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Abstract With the continued proliferation of wireless com-
munications and advances in positioning technologies, algo-
rithms for efficiently answering queries about large popula-
tions of moving objects are gaining in interest. This paper
proposes algorithms fork nearest and reversek nearest neigh-
bor queries on the current and anticipated future positionsof
points moving continuously in the plane. The former type of
query returnsk objects nearest to a query object for each time
point during a time interval, while the latter returns the ob-
jects that have a specified query object as one of theirk clos-
est neighbors, again for each time point during a time inter-
val. In addition, algorithms for so-called persistent and con-
tinuous variants of these queries are provided. The algorithms
are based on the indexing of object positions represented as
linear functions of time. The results of empirical performance
experiments are reported.

Key words Continuous queries – Incremental update –
Location-based services – Mobile objects – Neighbor queries
– Persistent queries

1 Introduction

We are currently experiencing rapid developments in key tech-
nology areas that combine to promise widespread use of mo-
bile, personal information appliances, many of which will be
on-line, i.e., on the Internet. Industry analysts uniformly pre-
dict that wireless, mobile Internet terminals will outnumber
the desktop computers on the Internet.

This proliferation of devices offers companies the oppor-
tunity to provide a diverse range of e-services, many of which
will exploit knowledge of the user’s changing location. Lo-
cation awareness is enabled by a combination of political de-
velopments, e.g., the recent de-scrambling of the GPS signals
and the US E911 mandate [8], and the continued advances in
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both infrastructure-based and handset-based positioningtech-
nologies.

The area of location-based games offers good examples
of services where the positions of the mobile users play a cen-
tral role. In the BotFighters game, by the Swedish company
It’s Alive, players get points for finding and “shooting” other
players via their mobile phones. Only players close by can be
shot. In such mixed-reality games, the real physical world be-
comes the backdrop of the game, instead of the purely virtual
world created on the limited displays of wireless devices [7].

To track and coordinate large numbers of continuously
moving objects, their positions are stored in databases. This
results in new challenges to database technology. The con-
ventional assumption, that data remains constant unless itis
explicitly modified, no longer holds when considering contin-
uous data. To reduce the amount of updates needed to main-
tain a certain precision of positions stored in the database,
moving point objects have been modeled as functions of time
rather than simply as static positions [36]. Studies of GPS
logs from vehicles show that representing positions as lin-
ear functions of time reduces the numbers of updates needed
to maintain a reasonable precision by as much as a factor of
three in comparison to using static positions [6].

We consider the computation of nearest neighbor (NN)
and reverse nearest neighbor (RNN) queries in this setting. In
the NN problem, which has been investigated extensively in
other settings (as will be discussed in Section 2.2), the objects
in the database that are nearer to a given query object than
any other objects in the database have to be found. In theRNN
problem, which is relatively new and unexplored, objects that
have the query object as their nearest neighbor have to be
found. In the example in Figure 1, theRNNquery for point 1
returns points 2 and 5. Points 3 and 4 are not returned because
they have each other as their nearest neighbors. Note that even
though point 2 is not a nearest neighbor of point 1, point 2 is
a reverse nearest neighbor of point 1 because point 1 is the
point closest to point 2.

A straightforward solution for computing reverse nearest
neighbor (RNN) queries is to check for each point whether it
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Fig. 1 Static points

has a given query point as its nearest neighbor. However, this
approach is unacceptable when the number of points is large.

The situation is complicated further when the query and
data points are moving rather than static and we want to know
the reverse nearest neighbors during some time interval. For
example, if our points are moving as depicted in Figure 2 then
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Fig. 2 Moving points

after some time, point 4 becomes a reverse nearest neighbor
of point 1, and point 3 becomes a nearest neighbor of point 5,
meaning that point 5 is no longer a reverse nearest neighbor
of point 1.

Reverse nearest neighbors can be useful in applications
where moving objects agree to provide some kind of service
to each other. Whenever a service is needed an object requests
it from its nearest neighbor. An object then may need to know
how many objects it is supposed to serve in the near future
and where those objects are. The examples of moving ob-
jects could be soldiers in a battlefield, tourists in dangerous
environments, or mobile communication devices in wireless
ad-hoc networks.

In a mixed-reality game like the one mentioned at the be-
ginning of the section, players may be “shooting” their near-
est neighbors. Then players may be interested to know who
their reverse nearest neighbors are in order to dodge their fire.

Solutions have been proposed for efficiently answering
reverse nearest neighbor queries for non-moving points [16,
30,35], but we are not aware of any algorithms for moving
points. While much work has been conducted on algorithms
for nearest neighbor queries, we are aware of only one study
that has explored algorithms for a moving query point and
moving data points [31].

This paper proposes an algorithm that efficiently com-
putesRNNqueries for a query point during a specified time

interval, assuming the query and data points are continuously
moving in the plane and the query time interval starts at or
after the current time (i.e., we do not consider querying of
historical data). As a solution to a significant subproblem,an
algorithm for answeringNN queries for continuously moving
points is also proposed.

The paper is a substantially revised and extended version
of an earlier paper [3]. Main additions include support for
kNN andRkNNqueries (wherek > 1), and support for and
experimental evaluation of two kinds of index traversals and
two types of search metrics. Also included is support for so-
called persistentkNN and RkNN queries—incremental up-
date techniques are introduced for this purpose. Next, sup-
port for so-called continuous current-time queries is included.
A new, expanded empirical performance study of the pre-
sented types of queries is reported. Finally, material on dis-
tance computation for moving points and time-parameterized
rectangles is included.

In the next section, the problem that this paper addresses
is defined, and related work is covered in further detail. In
Section 3 our algorithms are presented. In Section 4 the re-
sults of the experiments are given, and Section 5 offers a
summary and directions for future research. An appendix of-
fers detail on the computation of distances between moving
points and time-parameterized rectangles.

2 Problem statement and related work

We first describe the data and queries that are considered in
this paper. Then we survey the existing solutions to the most
related problems.

2.1 Problem statement

We consider two-dimensional space and model the positions
of two-dimensional moving points as linear functions of time.
That is, if at timet0 the position of a point is(x, y) and its
velocity vector isv̄ = (vx, vy), then it is assumed that at
any timet ≥ t0 the position of the point will be(x + (t −
t0)vx, y +(t− t0)vy), unless a new(position, velocity) pair
for the point is reported.

With this assumption, the nearest neighbor (NN) and re-
verse nearest neighbor (RNN) query problems for continu-
ously moving points in the plane can be formulated as fol-
lows.

Assume (1) a setS of moving points, where each point
is specified by its position(x, y) and its velocity(vx, vy) at
some specific time; (2) a query pointq; and (3) a query time
interval[t⊢; t⊣], wheret⊢ ≥ tcurrent , andtcurrent is the time
when the query is issued.

Let NNj andRNNj denote sets of moving points andTj

denote a time interval. Intuitively, we useNNj andRNNj

for containing theNN andRNN query results, respectively,
during thej-th time interval. More precisely, theNN query
returns the set{〈NNj , Tj〉}, and theRNN query returns the
set{〈RNNj , Tj〉}. These sets satisfy the conditions

⋃
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[t⊢; t⊣] andi 6= j ⇒ Ti ∩ Tj = ∅. In addition, each point in
NNj is a nearest neighbor toq at each time point during time
intervalTj, andRNNj is the set of the reverse nearest neigh-
bors toq at each time point during time intervalTj. That is,
∀j ∀p ∈ NNj ∀r ∈ S \ {p} (d(q, p) ≤ d(q, r)) and∀j ∀p ∈
RNNj ∀r ∈ S \ {p} (d(q, p) ≤ d(p, r) during all ofTj).
Here,d(p1, p2) is the distance between pointsp1 andp2 and
symbol\ denotes set difference. Although any metric dis-
tance function will work, we use Euclidean distance for speci-
ficity.

We also consider the more generalk nearest neighbor
(kNN) and reversek nearest neighbor (RkNN) queries. The
answer to akNNquery has the same structure as the answer to
anNN query, but instead of setsNNj , each of which usually
contains one element, akNNanswer has ordered listsNNj =
(pj1, pj2, . . . , pjk), each containing exactlyk points (assum-
ing |S| ≥ k). The points in each list are ordered by their dis-
tance toq, so thatpj1 is the closest point andpjk is thek-th
closest point toq duringTj. More formally,∀j (d(q, pj1) ≤
d(q, pj2) ≤ · · · ≤ d(q, pjk) ∧ ∀r ∈ S \ NNj (d(q, r) ≥
d(q, pjk) during all ofTj)). Note that duringTj, there can be
more than one point with a distance toq that is exactly equal
to d(q, pjk). For simplicity, an arbitrary subset of such points
of sizek − |{p ∈ S | d(q, p) < d(q, pjk)}| is included in
NNj .

In the answer to anRkNN query, each setRNNj con-
tains all points such that each has query pointq among itsk
nearest neighbors. More formally,∀j ∀p ∈ RNNj (|{r ∈
S | (d(p, r) < d(p, q)}| < k during all ofTj). Note that if, at
some specific time point, pointq is ak-th nearest neighbor of
point p, according to the definition of thekNN query,q may
still not be included in the answer set ofkNN(p). This may
happen if there are more thank points with a distance top
that is smaller than or equal to the distance fromq to p. Nev-
ertheless, in such situationsp will always be included in the
answer of theRkNN(q) query.

Next, observe that all the query answers are temporal,
i.e., the future time interval[t⊢; t⊣] is divided into disjoint
intervalsTj during which different answer sets (theNNj and
RNNj ) are valid. Some of these answers may become invali-
dated if some of the points in the database are updated before
t⊣. The straightforward solution would call for recomputing
the answer each time the database is updated. In this paper,
we present a more efficient algorithm that maintains the an-
swer to a query when updates to the data set are performed.
According to the terminology introduced by Sistla et al. [27],
we use the termpersistentfor queries with answer sets that
are maintained under updates.

In practice, it may be useful to change the query time in-
terval in step with the continuously changing current time,
i.e., it may be useful to have[t⊢; t⊣] = [now ,now + ∆],
wherenow is the continuously changing current time. The
answer to such a query should be maintained both because of
the updates and because of the continuously changing query
time interval. In particular, we investigate how to supportcon-
tinuous(and persistent) current-time queries (∆ = 0).

2.2 Related work

Nearest neighbor queries and reverse nearest neighbor queries
are intimately related. In this section, we first overview the
existing proposals for answering nearest neighbor queries, for
both stationary and moving points. Then we discuss the pro-
posals related to reverse nearest neighbor queries.

2.2.1 Nearest neighbor queriesA number of methods have
been proposed for efficient processing of nearest neighbor
queries for stationary points. The majority of the methods use
index structures, and some proposals rely on index structures
built specifically for nearest neighbor queries. As an exam-
ple, Berchtold et al. [4] propose a method based on Voronoi
cells [20].

