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Abstract With the continued proliferation of wireless com- both infrastructure-based and handset-based posititedg
munications and advances in positioning technologies-alg nologies.

rithms for efficiently answering queries about large popula  the area of location-based games offers good examples
tions of moving objects are gaining in interest. This paperqs seryices where the positions of the mobile users play a cen
proposes algorithms fdrnearest and reveréenearestneigh- 15| role. In the BotFighters game, by the Swedish company
bqr queries on the purrent arld anticipated future posiins pg Alive, players get points for finding and “shooting” other
points moving continuously in the plane. The former type of |4y 615 via their mobile phones. Only players close by can be
query returng objects nearest to a query object for each timegp ot 1n such mixed-reality games, the real physical woeld b
point during a time interval, while the latter returns the ob ., as the backdrop of the game, instead of the purely virtual

jects that have a specified query object as one of theios- o114 created on the limited displays of wireless devicds [7
est neighbors, again for each time point during a time inter-

val. In addition, algorithms for so-called persistent and-
tinuous variants of these queries are provided. The alyuost
are based on the indexing of object positions represented
linear functions of time. The results of empirical performa
experiments are reported.

To track and coordinate large numbers of continuously
moving objects, their positions are stored in databaseis. Th
desults in new challenges to database technology. The con-
ventional assumption, that data remains constant unléss it
explicitly modified, no longer holds when considering conti
uous data. To reduce the amount of updates needed to main-
tain a certain precision of positions stored in the database
moving point objects have been modeled as functions of time
rather than simply as static positions [36]. Studies of GPS
logs from vehicles show that representing positions as lin-
ear functions of time reduces the numbers of updates needed
to maintain a reasonable precision by as much as a factor of
three in comparison to using static positions [6].

Key words Continuous queries — Incremental update —
Location-based services — Mobile objects — Neighbor geerie
— Persistent queries

1 Introduction We consider the computation of nearest neightdX)(
and reverse nearest neighbBINN) queries in this setting. In

We are currently experiencing rapid developments in key-tec the NN problem, which has been investigated extensively in
nology areas that combine to promise widespread use of masther settings (as will be discussed in Section 2.2), theatj
bile, personal information appliances, many of which wél b iy the database that are nearer to a given query object than
on-line, i.e., on the Internet. Industry analysts uniformle-  any other objects in the database have to be found. IRk
dict that wireless, mobile Internet terminals will outnuenb problem, which is relatively new and unexplored, objecs th
the desktop computers on the Internet. have the query object as their nearest neighbor have to be

This proliferation of devices offers companies the oppor-found. In the example in Figure 1, tiRNNquery for point 1
tunity to provide a diverse range of e-services, many of tvhic returns points 2 and 5. Points 3 and 4 are not returned because
will exploit knowledge of the user’s changing location. Lo- they have each other as their nearest neighbors. Note #at ev
cation awareness is enabled by a combination of political dethough point 2 is not a nearest neighbor of point 1, point 2 is

velopments, e.g., the recent de-scrambling of the GPSlsignaa reverse nearest neighbor of point 1 because point 1 is the
and the US E911 mandate [8], and the continued advances ifoint closest to point 2.

* Additional contact information for the contact author: esifn A straightforward solution for computing reverse nearest
csj@cs.auc.dk, tel.: (+45) 96358900, fax: (+45) 98159889. neighbor RNN) queries is to check for each point whether it
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interval, assuming the query and data points are contiyous
moving in the plane and the query time interval starts at or
after the current time (i.e., we do not consider querying of
historical data). As a solution to a significant subproblam,
algorithm for answerin@N queries for continuously moving
1 points is also proposed.
o The paper is a substantially revised and extended version
of an earlier paper [3]. Main additions include support for
kNN andRKkNN queries (wheré > 1), and support for and
Fig. 1 Static points experimental evaluation of two kinds of index traversald an
two types of search metrics. Also included is support for so-
called persistenkNN and RKNN queries—incremental up-
has a given query point as its nearest neighbor. However, thigate techniques are introduced for this purpose. Next, sup-
approach is unacceptable when the number of points is larggort for so-called continuous current-time queries isideld.

The situation is complicated further when the query andp peyw, expanded empirical performance study of the pre-
data points are moving rather than static and we want to knowented types of queries is reported. Finally, material sa di
the reverse nearest neighbors during some time intervel. Fqgnce computation for moving points and time-parametdrize
example, if our points are moving as depicted in Figure 2 ther}ectangles is included.

In the next section, the problem that this paper addresses
is defined, and related work is covered in further detail. In
[é Section 3 our algorithms are presented. In Section 4 the re-
3 sults of the experiments are given, and Section 5 offers a

summary and directions for future research. An appendix of-
T fers detail on the computation of distances between moving
\é points and time-parameterized rectangles.
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g/ 2 Problem statement and related work

Fig. 2 Moving points We first describe the data and queries that are considered in
this paper. Then we survey the existing solutions to the most

. . . related problems.
after some time, point 4 becomes a reverse nearest neighbor

of point 1, and point 3 becomes a nearest neighbor of point 5,
meaning that point 5 is no longer a reverse nearest neighbar 1 Problem statement
of point 1.

Reverse nearest neighbors can be useful in applicationd/e consider two-dimensional space and model the positions
where moving objects agree to provide some kind of serviceof two-dimensional moving points as linear functions ofdéim
to each other. Whenever a service is needed an object requedthat is, if at timet, the position of a point iz, y) and its
it from its nearest neighbor. An object then may need to knowelocity vector isv = (v.,vy), then it is assumed that at
how many objects it is supposed to serve in the near futurany timet > ¢, the position of the point will béx + (¢t —
and where those objects are. The examples of moving oby)v,, y + (t — to)vy), unless a newposition, velocity) pair
jects could be soldiers in a battlefield, tourists in dangero for the point is reported.
environments, or mobile communication devices in wireless  With this assumption, the nearest neighbldNj and re-
ad-hoc networks. verse nearest neighboRKN) query problems for continu-

In a mixed-reality game like the one mentioned at the be-ously moving points in the plane can be formulated as fol-
ginning of the section, players may be “shooting” their rear lows.
est neighbors. Then players may be interested to know who Assume (1) a sef of moving points, where each point
their reverse nearest neighbors are in order to dodge treeir fi is specified by its positiofiz, y) and its velocity(v,, v, ) at

Solutions have been proposed for efficiently answeringsome specific time; (2) a query poigitand (3) a query time
reverse nearest neighbor queries for non-moving points [16interval [t"; ¢ 7], wheret™ > t v rent, @At cyrrens IS the time
30,35], but we are not aware of any algorithms for movingwhen the query is issued.
points. While much work has been conducted on algorithms  Let NN; and RNN; denote sets of moving points afitl
for nearest neighbor queries, we are aware of only one studgenote a time interval. Intuitively, we us€N; and RNN;
that has explored algorithms for a moving query point andfor containing theNN and RNN query results, respectively,
moving data points [31]. during thej-th time interval. More precisely, thdN query

This paper proposes an algorithm that efficiently com-returns the se{(NVN;, T;)}, and theRNN query returns the
putesRNN queries for a query point during a specified time set{(RNN;, T;)}. These sets satisfy the conditic@; T; =
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[t7;t7] andi # j = T; N'T; = 0. In addition, each pointin 2.2 Related work
NN; is a nearest neighbor tpat each time point during time
intervalT;, and RNN; is the set of the reverse nearest neigh-
bors tog at each time point during time interva}. That is,

Vj Vp € NN; Vr € S\ {p} (d(q,p) < d(q,7)) andvj Vp €
RNN; Vr € S\ {p} (d(¢g,p) < d(p,r) during all ofT}).
Here,d(p1, p2) is the distance between points andp, and
symbol\ denotes set difference. Although any metric dis-
tance function will work, we use Euclidean distance for $pec
ficity. 2.2.1 Nearest neighbor queriesA number of methods have

We also consider the more genetahearest neighbor been proposed for efficient processing of nearest neighbor

(kNN) and reversg: nearest neighboiRKNN queries. The queries for stationary points. The majority of th_e methosks u
answer to NN query has the same structure as the answer tg1d€X structures, and some proposals rely on index strestur
anNN query, but instead of sef¥;, each of which usually built specifically for nearest neighbor queries. As an exam-
contains one elementkAIN answer has ordered lisiV; = ple, Berchtold et al. [4] propose a method based on Voronoi
(pj1,Ppjo; - - - Pjk ), €aCh containing exactly points (assum- cells [20]. _ .
ing || > k). The points in each list are ordered by their dis- ~ Branch-and-bound methods work on index structures orig-
tance tog, o thatp;, is the closest point angly, is thek-th inally designed for range queries. Perhaps the most infalent
closest point tay duringT;. More formally,V;j (d(q,pj1) < method in this category IS an algorithm, propoged by Rous-
d(q,pj2) < -+ < d(q,pjr) A Vr € S\ NN; (d(q,r) >  Sopoulos et al. [22], for finding the nearest neighbors. In
d(q, p;x) during all of T} )). Note that during’}, there can be ~ this solution, an R-tree [9] indexes the points, alegth-first
more than one point with a distancedohat is exactly equal ~traversal of the tree is used. During the traversal, eritritse

to d(q, p;x ) For simplicity, an arbitrary subset of such points nodes of the tree are ordered and pruned based on a number of
of sizek — |{p € S| d(q,p) < d(g,p;jx)}| is included in  heuristics. Cheung and Fu [S] simplified this algorithm with
NN;. out reducing its efficiency. Other methods that use branch-
and-bound algorithms modify the index structures to better
suit the nearest neighbor problem, especially when applied
for high-dimensional data [14, 34].

