
Nearest Neighbor Affinity Scheduling In Heterogeneous Multi-

Core Architectures

Fadi N. Sibai

College of Information Technology, UAE University

Al Ain, United Arab Emirates

ABSTRACT
Asymmetric or heterogeneous multi-core (AMC)

architectures have definite performance, performance per

watt and fault tolerance advantages for a wide range of

workloads. We propose a 16 core AMC architecture

mixing simple and complex cores, and single and

multiple thread cores of various power envelopes. A

priority-based thread scheduling algorithm is also

proposed for this AMC architecture. Fairness of this

scheduling algorithm vis-a-vis lower priority thread

starvation, and hardware and software requirements

needed to implement this algorithm are addressed. We

illustrate how this algorithm operates by a thread

scheduling example. The produced schedule maximizes

throughput (but is priority-based) and the core utilization

given the available resources, the states and contents of

the starting queues, and the threads’ core requirement

constraints. A simulation model simulates 6 scheduling

algorithms which vary in their support of core affinity

and thread migration. The simulation results that both

core affinity and thread migration positively effect the

completion time and that the nearest neighbor scheduling

algorithm outperforms or is competitive with the other

algorithms in all considered scenarios

Keywords: asymmetric multiprocessors, multi-core

architectures, thread scheduling.

1. INTRODUCTION
Asymmetric multi-core (AMC) and symmetric multi-

core architectures are gaining ground [1-3]. The

motivation behind the multi-core (MC) architecture is as

follows. Higher performance single cores are getting

more complex and harder to design and validate.

Complex features have been added with diminishing

returns on performance. Higher performance by

increasing frequency implies higher power envelopes.

Higher power envelopes with diminishing circuit

geometries imply higher power densities and more hot

spots on the chip. These have significant heat sink or

cooling costs and reliability implications. Moreover, low

end MC architectures with 4 or less cores are easy to

design by cutting and pasting and making enhancements

to cache and memory bandwidths. Larger MCs require

higher scalability in their interconnect and memory

subsystems. On top of that, operating systems,

applications, libraries, and background tasks all demand

computation requirements that are satisfied by MCs. A

symmetric MC architecture comprises identical CPU

cores with identical capabilities and features. They suit

workloads with roughly equivalent threads with similar

computation (e.g. vector) requirements. Unfortunately,

realistic workloads with applications, background tasks,

and operating system kernel all running simultaneously

are typically composed of threads of different

computation and time requirements, some running fine

with simple low-power ALUs while others needing more

advanced power-consuming vectorized ALUs and

predictors. Some threads run better solo while others run

better together when scheduled on the same simultaneous

multithreading (SMT) processor [4].

Making the MC architecture asymmetric brings great

benefits. First of all, the mixture of low-power simple

processor cores with high-power complex processor

cores fit realistic workloads with a basket of low

computation threads and high computation threads.

Second, the argument for symmetric MC architectures

with simple low-power cores would crumble next to

workloads with one or more single threads that run solo

and would benefit from a high-power and high

instruction level parallelism (ILP) core. The argument

for symmetric MC architectures with complex high-

power but a limited number cores would crumble next to

workloads with a large number of cooperating threads

that require each simple CPU computation. Therefore a

mixture of cores provided by AMC architectures would

satisfy either scenario while cutting down on the power

consumption of symmetric MC architecture with high-

power complex cores. Functional and performance

validation of AMC architectures however still presents a

formidable challenge. Compared to a single complex

high-frequency and high-power core with ILP-rich

features, AMCs provide higher throughput and better

performance per watt on multiple thread workloads.

In this paper, we review the latest scheduling and related

cache partitioning schemes for multi-cores in section 2.

We propose a 16 core AMC architecture in section 3. We

detail a priority-based scheduling algorithm for that

AMC architecture in section 4. A detailed example that

illustrates the working of this scheduling algorithm is

also discussed in section 4. Section 5 describes the

simulation model and presents simulation results. We

conclude the paper in section 6.

2. MC SCHEDULING AND CACHE

PARTITIONING ALGORITHMS
MC processors or Chip Multiprocessors (CMP) have

been proposed to improve performance and power

requirements. In MC processors, the pursuit of higher

frequency designs is replaced by the integration of more

processors in a single package reducing latencies, and

improving the sharing of resources such as second level

(L2) cache memories and reducing power consumption

and heat dissipation per unit area. CMP [5] refers to the

implementation of a shared memory multiprocessor on a

single chip. Several commercial CMPs are available on

the market [6-8] ranging from 2 to 16 cores per chip.