Branch-and-boundmethods work on index structures orig-
inally designed for range queries. Perhaps the most influential
method in this category is an algorithm, proposed by Rous-
sopoulos et al. [22], for finding thek nearest neighbors. In
this solution, an R-tree [9] indexes the points, anddepth-first
traversal of the tree is used. During the traversal, entriesin the
nodes of the tree are ordered and pruned based on a number of
heuristics. Cheung and Fu [5] simplified this algorithm with-
out reducing its efficiency. Other methods that use branch-
and-bound algorithms modify the index structures to better
suit the nearest neighbor problem, especially when applied
for high-dimensional data [14,34].

Next, a number of incremental algorithms for similarity
ranking have been proposed that can efficiently compute the
(k + 1)-st nearest neighbor, after thek nearest neighbors are
returned [12,11]. They use a global priority queue of the ob-
jects to be visited in an R-tree. More specifically, Hjaltason
and Samet [12] propose an incremental nearest neighbor al-
gorithm, which uses a priority queue of the objects to be vis-
ited in an R∗-tree [2]. They show that such abest-firsttraver-
sal is optimal for a given R-tree. A very similar algorithm
was proposed by Henrich [11], which employs two priority
queues. For high-dimensional data, multi-step nearest neigh-
bor query processing techniques are usually used [17,25].

Kollios et al. [15] propose an elegant solution for an-
swering nearest neighbor queries for moving objects in one-
dimensional space. Their algorithm uses a duality transfor-
mation, where the future trajectory of a moving pointx(t) =
x0 + vxt is transformed into a point(x0, vx) in a so-called
dual space. The solution is generalized to the “1.5-dimen-
sional” case where the objects are moving in the plane, but
with their movements being restricted to a number of line
segments (e.g., corresponding to a road network). However,
a query with a time interval predicate returns the single ob-
ject that gets the closest to the query object during the spec-
ified time interval. It does not return the nearest neighbors
for each time point during that time interval (cf. the problem
formulation in Section 2.1). Moreover, this solution cannot
be straightforwardly extended to the two-dimensional case,
where the trajectories of the points become lines in three-
dimensional space.
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The work of Albers et al. [1], who investigate Voronoi
diagrams of continuously moving points, relates to the prob-
lem of nearest neighbor queries. Even though such diagrams
change continuously as points move, their topological struc-
tures change only when certain discrete events occur. The au-
thors show a non-trivial upper bound of the number of such
events. They also provide an algorithm to maintain such con-
tinuously changing Voronoi diagrams.

Song and Roussopoulos [29] propose a solution for find-
ing thek nearest neighbors for a moving query point. How-
ever, the data points are assumed to be static. In addition,
and in contrast to our approach, time is not assumed to be
continuous—a periodical sampling technique is used instead.
The time period is divided inton equal-length intervals. When
computing the result set for some sample, the algorithm tries
to reuse the information contained in the result sets of the
previous samples.

The two works most closely related to ours are by Rap-
topoulou et al. [21] and by Tao et al. [31]. Both of these works
consider the nearest neighbor problem for a query point mov-
ing on a line segment and for static or moving data points.
In a manner similar to what is described in Section 2.1, the
answer to akNN query is temporal. In contrast to our work,
both works do not consider the maintenance of query answers
under updates, and reverse nearest neighbor queries are not
considered. Also, compared to our work, Raptopoulou et al.
consider simplified and less effective heuristics for directing
and pruning the search in the TPR-tree.

In the above-mentioned study, Tao et al. also consider
the general concept of so-called time-parameterized queries.
The authors show how these queries can be processed us-
ing a tailored algorithm for nearest neighbor queries, such
as the algorithm of Roussopoulos et al. [22]. This framework
can be used to process time-parameterized nearest neighbor
queries for moving objects, but each answer would include
only the first time interval from the answer set as defined in
Section 2.1.

2.2.2 Reverse nearest neighbor queriesSeveral different so-
lutions have been proposed for computingRNN queries for
non-moving points in two and higher dimensional spaces.
Stanoi et al. [30] present a solution for answeringRNNqueries
in two-dimensional space. Their algorithm is based on the
following observations [28]. Let the space around the query
point q be divided into six equal regionsSi(1 ≤ i ≤ 6) by
straight lines intersecting atq, as shown in Figure 3. Assume
also that each regionSi includes only one of its bordering
half-lines. Then, there exists at most sixRNN points forq,
and they are distributed so that there exists at most oneRNN
point in each regionSi.

The same kind of observation leads to the following prop-
erty. Letp be anNN point ofq among the points inSi. Then,
eitherq is anNN point of p (and thenp is anRNN point of
q), or q has noRNNpoint inSi. Stanoi et al. prove this prop-
erty [30].

These observations enable a reduction of theRNNprob-
lem to theNN problem. For each regionSi, anNN point ofq
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Fig. 3 Division of the space around query pointq

in that region is found. We term it anRNN candidate. If there
are more than oneNN point in someSi, they are notRNN
candidates. For each of the candidate points, it is checked
whetherq is the nearest neighbor of that point. The answer
to theRNN (q) query consists of those candidate points that
haveq as their nearest neighbor.

In another solution for answeringRNNqueries, Korn and
Muthukrishnan [16] use two R-trees for the querying, inser-
tion, and deletion of points. In the first, the RNN-tree, the
minimum bounding rectangles of circles having a point as
their center and the distance to the nearest neighbor of that
point as their radius are stored. The second, the NN-tree, is
simply an R*-tree [2] that stores the data points. Yang and
Lin [35] improve the solution of Korn and Muthukrishnan by
introducing an Rdnn-tree, which makes it possible to answer
bothRNNqueries andNN queries using a single tree. Struc-
turally, the Rdnn-tree is an R∗-tree, where each leaf entry is
augmented with the distance to its nearest neighbor (dnn),
and where a non-leaf entry stores the maximum of its chil-
dren’sdnn ’s. Maheshwari et al. [19] propose main memory
data structures for answeringRNNqueries in two dimensions.
Their structures maintain for each point the distance to its
nearest neighbor.

In contrast to the approach of Stanoi et al., updates of the
database are problematic in the last three approaches men-
tioned. On the other hand, the approach of Stanoi et al. does
not easily scale up to more than two dimensions because the
number of regions whereRNNcandidates are found increases
exponentially with the dimensionality [26]. To alleviate this
problem, Singh et al. [26] propose an algorithm whereRkNN
candidates are found by performing a regularkNN query.
The disadvantage of such an approach is that it does not al-
ways find allRkNN points. The recent approach by Tao et
al. [33] fixes this problem. Their so-called TPL algorithm,
similarly to the approach of Stanoi et al., works according to
two phases—a filtering phase and a refinement phase—but no
subdivision of the underlying space into regions is necessary
in the refinement phase. Thus, the algorithm gracefully scales
to more than two dimensions.

None of the above-mentioned methods handle continu-
ously moving points and thus do not consider temporal query
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Fig. 4 Example time-parameterized bounding rectangle

answers. Persistent and continuous queries are also not sup-
ported.

3 Algorithms

This section first briefly describes the main ideas of the TPR-
tree [24], which is used to index continuously moving points.
Then we briefly discuss the suitability of the methods de-
scribed in Section 2.2.2 as the basis for our solution. The al-
gorithms for answering thekNN andRkNNqueries using the
TPR-tree are presented in Sections 3.3 and 3.4. For clarity,
the algorithms fork = 1 are presented first, followed by the
more general algorithms. Section 3.5 presents a simple ex-
ample that illustrates the computation of anRNNquery. The
next two subsections describe the algorithms that maintain
the answer sets ofkNN andRkNNqueries under insertions
and deletions. Finally, Section 3.8 covers the strategy foref-
ficiently performing the continuous current-time query.

3.1 TPR-tree

We use the TPR-tree (Time Parameterized R-tree) [24], as
an underlying index structure. The TPR-tree indexes contin-
uously moving points in one, two, or three dimensions. It
employs the basic structure of the R∗-tree [2], but both the
indexed points and the bounding rectangles are augmented
with velocity vectors. This way, bounding rectangles are time
parameterized—they can be computed for different time points.
Velocities are associated with the edges of bounding rectan-
gles so that the enclosed moving objects, be they points or
other rectangles, remain inside the bounding rectangles atall
times in the future. More specifically, if a number of points
pi are bounded at timet, the spatial and velocity extents of a
bounding rectangle along thex axis are computed as follows:

x⊢(t) = mini{pi.x(t)}; x⊣(t) = maxi{pi.x(t)};
v⊢x = mini{pi.vx}; v⊣x = maxi{pi.vx}.

Figure 4 shows an example of the evolution of a bounding
rectangle in the TPR-tree computed att = 0. Note that, in
contrast to R-trees, bounding rectangles in the TPR-tree are

not minimum at all times. In most cases, they are minimum
only at the time when they are computed. Other than that,
the TPR-tree can be interpreted as an R-tree for any specific
time,t. This suggests that the algorithms that are based on the
R-tree should be easily “portable” to the TPR-tree. Similarly,
all algorithms presented in this paper should work without
modifications for the TPR*-tree [32], which is an index that
improves upon the TPR-tree, by the means of more advanced
insertion and deletion algorithms.

3.2 Preliminaries

Our RNN algorithm is based on the proposal of Stanoi et
al. [30], described in Section 2.2.2. This algorithm uses the R-
tree and requires no specialized index structures. The propos-
als by Korn and Muthukrishnan [16] and Yang and Lin [35]
mentioned in Section 2.2.2 store, in one form or another, in-
formation about the nearest neighbor(s) of each point. With
moving points, such information changes as time passes, even
if no updates of objects occur. By not storing such informa-
tion in the index, we avoid the overhead of its maintenance.
Similar to the approach of Stanoi et al., the recently proposed
TPL algorithm [33] also does not require specialized index
structures. It is an interesting future research topic to explore
how the TPL algorithm can be adapted to work with contin-
uously moving points using the techniques presented in this
paper.

The idea of the algorithm is analogous to the one de-
scribed in Section 2.2.2. OurRNN algorithm first uses the
NN algorithm to find theNN point in eachSi. For each of
these candidate points, the algorithm assigns a validity time
interval, which is part of the query time interval. Then, the
NN algorithm is used again, this time unconstrained by the
regionsSi, to check when, during each of these intervals, the
candidate points have the query point as their nearest neigh-
bor.
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3.3 Algorithms for finding nearest neighbors

First we present an algorithm for finding the nearest neigh-
bors of a query point. Then we show how the algorithm can
be adapted to find thek nearest neighbors.