Next, a number of incremental algorithms for similarity
ranking have been proposed that can efficiently compute the
(k 4+ 1)-st nearest neighbor, after thenearest neighbors are
returned [12,11]. They use a global priority queue of the ob-
jects to be visited in an R-tree. More specifically, Hjaltaso
and Samet [12] propose an incremental nearest neighbor al-
ertheless, in such situatiopswill always be included in the 'gorit.hm, which uses a priority queue of the objepts to be vis-
answer of theRkNN(g) query. |ted.|n an R-tree [2]. They show that such@st?flrsnrave_r-

sal is optimal for a given R-tree. A very similar algorithm

Next, observe that all the query answers are temporalyas proposed by Henrich [11], which employs two priority
i.e., the future time interval™;¢7] is divided into disjoint  queues. For high-dimensional data, multi-step neareghnei
intervalsT}; during which different answer sets (th&V; and  por query processing techniques are usually used [17, 25].
RNN]-). are valid. Some.of these answers may become invali-  gjiios et al. [15] propose an elegant solution for an-
dj\ted if some of the points |n.the database are updated pefog%vering nearest neighbor queries for moving objects in one-
t”. The straightforward solution would call for recomputing gimensional space. Their algorithm uses a duality transfor
the answer each time 'the databa'se is updateq. In this PaPehation, where the future trajectory of a moving paitt) =
we present a more efficient algorithm that maintains the any. 4 .t is transformed into a poirttzo, v, ) in a so-called
swer to a query when' updatgs to the data setare performeg 5| space. The solution is generalized to the “1.5-dimen-
According to the terminology introduced by Sistla etal Jl27  gjonal” case where the objects are moving in the plane, but
we use the ternpersistentfor queries with answer sets that ity their movements being restricted to a number of line
are maintained under updates. segments (e.g., corresponding to a road network). However,

In practice, it may be useful to change the query time in-a query with a time interval predicate returns the single ob-
terval in step with the continuously changing current time, ject that gets the closest to the query object during the-spec
i.e., it may be useful to havg™;t”] = [now, now + 4], ified time interval. It does not return the nearest neighbors
wherenow is the continuously changing current time. The for each time point during that time interval (cf. the prahle
answer to such a query should be maintained both because drmulation in Section 2.1). Moreover, this solution cahno
the updates and because of the continuously changing quebe straightforwardly extended to the two-dimensional case
time interval. In particular, we investigate how to supmam-  where the trajectories of the points become lines in three-
tinuous(and persistent) current-time querie$ £ 0). dimensional space.

Nearest neighbor queries and reverse nearest neighbaggjuer
are intimately related. In this section, we first overview th
existing proposals for answering nearest neighbor qudaes
both stationary and moving points. Then we discuss the pro-
posals related to reverse nearest neighbor queries.

In the answer to afRkNN query, each seRNN; con-
tains all points such that each has query pgiatnong itsk
nearest neighbors. More formallyj ¥Yp € RNN; ([{r €
S| (d(p,r) < d(p,q)}| < kduring all of T};). Note that if, at
some specific time point, poiptis ak-th nearest neighbor of
pointp, according to the definition of theNN query,¢ may
still not be included in the answer set kiIN(p). This may
happen if there are more thanpoints with a distance tp
that is smaller than or equal to the distance frpta p. Nev-
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The work of Albers et al. [1], who investigate Voronoi ,
diagrams of continuously moving points, relates to the prob S,
lem of nearest neighbor queries. Even though such diagrams \ ,
change continuously as points move, their topologicakstru X
tures change only when certain discrete events occur. The au S3 - Sy

events. They also provide an algorithm to maintain such con- SN

tinuously changing Voronoi diagrams. /
Song and Roussopoulos [29] propose a solution for find- , N

ing the k nearest neighbors for a moving query point. How- S X

ever, the data points are assumed to be static. In addition, N

and in contrast to our approach, time is not assumed to be J \

continuous—a periodical sampling technique is used idstea Fig. 3 Division of the space around query point

The time period is divided inta equal-length intervals. When

computing the result set for some sample, the algorithra trie

to reuse the information contained in the result sets of thein that region is found. We term it @NN candidatelf there
prewﬁus sampleks. loselv related b are more than on8IN point in somesS;, they are noRNN

The two works most closely related to ours are by Rap'Candidates. For each of the candidate points, it is checked
topoulou etal. [21] and by Tao etal. [31]. Both of these Workswhetherq is the nearest neighbor of that point. The answer

consider the nearest neighbor problem for a query point MoVi, yhe p v (4) query consists of those candidate points that
ing on a line segment and for static or moving data pomts.haveq as their nearest neighbor

In a manner similar to what is described in Section 2.1, the . i )
In another solution for answerii@NNqueries, Korn and

answer to &NN query is temporal. In contrast to our work, ) e
both works do not consider the maintenance of query answer¥uthukrishnan [16] use two R-trees for the querying, inser-

under updates, and reverse nearest neighbor queries are i@ and deletion of points. In the first, the RNN-tree, the

considered. Also, compared to our work, Raptopoulou et alMinimum bounding rectangles of circles having a point as
consider simplified and less effective heuristics for direg their center and the distance to the nearest neighbor of that

and pruning the search in the TPR-tree. point as their radius are stored. The second, the NN-tree, is

In the above-mentioned study, Tao et al. also consideSiMPIly an R*-tree [2] that stores the data points. Yang and
the general concept of so-called time-parameterized esieri LI [35] improve the solution of Korn and Muthukrishnan by
The authors show how these queries can be processed y§iroducing an Rdnn-tree, which makes it possible to answer
ing a tailored algorithm for nearest neighbor queries, suctPOthRNNqueries andiN queries using a single tree. Struc-
as the algorithm of Roussopoulos et al. [22]. This frameworkturally, the Rdnn-tree is an'Riree, where each leaf entry is
can be used to process time-parameterized nearest neightdfdmented with the distance to its nearest neighbion,

queries for moving objects, but each answer would include?"d Where a non-leaf entry stores the maximum of its chil-
only the first time interval from the answer set as defined indrén's dnn’s. Maheshwari et al. [19] propose main memory
Section 2.1. data structures for answeriRINNqueries in two dimensions.

Their structures maintain for each point the distance to its

. : . nearest neighbor.
2.2.2 Reverse nearest neighbor querieSeveral different so- earest neighbo

lutions have been proposed for computiRYIN queries for In contrast to the approach of Stanoi et al., updates of the
non-moving points in two and higher dimensional Spaces_d.atabase are problematic in the last three appro.aches men-
Stanoi et al. [30] present a solution for answemgNqueries ~ tioned. On the other hand, the approaph of Stanoi et al. does
in two-dimensional space. Their algorithm is based on theOt easily scale up to more than two dimensions because the
following observations [28]. Let the space around the querylumber of regions wheiRNNcandidates are found increases
point ¢ be divided into six equal regions;(1 < i < 6) by exponentlglly with the dimensionality [26]. To alleviataid
straight lines intersecting at as shown in Figure 3. Assume Problem, Singh et al. [26] propose an algorithm whigkN
also that each regiof; includes only one of its bordering candidates are found by performing a regutaiN query.
half-lines. Then, there exists at most $IN points forg,  1he disadvantage of such an approach is that it does not al-
and they are distributed so that there exists at mosRil ~ Ways find allRkNN points. The recent approach by Tao et
point in each regiors;. al. [33] fixes this problem. Their so-called TPL algorithm,

The same kind of observation leads to the following prop-Similarly to the approach of Stanoi et al., works according t
erty. Letp be anNN point of ¢ among the points it$;. Then, WO p_hgs_es—a filtering ph_ase anda refinement phase—but no
eitherg is anNN point of p (and thernp is anRNN point of §ubd|V|S|pn of the underlying space into regions is neggssa
¢), or ¢ has naRNN point in S;. Stanoi et al. prove this prop- N the refinement phase. Thus, the algorithm gracefullyescal
erty [30]. to more than two dimensions.

These observations enable a reduction ofRINN prob- None of the above-mentioned methods handle continu-
lem to theNN problem. For each regiafi;, anNN point of ¢ ously moving points and thus do not consider temporal query
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answers. Persistent and continuous queries are also not supot minimum at all times. In most cases, they are minimum
ported. only at the time when they are computed. Other than that,
the TPR-tree can be interpreted as an R-tree for any specific
time, t. This suggests that the algorithms that are based on the
3 Algorithms R-tree should be easily “portable” to the TPR-tree. Sirhjlar
all algorithms presented in this paper should work without
‘modifications for the TPR*-tree [32], which is an index that
improves upon the TPR-tree, by the means of more advanced
insertion and deletion algorithms.

This section first briefly describes the main ideas of the TPR
tree [24], which is used to index continuously moving paints
Then we briefly discuss the suitability of the methods de-
scribed in Section 2.2.2 as the basis for our solution. The al
gorithms for answering theNN andRkNNqueries using the
TPR-tree are presented in Sections 3.3 and 3.4. For clarity,

the algorithms fok = 1 are presented first, followed by the

more general algorithms. Section 3.5 presents a simple ex3-2 Preliminaries
ample that illustrates the computation of RNN query. The

next two subsections describe the algorithms that maintain

the answer sets NN and RKNN queries under insertions o, RNN algorithm is based on the proposal of Stanoi et
and deletions. Finally, Section 3.8 covers the strateggfor 5 [30], described in Section 2.2.2. This algorithm usesRh
ficiently performing the continuous current-time query. tree and requires no specialized index structures. Theogrop
als by Korn and Muthukrishnan [16] and Yang and Lin [35]
mentioned in Section 2.2.2 store, in one form or another, in-
formation about the nearest neighbor(s) of each point. With

We use the TPR-tree (Time Parameterized R-tree) [24], anging points, such information changes as time passes, eve

an underlying index structure. The TPR-tree indexes Centin'f no.updat_es of objects occur. By not storln_g such informa-
uously moving points in one, two, or three dimensions. igtion in the index, we avoid the overhead of its maintenance.

employs the basic structure of the Ree [2], but both the Similar to the approach of Stanoi et al., the recently predos

indexed points and the bounding rectangles are augmente-UDL algorlthm [331 also dPGS not require speC|§I|zed index
with velocity vectors. This way, bounding rectangles areeti structures. Itis an interesting future research topic fane .
parameterized—they can be computed for differenttimetpoin/©W the TPL algorithm can be adapted to work with contin-
Velocities are associated with the edges of bounding rectant/0USly moving points using the techniques presented in this
gles so that the enclosed moving objects, be they points opaper.
other rectangles, remain inside the bounding rectangla at The idea of the algorithm is analogous to the one de-
times in the future. More specifically, if a number of points scribed in Section 2.2.2. OIRNN algorithm first uses the
p; are bounded at time the spatial and velocity extents of a NN algorithm to find theNN point in eachsS;. For each of
bounding rectangle along theaxis are computed as follows: these candidate points, the algorithm assigns a validitg ti
2" (t) = min; {p;.z(t)}; 27 (t) = max; {p;.x(t)}; interval, which is part of the query time interval. Then, the
vl = ming{p;.v. }; v, = max; {p;.v }. NN algorithm is used again, this time unconstrained by the
Figure 4 shows an example of the evolution of a boundingregionssS;, to check when, during each of these intervals, the
rectangle in the TPR-tree computedtat 0. Note that, in  candidate points have the query point as their nearest neigh

contrast to R-trees, bounding rectangles in the TPR-tree arbor.