While hardware features and compiler optimizations may

greatly benefit a program’s performance, a scheduling

algorithm tailored for the architecture it targets can bring

even higher benefits. Scheduling a thread with another

thread on a dual core processor can be disastrous if the

threads both simultaneously contend for insufficiently

JCS&T Vol. 8 No. 3 October 2008

144

available shared resources. Even worse expectations can

result from the operating system scheduler scheduling

lower priority tasks before higher priority ones. Some of

the important issues relevant to MC architectures that

have been recently tackled by researchers are single

thread migration, shared resource partitioning among co-

scheduled threads and cache fair scheduling.

Constantinou et al [9] studied the impact of single thread

migration in multi-cores with a shared L2 cache on the

system performance, and highlighted the performance

benefits from migrating the thread to the core it

previously ran on and from cores remembering their

predictor state since their previous activation, as better

performance results from caches and predictors being

warmed up. Shaw [10] studied the migration of data and

threads in CMPs using vectors that convey locality and

resource usage information. Migration time of threads

has been measured in Windows-based clusters [11] and

network of workstations [12]. In MC processors, thread

migration was estimated to take under 200 processor

cycles [9] although ideally it should take close to no time.

Another critical issue in SMT and MC CPUs is

allocation of shared resources to competing threads. [13]

points to a strong link between L2 cache contention and

thread performance on SMT processors. [2] found that

asymmetry hurts performance predictability and

scalability of commercial server workloads on

asymmetric cores and recommended making both the

operating system kernel and the application aware of the

hardware asymmetry in order to circumvent these issues.

In CMPs, fair cache sharing and partitioning [14] was

found to optimize throughput. Fairness measures the

performance slow down (e.g. thrashing) of parallel

threads due to cache sharing. [14] assumes that the

operating system enforces thread priority by giving more

time slices. This is problematic as the operating system

when assigning time slices assumes that all threads get

equal resources but that is not the case with parallel

threads contending to L2 cache space. With cache

partitioning methods that optimize cache fairness among

the parallel threads, the operating system scheduler

becomes fair. Chandra [15] evaluated 3 models for

predicting the impact of cache sharing on co-scheduled

threads. Another CMP cache fair scheduling algorithm

idea [16] is to give larger time slices to co-scheduled

threads that suffer more from extra L2 cache misses due

to being scheduled with other threads. The application

user is expected to specify the thread priority and the

thread class. Their algorithm helped the performance of

applications with low cache requirements but hurt the

performance of applications with large cache

requirements. The overall response times of co-schedules

threads that they considered was not impressive, however

the fairness criterion was met.

In the next section, we propose an asymmetric multi-core

architecture and detail a thread scheduling algorithm for

it based on core utilization and availability, and core and

thread affinities, and discuss its hardware requirements.

We then study the effectiveness of this scheduling

scheme compared to non-migratory scheduling schemes

and other scheduling schemes which allow migration

within the class of the core affinity.

3. AMC ARCHITECTURE
We propose an AMC architecture that mixes cores

belonging to the following classes or bins:

1. Class A: high power, high ILP, complex predictors,

vector execution units (e.g. SSE/MMX), large L2 cache;

2. Class B: medium power and ILP, vector execution

units, medium L2 cache;

3. Class C: low power and ILP, small L2 cache; and

4. Class D: special purpose cores (media codecs,

encryption, I/O processor).

Fig. 1. AMC Architecture

It is assumed that cores are interconnected by a 2D mesh

interconnect with Manhattan-style routing. Fig. 1 shows

the 16 core AMC architecture with its 4 classes. Each of

the first 3 bins is divided in half between single threaded

processors (with even numbers) and multi-threaded

processors (with odd core numbers). A 4-bit ID identifies

a core and the least significant bit identifies it as singled

threaded or multi-threaded. By mixing cores with various

power requirements and computational capabilities, it is

intended to maximize the probability of good mapping of

wide workloads into the AMC’s cores. Note that cores in

the lower classes (e.g. C) miss some of the functionality

of cores in the higher classes (e.g. A). Contrary to what

is pictured in Fig. 1, the core areas of the various classes

are unequal and class A cores occupy much larger areas

that class C cores. Needless to say, when a thread is

scheduled for the 1st time, if the thread only requires a

single threaded class C core (cores 0 and 2) and neither

is available, then the scheduling algorithm (that we’ll

discuss in the next section) will select an available core

in the nearest higher class possible, and specifically in

the following order: multi-threaded class C (cores 1 or 3),

single-threaded class B, multi-threaded class B (cores 5

or 7), single-threaded class A (cores 8, 10, 12, or 14),

and finally multi-threaded class A (cores 9 or 11). Note

that class D cores (13 and 15) have special functions and

normal threads are not mapped to them but special

operations are assigned to class D cores. However if a

thread requiring a multi-threaded class B core finds none

to be available, then the scheduler will attempt to

schedule it to a single threaded class A core if one is

available. If none are available, the scheduler cannot

make an assignment to an available core in the lower

class C as these do not support some required

functionality (e.g. vector units) and so the thread is

requeued and not scheduled. On a 2nd or later attempt to

schedule a thread, the scheduler attempts to assign a

thread to run on the core on which it ran the last time it

got scheduled thus satisfying the core affinity of the

thread to minimize inter-core thread state update

overhead penalties.