3.3.1 FindNN algorithm Our algorithm for finding the near-
est neighbors for continuously moving points in the plane is
based on the algorithms proposed by Roussopoulos et al. [22]
and Hjaltason and Samet [12]. The former algorithm traverses
the tree in depth-first order. Two metrics are used to direct and
prune the search. The order in which the children of a node
are visited is determined using the functionmindist(q, R),
which computes the minimum distance between the bound-
ing rectangleR of a child node and the query pointq. Another
function,minmaxdist(q, R), which gives an upper bound of
the smallest distance fromq to points in R, assists in pruning
the search.

Cheung and Fu [5] and, later, Hjaltason and Samet [12]
prove that, given themindist -based ordering of the tree traver-
sal, the pruning that is obtained by Roussopoulos et al. can be
achieved without the use ofminmaxdist . This suggests that
minmaxdist can also be disregarded in our setting without
any effect on the pruning. However, the proofs do not seem to
be straightforwardly extendable to our setting, wheremindist

is extended to take into account temporal evolution. We nev-
ertheless choose to disregardminmaxdist . The reason is that
this function is based on the assumption that bounding rectan-
gles are always minimum [22], which is not true in the TPR-
tree (cf. Figure 4). This means that we cannot straightfor-
wardly adaptminmaxdist to our setting. Thus, as described
in the following, we construct and use a temporal version of
themindist function, both for directing the tree traversal and
for the pruning.

In describing our algorithm, the following notation is used.
The functiondq(p, t) denotes the square of the Euclidean dis-
tance between query pointq and pointp at timet. Similarly,
functiondq(R, t) indicates the square of the distance between
the query pointq and the point on rectangleR that is the clos-
est to pointq at timet.

As will be seen in the following, our algorithms use squared
Euclidean-distance functions. Functions that express Euclidean
distances between linearly moving points are square roots of
quadratic polynomials. As we are interested only in the rela-
tive orders of the values of these functions, not the absolute
values, we use the simpler, squared functions.

Because the movements of points are described by linear
functions, for any time interval[t⊢; t⊣], dq (p, t) = at2 +bt+
c, wheret ∈ [t⊢; t⊣] anda, b, andc are constants dependent
upon the positions and velocity vectors ofp andq. Similarly,
any time interval[t⊢; t⊣] can be partitioned into a finite num-
ber of intervalsTj so thatdq(R, t) = akt2 + bkt + ck, where
t ∈ Tj andak, bk, andck are constants dependent upon the
positions and velocity vectors ofR andq. Functiondq(R, t)
is zero for times whenq is insideR. The details of how the
interval is subdivided and how the constantsak, bk, andck

are computed can be found in Appendix A.

The algorithm maintains a list of intervalsTj as men-
tioned in Section 2.1. Let us call this list theanswer list. Ini-
tially the list contains a single interval[t⊢; t⊣], which is sub-
divided as the algorithm progresses. Each intervalTj in the
answer list has associated with it (i) a pointpj, and possibly
more points with the same distance fromq aspj, that is the
nearest neighbor ofq during this interval among the points
visited so far and (ii) the squared distancedq(pj , t) of point
pj to the query point expressed by the three parametersa, b,
andc. In the description of the algorithm, we represent this
list by two functions. For eacht ∈ [t⊢; t⊣], functionminq(t)
denotes the points that are the closest toq at timet (typically,
there will only be one such point), anddminq (t) indicates the
squared distance betweenq andminq(t) at timet. The dis-
tanceminq(t) is used to prune nodes with a bounding rectan-
gle further away fromq thanminq(t) during the whole query
time interval.

The algorithm is presented in Figure 5. The order of the
tree traversal is determined by the min-priority queueQ that
has two main operations:pop(), which returns an entry with
the smallest key, andpush(e, M, level), which insertse into
the queue with a key that is constructed from metricM and
tree levellevel of e. (MetricM , to be covered in detail shortly,
intuitively computes a representative distance between its two
arguments during the query time interval.) If only metricM is
used as the key, the algorithm performs abest-firsttraversal,
which, in each step, visits an entry with the smallest metric
(as done by Hjaltason and Samet [12]). If the key is a con-
catenation oflevel andM , with the level number increasing
when going from the leaves of the tree towards the root, the
algorithm performs adepth-firsttraversal with entries in each
node of the tree being visited in the order of increasing metric
M (as done by Roussopoulos et al. [22]).

As noted earlier, we use a temporal version ofmindist

as the metricM that directs the traversal. Given a time in-
terval [t⊢; t⊣] and a bounding rectangleR, there are two nat-
ural ways to compute a temporal version ofmindist . One
approach is to compute the integral ofdq(R, t):

M (R, q) =

∫ t⊣

t⊢
dq(R, t)dt

This metric, termed theintegral metric, corresponds to the
average of the squared distance betweenR andq (multiplied
by the length of[t⊢; t⊣]). The other approach is to use the
minimum of the squared distancedq(R, t):

M (R, q) = min
t∈[t⊢;t⊣]

dq(R, t)

This metric, termed theminmetric, can be computed by com-
paring the values of the squared distances at the end-points
of the interval and at the point where the time derivative of
dq (R, t) is zero. If for two rectanglesR1 andR2, dq(R1 , t)
anddq(R2 , t) are zero for some times during[t⊢; t⊣] then if
dq (R1 , t) is zero for a longer time period thandq(R2 , t), we
say that themin metric ofR1 is smaller than themin metric
of R2.
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FindNN(q , [t⊢; t⊣]):
1 ∀t ∈ [t⊢; t⊣], setminq(t)← ∅ anddminq(t)←∞.
2 Initialize a min-priority queueQ: insert intoQ a pointer to the root of the TPR-tree.
3 WhileQ is not empty:

3.1 Remove the top ofQ: e← Q .pop(). Let R be the bounding rectangle ofe.
3.2 If ∀t ∈ [t⊢; t⊣](dq(R, t) > dminq(t)), prune entrye (i.e., do nothing).
3.3 Else ife points to a non-leaf node, for each entryei = (Ri, ptr i) in this node compute the metricMi = M (Ri , q)

and addei to the queue:Q.push(ei, Mi, level(ei)).
3.4 Else ife points to a leaf node, for eachp contained in it, such thatp 6= q:

3.4.1 If∀t ∈ [t⊢; t⊣](dq(p, t) > dminq(t)), skipp.
3.4.2 If∀t ∈ T ′, T ′ ⊂ [t⊢; t⊣](dq(p, t) < dminq(t)), set∀t ∈ T ′ (minq(t)← {p}, dminq(t)← dq(p, t)).

If ∀t ∈ T ′, T ′ ⊂ [t⊢; t⊣](dq(p, t) = dminq(t)), set∀t ∈ T ′ (minq(t)← minq(t) ∪ {p}).

Fig. 5 Algorithm computing nearest neighbors for moving objects in the plane

Figure 6 plots the squared distance between a query point
and two bounding rectangles. If themin metric is used,R1

dq

Integral metric

Min metric

t

R2
R1

[t`; ta℄
Fig. 6 Integral andminmetrics

will have the smallest metric, if theintegral metric is used,
R2 will have the smallest metric. As the figure shows, the
min metric favors, when it is used for guiding the traversal,
bounding rectangles that may contain nearest neighbors dur-
ing sometime points, while theintegralmetric favors bound-
ing rectangles that contain points which are likely to reduce
the pruning distancedminq(t) during large parts of the inter-
val [t⊢; t⊣].

The two types of tree traversals combined with the two
types of metrics yield four variants of theFindNN algo-
rithm. We explore these variants in the performance experi-
ments reported in Section 4.

3.3.2 Constructing the answer listSteps 3.2, 3.4.1, and 3.4.2
of algorithmFindNN construct the answer list as the tree is
traversed and use the answer list for pruning. The steps are
presented in a declarative way in Figure 5. In this section we
discuss in greater detail the implementation of these steps,
which involve scanning through a list (or two) of time inter-
vals and solving quadratic inequalities for each interval.

More specifically, in step 3.2, the algorithm described in
Appendix A is executed. This algorithm divides the original
query interval into at most five (for two-dimensional data)
subintervals, as indicated by the numbers in Figure 33. Note
that this subdivision has no relation to the subdivision recorded

in the answer list. Each of the produced subintervals has the
three parameters(aR, bR, cR) that define the quadratic func-
tion that expresses the distance from the query point toR.

After this step, there are two subdivisions of the query
interval: the one just produced and the answer list. They are
combined into one subdivision by sorting together the time
points in both subdivisions. For example, if the query time
interval was[0, 10), the answer list was[0, 6), [6, 10), and the
subdivision produced byR was[0, 3), [3, 10), we get the new
subdivision[0, 3), [3, 6), [6, 10). Associated with each of the
intervals in this subdivision are both the original quadratic
functiondminq(t) (expressed by the parametersa, b, andc)
and the quadratic function of the distance toR (expressed by
the parametersaR, bR, andcR). For each intervalI in this
combined subdivision, the quadratic inequalityaRt2 + bRt+
cR < at2 + bt + c is solved to compare the distance from
the query pointq to R and the distance fromq to point(s)
in the answer list. The inequality can have at most two roots,
which can be inside or outside of the intervalI. This indicates
whether some part ofI exists whereR gets closer to the query
than point(s) in the answer list. If this is so for at least one
intervalI, we go deeper into the subtree rooted at the entry
with R (step 3.3). Thus, the rectangle is pruned if there is no
chance that it will contain a point that at some time during the
query interval is closer to the query pointq than the currently
known closest point toq at that time.

At the leaf level, in steps 3.4.1 and 3.4.2, we similarly
solve quadratic inequalities for each interval in the answer
list. In this case, two subdivisions do not have to be combined.
This is so because the distance between the query pointq and
the data pointp can be described by a single quadratic func-
tion (expressed by the parametersap, bp, andcp). For each
intervalI in the answer list, the solution of the quadratic in-
equalitydq (p, t) < dminq(t) may again produce at most two
roots, which may result in subdivision ofI into at most three
subintervals. During the intervals inI, when the inequality
holds, we replace the original parametersa, b, andc with the
new parametersap, bp, andcp. This way, new intervals are
introduced in the answer list in step 3.4.2. Processing all in-
tervalsI produces the new version of the answer list.

After the traversal of the tree, the following holds for each
Tj in the answer list:∀t ∈ Tj(NNj = minq(t)).



8 Rimantas Benetis et al.

3.3.3 FindkNN algorithm The algorithm presented in the
previous section can be extended to findk nearest neighbors.
As described in Section 2.1, the result of such an algorithm,
which we termFindkNN, is a set{〈NNj , Tj〉}, where each
NNj is an ordered list ofk points that are closest to the query
point during time intervalTj.

