
netic wave frequency is proportional to the EML.21 The EML
is lower at a 0.6-THz frequency but we ignore that point
because of the higher confinement loss than that of 1 THz.
At optimum design parameters and 1-THz frequency, the
obtained EML is 0.03 cm−1 and obtained confinement
loss is 10−6.5 cm−1. Terahertz PCF with such lower confine-
ment loss characteristics can be suitable for terahertz func-
tional applications, mainly in the terahertz integration
systems. Figure 6 shows that as the frequency increases con-
finement loss reduces because with the increase of frequency
the mode powers begins to compress in the core area. So, at
optimum design parameters, the obtained EML and confine-
ment loss are clearly improved over earlier proposed12–21

terahertz optical waveguides.
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Fig. 4 Characteristics of EML versus Dcore at different porosities.
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Fig. 5 Characteristics of confinement loss versus Dcore at different
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It is also necessary to quantitatively measure the area
covered by the proposed waveguide. It can be calculated as21

EQ-TARGET;temp:intralink-;e004;63;544Aeff ¼
½R IðrÞrdr�2
½R I2ðrÞdr�2 ; (4)

where IðrÞ ¼ jEtj2 is defined as the electric field intensity
and r is the core radius. Figure 7 shows the characteristics
of the modal effective area as a function of frequency. It can
be observed from the same figure that the modal effective
area decreases with the increase of frequency. Because as
the frequency increases, less light is being confined in the
porous-core area.21 At the optimal design parameters, a
higher effective area of 0.4 × 106 μm2 is obtained for our
proposed fiber.

For the transmission of a signal into longer distances, the
light pulses need to be propagated through a single-mode
fiber. The single-mode conditions of a fiber can be quantified
as26

EQ-TARGET;temp:intralink-;e005;63;355V ¼ 2πf
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2co − n2cl

q
≤ 2.405; (5)

where ncl is the cladding refractive index and nco represents
the value of the core refractive index. From Eq. (5), it can be
observed that in order to maintain single-mode operations,
the value of the V-parameter must be less than or equal to
2.405. Figures 8–10 indicate that the proposed PCF meets
the condition of single-mode operation.

Fabrication must be addressed for practical imple-
mentation of this multifunctional proposed waveguide.
Considering this fact, we made the design very simple
using only circular-shaped air holes. From the technological
point of view, the key design parameters are its core porosity,
core pitch, core diameter, frequency, etc. These parameters
are adjusted in such a way so that the air holes should not
overlap with each other because such overlapping may
create fabrication difficulties. There are several well-
developed ways of fabricating PCFs such as drawing,22

additive manufacturing (three-dimensional printing),28,29

capillary stacking,30 and sol–gel31 techniques. Micro-
structured circular-shaped air holes can easily be fabricated
using the well-known capillary stacking and sol–gel tech-
niques. Moreover, using capillary stacking and sol–gel tech-
niques, the dimensions of the PCF can be easily adjusted. In
addition, a technique designed by Kiang et al.32 can fabricate
almost all types of complex fiber structures.

4 Conclusions
A porous-core PCF has been designed and characterized for
efficient terahertz wave transmission. The key findings of the
proposed waveguide are its simplicity in design, near-zero
flattened dispersion of 0.6� 0.05 ps∕THz∕cm over a broad
frequency range of 0.67 to 1.22 THz, ultralower EML of
0.03 cm−1, and negligible confinement loss of the order
of 10−6.5 cm−1. Thus, it is anticipated that if the proposed
waveguide can be implemented practically using the state-
of-the-art technology, it will play a vital role in those fields
that require near-zero flattened dispersion and ultralow-loss
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properties and thus play a vital role for practical implemen-
tation and commercialization of terahertz waves.
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