In mesh-connected AMCs, it is desirable to schedule

cooperating threads to as close cores as possible in order

JCS&T Vol. 8 No. 3 October 2008

145

to minimize the communication time. The distance form

corei to corej is given by

 Distance(corei, corej)= |xj – xi | + |yj – yi| (1)

where corei= CPU core i’s number, and its 2D

coordinates (xi, yi)are given by

xi= └ corei / 4 ┘

yi= (corei mod 4)

 if yi ∈{0, 3} then yi= (yi + 3) mod 6 (2)

As these may involve three costly divisions, it is

desirable to create a table of inter-core distances for each

core that includes cores in the same class or in higher

classes. For instance for core 5, 1-hop cores include

cores in {7, 6, 9}, 2-hop cores include core in {4, 11, 10},

3-hop cores include cores in {8}.

4. SCHEDULING SCHEME
Scheduling algorithms attempt to deliver schedules

which optimize metrics such as maximum throughput,

minimum response time, minimum waiting time, or

maximum CPU utilization [17]. Several algorithms exist

such as shortest job first, round robin, etc, each with its

advantages and drawbacks. Since tasks have different

priorities, some that need urgent attention while others

have more tolerance for waiting, it makes sense for the

scheduling algorithm to be priority-based. While optimal

schedules are desired, it is also important to avoid

excessive data collection and intensive schedule

computation in order to keep the scheduling overhead

time under control. This means that near-optimal

schedules are acceptable.

In a priority-based scheduling scheme, each thread is

assigned a priority either by the programmer or the

operating system. Several scheduling queues exist one

for each priority. The scheduler attempts to schedule

threads waiting in the highest priority queue 1 first,

followed by those in priority queue 2, etc. Priority-based

schedulers can cause starvation for the lower priority

threads, and starvation avoidance policies can be

enforced to remedy these situations. Some options are

enforcing aging which increases the priority of threads

as time progresses thus each queued thread will

eventually reach highest priority if not scheduled, or

allocating time slices to each queue which distributes

according to its policy its allotted time slices among its

threads, this way no queue will be left behind. Reducing

the time slice increases the number of context switches

which can improve more threads’ chances to progress at

the expense of a larger total context switch overhead time.

Our scheduling algorithm is centralized and preferably

runs on the same (class C) core. The scheduler maintains

the structures of Fig. 2, the CPU Core Assignment Board

(CCAB) which holds information of which core or

logical processor (if multithreaded) is busy, and the

Thread Board (TB) which contains thread relevant

information including: the thread’s state, previous_CPU

(PC) or core affinity (CA) which holds the core number

on which the thread ran last, good_ fit which indicates if

the core assignment is good (1) or can be improved (0),

Thread Affinity (TA) which indicates the desire to be in

proximity to the core hosting thread TA (ideally on the

same core but on different logical processor), the thread’s

priority, and its class which reflects it core functionality

and power requirements. Note that PC depends on the

thread scheduling history and has nothing to do with the

programmer, while TA may be intentionally specified by

the programmer, or by the operating system -- if

unspecified by the programmer-- as the operating system

knows which threads collectively belong to the same

process and thus may benefit by running together.

CPU Core Assignment Board (CCAB)
Core # LP0 LP1
Core 0 1 (occupied)

Core 1 0 (available) 1 (occupied)

…

Core 8 1 (occupied)

Core 9 1 (occupied) 1 (occupied)

…

Fig. 2. Relevant Structures

Fig. 3 presents our proposed scheduling algorithm for the

AMC architecture. Initially all queues are cleared and

relevant structures are also cleared. The algorithm goes

by each queue starting from highest to lowest priority

and schedules each thread to its previous_CPU in order

to satisfy core affinity if the previous_CPU assignment is

a good fit (same class), or if the class to which

previous_CPU is not utilized by more than upc % where

upc is initialized to 75% and can be later changed by the

operating system. If the previous_CPU is unavailable or

belongs to a not-best-fit class with over 75% utilization,

the thread may have to migrate to a core nearer (defined

by equations (1) and (2)) to the previous_CPU in the

same class, or if one is unavailable to a core nearer to

previous_CPU in the next higher class available. If no

such cores are available in the same class or all higher

classes, the thread is requeued in the same priority

queued it was popped off thus implementing Round

Robin policy within the same priority level. When a core

is assigned to the thread, a thread entry is queued into the

dispatch queue for that core so that it can be executed.