The overall structure of algorithmFindkNN is the same
as that ofFindNN. The answer list representing the subdi-
vision of the query time interval is built as the algorithm tra-
verses the tree. Each intervalTj in the answer list has associ-
ated with it an ordered list of pointsminq = (p1, p2, . . . , pl),
wherep1 is the nearest neighbor ofq andpl is thel-th near-
est neighbor ofq during this interval among the points vis-
ited so far. At the beginning of the tree traversal,l is equal
to the number of visited data points, but it stops atk when
k data points have been visited. The squared distance func-
tion dq(pi , t)—in the form of the three parametersai, bi, and
ci—is stored with each pointpi (i = 1, . . . , l).

We defineminq(t) to be the listminq associated with
the answer list interval to whicht belongs. We use the no-
tation minq(t)[i] to access the pointpi in the list minq(t).
We also definedminq(t) = dq(minq(t)[k ], t), if l = k, and
dminq(t) = ∞, if l < k.

With this notation in place, the pseudo code of algorithm
FindkNN is shown in Figure 7. Note that steps 3.2 and
3.4.1 involve solving quadratic inequalities as describedin
Section 3.3.2. In step 3.4.2, those time intervals from the an-
swer set for which the inequalitydq(p, t) < dminq (t) holds
during only part of the interval are divided into two or three
intervals, copying the corresponding listminq and changing
thek-th (or (l+1)-st) element of it where necessary. Similarly,
in CorrectOrder, the intervals from the answer set are sub-
divided further, and pointsminq(t)[i] andminq(t)[i− 1] are
exchanged only for the subintervals during which the order-
ing of these points is wrong.

Figure 8 demonstrates how an answer list of two intervals
(T1 andT2) is modified when visiting a data pointp. Here

t

p p

8T’7T’6T’2T’

2T

i=2

i=4
i=3

3T’ 4T’ 5T’1T’

1T

qd
i=4

Fig. 8 Subdivision of the answer list intervals when visiting point p

k = 4 and for each of the four points in the answer list, as well

asp, the squared distance to the query point is plotted against
time. SubintervalsT ′

1 andT ′
8 are introduced in step 3.4.2.2 of

the algorithm. The remaining parts ofT1 andT2 are passed to
CorrectOrder, which subdividesT1 further. The top of the
figure demonstrates the different values ofT andi parameters
passed to the recursive invocations ofCorrectOrder.

3.4 Algorithms for finding reverse nearest neighbors

In this section, we present the algorithms for finding the re-
verse nearest neighbors and the reversek nearest neighbors
of a query point.

3.4.1 FindRNN algorithm AlgorithmFindRNN computes
the reverse nearest neighbors for a continuously moving point
in the plane. The notation used is the same as in the pre-
vious sections. The algorithm, shown in Figure 9, produces
a list LRNN = {〈pj, Tj〉}, wherepj is the reverse nearest
neighbor ofq during time intervalTj. Note that the format
of LRNN differs from the format of the answer to theRNN

query, as defined in Section 2.1, where intervalsTj do not
overlap and have sets of points associated with them. To sim-
plify the description of algorithms we use this format in the
rest of the paper. HavingLRNN , it is quite straightforward to
transform it into the format described in Section 2.1 by sort-
ing end points of time intervals inLRNN , and performing a
“time sweep” to collect points for each of the time intervals
formed.

To reduce the disk I/O incurred by the algorithm, all the
six sets of candidateRNN points (the answer listsBi) are
found in a single index traversal. In steps 3.2 and 3.4.1 of
theFindNN algorithm (cf. Figure 5) called from step 1 of
FindRNN, a rectangle or a point is pruned only if the con-
dition is satisfied for the answer sets of all six regions. In
addition, the computation of the squared distance between a
bounding rectangle and a query is modified, so that only the
part of the rectangle that is inside the region under consider-
ation is taken into account.

Note that if, at some time, there is more than one nearest
neighbor in someSi, those nearest neighbors are nearer to
each other than to the query point, meaning thatSi will hold
noRNNpoints for that time. We thus assume in the following
that in setsBi, each intervalTij is associated with a single
nearest neighbor point,nnij .

All the RNN candidatesnnij found in the first traver-
sal are verified also in one traversal. To make this possible,
we use either

∑

i,j M(R,nnij ) (for the integral metric) or
mini,j M(R,nnij ) (for theminmetric) as the aggregate met-
ric in step 3.3 ofFindNN. In addition, a point or a rectangle
is pruned only if it can be pruned for each of the query points
nnij .

Thus, the index is traversed twice in total.
When analyzing the I/O complexity ofFindRNN, we

observe that in the worst case, all nodes of the tree are vis-
ited to find the nearest neighbors usingFindNN, which is
performed twice. As noted by Hjaltason and Samet [12], this
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FindkNN(q , [t⊢; t⊣], k):
1 Setl← 0; ∀t ∈ [t⊢; t⊣], setminq(t)← ().

Steps 2–3.3 are the same as inFindNN.
3.4 Else ife points to a leaf node, for eachp contained in it, such thatp 6= q:

3.4.1 If∀t ∈ [t⊢; t⊣](dq(p, t) ≥ dminq(t)), skipp.
3.4.2 ∀t ∈ T ′, T ′ ⊂ [t⊢; t⊣](dq(p, t) < dminq(t)) :

3.4.2.1 Ifl < k, setl← l + 1 and∀t ∈ T ′ (minq(t)[l]← p).
3.4.2.2 Else∀t ∈ T ′ (minq(t)[k]← p).
3.4.2.3 CallCorrectOrder(T ′, l).

CorrectOrder(T, i):
1 If i > 1 and∃T ′ ⊂ T such that∀t ∈ T ′(dq(minq(t)[i], t) < dq(minq(t)[i− 1], t)):

1.1 ∀t ∈ T ′, exchangeminq(t)[i] andminq(t)[i− 1]. CallCorrectOrder(T ′, i− 1).

Fig. 7 Algorithm computingk nearest neighbors for moving objects in the plane

FindRNN(q , [t⊢; t⊣]):
1 For each of the six regionsSi, find a corresponding set of nearest neighborsBi by callingFindNN(q ,[t⊢; t⊣]) for regionSi

only. A version of algorithmFindNN is used where steps 3.2 and 3.4 are modified to consider only time intervals whenR or
p is insideSi.

2 SetLRNN ← ∅.
3 For eachBi and for each〈NNij ,Tij 〉 ∈ Bi, if |NNij | = 1 (andnnij ∈ NNij ), do:

3.1 CallFindNN(nnij ,Tij ) to check when during time intervalTij , q is theNN point ofnnij . The algorithmFindNN

is modified by usingminnnij (t) ← q, dminnnij (t) ← dnnij (q , t) in place ofminnnij (t) ← ∅, dminnnij (t) ← ∞ in
step 1. In addition, in step 3.4.2, an intervalT ′ ⊂ Tij is excluded from the list of time intervals and is not considered
any longer as soon as a pointp is found such that∀t ∈ T ′ (dnnij (p, t) < dnnij (q , t)). FindNN stops if its answer list
becomes empty.

3.2 If FindNN(nnij ,Tij ) returns a non-empty answer, i.e.,∃ T ′ ⊂ Tij , such thatq is anNN point of nnij during time
intervalT ′, add〈nnij , T

′〉 to LRNN .

Fig. 9 Algorithm computing reverse nearest neighbors for moving objects in the plane

FindRkNN(q , [t⊢; t⊣], k):
Steps 1 and 2 are the same as inFindRNN, only FindkNN is used instead ofFindNN.
3 For eachBi, for each〈NNij ,Tij 〉 ∈ Bi, and for eachnn ∈ NNij , do:

3.1 CallFindkNN(nn,Tij ,k) to check when during time intervalTij , q is among thek NN points ofnn. The algorithm
FindkNN is modified by settingminnn(t)← (q) ∀t ∈ Tij in place ofminnn(t)← () in step 1. Note that, ifk > 1,
according to the definition from Section 3.3.3,dminnn(t) =∞ initially. In addition, an intervalT ′ ⊂ Tij is excluded
from the list of time intervals and is not considered any longer as soon as, in the list of nearest neighbors associated
with this interval,pk = q is replaced by another pointp in step 3.4.2.2.FindkNN stops if its answer list becomes
empty.

3.2 If FindkNN(nn,Tij ,k) returns a non-empty answer list, for each〈NN , T ′〉 in this list, find the positionr of q in the
list NN and add〈nn, r, T ′〉 to LRNN. Any two elements ofLRNNwith the samenn andr and adjacent time intervals
T1 andT2 are coalesced into one element with the time intervalT1 ∪ T2.

Fig. 10 Algorithm computing reversek nearest neighbors for moving objects in the plane

is even the case for static points (t⊢ = t⊣), where the size
of the result set is constant. For points with linear movement,
the worst case size of the result set of theNN query isO(N)
(whereN is the database size). The size of the result set of
FindNN is important because if the combined size of the
setsBi is too large, theBi will not fit in main memory to-
gether. In our performance studies in Section 4, we investi-
gate the observed average number of I/Os and the average
sizes of result sets.

3.4.2 FindRkNN algorithm By using algorithmFindkNN,
algorithmFindRNN can be extended easily to find the re-
versek nearest neighbors. Similarly to the case ofk = 1, it is
easy to show that a point that has the query point among its

k nearest neighbors can only be one of thek nearest neigh-
bors ofq in one of the six regionsSi. Figure 10 captures the
differences betweenFindRNN andFindRkNN.

Note that in the algorithmFindkNN used from step 1 of
FindRkNN, the listsminq of the answer list may have dif-
ferent lengths. In a stand-alone version ofFindkNN, when-
ever thel-th data point is visited in the initial stages of tree
traversal (whenl < k), it contributes to all listsminq in the
answer list. In the modified version ofFindkNN, a visited
data point can contribute to a listminq(t) only if the point is
inside the searched regionSi at timet.

Note also that when compared with the elements of the
LRNN list returned byFindRNN, the elements ofLRNN
returned byFindRkNN have an additional element—the
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rankof the reverse nearest neighbor. A reverse nearest neigh-
bor has rankr, if q is its r-th nearest neighbor. While the
ranks are not required by the definition of theRkNNquery
given in Section 2.1, they are helpful for efficiently main-
taining the results of the query, as will be described in Sec-
tion 3.7.

3.5 Query example

To illustrate how anRNNquery is performed, Figure 11 de-
picts 11 points, with point 1 being the query point. The ve-

S5

R4

R5

S1

S6
S4

S3

56

4

2

1

7
8

S2

9

10

3

R1
11

R3

2

d (P ,t)P 81
dP1

1
dP(R ,t)1

(R ,t)2

R

Fig. 11 Example query

locity of point 1 has been subtracted from the velocities of all
the points, and the positions of the points are shown at time
t = 0. The lowest-level bounding rectangles of the index on
the points,R1 to R5, are shown. Each node in the TPR-tree
has from 2 to 3 entries. As examples, some distances from
point 1 are shown:dP1

(P8, t) is the distance between point
1 and point8, dP1

(R1, t) is the distance between point 1 and
rectangle 1,dP1

(R2, t) is the distance between point1 and
rectangle2.