3.1 TPR-tree



6 Rimantas Benetis et al.

3.3 Algorithms for finding nearest neighbors The algorithm maintains a list of intervals; as men-
tioned in Section 2.1. Let us call this list t@swer list Ini-
First we present an algorithm for finding the nearest neighdially the list contains a single intervéf ; ¢ ], which is sub-
bors of a query point. Then we show how the algorithm candivided as the algorithm progresses. Each intefvain the
be adapted to find thie nearest neighbors. answer list has associated with it (i) a point and possibly
more points with the same distance frgnasp;, that is the

3.3.1 FindNN algorithm Our algorithm for finding the near-  hearest neighbor of during this interval among the points
est neighbors for continuously moving points in the plane isVisited so far and (i) the squared distantgp;, ¢) of point
based on the algorithms proposed by Roussopoulos et al. [22); t0 the query point expressed by the three parameters
and Hjaltason and Samet [12]. The former algorithm traerse@ndc. In the description of the algorithm, we represent this
the tree in depth-first order. Two metrics are used to dinedta list by two functions. For eache [t™; ¢, functionmin, (t)
prune the search. The order in which the children of a nodélenotes the points that are the closestabtimet (typically,
are visited is determined using the functienindist(q, R), ~ therewillonly be one such point), anlthin, (t) indicates the
which computes the minimum distance between the boundsduared distance betwegrandmin,(¢) at timet. The dis-
ing rectangler of a child node and the query poiptAnother  tancemin,(t) is used to prune nodes with a bounding rectan-
function, minmazdist(q, R), which gives an upper bound of 9dle further away frony thanmin, (¢) during the whole query
the smallest distance fromto points in R, assists in pruning time interval.
the search. The algorithm is presented in Figure 5. The order of the
Cheung and Fu [5] and, later, Hjaltason and Samet [12free traversal is determined by the min-priority quélthat
prove that, given thevindist-based ordering of the tree traver- has two main operationgop(), which returns an entry with
sal, the pruning that is obtained by Roussopoulos et al. ean bthe smallest key, anglush (e, M, level), which insertse into
achieved without the use ofiinmaxzdist. This suggests that the queue with a key that is constructed from medrdcand
minmazxdist can also be disregarded in our Setting without tree levelevel of e. (MetriCM, to be covered in detail Shortly,
any effect on the pruning. However, the proofs do not seem tdntuitively computes a representative distance betweewi
be straightforwardly extendable to our setting, wheiedist ~ arguments during the query time interval.) If only meficis
is extended to take into account temporal evolution. We nevused as the key, the algorithm performisesst-firsttraversal,
ertheless choose to disregangnmazdist. The reason is that Which, in each step, visits an entry with the smallest metric
this function is based on the assumption that boundingmecta (as done by Hjaltason and Samet [12]). If the key is a con-
gles are always minimum [22], which is not true in the TPR- catenation ofevel and M, with the level number increasing
tree (cf. Figure 4). This means that we cannot straightforWhen going from the leaves of the tree towards the root, the
wardly adaptninmazdist to our setting. Thus, as described algorithm performs aepth-firstraversal with entries in each
in the following, we construct and use a temporal version ofnode of the tree being visited in the order of increasing imetr

the mindist function, both for directing the tree traversal and M (as done by Roussopoulos et al. [22]).
for the pruning. As noted earlier, we use a temporal versiomahdist

In describing our algorithm, the following notation is used as the metricM that directs the traversal. Given a time in-
The functiond, (p, ¢) denotes the square of the Euclidean dis-terval[t"; ¢ "] and a bounding rectangle, there are two nat-
tance between query poigtand pointp at timet. Similarly, ~ ural ways to compute a temporal versionsafndist. One
functiond, (R, t) indicates the square of the distance betweer@Pproach is to compute the integraldf( %, ¢ ):
the query poing and the point on rectangR that is the clos- -
est to pointy at timet. ’

As will be seen in the following, our algorithms use squared M(R, q) = AI— dg (R, t)dt
Euclidean-distance functions. Functions that expresidaan
distances between linearly moving points are square rdots ol his metric, termed théntegral metric, corresponds to the
guadratic polynomials. As we are interested only in the-rela average of the squared distance betwBeandq (multiplied
tive orders of the values of these functions, not the absolutby the length of[t™; ¢7]). The other approach is to use the

values, we use the simpler, squared functions. minimum of the squared distandg(R, ¢):
Because the movements of points are described by linear .
functions, for any time intervat'™; 7], d, (p, t) = at®+ bt + M(R, q) = e dq(R, )

¢, wheret € [t";¢7] anda, b, andc are constants dependent
upon the positions and velocity vectorspoéndg. Similarly, This metric, termed thminmetric, can be computed by com-
any time interva[t"; ¢ 7] can be partitioned into a finite num- paring the values of the squared distances at the end-points
ber of intervalsl’; so thatd, (R, t) = art? + bt + ¢, where  of the interval and at the point where the time derivative of

t € T; andag, by, andce;, are constants dependent upon the d, (R, t) is zero. If for two rectangle®; and Ry, dq(R;,t)
positions and velocity vectors @ andq. Functiond, (R, t) andd,(Rz, t) are zero for some times durirg ; ¢ ] then if

is zero for times when is insideR. The details of how the d,(R;, t) is zero for a longer time period thafy (R, t), we
interval is subdivided and how the constaais b, andc;, say that themin metric of R, is smaller than thenin metric

are computed can be found in Appendix A. of Rs.
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FindNN(q, [t";¢t7]):
1 Vte[th;t7], setming(t) — 0 anddming(t) « oc.
2 Initialize a min-priority queu): insert intoQ a pointer to the root of the TPR-tree.
3 WhileQ is not empty:
3.1 Remove the top @): e — Q.pop(). Let R be the bounding rectangle ef
3.2 iVt € [t7;t7(dy(R, t) > dming(t)), prune entrye (i.e., do nothing).
3.3 Elseife points to a non-leaf node, for each entry= (R;, ptr,) in this node compute the metrid; = M (R;, q)
and adde; to the queueQ.push(e;, M;, level(e;)).
3.4 Elseife points to a leaf node, for eaghcontained in it, such that # g¢:
3.4.1 IVt € [t7;t7)(dg(p, t) > dming(t)), skipp.
342 IVt e T, T' C [t7;t7)(dy(p,t) < dming(t)), setvt € T' (ming(t) « {p}, dming(t) « dy(p,1)).
IfveeT, T C[t7;t7")(dy(p, t) = dming(t)), setvt € T’ (ming(t) «— ming(t) U {p}).

Fig. 5 Algorithm computing nearest neighbors for moving objentthie plane

Figure 6 plots the squared distance between a query poinh the answer list. Each of the produced subintervals has the
and two bounding rectangles. If tlein metric is used R, three parameter@ g, br, cr) that define the quadratic func-
tion that expresses the distance from the query poift.to
After this step, there are two subdivisions of the query
A interval: the one just produced and the answer list. They are
R, combined into one subdivision by sorting together the time
points in both subdivisions. For example, if the query time
interval wag0, 10), the answer list waf), 6), [6, 10), and the
subdivision produced bR was|0, 3), [3, 10), we get the new
subdivision|0, 3), [3, 6), [6, 10). Associated with each of the
intervals in this subdivision are both the original quaitrat
function dmin,(t) (expressed by the parameters, andc)
and the quadratic function of the distanceidexpressed by
the parameterag, br, andcg). For each interval in this
combined subdivision, the quadratic inequaligyt> + bpt +
cr < at® + bt + c is solved to compare the distance from
the query pointy to R and the distance from to point(s)
in the answer list. The inequality can have at most two roots,
will have the smallest metric, if thimtegral metric is used, which can be inside or outside of the inter¥aT his indicates
Ry will have the smallest metric. As the figure shows, thewhether some part dfexists where? gets closer to the query
min metric favors, when it is used for guiding the traversal, than point(s) in the answer list. If this is so for at least one
bounding rectangles that may contain nearest neighbors duinterval I, we go deeper into the subtree rooted at the entry
ing sometime points, while théntegralmetric favors bound-  with R (step 3.3). Thus, the rectangle is pruned if there is no
ing rectangles that contain points which are likely to redluc chance that it will contain a point that at some time durireg th
the pruning distancémin, () during large parts of the inter-  query interval is closer to the query poipthan the currently
val [t7; 7). known closest point tq at that time.

The two types of tree traversals combined with the two At the leaf level, in steps 3.4.1 and 3.4.2, we similarly
types of metrics yield four variants of tHeindNN algo-  solve quadratic inequalities for each interval in the answe
rithm. We explore these variants in the performance experilist. In this case, two subdivisions do not have to be conthine
ments reported in Section 4. This is so because the distance between the query paimd

the data poinp can be described by a single quadratic func-
3.3.2 Constructing the answer listSteps 3.2, 3.4.1, and 3.4.2 tion (expressed by the parametes b,,, andc,). For each
of algorithmFindNN construct the answer list as the tree is interval I in the answer list, the solution of the quadratic in-
traversed and use the answer list for pruning. The steps arequalityd, (p, t) < dmin,(t) may again produce at most two
presented in a declarative way in Figure 5. In this section we0ots, which may result in subdivision éfinto at most three
discuss in greater detail the implementation of these stepsubintervals. During the intervals ih when the inequality
which involve scanning through a list (or two) of time inter- holds, we replace the original parameters, andc with the
vals and solving quadratic inequalities for each interval. ~ new parameters,, b,, andc,. This way, new intervals are

More specifically, in step 3.2, the algorithm described in introduced in the answer list in step 3.4.2. Processingall i
Appendix A is executed. This algorithm divides the original tervals produces the new version of the answer list.
query interval into at most five (for two-dimensional data) After the traversal of the tree, the following holds for each
subintervals, as indicated by the numbers in Figure 33. Notd; in the answer listyt € T;(NN; = ming(t)).
that this subdivision has no relation to the subdivisiomrded

%

Min metric

Integral metric

[t 7]

Fig. 6 Integralandmin metrics
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3.3.3 FindkNN algorithm The algorithm presented in the asp, the squared distance to the query point is plotted against
previous section can be extended to findearest neighbors. time. Subinterval§} andT{ are introduced in step 3.4.2.2 of
As described in Section 2.1, the result of such an algorithmthe algorithm. The remaining parts'6f and7» are passed to
which we termFindkNN, is a sef (NN;, T};)}, where each  CorrectOrder, which subdivided’; further. The top of the
NN; is an ordered list of points that are closest to the query figure demonstrates the different value§aind: parameters
point during time interval;. passed to the recursive invocationd@brrectOrder.