Note that priority inversion is avoided by scheduling first

from higher priority queues. So there is no chance for

slower priority threads to make faster progress than the

higher priority ones except possibly temporarily when

the lower priority threads have been starved and their

priority has been temporarily boosted by the operating

system.

In order to maintain fairness, our scheduler implements

the following fairness policy. Periodically each

tUpdatePriority time slices, a timer triggers an alarm which

boosts the priority of all queued tasks that have not been

scheduled for the past tstarvation time quanta by 1 priority

level in all queues of priority 2 and above. The

parameters tUpdatePriority and tstarvation can be initially set to 3

and 9 and can be adaptively fine tuned by the operating

system or manually by the system administrator. This

way all lower priority threads will eventually reach

priority 1 level and Round Robin policy in that level

assures that they will get scheduled. This policy requires

that the system time when the thread was last queued to

be stored in the Thread Board (Fig. 2).

JCS&T Vol. 8 No. 3 October 2008

146

Fig. 3. Scheduling Algorithm for AMC

To illustrate how this scheme works, we go over an

example. For simplicity, the illustration assumes that all

threads request single threaded cores and that tstarvation is 8

so the fairness policy is not involved in this particular

example. At the start of scheduling cycle 1, 19 threads

are waiting in 3 priority queues to be scheduled into the

16 core as shown in cycle 1 of Fig. 4. Each thread entry

in these queues holds information that includes the thread

number, its class, thread affinity (TA), and

previous_CPU or core affinity (PC, CA). The algorithm

pops the queues and allocates threads 0-3 onto cores 8,

10, 12, and 14, thread 10 to core 4, threads 11-12 to cores

13 and 15, threads 4-5 to cores 9 and 11, threads 15-16 to

cores 6 and 5, thread 17 to core 7, and thread 18 to core 0

as shown under the time slice 1 column of the Gantt chart

of Fig. 5. Note that for simplicity, we omit showing

delays due to schedule computations. Also note how

threads 1 and 2 are assigned to cores 10 and 12, only 1

hop away from core 8 to which thread 0 is assigned in

order to meet thread affinity requirements of threads 1

and 2. For the same reason, thread 16 is assigned to core

5, the nearest available core in class B to core 6. After

running, the thread entries are requeued onto their

respective queues in the same order if the threads do not

finish execution in this scheduling cycle as long as they

are not blocked. In this example, all these threads are

requeued except for thread 12 which terminates

execution at the end of cycle 1 as indicated under the

time slice 2 column in Fig. 5. Threads 6-9 and 13-14 do

not get scheduled in this cycle and remain in the queues

as they request class A core none of which is available.

Cores 1-3 remain idle as there is no sufficient demand for

class C cores. At the start of scheduling cycle 2, the

queue contents are as shown in cycle 2 of Fig. 4. The

main difference in this cycle is that the order of waiting

threads in the priority 2 queue is different from the

previous cycle as not all threads in this queue got

Fig. 4. Contents of the Priority Queues

Fig. 5. Example’s Gantt Chart

scheduled in the previous cycle. Round Robin policy

schedules now threads 6-7 to cores 9 and 11 as shown in

Fig. 5 while thread 4-5, 8-9, and 13-14 wait in their

queues. In Cycle 3, (time slice 3) it is now the turn of

threads 8-9 to be scheduled onto cores 9 and 11. In cycle

4, it is now the turn of threads 4-5 to be rescheduled onto

cores 9 and 11. Note how previous_CPU information is

used by the scheduler to satisfy core affinity, and how

TA is used to schedule threads near the core running the

thread corresponding to their thread affinity. In cycle 5,

threads 6 then 7 get scheduled first so they are assigned

to their previous_CPU’s 9 and 11. Thread 8 then get

scheduled and is assigned core 10, the nearest available

core in class A to core 9 to which thread 8’s TA (thread

6) is assigned. For the same reason, threads 9, 4 and 5,

get assigned to cores 8, 14, and 12 respectively. In cycle

6, threads 4-5 get assigned to their previous_CPU’s 14

and 12, leaving room for cores 8 and 10 to be assigned to

threads 8 and 9. Thread 13 gets assigned to core 8 in

cycle 7 and completes at the end of cycle 7.

