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ABSTRACT 
Asymmetric or heterogeneous multi-core (AMC) 

architectures have definite performance, performance per 

watt and fault tolerance advantages for a wide range of 

workloads. We propose a 16 core AMC architecture 

mixing simple and complex cores, and single and 

multiple thread cores of various power envelopes.  A 

priority-based thread scheduling algorithm is also 

proposed for this AMC architecture. Fairness of this 

scheduling algorithm vis-a-vis lower priority thread 

starvation, and hardware and software requirements 

needed to implement this algorithm are addressed. We 

illustrate how this algorithm operates by a thread 

scheduling example. The produced schedule maximizes 

throughput (but is priority-based) and the core utilization 

given the available resources, the states and contents of 

the starting queues, and the threads’ core requirement 

constraints. A simulation model simulates 6 scheduling 

algorithms which vary in their support of core affinity 

and thread migration. The simulation results that both 

core affinity and thread migration positively effect the 

completion time and that the nearest neighbor scheduling 

algorithm outperforms or is competitive with the other 

algorithms  in all considered scenarios 

Keywords: asymmetric multiprocessors, multi-core 

architectures, thread scheduling.   

 

1. INTRODUCTION 
Asymmetric multi-core (AMC) and symmetric multi-

core architectures are gaining ground [1-3]. The 

motivation behind the multi-core (MC) architecture is as 

follows. Higher performance single cores are getting 

more complex and harder to design and validate. 

Complex features have been added with diminishing 

returns on performance. Higher performance by 

increasing frequency implies higher power envelopes. 

Higher power envelopes with diminishing circuit 

geometries imply higher power densities and more hot 

spots on the chip. These have significant heat sink or 

cooling costs and reliability implications. Moreover, low 

end MC architectures with 4 or less cores are easy to 

design by cutting and pasting and making enhancements 

to cache and memory bandwidths. Larger MCs require 

higher scalability in their interconnect and memory 

subsystems. On top of that, operating systems, 

applications, libraries, and background tasks all demand 

computation requirements that are satisfied by MCs. A 

symmetric MC architecture comprises identical CPU 

cores with identical capabilities and features. They suit 

workloads with roughly equivalent threads with similar 

computation (e.g. vector) requirements. Unfortunately, 

realistic workloads with applications, background tasks, 

and operating system kernel all running simultaneously 

are typically composed of threads of different 

computation and time requirements, some running fine 

with simple low-power ALUs while others needing more 

advanced power-consuming vectorized ALUs and 

predictors. Some threads run better solo while others run 

better together when scheduled on the same simultaneous 

multithreading (SMT) processor [4].  

Making the MC architecture asymmetric brings great 

benefits. First of all, the mixture of low-power simple 

processor cores with high-power complex processor 

cores fit realistic workloads with a basket of low 

computation threads and high computation threads. 

Second, the argument for symmetric MC architectures 

with simple low-power cores would crumble next to 

workloads with one or more single threads that run solo 

and would benefit from a  high-power and high 

instruction level parallelism (ILP) core. The argument  

for symmetric MC architectures with complex high-

power but a limited number cores would crumble next to 

workloads with a large number of  cooperating threads 

that require each simple CPU computation. Therefore a 

mixture of cores provided by AMC architectures would 

satisfy either scenario while cutting down on the power 

consumption of symmetric MC architecture with high-

power complex cores. Functional and performance 

validation of AMC architectures however still presents a 

formidable challenge.  Compared to a single complex 

high-frequency and high-power core with  ILP-rich 

features, AMCs provide higher throughput and better 

performance per watt on multiple thread workloads.  

In this paper, we review the latest scheduling and related 

cache partitioning schemes for multi-cores in section 2. 

We propose a 16 core AMC architecture in section 3. We 

detail a priority-based scheduling algorithm for that 

AMC architecture in section 4. A detailed example that 

illustrates the working of this scheduling algorithm is 

also discussed in section 4.  Section 5 describes the 

simulation model and presents simulation results. We 

conclude the paper in section 6.  