If an RNN query for the time interval[0; 2] is issued,
dminP1

(t) for region S1 is set todP1
(P3, t) after visiting

rectangle 2, and becausedP1
(R4, t) > dP1

(P3, t) for all t ∈
[0; 2], rectangleR4 is pruned.

With the purpose of taking a closer look at how theRNN
query is performed in regionsS2 andS3, Figure 12 shows
the positions of the points in regionsS2 andS3 at time points
t = 0, t = 1, andt = 2. Point 7 crosses the line delimiting
regionsS2 andS3 at timet = 1.5.

q

8

S

S2

3
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10

4

7

t = 0 t = 1 t = 2
Fig. 12 Simplified example query

After the first tree-traversal, theNN points in regionS2

are B2 = {〈P4, [0; 1.5]〉, 〈P7, [1.5; 2]〉}, and in regionS3,
they areB3 = {〈P7, [0; 1.5]〉, 〈P8, [1.5; 2]〉}. However, the
list of RNN points,LRNN, which is constructed during the
second traversal of the TPR-tree while verifying candidate
points 4, 7, and 8, is only{〈P7, [0; 1.5]〉, 〈P7, [1.5; 2]〉}. This
is because during time interval[0; 1.5], point 10, but not point 1,
is the point closest to point 4, and, similarly, during time in-
terval [1.5; 2], point 7, but not point 1, is the point closest to
point 8.

3.6 Updating the answers to theNN algorithms

In the following two sections, we present algorithms that ren-
der theNN andRNNqueries persistent. The algorithms incre-
mentally update the answer set of a query when a point is in-
serted into or deleted from the database without re-calculating
the answer set from scratch. We start with the algorithms for
maintaining the result of anNN query.

Inserting a new point is the same as visiting a new point
in a leaf node of the tree. Thus, to maintain the query result
when pointp is inserted, it suffices to perform step 3.4 of
FindNN or FindkNN. If the beginning of the query time
interval is already in the past, only the remaining part of it
that starts from the current time is maintained, i.e.,[t⊢; t⊣] is
replaced by[max{tinsert , t

⊢}, t⊣].
To maintain the result of anNN query when a pointp

is deleted is also simple. Ifp is not in any of the sets asso-
ciated with time intervals of the query result, then nothing
has to be done. Otherwise, for the elements of the answer
list 〈Tj ,NNj 〉 such thatNNj = {p}, FindNN(q, Tj) has
to be performed. We call such time intervals of the result set
theaffectedtime intervals. When the result of thekNN query
is maintained, step 1 ofFindkNN(q, Tj, k) is skipped, and
{〈Tj ,NNj 〉}, with pointp removed, is used as the initial re-
sult list for affected time intervalTj.
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Observe that only deletion involves accessing the index
to maintain a query result; and this happens only when the
deleted point is in the result. Also, the tree traversals asso-
ciated with different, affected time intervalsTj can be com-
bined into one traversal—in the same way as for the second
traversal of theFindRNN algorithm (see Section 3.4.1).

3.7 Updating the answers of theRNN algorithms

Maintaining the results ofRNN (andRkNN) queries is more
difficult than maintaining the results ofNN queries. We pro-
ceed to describe separately how insertions and deletions are
processed. In each case, we first consider the simpler case
of theRNNquery, then describe the algorithms for the more
complexRkNNquery.

3.7.1 Insertion of a point The algorithm for updating the
answer to a query when a new point is inserted consists of
two parts. First, we have to check whether the newly inserted
point becomes anRNN point of q. Then, we have to check
whether the new point invalidates some of the existingRNN
points, which occurs if the new point is closer to these points
than isq.

Suppose that pointp is inserted at timetinsert, where
tcurrent ≤ tinsert ≤ t⊣. Recall that the query is assumed
to be issued at timetcurrent and that the query interval ends
at t⊣.

The algorithm for maintaining the result of anRNNquery
when insertion is performed is shown in Figure 13. To under-
stand the notation used in step 2 of the algorithm, observe that
for eachi, there is at most one non-empty time interval dur-
ing which pointp is in Si. IntervalTi denotes the intersection
of this possibly empty interval with the time during which to
update the answer. For each regionSi with a non-emptyTi,
this step checks if pointp becomes anNN point of q in that
region. If it does, the correspondingBi list is updated and it
is checked for the inclusion ofp into LRNN . In step 3, those
points that havep as their newNN point at some time during
[t0; t

⊣] are deleted fromLRNN for the corresponding time
intervals.

The corresponding algorithm for maintaining the result
of an RkNN query has the same structure (see Figure 14).
In step 2, for each regionSi with a non-emptyTi, the algo-
rithm checks if there are times whenp becomes closer toq
than the furthest of thek nearest neighbors in that region. If
so, the correspondingBi list is updated, and it is checked for
the inclusion ofp into LRNN . Step3 differs from the corre-
sponding step in Figure 13 in that reverse nearest neighbors
are not always removed from the answer list for time periods
whenp gets closer to them thanq. In such cases, only their
rank is incremented by one for the corresponding time inter-
vals. Only when the rank of anRNN point gets larger than
k during some time interval, theRNNpoint is removed from
the answer for the corresponding time interval.

Observe that the lists of nearest neighborsBi are used and
updated in both algorithms. Thus, if persistent queries have

to be efficiently supported, these lists must be retained af-
ter the completion of algorithmFindRNN. In addition, the
squared-distance functions (expressed by the three parame-
ters described in Section 3.3.1) associated with each of the
elements in theBi andLRNN must be retained.

The algorithms described involve one index traversal in
step 2.1, although this traversal should occur only rarely.It
is performed only when the inserted point is closer toq than
the current nearest neighbors at some time during[t0; t

⊣]. We
investigate the amortized cost of the algorithm in empirical
performance experiments.

3.7.2 Deletion of a point Three computations are involved
when maintaining the answer setLRNN of a query when a
pointp is deleted. First, ifp was in the answer set, it should be
removed. Second, to correctly maintain the listsBi of nearest
neighbors, these must be searched forp, which is removed
if found. For the time intervals during whichp was a near-
est neighbor, newNN points should be found and checked
for inclusion intoLRNN . Third, thoseRNNcandidates from
the listsBi that are not included inLRNN (or are included
with reduced time intervals) should be rechecked by the al-
gorithm; this is so because some of them may not have been
included intoLRNN due top being their nearest neighbor
(with q possibly being their second-nearest neighbor).

We useLRNN to denote the list of the above-mentioned
candidate points with associated time intervals during which
they are not reverse nearest neighbors. More formally:

LRNN =
{〈pl, Tl〉 | ∃ i, j (〈nnij ,Tij 〉 ∈ Bi ∧ pl = nnij ∧

Tl ⊆ Tij ) ∧
∄ 〈p′, T ′〉 ∈ LRNN (pl = p′ ∧ Tl ∩ T ′ 6= ∅)}

List LRNN can be computed by sorting the start and end
times of the time intervals inLRNN and theBi lists, then
performing a “time sweep.” A binary search tree can be used
to store the IDs of all points that have their corresponding
time intervals intersect the sweep line. This way, all time in-
tervals from theBi lists can be subtracted efficiently from the
corresponding intersecting time intervals fromLRNN .

Suppose a data pointp (i.e., p 6= q) is deleted at time
tdelete (tcurrent ≤ tdelete ≤ t⊣). The algorithm for maintain-
ing the result of anRNNquery is given in Figure 15.

In step 2 of the algorithm,p is removed fromLRNN . In
step 3, for each regionSi, p is removed from the list of the
nearest neighbors ofq in that region for the time period when
p is no longer in the set of data points. Also, for each entry
removed, newNN points ofq are found in that region during
the time interval whenp was the nearest neighbor ofq in that
region.

In step 4, the points that hadp as their nearest neigh-
bor, andq as their second nearest neighbor, are included into
LRNN . Note that in this step, all newRNNcandidate points
added to theBi lists in step 3 are also checked for inclusion
into LRNN . This happens because such points are included
in LRNN (by definition) and, for each such pointpl, the in-
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Insert(q , [t⊢; t⊣], LRNN , p, tinsert ):
1 Sett0 ← max{tinsert , t

⊢}.
2 LetTi ⊂ [t0; t

⊣] be the time interval whenp is in regionSi. For eachi such thatTi 6= ∅, do:
For each〈nnij ,Tij 〉 ∈ Bi, such thatTij ∩ Ti 6= ∅, do:
Let T ′ = Tij ∩ Ti. LetT ′′ ⊂ T ′ be the time interval during whichd(q, p) < d(q,nnij ). If T ′′ 6= ∅:

2.1 Add〈p,T ′′〉 to Bi. Check for inclusion of〈p,T ′′〉 into LRNN , as described in step 3 ofFindRNN.
2.2 Change〈nnij ,Tij 〉 to 〈nnij ,Tij \ T ′′〉 in Bi.

3 For each〈pl, Tl〉 ∈ LRNN such thatpl 6= p, do:
Let T ′ ⊂ Tl ∩ [t0; t

⊣] be the time interval during whichd(pl, p) < d(pl, q). If T ′ 6= ∅, change〈pl, Tl〉 to 〈pl, Tl \ T ′〉.

Fig. 13 Incremental maintenance ofRNNquery answers during insertions of data points

Insert(q , [t⊢; t⊣], LRNN , p, tinsert , k):
1 Sett0 ← max{tinsert , t

⊢}.
2 LetTi ⊂ [t0; t

⊣] be the time interval whenp is in regionSi. For eachi such thatTi 6= ∅, do:
For each〈(p1, p2, . . . , pk),Tij 〉 ∈ Bi, such thatTij ∩ Ti 6= ∅, do:
Let T ′ = Tij ∩ Ti. LetT ′′ ⊂ T ′ be the time interval during whichd(q, p) < d(q, pk). If T ′′ 6= ∅:

2.1 Add〈(p1, p2, . . . , pk−1, p),T ′′〉 toBi. CallCorrectOrder(T ′′, k) on answer listBi. Check for inclusion of〈p,T ′′〉
into LRNN , as described in step 3 ofFindRkNN.

2.2 Change〈(p1, p2, . . . , pk),Tij 〉 to 〈(p1, p2, . . . , pk),Tij \ T ′′〉 in Bi.
3 For each〈pl, rl, Tl〉 ∈ LRNN such thatpl 6= p, do:

LetT ′ ⊂ Tl∩ [t0; t
⊣] be the time interval during whichd(pl, p) < d(pl, q). If T ′ 6= ∅, change〈pl, rl, Tl〉 to 〈pl, rl, Tl\

T ′〉 and, ifrl < k, add〈pl, rl + 1, T ′〉 to LRNN.