The produced schedule is optimum with respect to the

throughput (but is priority-based) and the CPU utilization

given the available resources, the states and contents of

the starting queues, and the thread core requirement

constraints.

JCS&T Vol. 8 No. 3 October 2008

147

 5. SIMULATION EXPERIMENTS

AND ALGORITHM EVALUATION
In this section, we study the effectiveness of this

scheduling scheme compared to non-migratory

scheduling schemes and other schemes which allow

migration within the class of the core affinity. For

simplicity, we assume that each class in the AMC

architecture has only multithreaded cores and no general

core is single-threaded. We also assume that once a

thread migrates to a new core, its good_fit is 1 or its CPU

utilization is always lower than upc. In other words, the

first choice of the scheduling algorithm is always the

previous core, previous_CPU, on which the thread ran in

the last quantum in which it was active. We also assume

that tUpdatePriority and tstarvation are very large such that the

fairness policy is never involved. It is also assumed that

if a thread is scheduled to a core, that core remains idle

and unavailable to other threads until the in-transit thread

assigned to it starts on it. This core only opens up to the

other threads upon completion of 1 cycle –time slice--

by the assigned thread. In order to quantify the benefits

of thread affinity, which seeks to schedule a thread to the

same core in which it ran in the last time quantum it was

active, and thread migration, which allows the

scheduling of a thread to a core different from the core

on which it ran in the last time quantum it was active due

to the unavailability of this latter core, we consider and

compare the following six scheduling algorithms.

A. NAM (No Affinity- Migration allowed): a variation

of the proposed algorithm with no concept of affinity

which attempts to schedule the thread within its class if

possible according to a list of increasing core numbers,

and then looks for an available core in the next higher

class, following a sequential order of increasing core

number;

B. NAMWC (No Affinity- Migration allowed Within

Class): a variation of A except that the scheduler

attempts to schedule the thread within its class following

a sequential order of increasing core number, and if no

cores are available within the same class, it does not seek

to schedule the thread to an available core in the next

higher classes but requeues the thread to the end of the

priority queue.

C. AMNN (Affinity- Migration allowed according to

Nearest Neighbor): a small variation of the proposed

algorithm as the one proposed in the previous section

except that if the previous CPU is not available then the

scheduler looks to schedule the thread to cores in the

vicinity of previous_CPU (and not the TA as in Fig. 3)

and if this is not possible, it schedules on the nearest

available core in the next higher classes;

D. AML (Affinity- Migration allowed within List in

increasing core number order): same as NAM except that

the scheduler attempts first to schedule the thread to the

same previous_CPU core if available.

E. AMWC (Affinity- Migration allowed Within Class):

same as NAMWC except that the scheduler attempts first

to schedule the thread to the same previous_CPU core if

available; and

F. ANM (Affinity- No Migration): a non-migratory

scheduling algorithm that only attempts to reschedule an

unfinished thread to the same previous_CPU core if

available. Otherwise, it requeues the thread to the end of

the priority queue if the previous_CPU core is

unavailable.

For that purpose, a model of the thread scheduling

algorithm and its queue infrastructure was developed in

the C programming language in Microsoft Visual .net

Studio 2003. A time slice after which the operating

system scheduler starts a new scheduling cycle is

assumed to consume a time duration which we refer to as

1 cycle. Thus one cycle in this section refers to one time

slice or tens of processor cycles. Threads are assumed to

be very light weight threads with very short durations

and even shorter switching times. For simplicity, it is

assumed that thread migration from a core to another

core adjacent to it, referred to by 1 hop, takes CPH

(Cycles Per Hop) cycles to complete, where CHP varies

between 1-2 cycles. Using this terminology, thread

migration from core 8 to core 1 in Fig. 1 will take 4 hops

or (4 x CPH) cycles to complete. At the start of each of

the 100 simulation runs, for each of the 3 priority queues,

random number generating functions are called to

generate: i. the number of tasks in each queue, ranging

from 0 to 20; ii. the duration of each task, ranging from 1

to dur cycles, where the maximum thread duration, dur,

is allowed to vary from 3, 6, 9, 18, 30, 120, 480, up to

960 cycles; and iii. the previous_CPU core number of the

thread, ranging from 0 to15;

For each of the threads, two associated numbers are

initialized to 0, the completion time of the thread, and the

penalty in cycles or hops incurred due to thread

migration from the start of the simulation run at time 0

till the time when the thread fully completes execution.