 

2. MC SCHEDULING AND CACHE 

PARTITIONING ALGORITHMS  
MC processors or Chip Multiprocessors (CMP) have 

been proposed to improve performance and power 

requirements. In MC processors, the pursuit of higher 

frequency designs is replaced by the integration of more 

processors in a single package reducing latencies, and 

improving the sharing of resources such as second level 

(L2) cache memories and reducing power consumption 

and heat dissipation per unit area. CMP [5] refers to the 

implementation of a shared memory multiprocessor on a 

single chip. Several commercial CMPs are available on 

the market [6-8] ranging from 2 to 16 cores per chip.  

While hardware features and compiler optimizations may 

greatly benefit a program’s performance, a scheduling 

algorithm tailored for the architecture it targets can bring 

even higher benefits. Scheduling a thread with another 

thread on a dual core processor can be disastrous if the 

threads both simultaneously contend for insufficiently 
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available shared resources. Even worse expectations can 

result from the operating system scheduler scheduling 

lower priority tasks before higher priority ones. Some of 

the important issues relevant to MC architectures that 

have been recently tackled by researchers are single 

thread migration, shared resource partitioning among co-

scheduled threads and cache fair scheduling. 

Constantinou et al [9] studied the impact of single thread 

migration in multi-cores with a shared L2 cache on the 

system performance, and highlighted the performance 

benefits from migrating the thread to the core it 

previously ran on and from cores remembering their 

predictor state since their previous activation, as better 

performance results from caches and predictors being 

warmed up.  Shaw [10] studied the migration of data and 

threads in CMPs using vectors that convey locality and 

resource usage information. Migration time of threads 

has been measured in Windows-based clusters [11] and 

network of workstations [12]. In MC processors, thread 

migration was estimated to take under 200 processor 

cycles [9] although ideally it should take close to no time.  

Another critical issue in SMT and MC CPUs is 

allocation of shared resources to competing threads. [13] 

points to a strong link between L2 cache contention and 

thread performance on SMT processors. [2] found that 

asymmetry hurts performance predictability  and 

scalability of commercial server workloads on 

asymmetric cores and recommended making both the 

operating system kernel and the application aware of the 

hardware asymmetry in order to circumvent these issues.  

In CMPs, fair cache sharing and partitioning [14] was 

found to optimize throughput. Fairness measures the 

performance slow down (e.g. thrashing) of parallel 

threads due to cache sharing. [14] assumes that the 

operating system enforces thread priority by giving more 

time slices. This is problematic as the operating system 

when assigning time slices assumes that all threads get 

equal resources but that is not the case with parallel 

threads contending to L2 cache space. With cache 

partitioning methods that optimize cache fairness among 

the parallel threads, the operating system scheduler 

becomes fair.  Chandra [15] evaluated 3 models for 

predicting the impact of cache sharing on co-scheduled 

threads. Another CMP cache fair scheduling algorithm 

idea [16] is to give larger time slices to co-scheduled 

threads that suffer more from extra L2 cache misses due 

to being scheduled with other threads. The application 

user is expected to specify the thread priority and the 

thread class.  Their algorithm helped the performance of 

applications with low cache requirements but hurt the 

performance of applications with large cache 

requirements. The overall response times of co-schedules 

threads that they considered was not impressive, however 

the fairness criterion was met.  

In the next section, we propose an asymmetric multi-core 

architecture and detail a thread scheduling algorithm for 

it based on core utilization and availability, and core and 

thread affinities, and discuss its hardware requirements. 

We then study the effectiveness of this scheduling 

scheme compared to non-migratory scheduling schemes 

and other scheduling schemes which allow migration 

within the class of the core affinity. 

 

3. AMC ARCHITECTURE 
We propose an AMC architecture that mixes cores 

belonging to the following classes or bins: 

1. Class A: high power, high ILP, complex predictors, 

vector execution units (e.g. SSE/MMX), large L2 cache; 

2. Class B: medium power and ILP, vector execution 

units, medium L2 cache; 

3. Class C:  low power and ILP, small L2 cache; and 

4. Class D: special purpose cores (media codecs, 

encryption, I/O processor). 