Fig. 14 Incremental maintenance ofRkNNquery answers during insertions of data points

Delete(q , [t⊢; t⊣], LRNN , p, tdelete):
1 Sett0 ← max{tdelete , t

⊢}.
2 For each〈pl, Tl〉 ∈ LRNN , such thatpl = p andTl ∩ [t0; t

⊣] 6= ∅, do:
Change〈pl, Tl〉 to 〈pl, T

′〉, whereT ′ = Tl \ [t0; t
⊣]. If T ′ = ∅, remove〈pl, T

′〉 from LRNN .
3 For each〈nnij ,Tij 〉 ∈ Bi such thatnnij = p, do:

3.1 Remove〈nnij ,Tij 〉 from Bi.
3.2 CallFindNN(q ,Tij ) for the regionSi. Add the returned points with their corresponding time intervals toBi.

4 ComputeLRNN . For each〈pl, Tl〉 ∈ LRNN do:
Let T ′ ⊂ Tl ∩ [t0; t

⊣] be the time interval during which inequalityd(pl, p) < d(pl, q) holds. If T ′ 6= ∅, check for the
inclusion of〈pl, T

′〉 into LRNN , as described in step 3 ofFindRNN.

Fig. 15 Incremental maintenance ofRNNquery answers during deletions of data points

equalityd(pl, p) < d(pl, q) holds during the corresponding
time interval.

Figure 16 shows the a modified version of the algorithm
that is able to maintain the result of anRkNN query. The
first major modification is the additional step 3 in Figure 16,
which is not present in Figure 15. This step updates the ranks
of those reverse nearest neighbors that, during some intervals
of time, are closer top than toq. Whenp is removed from
in-between such anRNN point andq, the rank of theRNN
point should be decreased by one for the corresponding time
interval.

Another difference between the two algorithms is that in
step 4.2 in Figure 16, the algorithmFindkNN does not have
to start from scratch—thek−1 nearest neighbors ofq remain
the same duringTij .

Although step 5 in Figure 16 is the same as step 4 in Fig-
ure 15, the definition ofLRNN has to be modified to account
for lists of points, instead of single points, associated with
time intervals in theBi result lists. More formally:

LRNN =

{〈pl, Tl〉 | ∃ i, j, s (〈(p1, p2, . . . , pk), Tij〉 ∈ Bi ∧
pl = ps ∧ Tl ⊆ Tij) ∧

∄ 〈p′, r′, T ′〉 ∈ LRNN (pl = p′ ∧ Tl ∩ T ′ 6= ∅)}

The same procedure as described for the case ofk = 1 is
used to compute the listLRNN . Ranks are ignored in this
computation.

In contrast to algorithmInsert, algorithmDelete re-
quires two index traversals in the worst case. One in step 3.2
and another in step 4 (Figure 15). Note that no tree traversals
are performed if the deleted point is not in theBi lists and
is further away from the points in theBi lists than the query
point. We investigate the amortized cost of the algorithm in
our performance experiments.

3.8 Continuous queries

As stated in Section 2.1, continuous queries are queries with
time intervals that advance in step with the continuously pro-
gressing current time. In this section, we discuss how to sup-
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Delete(q , [t⊢; t⊣], LRNN , p, tdelete , k):
Steps 1 and 2 are analogous to the corresponding steps in Figure 15.
3 For each〈pl, rl, Tl〉 ∈ LRNN do:

Let T ′ ⊂ Tl ∩ [t0; t
⊣] be the time interval during which inequalityd(pl, p) < d(pl, q) holds. IfT ′ 6= ∅, change〈pl, rl, Tl〉

to 〈pl, rl, Tl \ T ′〉 and add〈pl, rl − 1, T ′〉 to LRNN.
4 For each〈(p1, p2, . . . , pk),Tij 〉 ∈ Bi such that∃l (pl = p), do:

4.1 Remove〈(p1, p2, . . . , pk), Tij〉 from Bi.
4.2 Call FindkNN(q, Tij , k) for the region Si. Instead of performing step 1 ofFindkNN, use

{〈(p1, . . . , pl−1, pl+1, . . . , pk), Tij〉} as the initial answer list. Add the returned results toBi.
Step 5 is the same as step 4 in Figure 15, onlyFindRkNN is used instead ofFindRNN.

Fig. 16 Incremental maintenance ofRkNNquery answers during deletions of data points

port continuous current-time queries, i.e., those that havet⊢ =
t⊣ = now .

A continuous current time query issued at timetissue can
be supported by computing a persistent queryql with time in-
terval[tissue ; tissue+l]. The start and end times of the time in-
tervals in the answer to this query are then the times of sched-
uled events that update the answer to the continuous query.
These event times change as the answer toql is maintained
under updates. Attissue + l, a new persistent query with time
interval of lengthl is computed.

The choice of an optimall value involves a trade-off be-
tween the cost of the computation ofql and the cost of main-
taining its result. On the one hand, it involves a substantial I/O
cost to compute even a query withl = 0, so we want to avoid
frequent recomputations of queries with smalll. On the other
hand, although computing one or a few queries with largel is
cost effective in itself, we must also take into account the cost
of maintaining the larger answer set ofql, which generates
substantial additional I/O on each update. So, using queries
with largel is also not likely to be efficient.

Let N be the number of moving points andU be the aver-
age time duration between two updates of a point. Assume
also that we want to maintain the answer to a continuous
query from the current time and for a large period ofL time
units into the future. Then, we want to find a value ofl that
minimizes functionC(l), defined next, that denotes the total
cost of maintaining the continuous query.

C(l) =
L

l

(

Q(l) +
l

U
NM(l)

)

Here,Q(l) is the cost of computing the persistent queryql

with time interval of lengthl andM(l) is the amortized cost
of a single update (a deletion followed by an insertion) thatis
required to maintain the answer toql. The ratiol/U expresses
how many times a point is updated during the life-time of
a persistent query and(l/U)NM(l) gives the total cost of
maintenance, when updating allN points. Let bothQ(l) and
M(l) be linear functions. (We verify this assumption in our
performance experiments.) Then,

C(l) =
L

l

(

Q0 + Qf l +
l

U
N(M0 + Mf l)

)

=
L

l
Q0 + LQf + L

N

U
M0 + L

N

U
Mf l.

To minimizeC(l), we differentiateC and solve the equa-
tion C′(l) = 0:

C′(l) = L

(

NMf

U
−

Q0

l2

)

= 0 ⇒ l =

√

Q0U

MfN

Observe thatQ0 is the cost of computingql, when l = 0.
The coefficientMf specifies how fast the cost of one up-
date grows when the length of the maintained persistent query
grows. The result obtained is quite intuitive. RatioU/N is the
average time between two updates to the whole database. The
larger it is (the smaller the frequency of updates), the cheaper
the maintenance of the query result is and the largerl can
be. Also, the larger the base cost (Q0) involved in computing
ql is, the less frequently we want to computeql—making a
largerl is desirable. Finally, the faster the cost of maintaining
ql grows with the growingl (the rate of growth expressed by
Mf ), the smaller anl we want.

ParametersQ0 and Mf are dependent onN and other
specifics of the data set, and approximate values for them
could be maintained automatically by the query processor.
This could be done by monitoring the performance of queries
issued by users or by periodically performing a predefined
suite of sample queries. Similarly, the value ofU could be
maintained automatically by monitoring the frequency of up-
dates.

The presented cost model should be applicable to both
nearest neighbor and reverse nearest neighbor continuous cur-
rent-time queries. Our performance experiments, described in
the next section (in Section 4.6, in particular), investigate and
verify the applicability of this cost model.

4 Performance experiments

This section presents results of experiments with the algo-
rithms presented in the previous section. Following a descrip-
tion of the experimental setup, Sections 4.2 and 4.3 study
properties of theNN algorithms, with the second of these fo-
cusing on persistentNN queries. Then two sections consider
the RNN algorithms. Finally, Section 4.6 considers the con-
tinuous versions of bothNN andRNNqueries.
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4.1 Experimental setting

All algorithms presented in the previous section were imple-
mented in C++, using a TPR-tree implementation based on
GiST [10]. Specifically, the TPR-tree implementation with
self-tuning time horizon was used [23]. We investigate the
performance of the different algorithms in terms of the num-
bers of I/O operations they perform. The disk page size (and
the size of a TPR-tree node) is set to 4k bytes, which results
in 204 entries per leaf node in trees. An LRU page buffer of
50 pages is used [18], with the root of a tree always being
pinned in the buffer. The nodes changed during an index op-
eration are marked as “dirty” in the buffer and are written to
disk at the end of the operation or when they otherwise have
to be removed from the buffer.

In addition to the LRU page buffer, we use a main-memory
resident storage area that accommodates30, 000 entries, each
entry consisting of a moving point, a time interval, and a dis-
tance function expressed by three parameter values (cf. Sec-
tion 3.3.1). This storage is used to record the answer sets and
intermediary answer sets (theBi lists) of persistent queries.
The storage is large enough so that these sets always fit in
main memory.

If the answer sets or intermediary answer sets were larger
than the available main memory, they would need to be main-
tained on disk. However, this would result in very substantial
I/O because access to the entries in these sets is very non-
local. In the worst case, each time a point or a bounding rect-
angle is examined, the whole answer set would have to be
read from the disk. Thus, our algorithms are not well suited
for query answers that do not fit in main memory.

The performance studies are based on synthetically gen-
erated workloads that intermix update operations and queries.
To generate the workloads, we simulateN objects moving in
a region of space with dimensions1000 × 1000 kilometers.
Whenever an object reports its movement, the old informa-
tion pertaining to the object is deleted from the index (assum-
ing this is not the first reported movement from this object),
and the new information is inserted into the index.

Two types of workloads were used in the experiments. In
some of the experiments, we use uniform workloads, where
point positions and velocities are distributed uniformly.The
speeds of objects vary from 0 to 3 kilometers per time unit
(minute). In most of the experiments, more realistic work-
loads are used, where simulated objects move in a fully con-
nected network of two-way routes, interconnecting a num-
ber of destinations uniformly distributed in the plane. Points
start at random positions on routes and are assigned with
equal probability to one of three groups of points with max-
imum speeds of0.75, 1.5, and3 km/min. Whenever an ob-
ject reaches a destination, it chooses the next target destina-
tion at random. Unless specified otherwise, the experiments
use workloads from simulations with20 destinations. The
network-based workload generation used in these experiments
is described in more detail elsewhere [24].

In both types of workloads, the average interval in-between
successive updates of an object is equal to60 time units.