The overall structure of algorithifindk NN is the same
as that ofFindNN. The answer list representing the subdi-
vision of the query time interval is built as the algorithra-tr 3.4 Algorithms for finding reverse nearest neighbors
verses the tree. Each interigl in the answer list has associ-
ated with it an ordered list of pointgin, = (p1,p2, ..., pr), In this section, we present the algorithms for finding the re-
wherep; is the nearest neighbor gfandp; is thel-th near-  verse nearest neighbors and the revérsearest neighbors
est neighbor of; during this interval among the points vis- of a query point.
ited so far. At the beginning of the tree traverdaills equal

to the number of visited data points, but it stopscathen  3.4.1 FindRNN algorithm Algorithm FindRNN computes

k data points have been visited. The squared distance funghe reverse nearest neighbors for a continuously moving poi
tion d, (p;, t)—in the form of the three parameters b;, and  in the plane. The notation used is the same as in the pre-
c;—is stored with each point; (i = 1,...,1). vious sections. The algorithm, shown in Figure 9, produces

We definemin,(t) to be the listmin, associated with a list LRNN = {(p;, T;)}, wherep; is the reverse nearest
the answer list interval to which belongs. We use the no- neighbor ofq during time intervall;. Note that the format
tation min, (t)[i] to access the poin; in the list min,(t).  of LRNN differs from the format of the answer to tHaVN
We also defineiming(t) = dq(ming(t)[k], 1), if I = k,and  query, as defined in Section 2.1, where intervBjsdo not
dming(t) = oo, if I < k. overlap and have sets of points associated with them. To sim-

With this notation in place, the pseudo code of algorithmplify the description of algorithms we use this format in the
FindkNN is shown in Figure 7. Note that steps 3.2 and rest of the paper. HavingRNN, it is quite straightforward to
3.4.1 involve solving quadratic inequalities as descritved  transform it into the format described in Section 2.1 by-sort
Section 3.3.2. In step 3.4.2, those time intervals from the a ing end points of time intervals iIlRNN, and performing a
swer set for which the inequality, (p, t) < dmin,(t) holds  “time sweep” to collect points for each of the time intervals
during only part of the interval are divided into two or three formed.
intervals, copying the corresponding ligtin, and changing To reduce the disk I/O incurred by the algorithm, all the
thek-th (or (+1)-st) element of it where necessary. Similarly, six sets of candidat®NN points (the answer list®;) are
in CorrectOrder, the intervals from the answer set are sub-found in a single index traversal. In steps 3.2 and 3.4.1 of
divided further, and pointsuin, (t)[i] andming(¢)[i — 1] are  the FindNN algorithm (cf. Figure 5) called from step 1 of
exchanged only for the subintervals during which the order-FindRNN, a rectangle or a point is pruned only if the con-
ing of these points is wrong. dition is satisfied for the answer sets of all six regions. In

Figure 8 demonstrates how an answer list of two intervalsaddition, the computation of the squared distance between a
(17 andT3) is modified when visiting a data poipt Here  pounding rectangle and a query is modified, so that only the

part of the rectangle that is inside the region under comnside

cy ation is taken into account.

| Note that if, at some time, there is more than one nearest
neighbor in some5;, those nearest neighbors are nearer to
each other than to the query point, meaning #hawill hold
no RNNpoints for that time. We thus assume in the following
that in setsB;, each intervall;; is associated with a single
nearest neighbor pointyn;;.

All the RNN candidatesn;; found in the first traver-
sal are verified also in one traversal. To make this possible,
we use eithey; ; M (R, nn;;) (for the integral metric) or
min; ; M (R, nn;;) (for theminmetric) as the aggregate met-
ricin step 3.3 offindNN. In addition, a point or a rectangle
is pruned only if it can be pruned for each of the query points
NN .

Thus, the index is traversed twice in total.

When analyzing the 1/0 complexity &indRNN, we
observe that in the worst case, all nodes of the tree are vis-
ited to find the nearest neighbors usiBindNN, which is
k = 4 and for each of the four points in the answer list, as well performed twice. As noted by Hjaltason and Samet [12], this

Fig. 8 Subdivision of the answer list intervals when visiting fggin
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FindkNN(q, [t7;t7], k):
1 Setl « 0; Vt € [t7;t7], setming(t) — ().
Steps 2—-3.3 are the same a¥FimdNN.
3.4 Else ife points to a leaf node, for eaghcontained in it, such that # g¢:
3.4.1 iVt € [t7;t7(dy(p, t) > dming(t)), skipp.
342 VteT, T' C[t";t"(dy(p, t) < dming(t)) :
3421 Ifl <k,setl— 1+ 1andVvt € T’ (ming(t)[l] < p).
3.4.2.2 Else/t € T (ming(t)[k] < p).
3.4.2.3 CallCorrectOrder(T",1).
CorrectOrder(7, i):
1 Ifi>1and3T’ C T such thatt € T'(dg(ming(¢)[i], 1) < dg(ming(t)[i — 1],1)):
1.1 VvVt e T', exchangenin,(t)[i] andmin,(t)[i — 1]. Call CorrectOrder(T",i — 1).

Fig. 7 Algorithm computingk nearest neighbors for moving objects in the plane

FindRNN(q, [t7;¢™]):

1 For each of the six region, find a corresponding set of nearest neightirdy calling FindNN(g,[t™;¢7]) for regionsS;
only. A version of algorithnFind NN is used where steps 3.2 and 3.4 are modified to consider omyititervals wherk or
pisinsides;.

2 SetLRNN < .

3 ForeachB; and for each NNy, Ti;) € By, if [INNy;| = 1 (andnn;; € NNj;), do:

3.1 CallFindNN(nn;, T;;) to check when during time intervdly;, ¢ is theNN point of nn;;. The algorithmFind NN
is modified by usingning,.; (t) < q, dminum,;(t) < dun,; (g, t) in place ofming,, (t) «— 0, dming,;(t) < coin
step 1. In addition, in step 3.4.2, an inter@&dl C T; is excluded from the list of time intervals and is not conside
any longer as soon as a pojnis found such that't € T" (dnn,; (p, t) < dnn,; (¢, t)). FindNN stops if its answer list
becomes empty.

3.2 IfFindNN(nn,;,T;) returns a non-empty answer, i.8.7" C Tj;, such thal is anNN point of nn;; during time
interval 7', add(nn;;, T') to LRNN.

Fig. 9 Algorithm computing reverse nearest neighbors for movibgcis in the plane

FindRkNN(q, [t";t7], k):
Steps 1 and 2 are the same a¥imdRINN, only FindkNN is used instead dfindNIN.
3 For eachB;, for each(NNy;, Ty;) € B;, and for eacin € NNy, do:

3.1 CallFindkNN(nn, Ty k) to check when during time intervdl;;, ¢ is among theé: NN points ofnn. The algorithm
FindkINN is modified by settingnin,.(t) < (q) vt € T;; in place ofmin,,(t) < () in step 1. Note that, if > 1,
according to the definition from Section 3.3Bnin., (t) = oo initially. In addition, an intervall” C T; is excluded
from the list of time intervals and is not considered any Emgs soon as, in the list of nearest neighbors associated
with this interval,p,, = ¢ is replaced by another poiptin step 3.4.2.2FindkNN stops if its answer list becomes
empty.

3.2 IfFindkNN(nn, T;,k) returns a non-empty answer list, for eg@iN, 7"} in this list, find the position of ¢ in the
list NN and add{nn,r,T’) to LRNN Any two elements oERNNwith the samenn andr and adjacent time intervals
Ty andT are coalesced into one element with the time intefal 7.

Fig. 10 Algorithm computing reversg nearest neighbors for moving objects in the plane

is even the case for static points (= ™), where the size & nearest neighbors can only be one of theearest neigh-
of the result set is constant. For points with linear movetnen bors ofq in one of the six regions;. Figure 10 captures the
the worst case size of the result set of M query isO(N) differences betweeRindRNN andFindRkNN.
(whereN is the database size). The size of the result set of  Note thatin the algorithiindkNN used from step 1 of
FindNN is important because if the combined size of the FindRKNN, the listsmin, of the answer list may have dif-
setsB; is too large, theB; will not fit in main memory to-  ferent lengths. In a stand-alone versiofhdkNN, when-
gether. In our performance studies in Section 4, we investinyer thej-th data point is visited in the initial stages of tree
gate the observed average number of 1/Os and the averaggyyersal (wher < k), it contributes to all listsnin,, in the
sizes of result sets. answer list. In the modified version #findkNN, a visited
data point can contribute to a listin, (¢) only if the point is

3.4.2 FindRKNN algorithm By using algorithnFindkN'N,  inside the searched regidh at timet.

algorithmFindRNN can be extended easily to find the re- Note also that when compared with the elements of the
versek nearest neighbors. Similarly to the caséct 1, itis LRNN list returned byFindRNN, the elements oERNN
easy to show that a point that has the query point among itseturned byFindRkINN have an additional element—the
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rank of the reverse nearest neighbor. A reverse nearest neigh- S
bor has rankr, if ¢ is its r-th nearest neighbor. While the o
ranks are not required by the definition of tR&NN query -
given in Section 2.1, they are helpful for efficiently main- o0
taining the results of the query, as will be described in Sec- i
tion 3.7. I
100
3.5 Query example |
Query P = © 40
To illustrate how arRNN query is performed, Figure 11 de- 3
picts 11 points, with point 1 being the query point. The ve- ‘ X
8" A
7 o
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, po
q
ot=0 oot=1 oot=2

Rﬁﬁl&lg% Fig. 12 Simplified example query

After the first tree-traversal, thdN points in regionSy
are B, = {(P4,[0;1.5]), (Pr,[1.5;2])}, and in regionSs,
they areB; = {(P7,[0;1.5]), (Ps,[1.5;2])}. However, the
list of RNN points,LRNN which is constructed during the
second traversal of the TPR-tree while verifying candidate
points 4, 7, and 8, is onl{(Pr, [0; 1.5]), (Pr, [1.5; 2]) }. This
is because during time intervit 1.5], point 10, but not point 1,
1 is the point closest to point 4, and, similarly, during time i
S T S terval [1.5; 2], point 7, but not point 1, is the point closest to

: 2 point 8.