 

 
Fig. 1. AMC Architecture 

 

It is assumed that cores are interconnected by a 2D mesh 

interconnect with Manhattan-style routing. Fig. 1 shows 

the 16 core AMC architecture with its 4 classes. Each of 

the first 3 bins is divided in half between single threaded 

processors (with even numbers) and multi-threaded 

processors (with odd core numbers). A 4-bit ID identifies 

a core and the least significant bit identifies it as singled 

threaded or multi-threaded. By mixing cores with various 

power requirements and computational capabilities, it is 

intended to maximize the probability of good mapping of 

wide workloads into the AMC’s cores. Note that cores in 

the lower classes (e.g. C) miss some of the functionality 

of cores in the higher classes (e.g. A).   Contrary to what 

is pictured in Fig. 1,  the core areas of the various classes 

are unequal and class A cores occupy much larger areas 

that class C cores. Needless to say, when a thread is 

scheduled for the 1st time, if the thread only requires a 

single threaded class C core (cores 0 and 2) and neither 

is available, then the scheduling algorithm (that we’ll 

discuss in the next section) will select an available core 

in the nearest higher class possible, and specifically in 

the following order: multi-threaded class C (cores 1 or 3), 

single-threaded class B, multi-threaded class B (cores 5 

or 7), single-threaded class A (cores 8, 10, 12, or 14), 

and finally multi-threaded class A (cores 9 or 11). Note 

that class D cores (13 and 15) have special functions and 

normal threads are not mapped to them but special 

operations are assigned to class D cores. However if a 

thread requiring a multi-threaded class B core finds none 

to be available, then the scheduler will attempt to 

schedule it to a single threaded class A core if one is 

available. If none are available, the scheduler cannot 

make an assignment to an available core in the lower 

class C as these do not support some required 

functionality (e.g. vector units) and so the thread is 

requeued and not scheduled. On a 2nd or later attempt to 

schedule a thread, the scheduler attempts to assign a 

thread to run on the core on which it ran the last time it 

got scheduled thus satisfying the core affinity of the 

thread to minimize inter-core thread state update 

overhead penalties.   

In mesh-connected AMCs, it is desirable to schedule 

cooperating threads to as close cores as possible in order 
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to minimize the communication time. The distance form 

corei to corej is given by 

          Distance(corei, corej)= |xj – xi | + |yj – yi|            (1) 

where corei= CPU core i’s number, and its 2D 

coordinates (xi, yi)are given by 

xi= └ corei / 4 ┘ 

yi= (corei  mod 4) 

            if yi  ∈{0, 3} then yi= (yi  + 3) mod 6            (2) 

As these may involve three costly divisions, it is 

desirable to create a table of inter-core distances for each 

core that includes cores in the same class or in higher 

classes. For instance for core 5, 1-hop cores include 

cores in {7, 6, 9}, 2-hop cores include core in {4, 11, 10}, 

3-hop cores include cores in {8}.   

 

4. SCHEDULING SCHEME 
Scheduling algorithms attempt to deliver schedules 

which optimize metrics such as maximum throughput, 

minimum response time, minimum waiting time, or 

maximum CPU utilization [17]. Several algorithms exist 

such as shortest job first, round robin, etc, each with its 

advantages and drawbacks. Since tasks have different 

priorities, some that need urgent attention while others 

have more tolerance for waiting, it makes sense for the 

scheduling algorithm to be priority-based. While optimal 

schedules are desired, it is also important to avoid 

excessive data collection and intensive schedule 

computation in order to keep the scheduling overhead 

time under control.  This means that near-optimal 

schedules are acceptable. 

In a priority-based scheduling scheme, each thread is 

assigned a priority either by the programmer or the 

operating system. Several scheduling queues exist one 

for each priority. The scheduler attempts to schedule 

threads waiting in the highest priority  queue 1 first, 

followed by those in priority queue 2, etc. Priority-based 

schedulers can cause starvation for the lower priority 

threads, and starvation avoidance policies can be 

enforced to remedy these situations. Some options are 

enforcing aging which increases the priority of  threads 

as time progresses thus each queued thread will 

eventually reach highest priority if not scheduled, or 

allocating time slices  to each queue which distributes 

according to its policy its allotted time slices among its 

threads, this way no queue will be left behind. Reducing 

the time slice increases the number of context switches 

which can improve more threads’ chances to progress at 

the expense of a larger total context switch overhead time. 