Unless noted otherwise, the number of points is100, 000.
Workloads are run for120 time units to populate the index.
Then, the workloads are run for additional60 time units with
queries intermixed with the updates. Unless noted otherwise,
600 queries are issued—ten for each time unit.

Note that the update rate implied by this setting may be
expected to be in the low end of what may be expected in
real-life scenarios. Since our experiments explore the perfor-
mance of queries, the setting is conservative—for scenarios
with higher update rates, queries would be more efficient.
This is due to the specifics of the TPR-tree, in which time-
parameterized bounding rectangles are “tighter” when more
updates happen, leading to better query performance.

For the experiments with theNN queries, a query point is
generated in the same way as a new data point is generated.
For the experiments with theRNNqueries, each query corre-
sponds to a randomly selected point from the currently active
data set. Unless noted otherwise,k = 1, and the query time
interval is a random interval contained in[tissue , tissue + 30],
wheretissue is the time when the query is issued.

Our performance graphs report average numbers of I/O
operations per query. When query selectivity is given as an
average numbers of time intervals in a result, the reported
numbers of time intervals in a result is minimal, i.e., the im-
plementations of the algorithms ensure that results are coa-
lesced. ForkNN queries, this means that for any two consec-
utive time intervals in the result, the associatedNN points are
different or their orderings are different. ForRkNN queries
this means that in theLRNN answer set, no two elements
with the same data point and rank have adjacent time inter-
vals that can be merged into a single interval.

4.2 Properties of the NN algorithms

In the first round of experiments, we explore the four varia-
tions of theNN algorithm mentioned in Section 3.3.1:best-
first traversal using themin metric,best-firsttraversal using
the integralmetric,depth-firsttraversal using theminmetric,
anddepth-firsttraversal using theintegralmetric.

Figure 17 shows how the average number of I/O opera-
tions per query changes when the number of indexed points
increases. The numbers of I/O operations for all four variants
of the algorithm grow as the number of points increases. The
results of the experiments show that this increase is propor-
tional to the increase in the average selectivity of queries.

Figure 18 shows the average number of I/O operations per
query when the number of destinations in the simulated net-
work of routes is varied. “Uniform” indicates the case where
the points and their velocities are distributed uniformly,which,
intuitively, corresponds to a very large number of destina-
tions.

Not considering the two extreme workloads—the simu-
lation with two destinations and the uniform workload—the
number of I/O operations tends to increase with the number
of destinations, i.e., as the workloads get more “uniform.”
The results are consistent with those reported for range queries
on the TPR-tree [24], although they are less pronounced.
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Figure 19 explains why the cost of queries in the uniform
workload is less than the cost of queries in the workloads
with 40 and160 destinations. In this graph, the average num-
ber of time intervals and the average number of distinct points
in the query results are plotted. The graph shows that query
results are smaller for the uniform workload; hence, less I/O
operations are needed to retrieve these results. The smaller re-
sults for the uniform workload are most probably due to the
specifics of the workload generation—more objects move at
the maximum speed of3 km/min in the non-uniform work-
loads. This means that temporal query results record more
changes in these workloads.

On the other hand, the very small query results for work-
loads with two destinations does not decrease the cost of
queries in these workloads. On the contrary, queries in these
workloads are more expensive than those in the workloads
with ten destinations (cf. Figure 18). This is explained by
the fact that objects in a two-destination simulation move on
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one one-dimensional road and that the TPR-tree is not well
suited for such one-dimensional datasets. For example, in our
experiments, the overlaps among the bounding boxes of the
TPR-tree at the end of the two-destination workload is2.8
times larger than the overlaps at the end of the ten-destination
workload.

Figures 17 and 18 show that the best performance is
achieved by the variants of theNN algorithm that use the
best-firsttree traversal. It can also be observed that the per-
formance differences among the four variants of the algo-
rithm are quite small. To understand why this is so, and to
learn whether theNN algorithm could possibly be signifi-
cantly improved, we explored how many of the performed
I/O operations corresponded to the reading of tree nodes with
bounding rectangles that actually contained the query point
at some time point during the corresponding query time in-
terval. Such tree nodes, which we termcovering, must neces-
sarily be visited by anyNN algorithm to produce the correct
answer. Thus, given a specific TPR-tree, the number of I/O
operations corresponding to the covering tree nodes gives the
lower performance bound for a corresponding nearest neigh-
bor query.

For the uniform workload,45.4 out of 46.5 I/O opera-
tions corresponded to the covering tree nodes. For the20-
destination workload, the two numbers were23 and 24.1.
This demonstrates that to improve the performance of the
NN algorithms, the underlying index structure has to be im-
proved, not the query algorithms. The notable exception was
the two-destination workload, where, in our experiments, only
16.4 out of23.6 I/O operations corresponded to the covering
tree nodes.

Figures 20 and 21 show how different variants of theNN
algorithm perform when varyingk and the length of the query
time interval. For the experiment with the varying query time
interval, all query intervals in a workload are of the same
length and start at the time when the corresponding query
is issued. The graphs show results that are consistent with
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the results shown in Figure 18. Note that the performance of
thekNN queries decreases only slightly with an increasingk.
This is in spite of the increase of the average size of the re-
turned query results—from20.6 distinct points per result for
k = 1 to 109 distinct points per result fork = 16.

The graph in Figure 21 validates the assumption from
Section 3.8, that the cost of queries grows approximately lin-
early with the increasing query interval length.

4.3 Persistent NN queries

To evaluate the cost of maintaining the results of persistent
NN queries, a round of workloads was run where the results
of queries were maintained during insertions and deletions.
Each workload contains60 queries, one per time unit, start-
ing at120 time units after the start of the workload. The time
interval of each query starts when the query is issued and all

queries in a workload have the same query interval length.
As described in Section 3.6, maintaining query results under
insertions does not cost any I/O. Figure 22 shows the aver-
age cost of maintaining one query result when a deletion is
performed.
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The graphs show that the cost is low and, consistent with
the other results,best-firstthat traversal slightly outperforms
depth-firsttraversal. The average cost is low mainly because
no I/O is necessary for most of the query result updates. For
example, only 77 out of 853,228 query result deletions re-
quired I/O for the query interval length of 10 units. For the
minimum metrics and best-first traversal, considering only
these 77 deletions with non-zero I/O, the average cost of query
result deletion is 15.3, which has to be compared to 25.4 I/Os
on average for performing a query (see Figure 21).

Finally, note that when ignoring large query interval lengths,
the average cost of query maintenance grows almost linearly,
as assumed in Section 3.8.

4.4 Properties of the RNN algorithm

Another batch of experiments aims to explore a variety of
the properties of the algorithms computing the reverse nearest
neighbors. Based on the results of the experiments with the
different variants of theNN algorithm, theRNN algorithms
use theNN algorithm with thebest-firsttraversal and themin
metric.

To test the scalability of theRNNalgorithm, the number
of points in the database was varied. Figure 23 shows the av-
erage number of I/O operations perRNNquery for workloads
with varying database size.

The number of I/O operations increases with the num-
ber of data points. The increase is most probably due to two
factors. First, as the size of the database increases, differ-
ent queries are more likely to “touch” different parts of the
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dataset, and the probability that one query will benefit from
the disk pages left in the buffer from the execution of another
query is reduced. Second, increasing numbers ofRNNcandi-
dates are retrieved and checked.

Figure 24 plots the sizes of theBi lists, which store the
candidateRNN points, and theLRNN set, which stores the
final result, in terms of both the number of time intervals and
the number of distinct points. The graph shows that while
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Fig. 24 Average selectivity ofRNNqueries for varying number of
points

the average size of the final result remains almost the same
as the database size increases, the number ofRNN candi-
dates increases. The graph also shows that only every sixth
RNN candidate point becomes anRNN point (for the work-
load of 100,000 points). This ratio, of course, depends on the
workload. In our experiments with the uniform workloads of
100,000 points, the ratio is about3.3. Theoretically, the num-

ber of distinctRNN candidate points may be as large as the
size of the dataset (see Section 3.4.1). However, for our work-
loads, the maximum sizes of the answer sets (both in terms of
intervals and distinct points) are larger than the average an-
swer set sizes by about a factor of 10, which makes them
between two and three orders of magnitude smaller than the
dataset size. For example, for the dataset of 1,100,000 points,
the query with the largest number of candidateRNN time in-
tervals required storing 2,165 time intervals with associated
RNNcandidates in theBi lists.

Returning to Figure 23, observe that the second traver-
sal of the tree, in which the candidates produced by the first
traversal are verified, is cheaper than the first traversal, in
which these candidates are found. This is as expected. Be-
cause although the second traversal involves multiple query
points, all these query points are close to the original query
point, making it very likely that the disk pages brought into
the buffer by the first traversal can be reused in the second
traversal, thus reducing the number of I/O operations.

Another factor also contributes to making the second tra-
versal cheaper. During the first traversal, there is no initial
upper bound for the distance between the query pointq and
theRNNcandidate point, i.e.,dminq(t) is initially set to∞ in
theFindNN algorithm. The second traversal only needs to
determine whether the pointq is anNN point of the candidate
points; and for each candidate point, there is an initial up-
per bound fordminnnij

(t), namely the distance between the
point q and that candidate point,nnij . Further, sincennij is
theNN point ofq in some regionSi at some time, the distance
betweenq andnnij is typically small. This enables more ag-
gressive pruning of tree nodes during the second traversal of
the TPR-tree.

Figure 25 shows the average number of I/O operations
perRNNquery when the number of destinations in the sim-
ulated network of routes is varied and for the uniform work-
load. Both the performance of the first traversal and the per-
formance of the second traversal follow the same trends as
observed for theNN queries in Section 4.2.

Figure 26 shows the performance of theRkNN queries
for different values ofk. As for thekNN queries, the perfor-
mance decreases only slightly ask increases. Next, Figure 27
plots the average selectivity of the two traversals of theRkNN
queries. Note that fork = 16, the average number of time
intervals in the final answer surpasses the number of time in-
tervals in theBi lists ofRNNcandidates. This is possible be-
cause one time interval in aBi list is associated withk RkNN
candidates, each of which may turn into severalRkNNpoints
that are then associated with different time intervals. In the
experiment withk = 16, we observed the largest combined
size of theBi lists for anRkNN query, namely6, 272 time
intervals (which exceeds the average by a factor of about 10).

Figure 28 shows the average number of I/O operations per
query for varying query interval lengths. The setup of the ex-
periment is the same as that of the corresponding experiment
for NN queries (cf. Section 4.2). The graph shows that for
small query interval lengths, the second traversal incurs al-
most no I/O, which confirms the importance of a buffer. The
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number of I/O operations increases approximately linearly
with the query interval length. The experiment also shows
that the number of query results also increases approximately
linearly.