3.6 Updating the answers to tiNN algorithms

In the following two sections, we present algorithms thatre
der theNN andRNNqueries persistent. The algorithmsincre-
mentally update the answer set of a query when a point is in-
serted into or deleted from the database without re-cdiogla
the answer set from scratch. We start with the algorithms for

locity of point 1 has been subtracted from the velocitieslof a Maintaining the result of aNN query.
the points, and the positions of the points are shown at time  Inserting a new point is the same as visiting a new point
t = 0. The lowest-level bounding rectangles of the index onin a leaf node of the tree. Thus, to maintain the query result
the points,R; to R, are shown. Each node in the TPR-tree when pointp is inserted, it suffices to perform step 3.4 of
has from 2 to 3 entries. As examples, some distances fronindNN or FindkINN. If the beginning of the query time
point 1 are showndp, (Ps,t) is the distance between point interval is already in the past, only the remaining part of it
1 and points, dp, (Ry, t) is the distance between point 1 and that starts from the current time is maintained, {#.;¢7] is
rectangle 1/p, (R,,t) is the distance between poibtand  replaced bymax{tinsert, ¢}, 7).
rectangle2. To maintain the result of ahlN query when a poinp
If an RNN query for the time interval0;2] is issued, is deleted is also simple. }f is not in any of the sets asso-
dminp, (t) for region S; is set todp, (Ps,t) after visiting  ciated with time intervals of the query result, then nothing
rectangle 2, and becaude, (R4,t) > dp, (Ps,t) forall ¢t € has to be done. Otherwise, for the elements of the answer
[0; 2], rectangleR, is pruned. list (T;, NN;) such thatVN; = {p}, FindNN(g, T}) has
With the purpose of taking a closer look at how REN  to be performed. We call such time intervals of the result set
query is performed in regionS, and Ss, Figure 12 shows theaffectedtime intervals. When the result of th&IN query
the positions of the points in regioss and.Ss at time points  is maintained, step 1 &indkINN(q, T}, k) is skipped, and
t =0,t =1, andt = 2. Point 7 crosses the line delimiting {(7;, NN;)}, with pointp removed, is used as the initial re-
regionsS, andSs at timet = 1.5. sult list for affected time intervar’;.

Fig. 11 Example query
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Observe that only deletion involves accessing the indexo be efficiently supported, these lists must be retained af-
to maintain a query result; and this happens only when theer the completion of algorith@indRNN. In addition, the
deleted point is in the result. Also, the tree traversal®-ass squared-distance functions (expressed by the three parame
ciated with different, affected time intervélg can be com- ters described in Section 3.3.1) associated with each of the
bined into one traversal—in the same way as for the secondlements in thé3; and LR NN must be retained.
traversal of th&'indRNN algorithm (see Section 3.4.1). The algorithms described involve one index traversal in

step 2.1, although this traversal should occur only raitély.
is performed only when the inserted point is closeq than
3.7 Updating the answers of tNN algorithms the current nearest neighbors at some time during . We

investigate the amortized cost of the algorithm in empirica
Maintaining the results dRNN (andRKNN) queries is more  performance experiments.
difficult than maintaining the results &fN queries. We pro-

ceed to describe separately how insertions and deletiens a . . . .
P y 7.2 Deletion of a point Three computations are involved

processed. In each case, we first consider the simpler caé o
of the RNN query, then describe the algorithms for the more\'%en mamtamlng t.he answer SERENN of a query when a
pointp is deleted. First, ip was in the answer set, it should be

mplexRkNN ry. N .
compie query removed. Second, to correctly maintain the liBtsof nearest

. . . . neighbors, these must be searchedyfowhich is removed
3.7.1 Insertion of a point The algorithm for updating the it tound. For the time intervals during whighwas a near-

answer to a query when a new point is inserted consists of; neighbor, newNN points should be found and checked

two parts. First, we have to check whether the newly inserteqq incjysion intoZ NN . Third, thoseRNN candidates from
point becomes aRNN point of g. Then, we have to check e |ists B, that are not included iLRNN (or are included

whether the new point invalidates some of the exis®N  \\ith reduced time intervals) should be rechecked by the al-
pomtg, which occurs if the new point is closer to these moint gorithm: this is so because some of them may not have been
than isg. S _ included intoLRNN due top being their nearest neighbor

Suppose that powyg is inserted at tim&;,scr, Where (yjith 4 possibly being their second-nearest neighbor).
teurrent < tinsere < t7. Recall that the query is assumed ~ \ye yseL RNN to denote the list of the above-mentioned
to be issued at imé...;e.: and that the query interval ends 5 gigate points with associated time intervals duringcivhi

4{
att . . L they are not reverse nearest neighbors. More formally:
The algorithm for maintaining the result of &NNquery

when insertion is performed is shown in Figure 13. Tounder-LRNN =
stand the notation used in step 2 of the algorithm, obseate th  {(p;, T}) | 34,5 ((nni;, Ty;) € B; A pi = nny; A

for eachi, there is at most one non-empty time interval dur- T, C Ty) A

ing which pointp is in S;. IntervalT; denotes the intersection 3. T") € LRNN (pp=p' A T,NT' #0)}

of this possibly empty interval with the time during which to

update the answer. For each reg@mith a non-emptyl;, List LRNN can be computed by sorting the start and end

this step checks if point becomes amN point of ¢ in that times of the time intervals il RNN and theB; lists, then
region. If it does, the correspondirig list is updated and it ~ performing a “time sweep.” A binary search tree can be used
is checked for the inclusion gfinto LRNN. In step 3, those to store the IDs of all points that have their corresponding
points that have as their newNN point at some time during time intervals intersect the sweep line. This way, all time i
[to; 7] are deleted fromLRNN for the corresponding time tervals from theB; lists can be subtracted efficiently from the
intervals. corresponding intersecting time intervals frdlR NN .

The corresponding algorithm for maintaining the result ~ Suppose a data poipt (i.e.,p # g) is deleted at time
of an RkNN query has the same structure (see Figure 14)tacicte (feurrent < taeiere < t7'). The algorithm for maintain-
In step 2, for each regiof; with a non-emptyZ;, the algo-  ing the result of alRNNquery is given in Figure 15.
rithm checks if there are times whenbecomes closer tg In step 2 of the algorithimy is removed fromLRNN. In
than the furthest of thé nearest neighbors in that region. If step 3, for each regiof;, p is removed from the list of the
so, the corresponding; list is updated, and it is checked for nearest neighbors gfin that region for the time period when
the inclusion ofp into LRNN. Step3 differs from the corre- p is no longer in the set of data points. Also, for each entry
sponding step in Figure 13 in that reverse nearest neighboremoved, newNN points ofg are found in that region during
are not always removed from the answer list for time periodshe time interval whep was the nearest neighbor @in that
whenp gets closer to them than In such cases, only their region.
rank is incremented by one for the corresponding time inter-  In step 4, the points that had as their nearest neigh-
vals. Only when the rank of aRNN point gets larger than bor, andg as their second nearest neighbor, are included into
k during some time interval, tiRNN point is removed from  LRNN. Note that in this step, all neRNN candidate points
the answer for the corresponding time interval. added to theB; lists in step 3 are also checked for inclusion

Observe that the lists of nearest neighbBysre used and into LRNN. This happens because such points are included
updated in both algorithms. Thus, if persistent querieehavin LRNN (by definition) and, for each such point, the in-
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Insert(q, [t7;t7], LRNN, p, tinsert):
1 Setty «— max{tinsert, tk}.
2 LetT; C [to;t”] be the time interval whep is in regions;. For each such thafl} # ), do:
For each{nn;;, Ti;) € B;, such thatTi; N T; # 0§, do:
LetT' = Ty NT;. Let T” C T’ be the time interval during whicli(q, p) < d(q, nn;;). If T" # 0:
2.1 Add{p, T") to B;. Check for inclusion ofp, ") into LRNN, as described in step 3 #lindRNN.
2.2 Changdnmj, TZ> to (nmj, TZ']' \ T”> in B;.
3 Foreachlp;, T;) € LRNN such thap; # p, do:
LetT’ C Ti N [to; "] be the time interval during whicti(p;, p) < d(pi, q). If T’ # 0, change(p;, Ti) to (p;, Ti \ T).

Fig. 13 Incremental maintenance BNNquery answers during insertions of data points

Insert(q, [t7;t7], LRNN, p, tinsert, k):
1 Sett() — max{tinse’rt; t}_}
2 LetT; C [to;t*] be the time interval whep is in regionS;. For each such thafl; # 0, do:
For each((p1,p2, - -.,pk), Ti) € Bs, such thatl; N'T; # (), do:
LetT' = T; NT;. Let T"” C T’ be the time interval during whicti(q, p) < d(q, px). If T" # 0:
2.1  Add{(p1,p2,---,pk-1,p), T") 10 B;. CallCorrectOrder(T", k) on answer lis3;. Check for inclusion ofp, T"')
into LRNN, as described in step 3 #ind RkNN.
2.2 Change{(p17p27 . ,pk), Tij> to <(p17p2, . ,pk), T \ T”) in B;.
3 Foreachlp;,r;,T;) € LRNN such thap; # p, do:
LetT’ C TiN[to;t™'] be the time interval during whicth(p;, p) < d(p1,q). If T' # 0, change(p;, 1, T1) to (py, 71, Ti \
T') and, ifr; < k, add{p;, 7 + 1, T’) to LRNN

Fig. 14 Incremental maintenance BKNNquery answers during insertions of data points

Delete(q, [t7;t7], LRNN, p, taciet):
1 Settg «— maX{tdelete, t}_}.
2 Foreachp;,T;) € LRNN, such thap; = p andTj N [to;t"] # 0, do:
Change(p;, Ti) to (pi, T'), whereT’ = Tj \ [to; t”]. If T' = 0, remove(p;, T') from LRNN.
3 Foreachnni, Ti;) € B; such thatwn; = p, do:
3.1 Removenng, Ty) from B;.
3.2 CallFindNN(q, T ) for the regionS;. Add the returned points with their corresponding timerives to B;.
4 ComputeLRNN. For each(p;, T}) € LRNN do:
LetT' C T N [to;t”] be the time interval during which inequality{p;, p) < d(pi, ¢) holds. If T’ # @, check for the
inclusion of (p;, T") into LRNN, as described in step 3 BindRNN.