Our scheduling algorithm is centralized and preferably 

runs on the same (class C) core. The scheduler maintains 

the structures of Fig. 2, the CPU Core Assignment Board 

(CCAB) which holds information of which core or 

logical processor (if multithreaded) is busy, and the 

Thread Board (TB) which contains thread relevant 

information including:  the thread’s state, previous_CPU 

(PC) or core affinity (CA) which holds the core number 

on which the thread ran last, good_ fit which indicates if 

the core assignment is good (1) or can be improved (0),   

Thread Affinity (TA) which indicates the desire to be in 

proximity to the core hosting thread TA (ideally on the 

same core but on different logical processor), the thread’s 

priority, and its class which reflects it core functionality 

and power requirements. Note that PC depends on the 

thread scheduling history and has nothing to do with the 

programmer, while TA may be intentionally specified by 

the programmer, or by the operating system -- if 

unspecified by the programmer-- as the operating system 

knows which threads collectively belong to the same 

process and thus may benefit by running  together.   

 
CPU Core Assignment Board (CCAB) 
Core #  LP0  LP1 
Core 0 1 (occupied)  

Core 1 0 (available) 1 (occupied) 

…   

Core 8 1 (occupied)  

Core 9 1 (occupied) 1 (occupied) 

…   

 

  
Fig. 2. Relevant Structures 

 

Fig. 3 presents our proposed scheduling algorithm for the 

AMC architecture. Initially all queues are cleared and 

relevant structures are also cleared. The algorithm goes 

by each queue starting from highest to lowest priority 

and schedules each thread to its previous_CPU in order 

to satisfy core affinity if the previous_CPU assignment is 

a good fit (same class), or if the class to which 

previous_CPU is not utilized by more than upc % where 

upc is initialized to 75% and can be later changed by the 

operating system. If the previous_CPU is unavailable or 

belongs to a not-best-fit class with over 75% utilization,  

the thread may have to migrate to  a core nearer (defined 

by equations (1) and (2)) to the previous_CPU in the 

same class, or if one is unavailable to a core nearer to 

previous_CPU in the next higher class available. If no 

such cores are available in the same class or all higher 

classes, the thread is requeued in the same priority 

queued it was popped off thus implementing Round 

Robin policy within the same priority level. When a core 

is assigned to the thread, a thread entry is queued into the 

dispatch queue for that core so that it can be executed. 

Note that priority inversion is avoided by scheduling first 

from higher priority queues. So there is no chance for 

slower priority threads to make faster progress than the 

higher priority ones except possibly temporarily when 

the lower priority threads have been starved and their 

priority has been temporarily boosted by the operating 

system. 

In order to maintain fairness, our scheduler implements 

the following fairness policy. Periodically each  

tUpdatePriority time slices, a timer triggers an alarm which 

boosts the priority of all queued tasks that have not been 

scheduled for the past tstarvation time quanta by 1 priority  

level in all queues of priority 2 and above. The 

parameters tUpdatePriority and tstarvation can be initially set to 3 

and 9 and can be adaptively fine tuned by the operating 

system or manually by the system administrator.  This 

way all lower priority threads will eventually reach 

priority 1 level and Round Robin policy in that level 

assures that they will get scheduled. This policy requires 

that the system time when the thread was last queued to 

be stored in the Thread Board (Fig. 2). 
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Fig. 3. Scheduling Algorithm for AMC 

 

To illustrate how this scheme works, we go over an 

example. For simplicity, the illustration assumes that all 

threads request single threaded cores and that tstarvation is 8 

so the fairness policy is not involved in this particular 

example. At the start of scheduling cycle 1,  19 threads 

are waiting in 3 priority queues to be scheduled into the 

16 core as shown in cycle 1 of Fig. 4.  Each thread entry 

in these queues holds information that includes the thread 

number, its class, thread affinity (TA),  and 

previous_CPU or core affinity (PC, CA). The algorithm 

pops the queues and allocates threads 0-3 onto cores 8, 

10, 12, and 14, thread 10 to core 4, threads 11-12 to cores 

13 and 15, threads 4-5 to cores 9 and 11, threads 15-16 to 

cores 6 and 5, thread 17 to core 7, and thread 18 to core 0 

as shown under the time slice 1 column of the Gantt chart 

of Fig. 5. Note that for simplicity, we omit showing 

delays due to schedule computations. Also note how 

threads 1 and 2 are assigned to cores 10 and 12, only 1 

hop away from core 8 to which thread 0 is assigned in 

order to meet thread affinity requirements of threads 1 

and 2. For the same reason, thread 16 is assigned to core 

5, the nearest available core in class B to core 6. After 

running, the thread entries are requeued onto their 

respective queues in the same order if the threads do not 

finish execution in this scheduling cycle as long as they 

are not blocked. In this example, all these threads are 

requeued except for thread 12 which terminates 

execution at the end of cycle 1 as indicated under the 

time slice 2 column in Fig. 5. Threads 6-9 and 13-14 do 

not get scheduled in this cycle and remain in the queues 

as they request class A core none of which is available. 