4.5 Persistent RNN queries

To investigate the cost of maintaining persistentRNNqueries,
we varied the query interval lengths in an experiment with a
setup that is the same as for the analogous experiment with
the persistentNN queries (cf. Section 4.3). Figure 29 shows
the average, amortized cost per single insertion or deletion of
maintaining one query result set.
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Fig. 29 The cost of maintainingRNNqueries of different lengths

The graph demonstrates that maintainingRNNquery re-
sults under insertions incurs very little amortized I/O. Asmen-
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tioned at the end of Section 3.7.1, this is because traversals
of the tree in algorithmInsert are quite rare. Interestingly,
deletions are much more costly. AlgorithmDelete involves
two tree traversals—one to find new candidateRNN points,
if one was deleted, and another to check whether some of
theRNNcandidates become actualRNNpoints, when a point
close to these candidates is deleted. As the graph shows, con-
trary to theRNN query algorithm, the two traversals have
similar amortized cost. A possible reason for this behavior
is that the probability that someRNNcandidate is deleted is
lower than the probability that a point is deleted that at some
time during the query interval gets close to someRNN can-
didate. The latter condition requires rechecking of suchRNN
candidates (step 4 in Figure 15). Thus, the second traversalis
performed more often than the first traversal.

Comparison of the absolute numbers in Figures 22 and 29
shows that maintaining the results ofRNN queries is more
expensive than maintaining the results ofNN queries, and is
so by more than an order of magnitude. This is mainly so
because a larger number ofRNN query result updates incur
non-zero I/O thanNN query result updates do. For example,
for query interval length 10, 2,013 out of 874,983RNNquery
result deletions incurred I/O, while only 77 out of the similar
number ofNN query result deletions incurred I/O (see Sec-
tion 4.3). On the other hand, each non-zero-I/O query result
deletion costs less forRNNqueries than forNN queries (4.2
I/Os vs. 15.3 I/Os for the same settings).

Figure 29 also shows that the amortized cost per update
increases approximately linearly with the length of the main-
tained query interval. This is as could be expected.

4.6 Continuous queries

Section 3.8 describes a cost model for choosing the optimum
query re-computation interval lengthl when maintaining a
continuous current-time query. Recall that a continuous query
is maintained by means of a persistent query that extends
from the time it is issued andl time units into the future.
With a smalll, a new persistent query must be computed fre-
quently, which is expensive. But each query result is also rel-
atively small and thus cheap to maintain as updates to the
underlying data occur. With a largel, few persistent queries
need to be computed, but the ones that are computed have
large results that are expensive to maintain. So a smalll is
expected to result in high recomputation cost and low main-
tenance cost, while the opposite is expected for a largel.

To empirically understand the effect of differentl values,
we performed a series of experiments where we varied the
length of the query re-computation interval. For eachl value
used,20 queries were issued at time120 and then maintained
for 60 time units.

Figures 30 and 31 show the amortized cost per single up-
date operation (insertion or deletion) while maintaining,re-
spectively, oneNN and oneRNNcontinuous query for work-
loads of100, 000 and500, 000 points. Observe that the amor-
tized cost per single update is lower for the larger dataset.
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This is so because a larger number of points leads to a lower
probability that a specific update will have an effect on a spe-
cific query result. In spite of this, when the total cost of query
maintenance is computed by adding the maintenance costs
for all updates, the500, 000 points workload has the larger
total query maintenance cost than the100, 000 points work-
load, although the increase is by less than a factor of5.

For the nearest neighbor queries, the bestl for the work-
load with100, 000 points seems to be approximately10. For
the workload with500, 000 points, the bestl value is approxi-
mately6. For the reverse nearest neighbors, the bestl for both
workloads seems to be approximately4.

The performance experiments with varying query interval
lengths (cf. Sections 4.2–4.5) validated the assumptions that
functionsQ(l) andM(l) from the cost model presented in
Section 3.8 are approximately linear. To compare the empir-
ically observed optimal values ofl with the ones computed
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using the cost model presented in Section 3.8, we estimated
the values of parametersQ0 andMf from the performance
experiments with varying query interval length.

For theNN queries (see Figures 21 and 22),Q0 ≈ 15.8
andMf ≈ 0.00015. According to our workload generation
parameters,U = 60. For 100, 000 points, the cost model
givesl ≈ 7.9, which is quite close to the empirically observed
value of10. For theRNN queries (see Figures 28 and 29),
Q0 ≈ 16.3 andMf ≈ 0.00063. This givesl ≈ 3.9, which
agrees very well with the empirically observed value of 4.
These results indicate that the mathematical cost model is
practical.

5 Summary and future work

Rapid technological advances promise to enable the tracking
of the positions of large populations of continuously moving
objects. Consequently, efficient algorithms for answeringvar-
ious queries about continuously moving objects are of inter-
est. Algorithms have previously been suggested for answer-
ing nearest neighbor and reverse nearest neighbor queries for
non-moving objects, but no solutions have been proposed for
efficiently answering these queries for large populations of
continuously moving objects.

This paper proposed algorithms that enable the compu-
tation of nearest andk nearest neighbor queries as well as
reverse and reversek nearest neighbor queries for this set-
ting. Each such query takes as parameter a time interval that
extend from some time not preceding the current time and
until some later time, and the algorithm computing the query
produces a result that contains the nearest or reverse nearest
neighbors for each point in time during this interval. Three
variants of these types of queries are supported: A standard
(one-time) variant that simply returns its result; a persistent
variant, where the result is updated incrementally to account
for updates of the underlying data; and a continuous variant,
where the result as of the changing current time is maintained
for a duration of time.

The algorithms utilize the standard TPR-tree [24] as an
index on the argument moving objects. This means that a sin-
gle index structure, be it the TPR-tree, the TPR*-tree, or a
similar index, can be used for range queries, nearest neigh-
bor queries, and reverse nearest neighbor queries. Variants of
the algorithms were developed that use depth-first and best-
first search in the index structure. A comprehensive empirical
performance study was conducted that offered insight into
a range of performance-related properties of all the differ-
ent algorithms. Key findings include that best-first search is
slightly better than depth-first search; that performance de-
creases linearly with growing query-interval length, but is rel-
atively unaffected by increases ink; and that the amortized
cost of an update for persistent-query maintenance is very
low, particularly for nearest neighbor queries.

The presented reverse nearest neighbor algorithms are suit-
able for themonochromaticcase [16] only—all the points are
assumed to be of the same category. In thebichromaticcase,

there are two kinds of points (i.e., “clients” and “servers,”
corresponding to, e.g., tourists and rescue workers), and are-
verse nearest neighbor query asks for points that belong to
the opposite category than the query point and that have the
query point as the closest from all the points that are in the
same category as the query point. The approach of dividing
the plane into six regions does not work for the bichromatic
case—a point can have more than six reverse (first) nearest
neighbor points at a single point in time. An interesting fu-
ture research direction is to develop algorithms for efficiently
answering reverse nearest neighbor queries for continuously
moving bichromatic points.

Next, we have only considered metric distance functions
in this paper. But settings exist where other notions of dis-
tance are also meaningful. For example, the objects consid-
ered may be assumed to move along some underlying trans-
portation network structure—they may be vehicles in a road
network. Or the objects may move more freely, with differ-
ent types of infrastructure, such as lakes, mountains, or farm-
land, prohibiting movement in some areas. While Euclidean
distance may be relevant in such settings, it is also highly rel-
evant to study how to handle the complexities arising from
the non-Euclidean and non-metric distance functions that ex-
ist in such settings.
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A Distance Computation for Moving Points and
Time-Parameterized Rectangles

First, we provide the formula for the squared distancedq(p, t)
between twod-dimensional moving points:

q = (x1, x2, . . . , xd, v1, v2, . . . , vd)

p = (y1, y2, . . . , yd, w1, w2, . . . , wd)

Here, thexi andyi, when not used as functions, are coordi-
nates at timet = 0. The squared distance is then given as
follows:

dq(p, t) =

d
∑

i=1

(xi(t) − yi(t))
2 =

d
∑

i=1

(xi + vit − yi − wit)
2

= t2
d

∑

i=1

(vi − wi)
2 + 2t

d
∑

i=1

(xi − yi)(vi − wi)

+

d
∑

i=1

(xi − yi)
2

Next, let a time-parameterized rectangle be given as fol-
lows:

R = ([x⊢
1 ; x⊣

1 ], [x⊢
2 ; x⊣

2 ], . . . , [x⊢
d ; x⊣

d ],

[v⊢1 ; v⊣1 ], [v⊢2 ; v⊣2 ], . . . , [v⊢d ; v⊣d ])

The shortest squared distancedq(R, t) between moving point
q and time-parameterized rectangleR during time interval
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Distance(q , R, [t⊢; t⊣]):
1 SetE ← ∅.
2 For each dimensioni = 1, . . . , d, do:

If vi 6= v⊢

i andt⊢i = (xi − x⊢

i )/(v⊢

i − vi) ∈ [t⊢; t⊣], addt⊢i to E.
If vi 6= v⊣

i andt⊣i = (xi − x⊣

i )/(v⊣

i − vi) ∈ [t⊢; t⊣], addt⊣i to E.
3 SortE. The elements ofE divide [t⊢; t⊣] into at most2d + 1 intervals. For each such intervalTj :

dq(R, t) =

d
X

i=1

dq,i(R, t),

where

dq,i(R, t) =

8

<

:

t2(v⊢

i − vi)
2 + 2t(x⊢

i − xi)(v
⊢

i − vi) + (x⊢

i − xi)
2

if ∀t ∈ Tj(xi + vit ≤ x⊢

i + v⊢

i t)

t2(v⊣

i − vi)
2 + 2t(x⊣

i − xi)(v
⊣

i − vi) + (x⊣

i − xi)
2

if ∀t ∈ Tj(xi + vit ≥ x⊣

i + v⊣

i t)
0 otherwise

Fig. 32 Distance computation

[t⊢; t⊣] is a piece-wise quadratic function. The algorithm com-
puting this function is given in Figure 32.

In step 2, the algorithm computes the times when the
moving pointq crosses the moving hyper-planesxi = x⊢

i (t)
andxi = x⊣

i (t)—the extensions of those two ofR’s oppo-
site sides that are perpendicular to thexi axis (see Figure 33,
which also enumerates the2d+1 possible subdivisions). Note

q

(t)

q
x =

1
x =

R
4

2

3
q

5

i i ii (t)

d (R,t)

x

(R,t)=0

x

d

Fig. 33 Distance between a moving pointq and a time-
parameterized rectangleR

that here,t⊢i is not necessarily less thant⊣i . In step 3, during
each of theTj, q does not cross any of the above-mentioned
hyperplanes. From the formulas in step 3, it is quite straight-
forward to obtain the parametersa, b, and c mentioned in
Section 3.3.1.

Observe that for the time periods whereq is insideR,
dq(R, t) = 0.