Simulation then proceeded as in Figures 3-4 until all

threads in all 3 priority queues finished execution,

updating in each run the number of cycles it took for all

the threads to complete execution and the total number

of penalties (in hops or cycles) incurred by all migrating

threads. Note that the total number of cycles, TNOC,

represents the time in cycles of the last thread that

completed its run and that the completion times of the

other threads overlap with TNOC. The total number of

penalty cycles, TNOP, is accumulative and adds the

penalty cycles incurred by all threads. In the next

simulation run, the number of threads in priority queues

and their characteristics are randomly generated as

described above and the procedure repeats until all 100

simulation runs each representing a different ensemble of

threads’ scenarios complete. The final TNOC it took for

all threads to complete after the 100th and final run, adds

up all the cycles from all 100 runs and is accumulative.

The final TNOP incurred by all threads in all 100

simulation runs adds up also the individual penalty

cycles from each simulation run and is also accumulative.

Next, we present the number of cycles per simulation run,

the average number of penalty cycles per simulation run,

for all 6 algorithms, and for various CPH and dur values.

Note that the averages are the total numbers of cycles

divided by 100, the total number of simulation runs. The

TNOP for the ANM algorithm is 0 as this algorithm is

non-migratory and reassigns the thread to its

previous_CPU whenever available so no migration-

related penalty cycles are incurred. Precisely, we plot the

normalized ratios TNOCalgorithm/ TNOCAMNN and

TNOPalgorithm/ TNOPAMNN for all 6 algorithms.

1-Cycle Per Hop

Fig. 6 plots the TNOCs for all 6 algorithms normalized

to the TNOC of the AMNN scheduling algorithm for the

case of a 1-cycle hop duration. The x coordinate is dur in

cycles. When CPH is 1, AMNN is best for dur of 3 and 9.

JCS&T Vol. 8 No. 3 October 2008

148

For dur>=18, there is no notable difference in the

performance in total number of cycles between the

Affinity algorithms AMNN, AML and AMWC. Non-

affinity algorithms NAMWC and NAM perform worse

than AMNN by 13%-38% but relatively improve in

performance with increasing dur. Non-migratory

algorithm ANM performs worse than AMNN by 3.6%-

22.5% and degrades further with increasing dur. It is

clear that thread affinity and migration are both helpful

to the total schedule completion time.

Fig. 7 plots the normalized TNOPs for all 6 algorithms

normalized to the TNOP of the AMNN scheduling

algorithm for the case of a 1-cycle hop duration. ANM is

best with no penalty cycles followed by AMWC which

limits migration within the same class thereby containing

migration costs, followed by AMNN, and AML,

respectively. AMWC (AML) generates fewer and fewer

penalty cycles as dur increases, and handily beats

AMNN in that domain when dur>=9 (480). The non-

affinity algorithms NAM and NAMWC generate 2.5x-

13.8x AMNN’s penalty cycles with increasing number of

penalty cycles with increasing dur. It is important for the

reader to keep in mind that the TNOP cycles overlap

with the schedule completion time and are not the

ultimate decider of the best scheduling algorithm but

help in comparing them with respect to migration costs.

For instance, algorithm ANM performs the worst under

large dur values but yet incurs the fewest penalty cycles

among all 6 algorithms.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

3 6 9 18 30 120 480 960

Maximum Thread Duration

T
o

ta
l

C
y

c
le

s
 /

 T
o

ta
l

C
y

c
le

s

fo
r

A
M

N
N

 (
w

it
h

 1
c

-h
o

p
s

)

NAM

NAMWC

AMNN

AML

AMWC

ANM

Fig. 6. TNOCs Normalized for AMNN with CPH=1

0

2

4

6

8

10

12

14

16

3 6 9 18 30 120 480 960
Maximum Thread Duration

ANN: 0

T
o

ta
l
P

 C
y

c
le

s

/
T

o
ta

l
P

C
y

c
le

s
 f

o
r

A
M

N
N

 (
w

it
h

 1
c

-

h
o

p
s

)

NAM

NAMWC

AMNN

AML

AMWC

Fig. 7. TNOPs Normalized for AMNN with CPH=1

2-Cycle Per Hop

Inter-core communication can slow down due to a

variety of reasons including longer distances and wires,

higher resource contention, or bigger traffic and longer

wait times. Fig. 8 plots the normalized TNOCs for all 6

algorithms normalized to the TNOC of the AMNN

scheduling algorithm for the case of a 2-cycle hop

duration. When inter-core communication slows down

and the duration of a hop is increased to 2 cycles,

AMNN is best for a dur in the 9-30 range, followed

respectively by AML and AMWC. It is also observed

that AMNN is very competitive for a dur of above 30.

For small dur values of 6 cycles or below, ANM is best

(2.7%-17% better than AMNN) followed by AMNN in

the second place. Short duration tasks with longer

migration penalties seem to favor the Affinity but non-

migratory scheme. For dur>=120 cycles, AMWC and

AML are best (2-3% better than AMNN) followed by

AMNN which remains competitive. A quick look at Fig.