Cores 1-3 remain idle as there is no sufficient demand for 

class C cores.  At the start of scheduling cycle 2, the 

queue contents are  as  shown  in cycle  2  of  Fig. 4.  The 

main difference in this cycle is that the order of waiting 

threads in the priority 2 queue is different from the 

previous cycle   as   not   all  threads   in  this  queue   got 

 
Fig. 4. Contents of the Priority Queues 

 

 
Fig. 5.  Example’s Gantt Chart 

 

scheduled in the previous cycle. Round Robin policy 

schedules now threads 6-7 to cores 9 and 11 as shown in 

Fig. 5 while thread 4-5, 8-9, and 13-14 wait in their 

queues. In Cycle 3, (time slice 3) it is now the turn of 

threads 8-9 to be scheduled onto cores 9 and 11.  In cycle 

4, it is now the turn of threads 4-5 to be rescheduled onto 

cores 9 and 11. Note how previous_CPU information is 

used by the scheduler to satisfy core affinity, and how 

TA is used to schedule threads near the core running the 

thread corresponding to their thread affinity. In cycle 5, 

threads 6 then 7 get scheduled first so they are assigned 

to their previous_CPU’s 9 and 11. Thread 8 then get 

scheduled and is assigned core 10, the nearest available 

core in class A to core 9 to which thread 8’s TA (thread 

6) is assigned. For the same reason, threads 9, 4 and 5, 

get assigned to cores 8, 14, and 12 respectively. In cycle 

6, threads 4-5 get assigned to their previous_CPU’s 14 

and 12, leaving room for cores 8 and 10 to be assigned to 

threads 8 and 9.  Thread 13 gets assigned to core 8 in 

cycle 7 and completes at the end of  cycle 7. 

The produced schedule is optimum with respect to the 

throughput (but is priority-based) and the CPU utilization 

given the available resources, the states and contents of 

the starting queues, and the thread core requirement 

constraints. 
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 5. SIMULATION EXPERIMENTS  

AND ALGORITHM EVALUATION 
In this section, we study the effectiveness of this 

scheduling scheme compared to non-migratory 

scheduling schemes and other schemes which allow 

migration within the class of the core affinity. For 

simplicity, we assume that each class in the AMC 

architecture has only multithreaded cores and no general 

core is single-threaded. We also assume that once a 

thread migrates to a new core, its good_fit is 1 or its CPU 

utilization is always lower than upc. In other words, the 

first choice of the scheduling algorithm is always the 

previous core, previous_CPU, on which the thread ran in 

the last quantum in which it was active. We also assume 

that tUpdatePriority and tstarvation are very large such that the 

fairness policy is never involved. It is also assumed that 

if a thread is scheduled to a core, that core remains idle 

and unavailable to other threads until the in-transit thread 

assigned to it starts on it. This core only opens up to the 

other threads upon completion of 1 cycle –time slice--  

by the assigned thread.  In order to quantify the benefits 

of thread affinity, which seeks to schedule a thread to the 

same core in which it ran in the last time quantum it was 

active, and thread migration, which allows the 

scheduling of a thread to a core different from the core 

on which it ran in the last time quantum it was active due 

to the unavailability of this latter core, we consider and 

compare the following six scheduling algorithms. 

A. NAM (No Affinity- Migration allowed): a variation 

of the proposed algorithm with no concept of affinity 

which attempts to schedule the thread within its class if 

possible according to a list of increasing core numbers, 

and then looks for an available core in the next higher 

class, following a sequential order of increasing core 

number;  

B. NAMWC (No Affinity- Migration allowed Within 

Class): a variation of A except that the scheduler 

attempts to schedule the thread within its class following 

a sequential order of increasing core number, and if no 

cores are available within the same class, it does not seek 

to schedule the thread to an available core in the next 

higher classes but requeues  the thread to the end of the 

priority queue. 