Fig. 15 Incremental maintenance BNNquery answers during deletions of data points

equalityd(p:,p) < d(pi,¢) holds during the corresponding {(p;,T3) | 34,4,s ({(p1,p2,--.,pk), Tij) € Bi A
time interval. p=ps N Ty CTij) A

Figure 16 shows the a modified version of the algorithm A, ', T"Y € LRNN (pp=p' A TiNT" # 0)}
that is able to maintain the result of &kNN query. The
first major modification is the additional step 3 in Figure 16,
which is not present in Figure 15. This step updates the rank
of those reverse nearest neighbors that, during some aiserv

of time, are closer tp than toq. Whenp is removed from . . : .
in-between such aRNN point andg, the rank of theRNN ~ dUires two index traversals in the worst case. One in step 3.2

point should be decreased by one for the corresponding tim@nd another in gtep 4 (Figure 15,)' Note th‘_"‘t no trge traversal
interval. are performed if the deleted point is not in tBg lists and

Another difference between the two algorithms is that inis further away from the points in thg; lists than the query

step 4.2 in Figure 16, the algorithfindkNN does not have point. We investigate the amortized cost of the algorithm in
to start from scratch—thie— 1 nearest neighbors gfremain our performance experiments.
the same durind;;.

Although step 5 in Figure 16 is the same as step 4 in Fig-3 8 Cont .
ure 15, the definition ot RNN has to be modified to account *- ontinuous queries

for lists of points, instead of single points, associatethwi ] ) . . ] .
time intervals in theB; result lists. More formally: As stated in Section 2.1, continuous queries are queri¢s wit

time intervals that advance in step with the continuousby pr
LRNN = gressing current time. In this section, we discuss how te sup

The same procedure as described for the cade f 1 is
gsed to compute the listRNN. Ranks are ignored in this
computation.

In contrast to algorithnInsert, algorithmDelete re-
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Delete(q, [t";t7], LRNN, p, ticiere, k):
Steps 1 and 2 are analogous to the corresponding steps ireAi§u
3 Foreachp;,r;,T;) € LRNN do:
LetT’ C TiN [to; t"] be the time interval during which inequality{p;, p) < d(p:, q) holds. fT" # §, change(p;, 7, T})
to (p;, 7, Ty \ T") and add(p;, 7, — 1,7”) to LRNN
4 For each(p1,p2,...,pk), Tij) € B; such tha8l (p, = p), do:
4.1 Remov€(pi,p2,...,pk), Ti;) from B;.
4.2 Call FindkNN(q,T;;,k) for the region S;. Instead of performing step 1 offindkNN, use
{{(p1,---,Pi—1,D141,-- -, Pk), T3;)} as the initial answer list. Add the returned result$o
Step 5 is the same as step 4 in Figure 15, @hilgdRkNN is used instead dfind RNN.

Fig. 16 Incremental maintenance BkNNquery answers during deletions of data points

port continuous current-time queries, i.e., those thaghav= To minimizeC'(1), we differentiate”’ and solve the equa-
t1 = now. tion C’(1) = 0:
A continuous current time query issued at timg,,. can

be supported by computing a persistent qugnyith time in-

terval[tissuc; tissue +]. The startand end times of the time in- vy — 1, (NMf _ @) 0 = 1= QoU
tervals in the answer to this query are then the times of sched U 12 MyN
uled events that update the answer to the continuous query.

These event times change as the answey i maintained
under updates. At + [, @ Nnew persistent query with time
interval of lengthl is computed.

The choice of an optimdlvalue involves a trade-off be-
tween the cost of the computationgfand the cost of main-
taining its result. On the one hand, it involves a substali@a
cost to compute even a query with= 0, so we want to avoid
frequent recomputations of queries with snialDn the other
hand, although computing one or a few queries with laige

cost effective in itself, we must also take into account thetc 4 'S: the Iesg frequently we want to complqte—mak!ng a
of maintaining the larger answer set @f which generates largerl is desirable. Finally, the faster the cost of maintaining

substantial additional I/O on each update. So, using gsierie?! grows with the growing (the rate of growth expressed by

with largel is also not likely to be efficient. My), the smaller an we want.

Let N be the number of moving points afibe the aver- Parameterg), and M; are dependent oV and other
age time duration between two updates of a point. Assum&Pecifics of the data set, and approximate values for them
also that we want to maintain the answer to a continuougould be maintained automatically by the query processor.
query from the current time and for a large periodiofime This could be done by monitoring the performance of queries
units into the future. Then, we want to find a valueldhat ~ 1Ssued by users or by periodically performing a predefined

minimizes functionC(1), defined next, that denotes the total Suite of sample queries. Similarly, the valueiéfcould be
cost of maintaining the continuous query. maintained automatically by monitoring the frequency of up

Observe that), is the cost of computing;, when! = 0.

The coefficientM; specifies how fast the cost of one up-
date grows when the length of the maintained persistenyquer
grows. The result obtained is quite intuitive. RatigN is the
average time between two updates to the whole database. The
larger it is (the smaller the frequency of updates), the paea

the maintenance of the query result is and the laigean

be. Also, the larger the base co&f) involved in computing

dates.
L l The presented cost model should be applicable to both
o) = T (Q(l) T ENM(I)) nearest neighbor and reverse nearest neighbor continupus ¢

rent-time queries. Our performance experiments, destiibe
the next section (in Section 4.6, in particular), investgand
verify the applicability of this cost model.

Here,Q(l) is the cost of computing the persistent query
with time interval of lengtH and M (1) is the amortized cost
of a single update (a deletion followed by an insertion) that
required to maintain the answerdo The ratiol /U expresses
how many times a point is updated during the life-time of
a persistent query and/U)N M () gives the total cost of 4 Performance experiments
maintenance, when updating &l points. Let both) (/) and

M (1) be linear functions. (We verify this assumption in our

performance experiments.) Then This section presents results of experiments with the algo-

rithms presented in the previous section. Following a descr
tion of the experimental setup, Sections 4.2 and 4.3 study
L properties of thé&IN algorithms, with the second of these fo-
cl) = T (QO + Qs+ EN(MO + Mfl)) cusing on persisteMIN queries. Then two sections consider
I N N the RNN algorithms. Finally, Section 4.6 considers the con-
= TQO + LQs + LU]WO + LﬁMfl- tinuous versions of botNN andRNN queries.
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4.1 Experimental setting Unless noted otherwise, the number of points (8, 000.
Workloads are run fot 20 time units to populate the index.
All algorithms presented in the previous section were imple Then, the workloads are run for additiorigltime units with
mented in C++, using a TPR-tree implementation based omueries intermixed with the updates. Unless noted othegwis
GiST [10]. Specifically, the TPR-tree implementation with 600 queries are issued—ten for each time unit.
self-tuning time horizon was used [23]. We investigate the  Note that the update rate implied by this setting may be
performance of the different algorithms in terms of the num-expected to be in the low end of what may be expected in
bers of I/O operations they perform. The disk page size (andeal-life scenarios. Since our experiments explore théoper
the size of a TPR-tree node) is set to 4k bytes, which resultsnance of queries, the setting is conservative—for scesario
in 204 entries per leaf node in trees. An LRU page buffer ofwith higher update rates, queries would be more efficient.
50 pages is used [18], with the root of a tree always beingTlhis is due to the specifics of the TPR-tree, in which time-
pinned in the buffer. The nodes changed during an index opparameterized bounding rectangles are “tighter” when more
eration are marked as “dirty” in the buffer and are written to updates happen, leading to better query performance.
disk at the end of the operation or when they otherwise have For the experiments with tHeN queries, a query pointis
to be removed from the buffer. generated in the same way as a new data point is generated.
In addition to the LRU page buffer, we use a main-memoryFor the experiments with tiRNNqueries, each query corre-
resident storage area that accommodae800 entries, each ~ sponds to a randomly selected point from the currently activ
entry consisting of a moving point, a time interval, and a dis data set. Unless noted otherwiges= 1, and the query time
tance function expressed by three parameter values (cf. Sethterval is a random interval contained(tisye , tissue + 30],
tion 3.3.1). This storage is used to record the answer sdts arWwheret;s.,. is the time when the query is issued.

intermediary answer sets (tH# lists) of persistent queries. Our performance graphs report average numbers of I/O
The storage is large enough so that these sets always fit ipperations per query. When query selectivity is given as an
main memory. average numbers of time intervals in a result, the reported

If the answer sets or intermediary answer sets were |argemumbers of time intervals in a result is minimal, i.e., the im
than the available main memory, they would need to be mainplementations of the algorithms ensure that results are coa
tained on disk. However, this would result in very substdnti lesced. FOKNN queries, this means that for any two consec-
I/O because access to the entries in these sets is very noHtive time intervals in the result, the associaéd points are
local. In the worst case, each time a point or a bounding rectdifferent or their orderings are different. FRKNN queries
angle is examined, the whole answer set would have to b¢ghis means that in thé RNN answer set, no two elements
read from the disk. Thus, our algorithms are not well suitedwith the same data point and rank have adjacent time inter-
for query answers that do not fit in main memory. vals that can be merged into a single interval.