9 reveals that this is attributed to more penalty cycles

generated by AMNN than AMWC or AML when

dur>=120. Higher contention to the previous_CPU cores

of AMNN (as compared to AMWC or AML) is the most

logical reason for the larger penalty cycles generated by

AMNN. In other words, when previous_CPU is

unavailable, scheduling a new core following a list of

increasing core numbers seems to reduce contention

slightly more to scheduling a new core in the vicinity of

previous_CPU as achieved by AMNN, with the

randomly generated thread scenarios of our simulation

experiments. As for the worst performing algorithms,

the non-Affinity algorithms NAM and NAMWC are

35%-62.7% worse than AMNN but improve in relation

to AMNN as dur increases. For dur values of 30 or

above, ANM performs 14%-16% worse than AMNN.

Fig. 9 plots the normalized TNOPs for all 6 algorithms

normalized to the TNOP of the AMNN scheduling

algorithm for the case of a 2-cycle hop duration. ANM

still generates 0 penalty cycles. When dur <=30, AMWC

generates 3%-4% fewer penalty cycles than AMNN. As

expected the most penalty cycles are generated by the

non-affinity algorithms NAM and NAMWC which

generate 2x-7x more penalty cycles than AMNN. The

algorithms generating the fewest penalty cycles are

AMWC and ANM when dur is 120 or above, generating

1/3-1/2 of AMNN’s penalty cycles.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

3 6 9 18 30 120 480 960

Maximum Thread Duration

T
o

ta
l

C
y

c
le

s
 /

 T
o

ta
l

C
y

c
le

s

fo
r

A
M

N
N

 (
w

it
h

 2
c

-h
o

p
s

)

NAM

NAMWC

AMNN

AML

AMWC

ANM

Fig. 8. TNOCs Normalized for AMNN with CPH=2

0

1

2

3

4

5

6

7

8

9

3 6 9 18 30 120 480 960

Maximum Thread Duration

ANN: 0

T
o

ta
l
P

 C
y
c
le

s

/
T

o
ta

l
P

 C
y
c
le

s

fo
r

A
M

N
N

 (
w

it
h

 2
c
-h

o
p

s
)

NAM

NAMWC

AMNN

AML

AMWC

Fig. 9. TNOPs Normalized for AMNN with CPH=2

Effect of Hop Duration

Fig. 10 displays compares the TNOPs as CPH is doubled

from 1 to 2 cycles. As ANM is non-migratory the hop

duration has no effect on its performance. This ratio is

highest for non-affinity algorithms NAMWC & NAM. In

the Affinity algorithms, it is observed that the

TNOCCPH=2/TNOCCPH=1 ratio goes down as dur

JCS&T Vol. 8 No. 3 October 2008

149

increases. This is because longer thread durations dilute

the increases in hop duration and communication time.

Non-Affinity algorithms are most sensitive to doubling

the CPH. Increasing the hop duration is most detrimental

to the Non-Affinity algorithms which very likely incur

migration costs on every thread re-scheduling, costs

which become heftier with longer hop durations.

Fig. 11 compares the TNOPs for the same scheduling

algorithms as CPH is doubled from 1 to 2 cycles. Not

surprisingly, the trend of the TNOPCPH=2 / TNOPCPH=1

ratio is often increasing with increasing dur. The longer

the hop duration, the higher the total number of incurred

penalty cycles. This ratio is highest for AMNN when dur

>=120. Starting with a dur value of 30 cycles, the

Affinity algorithms appear to be the most sensitive to

doubling the CPH, and in particular AMNN, which

attempts to keep the thread in the neighborhood of its

previous_CPU as much as core availability permits.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