C. AMNN (Affinity- Migration allowed according to 

Nearest Neighbor): a small variation of the proposed 

algorithm as the one proposed in the previous section 

except that if the previous CPU is not available then the 

scheduler looks to schedule the thread to cores in the 

vicinity of  previous_CPU (and not the TA as in Fig. 3) 

and if this is not possible, it schedules on the nearest 

available core in the next higher classes; 

D. AML (Affinity- Migration allowed within List in 

increasing core number order): same as NAM except that 

the scheduler attempts first to schedule the thread to the 

same previous_CPU core if available. 

E. AMWC (Affinity- Migration allowed Within Class): 

same as NAMWC except that the scheduler attempts first 

to schedule the thread to the same previous_CPU core if 

available; and 

F. ANM (Affinity- No Migration): a non-migratory 

scheduling algorithm that only attempts to reschedule an 

unfinished thread to the same previous_CPU core if 

available. Otherwise, it requeues the thread to the end of 

the priority queue if the previous_CPU core is 

unavailable.  

For that purpose, a model of the thread scheduling 

algorithm and its queue infrastructure was developed in 

the C programming language in Microsoft Visual .net 

Studio 2003. A time slice after which the operating 

system scheduler starts a new scheduling cycle is 

assumed to consume a time duration which we refer to as 

1 cycle.  Thus one cycle in this section refers to one time 

slice or tens of processor cycles. Threads are assumed to 

be very light weight threads with very short durations 

and even shorter switching times. For simplicity, it is 

assumed that thread migration from a core to another 

core adjacent to it, referred to by 1 hop, takes CPH 

(Cycles Per Hop) cycles to complete, where CHP varies 

between 1-2 cycles. Using this terminology, thread 

migration from core 8 to core 1 in Fig. 1 will take 4 hops 

or (4 x CPH) cycles to complete. At the start of each of 

the 100 simulation runs, for each of the 3 priority queues, 

random number generating functions are called to 

generate:  i. the number of tasks in each queue, ranging 

from 0 to 20; ii. the duration of each task, ranging from 1 

to dur cycles, where the maximum thread duration, dur, 

is allowed to vary from 3, 6, 9, 18, 30, 120, 480, up to 

960 cycles; and iii. the previous_CPU core number of the 

thread, ranging from 0 to15; 

For each of the threads, two associated numbers are 

initialized to 0, the completion time of the thread, and the 

penalty in cycles or hops incurred due to thread 

migration from the start of the simulation run at time 0 

till the time when the thread fully completes execution.   

Simulation then proceeded as in Figures 3-4 until all 

threads in all 3 priority queues finished execution, 

updating in each run the number of cycles it took for all 

the threads to complete execution and the total number 

of penalties (in hops or cycles) incurred by all migrating 

threads. Note that the total number of cycles, TNOC, 

represents the time in cycles of the last thread that 

completed its run and that the completion times of the 

other threads overlap with TNOC. The total number of 

penalty cycles, TNOP, is accumulative and adds the 

penalty cycles incurred by all threads. In the next 

simulation run, the number of threads in priority queues 

and their characteristics are randomly generated as 

described above and the procedure repeats until all 100 

simulation runs each representing a different ensemble of 

threads’ scenarios complete. The final TNOC  it took for 

all threads to complete after the 100th and final run, adds 

up all the cycles from all 100 runs and is accumulative. 

The final TNOP incurred by all threads in all 100 

simulation runs adds up also the individual penalty 

cycles from each simulation run and is also accumulative. 

Next, we present the number of cycles per simulation run, 

the average number of penalty cycles per simulation run, 

for all 6 algorithms, and for various CPH and dur values.  

Note that the averages are the total numbers of cycles 

divided by 100, the total number of simulation runs. The 

TNOP for the ANM algorithm is 0 as this algorithm is 

non-migratory and reassigns the thread to its 

previous_CPU whenever available so no migration-

related penalty cycles are incurred. Precisely, we plot the 

normalized ratios TNOCalgorithm/ TNOCAMNN and 

TNOPalgorithm/ TNOPAMNN for all 6 algorithms.  