The performance studies are based on synthetically gen-
erated workloads that intermix update operations and gs.eri
To generate the workloads, we simul&feobjects moving in
a region of space with dimensio800 x 1000 kilometers. In the first round of experiments, we explore the four varia-
Whenever an object reports its movement, the old informations of theNN algorithm mentioned in Section 3.3 iest-
tion pertaining to the object is deleted from the index (assu first traversal using thenin metric, best-firsttraversal using
ing this is not the first reported movement from this object), theintegral metric,depth-firstraversal using thenin metric,
and the new information is inserted into the index. anddepth-firsttraversal using thantegral metric.

Two types of workloads were used in the experiments. In  Figure 17 shows how the average number of 1/O opera-
some of the experiments, we use uniform workloads, whergions per query changes when the number of indexed points
point positions and velocities are distributed uniforniifie  increases. The numbers of I/O operations for all four vasian
speeds of objects vary from 0 to 3 kilometers per time unitof the algorithm grow as the number of points increases. The
(minute). In most of the experiments, more realistic work- results of the experiments show that this increase is propor
loads are used, where simulated objects move in a fully contional to the increase in the average selectivity of queries
nected network of two-way routes, interconnecting a num-  Figure 18 shows the average number of /0 operations per
ber of destinations uniformly distributed in the plane.ri®®i  query when the number of destinations in the simulated net-
start at random positions on routes and are assigned witlvork of routes is varied. “Uniform” indicates the case where
equal probability to one of three groups of points with max- the points and their velocities are distributed uniformiigjch,
imum speeds 00.75, 1.5, and3 km/min. Whenever an ob- intuitively, corresponds to a very large number of destina-
ject reaches a destination, it chooses the next targehdesti tions.
tion at random. Unless specified otherwise, the experiments Not considering the two extreme workloads—the simu-
use workloads from simulations witt0 destinations. The lation with two destinations and the uniform workload—the
network-based workload generation used in these expetimemumber of I/O operations tends to increase with the number
is described in more detail elsewhere [24]. of destinations, i.e., as the workloads get more “uniform.”

In both types of workloads, the average interval in-betweemhe results are consistent with those reported for rangeegue
successive updates of an object is equab@otime units.  on the TPR-tree [24], although they are less pronounced.

4.2 Properties of the NN algorithms
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one one-dimensional road and that the TPR-tree is not well
suited for such one-dimensional datasets. For exampleyin o
experiments, the overlaps among the bounding boxes of the
TPR-tree at the end of the two-destination workload.&
times larger than the overlaps at the end of the ten-dewtmat
workload.

Figures 17 and 18 show that the best performance is
achieved by the variants of tHéN algorithm that use the
best-firsttree traversal. It can also be observed that the per-
formance differences among the four variants of the algo-
rithm are quite small. To understand why this is so, and to
learn whether theNN algorithm could possibly be signifi-
cantly improved, we explored how many of the performed
I/0O operations corresponded to the reading of tree nodés wit
bounding rectangles that actually contained the querytpoin
at some time point during the corresponding query time in-
terval. Such tree nodes, which we tecovering must neces-
sarily be visited by anyNN algorithm to produce the correct
answer. Thus, given a specific TPR-tree, the number of I1/O

Figure 19 explains why the cost of queries in the uniformoperations corresponding to the covering tree nodes diees t
workload is less than the cost of queries in the workloaddower performance bound for a corresponding nearest neigh-
with 40 and160 destinations. In this graph, the average num-bor query.

For the uniform workload45.4 out of 46.5 I/O opera-

in the query results are plotted. The graph shows that quertions corresponded to the covering tree nodes. For2the
results are smaller for the uniform workload; hence, |e®s I/ destination workload, the two numbers wexg and 24.1.
operations are needed to retrieve these results. The smealle This demonstrates that to improve the performance of the
sults for the uniform workload are most probably due to theNN algorithms, the underlying index structure has to be im-
specifics of the workload generation—more objects move aproved, not the query algorithms. The notable exception was

the maximum speed & km/min in the non-uniform work-

the two-destination workload, where, in our experimemns$y o

loads. This means that temporal query results record moré6.4 out of23.6 1/0O operations corresponded to the covering
changes in these workloads.

On the other hand, the very small query results for work-

tree nodes.
Figures 20 and 21 show how different variants of i

loads with two destinations does not decrease the cost dadlgorithm perform when varyingand the length of the query
gueries in these workloads. On the contrary, queries irethestime interval. For the experiment with the varying querydim
workloads are more expensive than those in the workloadsterval, all query intervals in a workload are of the same
with ten destinations (cf. Figure 18). This is explained by length and start at the time when the corresponding query
the fact that objects in a two-destination simulation mowe o is issued. The graphs show results that are consistent with
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gueries in a workload have the same query interval length.
i As described in Section 3.6, maintaining query results unde
insertions does not cost any I/O. Figure 22 shows the aver-

44 + ' Min metrics/best-first —+—
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Integral metr./best-first ----%---

42 + Integral metr./depth-first - age cost of maintaining one query result when a deletion is
e | performed.
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Fig. 20 NN query performance for varying o
0.002 B
80 T T. T T T
Min metrics/best-first —+— 0 . . . . .
Min metrics/depth-first ---x--- %
70 Integral metr./best-first -------+"% 0 10 20 30 40 50 60
Integral metr./depth-first "'g,ﬁ""" Query interval length
60 - ] Fig. 22 The cost of maintainingIN queries of different length
@)
= 50 -
S The graphs show that the cost is low and, consistent with
§ 40 . the other resultdyest-firstthat traversal slightly outperforms
depth-firsttraversal. The average cost is low mainly because
30 . no /O is necessary for most of the query result updates. For
example, only 77 out of 853,228 query result deletions re-
20 g n quired I/O for the query interval length of 10 units. For the
] minimum metrics and best-first traversal, considering only
lo 1 1 1 1 1

these 77 deletions with non-zero I/O, the average cost af/que
result deletion is 15.3, which has to be compared to 25.4 1/Os
on average for performing a query (see Figure 21).

Fig. 21 NN query performance for varying query interval length Finally, note that when ignoring large query interval ldrgt
the average cost of query maintenance grows almost linearly

o as assumed in Section 3.8.
the results shown in Figure 18. Note that the performance of

thekNN queries decreases only slightly with an increaging

This is in spite of the increase of the average size of the re4.4 Properties of the RNN algorithm

turned query results—fror20.6 distinct points per result for

k =1 to 109 distinct points per result fat = 16. Another batch of experiments aims to explore a variety of
The graph in Figure 21 validates the assumption fromthe properties of the algorithms computing the reverseastar

Section 3.8, that the cost of queries grows approximately li neighbors. Based on the results of the experiments with the

0 10 20 30 40 50 60
Query interval length

early with the increasing query interval length. different variants of thélN algorithm, theRNN algorithms
use theNN algorithm with thebest-firsttraversal and thenin
metric.

4.3 Persistent NN queries To test the scalability of thRNN algorithm, the number

of points in the database was varied. Figure 23 shows the av-
To evaluate the cost of maintaining the results of persistenerage number of I/O operations geNquery for workloads
NN queries, a round of workloads was run where the resultwith varying database size.
of queries were maintained during insertions and deletions  The number of 1/O operations increases with the num-
Each workload containg0 queries, one per time unit, start- ber of data points. The increase is most probably due to two
ing at120 time units after the start of the workload. The time factors. First, as the size of the database increasesr-diffe
interval of each query starts when the query is issued and aknt queries are more likely to “touch” different parts of the
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ber of distinctRNN candidate points may be as large as the

| Total —+— | size of the dataset (see Section 3.4.1). However, for out-wor
120 First traversal ---x--- loads. th i i fth ts (both in t f
Second traversal ——+— | loads, the maximum sizes of the answer se s (bothin terms o
100 intervals ar_1d distinct points) are larger than_the average a
swer set sizes by about a factor of 10, which makes them
between two and three orders of magnitude smaller than the
Q 80 dataset size. For example, for the dataset of 1,100,00@s0in
S the query with the largest number of candidBtgN time in-
g 60 tervals required storing 2,165 time intervals with assecia
n RNN candidates in thé; lists.
40 Returning to Figure 23, observe that the second traver-
sal of the tree, in which the candidates produced by the first
20 - PR T a traversal are verified, is cheaper than the first traversal, i
which these candidates are found. This is as expected. Be-
ot ' ' ' ' cause although the second traversal involves multipleyquer
100 300 500 700 900 1100 points, all these query points are close to the original yjuer
Points, in 1000s point, making it very likely that the disk pages brought into
Fig. 23 RNNquery performance for varying number of points the buffer by the first traversal can be reused in the second

traversal, thus reducing the number of 1/O operations.

- ] ] Another factor also contributes to making the second tra-
dataset, and the probability that one query will benefit fromyersa| cheaper. During the first traversal, there is noainiti

the disk pages left in the buffer from the execution of anothe upper bound for the distance between the query ppamd
query is reduced. Second, increasing numbeRNiNcandi-  theRNNcandidate point, i.edmin, (t) is initially set toco in
dates are retrieved and checked. _ the FindNN algorithm. The second traversal only needs to
Figure 24 plots the sizes of th@; lists, which store the  getermine whether the poinis anNN point of the candidate

candidateRNN points, and the.RNN set, which stores the  oints; and for each candidate point, there is an initial up-
final result, in terms of both the number of time intervals andp,ar bound fordmin,..,, (¢), namely the distance between the
the number of distinct points. The graph shows that Wh“epointq and that candidate pointy,;. Further, sincean;; is
theNN point of g in some regiorb; at some time, the distance
betweery andnn,; is typically small. This enables more ag-
gressive pruning of tree nodes during the second travefsal o

T T T T
250 - candidate RNN time intervals —+— 1

distinct candidate RNN points ------ the TPR-tree.
final RNN time intervals - | Figure 25 shows the average number of I/O operations
200 | distinct final RNN points -]

per RNN query when the number of destinations in the sim-
ulated network of routes is varied and for the uniform work-
load. Both the performance of the first traversal and the per-
formance of the second traversal follow the same trends as
I} observed for th&IN queries in Section 4.2.
100 | - Figure 26 shows the performance of tR&ENN queries
S e for different values ok. As for thekNN queries, the perfor-
T mance decreases only slightlyfamcreases. Next, Figure 27
50 ] plots the average selectivity of the two traversals ofRk&IN
gueries. Note that fok = 16, the average number of time
0 R e S ~ Mt intervals in the final answer surpasses the number of time in-
100 300 500 700 900 1100 tervals in theB; lists of RNN candidates. This is possible be-
Points, in 1000s cause one time interval inf; list is associated witk RKNN
candidates, each of which may turn into sev&&INNpoints
that are then associated with different time intervals.hie t
experiment withk = 16, we observed the largest combined
size of theB; lists for anRKNN query, namely6, 272 time
the average size of the final result remains almost the samiaitervals (which exceeds the average by a factor of about 10)
as the database size increases, the numb&NN candi- Figure 28 shows the average number of I/O operations per
dates increases. The graph also shows that only every sixitjuery for varying query interval lengths. The setup of the ex
RNN candidate point becomes &NN point (for the work-  periment is the same as that of the corresponding experiment
load of 100,000 points). This ratio, of course, depends en th for NN queries (cf. Section 4.2). The graph shows that for
workload. In our experiments with the uniform workloads of small query interval lengths, the second traversal inclirs a
100,000 points, the ratio is abatiB. Theoretically, the num-  most no I/O, which confirms the importance of a buffer. The

150

Average selectivity

Fig. 24 Average selectivity oRNN queries for varying number of
points
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number of I/O operations increases approximately linearly
with the query interval length. The experiment also shows
that the number of query results also increases approxinate
linearly.