3 6 9 18 30 120 480 960

Maximum Thread Duration

T
o

ta
l

C
y

c
le

s
 w

it
h

 2
c

-h
o

p
s

 /

T
o

ta
l

C
y

c
le

s
 w

it
h

 1
c

-h
o

p
s

NAM

NAMWC

AMNN

AML

AMWC

ANM

 Fig. 10. Effect of Doubling the Hop Duration on TNOC

0

1

2

3

4

5

6

7

8

9

10

3 6 9 18 30 120 480 960
Maximum Thread Duration

 ANN: 0 / 0 undefined

T
o

ta
l
P

 C
y
c
le

s
 w

it
h

 2
c
-h

o
p

s
 /

T
o

ta
l
P

 C
y
c
le

s
 w

it
h

 1
c
-h

o
p

s

NAM

NAMWC

AMNN

AML

AMWC

 Fig. 11. Effect of Doubling the Hop Duration on TNOP

6. CONCLUSIONS
We presented a 16 core asymmetric multi-core

architecture comprised of 4 core classes. Our AMC

architecture combines high-power complex cores with

large L2 caches to low-power low-ILP cores with small

L2 caches and a few special purpose cores in the same

chip. We also presented a priority-based scheduling

algorithm for this AMC architecture. Our algorithm

addresses priorities of threads, and incorporates a

fairness policy to avoid thread starvation. It also attempts

to schedule threads to their previous cores if possible to

minimize state migration overhead time, and when not

available to cores nearest to their thread affinities in their

requested class if available, or in the nearest class where

a core is available. As such, it maximizes throughput and

core utilization.

We developed a C simulation model which simulates the

thread scheduling on the 16-core architecture and

considered 6 scheduling algorithms. Simulation results

revealed that the proposed affinity- and migration-based

nearest neighbor scheduling algorithm which considers

both thread affinity and thread migration in its

scheduling decisions outperforms the other algorithms

for small thread durations. For large thread durations,

affinity- and migration-based scheduling algorithms

outperform the non-affinity algorithms and the non-

migratory algorithm, but there is insignificant difference

in the performance of the affinity- and migration-based

algorithms. In that case, core selection policy, be it

nearest neighbor, within a class, or across classes, makes

little difference. As for the worst performing algorithms,

when CPH is 1 and for small thread durations, or when

CPH is 2 irrespective of dur, non-affinity algorithms

perform worse than non-migratory ones. When CPI is 1

and dur is large, non-migratory ones perform worse than

non-affinity algorithms.

This scheduling scheme can be combined with cache

partitioning and cache fairness policies [14, 16] that

partition the L2 cache memory and other shared

resources adequately and fairly among the co-scheduled

threads. Future work includes fine tuning the scheduling

scheme’s parameters with real workloads and exploring

other thread schedule scenarios.

6. REFERENCES
1. P., Dubey, CMP Challenges, ICCD Panel, IEEE Int.

 Conf. on Computer Design, 2005.

2. S. Balakrishnan et al., The Impact of Performance

Asymmetry in Emerging Multicore Architectures,

Proc. of 32nd ISCA, 2005.

3. R. Kumar et al., Heterogeneous Chip

Multiprocessors, IEEE Computer, 2005.

4. F. N. Sibai, Dissecting the PCMark05 Benchmark

and Assessing Performance Scaling, Proc. of 3rd

IEEE Conf. on Innovations in Info. Tech., 2006.

5. L. Hammond et al., A Single-Chip Multiprocessor,

IEEE Computer, Volume 30, No. 9, 1997.

6. R. Kalla et al., IBM POWER5 Chip: A Dual-Core

Multithreaded Processor, IEEE Micro, 2004.

7. P. Kongetira et al., Niagara: A 32-way

Multithreaded SPARC Processor, IEEE Micro,2005.

 8. C. McNairy and R. Bhatia, Montecito: A Dual-Core,

Dual-Thread Itanium Processor, IEEE Micro, 2005.

9. T. Constantinou et al., Performance Implications of

Single Thread Migration on a Chip Multi-Core,

ACM Comp. Architecture News, Vol. 33 (4), 2005.

10. K. Shaw et al., Migration in Single Chip Multipro-

cessors, Comp. Arch. Letters.Vol. 1, No. 3, 2002.

11. H. Abdel-Shafi et al. Efficient User-Level

Checkpointing and Thread Migration in Windows

NT Clusters, 3rd Usenix Windows NT Symp., 1999.

12. R. Avnur et al, Thread Migration in the River

Dataflow Environment, University of California

Berkeley CS Dept. Technical Report.

13. S. Hily et al., Contention on 2nd Level Cache May

Limit The Effectiveness of Simultaneous

Multithreading, INRIA Report # 1086, 1997.

14. S. Kim et al., Fair Cache Sharing and Partitioning in

a Chip Multiprocessor Architecture, Proc of the 13th

IEEE PACT04, 2004.

15. D. Chandra, et al., Predicting Inter-thread Cache

Contention on a Chip Multi-Processor Architecture,

Proc of the IEEE HPCA-11, 2005.

16. A. Fedorova et al., Cache-Fair Thread Scheduling

for Multicore Processors, Technical Report TR-17-

06, Harvard University, 2006.

17. A. Silberschatz et al, Operating Systems Concepts,

John Wiley and Sons, 2004.

JCS&T Vol. 8 No. 3 October 2008

150

Received: Feb. 2008. Accepted: Sep. 2008.