 

1-Cycle Per Hop 

Fig. 6 plots the TNOCs for all 6 algorithms normalized 

to the TNOC of the AMNN scheduling algorithm for the 

case of a 1-cycle hop duration. The x coordinate is dur in 

cycles. When CPH is 1, AMNN is best for dur of 3 and 9. 
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For dur>=18, there is no notable difference in the 

performance in total number of cycles between the 

Affinity algorithms AMNN, AML and AMWC. Non-

affinity algorithms NAMWC and NAM perform worse 

than AMNN by 13%-38% but relatively improve in 

performance with increasing dur. Non-migratory 

algorithm ANM performs worse than AMNN by 3.6%-

22.5% and degrades further with increasing dur. It is 

clear that thread affinity and migration are both helpful 

to the total schedule completion time. 

Fig. 7 plots the normalized TNOPs for all 6 algorithms 

normalized to the TNOP of the AMNN scheduling 

algorithm for the case of a 1-cycle hop duration. ANM is 

best with no penalty cycles followed by AMWC which 

limits migration within the same class thereby containing 

migration costs, followed by AMNN, and AML, 

respectively. AMWC (AML) generates fewer and fewer 

penalty cycles as dur increases, and handily beats 

AMNN in that domain when dur>=9 (480). The non-

affinity algorithms NAM and NAMWC generate 2.5x-

13.8x AMNN’s penalty cycles with increasing number of  

penalty cycles with increasing dur. It is important for the 

reader to keep in mind that the TNOP cycles overlap 

with the schedule completion time and are not the 

ultimate decider of the best scheduling algorithm but 

help in comparing them with respect to migration costs.  

For instance, algorithm ANM performs the worst under 

large dur values but yet incurs the fewest penalty cycles 

among all 6 algorithms. 
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Fig. 6. TNOCs Normalized for AMNN with CPH=1 
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Fig. 7. TNOPs Normalized for AMNN with CPH=1 

 

2-Cycle Per Hop 

Inter-core communication can slow down due to a 

variety of reasons including longer distances and wires, 

higher resource contention, or bigger traffic and longer 

wait times. Fig. 8 plots the normalized TNOCs for all 6 

algorithms normalized to the TNOC of the AMNN 

scheduling algorithm for the case of a 2-cycle hop 

duration. When inter-core communication slows down 

and the duration of a hop is increased to 2 cycles,   

AMNN is best for a dur in the 9-30 range, followed 

respectively by AML and AMWC. It is also observed 

that AMNN is very competitive for a dur of above 30. 

For small dur values of 6 cycles or below, ANM is best 

(2.7%-17% better than AMNN) followed by AMNN in 

the second place. Short duration tasks with longer 

migration penalties seem to favor the Affinity but non-

migratory scheme. For dur>=120 cycles, AMWC and 

AML are best (2-3% better than AMNN) followed by 

AMNN which remains competitive. A quick look at Fig. 

9 reveals that this is attributed to more penalty cycles 

generated by AMNN than AMWC or AML when 

dur>=120. Higher contention to the previous_CPU cores 

of AMNN (as compared to AMWC or AML) is the most 

logical reason for the larger penalty cycles generated by 

AMNN. In other words, when previous_CPU is 

unavailable, scheduling a new core following a list of 

increasing core numbers seems to reduce contention 

slightly more to scheduling a new core in the vicinity of 

previous_CPU as achieved by AMNN, with the 

randomly generated thread scenarios of our simulation 

experiments.  As for the worst performing algorithms, 

the non-Affinity algorithms NAM and NAMWC are 

35%-62.7% worse than AMNN but improve in relation 

to AMNN as dur increases. For dur values of 30 or 

above, ANM performs 14%-16% worse than AMNN. 

Fig. 9  plots the normalized TNOPs for all 6 algorithms 

normalized to the TNOP of the AMNN scheduling 

algorithm for the case of a 2-cycle hop duration. ANM 

still generates 0 penalty cycles. When dur <=30, AMWC 

generates 3%-4% fewer penalty cycles than AMNN. As 

expected the most penalty cycles are generated by the 

non-affinity algorithms NAM and NAMWC which 

generate 2x-7x more penalty cycles than AMNN. The 

algorithms generating the fewest penalty cycles are 

AMWC and ANM when dur is 120 or above, generating 

1/3-1/2 of AMNN’s penalty cycles.  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

3 6 9 18 30 120 480 960

Maximum Thread Duration

T
o

ta
l 

C
y

c
le

s
 /

 T
o

ta
l 

C
y

c
le

s

fo
r 

A
M

N
N

 (
w

it
h

 2
c

-h
o

p
s

)