4.5 Persistent RNN queries

To investigate the cost of maintaining persisteMNqueries,

we varied the query interval lengths in an experiment with a
setup that is the same as for the analogous experiment with
the persistenN queries (cf. Section 4.3). Figure 29 shows
the average, amortized cost per single insertion or deletio
maintaining one query result set.

0.05 T

T T T
Deletion, total —+—
0.045 Deletion, first traversal ---x-# A

Deletion, second traversal ----%/--
0.04 Insertion -

0.035
0.03
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0.015
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Query result update 1/0

60

Query interval length

Fig. 29 The cost of maintaininRNN queries of different lengths

The graph demonstrates that maintainRigN query re-
sults under insertions incurs very little amortized 1/0.nsn-
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tioned at the end of Section 3.7.1, this is because trawersal 0.002 E—
of the tree in algorithnInsert are quite rare. Interestingly, 1 100,000 points —+—
deletions are much more costly. Algoritielete involves 0.0018 500,000 points --->=

two tree traversals—one to find new candidBféN points,
if one was deleted, and another to check whether some of2 0.0016
theRNNcandidates become actiRINN points, when a point
close to these candidates is deleted. As the graph shows, cong.
trary to theRNN query algorithm, the two traversals have

similar amortized cost. A possible reason for this behavior

ate

0.0014

0.0012

Query resultu

is that the probability that sonfeNN candidate is deleted is 0.001

lower than the probability that a point is deleted that ateom

time during the query interval gets close to soR1¢N can- 0.0008 3 ’

didate. The latter condition requires rechecking of sR&IN 0.0006 - ™ . ]

candidates (step 4 in Figure 15). Thus, the second traviersal S I o

performed more often than the first traversal. 0.0004 T IR
Comparison of the absolute numbers in Figures 22 and 29 2 4 6 8 10 12 14 16 18 20

shows that maintaining the results BRNN queries is more Query recomputation interval length

expensive than maintaining the resultsNM queries, and is
so by more than an order of magnitude. This is mainly so
because a larger number RNN query result updates incur
non-zero I/O tharNN query result updates do. For example, 0.011 ' 100,000 points —
for query interval length 10, 2,013 out of 874,9RBINquery 0.01 500,000 points -
result deletions incurred I/O, while only 77 out of the samnil
number ofNN query result deletions incurred 1/0 (see Sec-
tion 4.3). On the other hand, each non-zero-I/O query result
deletion costs less faRNN queries than foNN queries (4.2
I/Os vs. 15.3 1/Os for the same settings).

Figure 29 also shows that the amortized cost per update
increases approximately linearly with the length of themmai

Fig. 30 The cost of maintaining continuous current tiNi queries
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0.006

Query result update 1/O

tained query interval. This is as could be expected. 0.005 - T
0.004 |- T
4.6 Continuous queries 0.003 |- xxx T
0.002 [ i | | | |
Section 3.8 describes a cost model for choosing the optimum 2 4 6 8 10 12 14 16
query re-computation interval lengthwhen maintaining a Query recomputation interval length

continuous current-time query. Recall that a continuowsyju Fig. 31 The cost of maintaining continuous current tifRNN
is maintained by means of a persistent query that extendaueries

from the time it is issued andltime units into the future.
With a smalll, a new persistent query must be computed fre-
guently, which is expensive. But each query result is alko re This is so because a larger number of points leads to a lower
atively small and thus cheap to maintain as updates to therobability that a specific update will have an effect on a spe
underlying data occur. With a lardefew persistent queries cific query result. In spite of this, when the total cost of que
need to be computed, but the ones that are computed haveaintenance is computed by adding the maintenance costs
large results that are expensive to maintain. So a sirall  for all updates, th&00, 000 points workload has the larger
expected to result in high recomputation cost and low main-total query maintenance cost than @, 000 points work-
tenance cost, while the opposite is expected for a large load, although the increase is by less than a factér of

To empirically understand the effect of differéntalues, For the nearest neighbor queries, the lidst the work-
we performed a series of experiments where we varied théoad with 100, 000 points seems to be approximately. For
length of the query re-computation interval. For eadehalue  the workload with500, 000 points, the besdtvalue is approxi-
used20 queries were issued at tim@0 and then maintained mately6. For the reverse nearest neighbors, the biestboth
for 60 time units. workloads seems to be approximatély

Figures 30 and 31 show the amortized cost per single up- The performance experiments with varying query interval
date operation (insertion or deletion) while maintainirgy,  lengths (cf. Sections 4.2—4.5) validated the assumptiogis t
spectively, oné&lN and oneRNN continuous query for work-  functionsQ(?) and M (1) from the cost model presented in
loads of100, 000 and500, 000 points. Observe thatthe amor- Section 3.8 are approximately linear. To compare the empir-
tized cost per single update is lower for the larger datasetically observed optimal values éfwith the ones computed
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using the cost model presented in Section 3.8, we estimatetthere are two kinds of points (i.e., “clients” and “servérs,
the values of paramete€g, and My from the performance corresponding to, e.g., tourists and rescue workers), aed a
experiments with varying query interval length. verse nearest neighbor query asks for points that belong to
For theNN queries (see Figures 21 and 2@y =~ 15.8 the opposite category than the query point and that have the
andM; ~ 0.00015. According to our workload generation query point as the closest from all the points that are in the
parametersl/ = 60. For 100,000 points, the cost model same category as the query point. The approach of dividing
givesl ~ 7.9, which is quite close to the empirically observed the plane into six regions does not work for the bichromatic
value of 10. For theRNN queries (see Figures 28 and 29), case—a point can have more than six reverse (first) nearest
Qo ~ 16.3 and My ~ 0.00063. This gives! ~ 3.9, which neighbor points at a single point in time. An interesting fu-
agrees very well with the empirically observed value of 4.ture research direction is to develop algorithms for effitie
These results indicate that the mathematical cost model iganswering reverse nearest neighbor queries for contimyious
practical. moving bichromatic points.
Next, we have only considered metric distance functions
in this paper. But settings exist where other notions of dis-
5 Summary and future work tance are also meaningful. For example, the objects consid-
ered may be assumed to move along some underlying trans-

Rapid technological advances promise to enable the trgckinportation network structure—they may be vehicles in a road
of the positions of large populations of continuously mayin network. Or the objects may move more freely, with differ-
objects. Consequently, efficient algorithms for answevarg ~ €nt types of infrastructure, such as lakes, mountainsyor-fa
ious queries about continuously moving objects are of inter land, prohibiting movement in some areas. While Euclidean
est. Algorithms have previously been suggested for answerdistance may be relevantin such settings, itis also higity r
ing nearest neighbor and reverse nearest neighbor queries fevant to study how to handle the complexities arising from
non-moving objects, but no solutions have been proposed foihe non-Euclidean and non-metric distance functions tkat e
efficiently answering these queries for large populatiohs oist in such settings.
continuously moving objects.

This paper proposed algorithms that enable the compu-
tation of nearest ané nearest neighbor queries as well as ACknowledgments

reverse and reverse nearest neighbor queries for this set- This research was suoported in part by arants from the Dan-
ting. Each such query takes as parameter a time interval that PP P Y9
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Distance(q, R, [t";t7]):
1 SetE 0.
2 Foreach dimensioh=1,...,d, do:
If v; # of andtt = (x; — 27)/(v] —v;) € [t7;¢7], addt; to E.
If v; # vi andt;' = (x; — x7)/(v;' — ;) € [t7;¢7], addt; to E.
3 SortE. The elements oF divide [t™;¢7] into at mostd + 1 intervals. For each such intervay:

d

dQ(R7 t) = Z dq,i(R7 t)?

i=1

(v —v)? 4 2t(ah — x)(v) — i) F (xf —2)? ifVE € Ty(wi + vit < 2 +05t)
dai(R,t) = < 2 (v;' — v3)? 4 2t(x;' — @) (v;' — ) + (x7' — 24)? if VE € Tj (s + vit > a7 +oj't)
0 otherwise

Fig. 32 Distance computation

[t7; 7] is a piece-wise quadratic function. The algorithm com-
puting this function is given in Figure 32.

In step 2, the algorithm computes the times when the
moving pointg crosses the moving hyper-plangs= z (¢)
andz; = z;(t)—the extensions of those two &f's oppo-
site sides that are perpendicular to theaxis (see Figure 33,
which also enumerates thé+1 possible subdivisions). Note

2
2 R
\@,r):o
e
1 q
x=x () =50

Fig. 33 Distance between a moving poing and a time-
parameterized rectanglk

that heret; is not necessarily less thap. In step 3, during
each of thel;, ¢ does not cross any of the above-mentioned
hyperplanes. From the formulas in step 3, it is quite stiaigh
forward to obtain the parametess b, and ¢ mentioned in
Section 3.3.1.

Observe that for the time periods wherés inside R,
dq(R,t) = 0.