NAM

NAMWC

AMNN

AML

AMWC

ANM

 
Fig. 8. TNOCs Normalized for AMNN with CPH=2 
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Fig. 9. TNOPs Normalized for AMNN with CPH=2 

 

Effect of Hop Duration 

Fig. 10 displays compares the TNOPs as CPH is doubled 

from 1 to 2 cycles. As ANM is non-migratory the hop 

duration has no effect on its performance.  This ratio is 

highest for non-affinity algorithms NAMWC & NAM. In 

the Affinity algorithms, it is observed that the 

TNOCCPH=2/TNOCCPH=1 ratio goes down as dur 
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increases. This is because longer thread durations dilute 

the increases in hop duration and communication time. 

Non-Affinity algorithms are most sensitive to doubling 

the CPH. Increasing the hop duration is most detrimental 

to the Non-Affinity algorithms which very likely incur 

migration costs on every thread re-scheduling, costs 

which become heftier with longer hop durations. 

Fig. 11 compares the TNOPs for the same scheduling 

algorithms as CPH is doubled from 1 to 2 cycles. Not 

surprisingly, the trend of the TNOPCPH=2 / TNOPCPH=1  

ratio is often increasing with increasing dur.  The longer 

the hop duration, the higher the total number of incurred 

penalty cycles. This ratio is highest for AMNN when dur 

>=120. Starting with a dur value of 30 cycles, the 

Affinity algorithms appear to be the most sensitive to 

doubling the CPH, and in particular AMNN, which 

attempts to keep the thread in the neighborhood of its 

previous_CPU as much as core availability permits. 
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 Fig. 10. Effect of Doubling the Hop Duration on TNOC 

 

0

1

2

3

4

5

6

7

8

9

10

3 6 9 18 30 120 480 960
Maximum Thread Duration

 ANN: 0 / 0 undefined 

T
o

ta
l 
P

 C
y
c
le

s
 w

it
h

 2
c
-h

o
p

s
 /
 

T
o

ta
l 
P

 C
y
c
le

s
 w

it
h

 1
c
-h

o
p

s

NAM

NAMWC

AMNN

AML

AMWC

 
 Fig. 11. Effect of Doubling the Hop Duration on TNOP 

 

6. CONCLUSIONS 
We presented a 16 core asymmetric multi-core 

architecture comprised of 4 core classes. Our AMC 

architecture combines  high-power complex cores with 

large L2 caches to low-power low-ILP cores with small 

L2 caches and a few special purpose cores in the same 

chip. We also presented a priority-based scheduling 

algorithm for this AMC architecture. Our algorithm 

addresses priorities of threads, and incorporates a 

fairness policy to avoid thread starvation. It also attempts 

to schedule threads to their previous cores if possible to 

minimize state migration overhead time, and when not 

available to cores nearest to their thread affinities in their 

requested class if available, or in the nearest class where 

a core is available. As such, it maximizes throughput and 

core utilization.  

We developed a C simulation model which simulates the 

thread scheduling on the 16-core architecture and 

considered 6 scheduling algorithms. Simulation results 

revealed that the proposed affinity- and migration-based 

nearest neighbor scheduling algorithm which considers 

both thread affinity and thread migration in its 

scheduling decisions outperforms the other algorithms 

for small thread durations. For large thread durations, 

affinity- and migration-based scheduling algorithms 

outperform the non-affinity algorithms and the non-

migratory algorithm, but there is insignificant difference 

in the performance of the affinity- and migration-based 

algorithms. In that case, core selection policy, be it 

nearest neighbor, within a class, or across classes, makes 

little difference. As for the worst performing algorithms, 

when CPH is 1 and for small thread durations, or when 

CPH is 2 irrespective of dur, non-affinity algorithms 

perform worse than non-migratory ones. When CPI is 1 

and dur is large, non-migratory ones perform worse than 

non-affinity algorithms.  

This scheduling scheme can be combined with cache 

partitioning and cache fairness policies [14, 16] that  

partition the L2 cache memory and other shared 

resources adequately and fairly among the co-scheduled 

threads. Future work includes fine tuning the scheduling 

scheme’s parameters with real workloads and exploring 

other thread schedule scenarios. 
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