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ABSTRACT
Conventional optical character recognition (OCR) systems
operate on individual characters and words, and do not nor-
mally exploit document or collection context. We describe a
Collection OCR which takes advantage of the fact that mul-
tiple examples of the same word (often in the same font) may
occur in a document or collection. The idea here is that an
OCR or a reCAPTCHA like process generates a partial set
of recognized words. In the second stage, a nearest neigh-
bor algorithm compares the remaining word-images to those
already recognized and propagates labels from the nearest
neighbors. It is shown that by using an approximate fast
nearest neighbor algorithm based on Hierarchical K-Means
(HKM), we can do this accurately and efficiently. It is also
shown that profile based features perform much better than
SIFT and Pyramid Histogram of Gradient (PHOG) features.
We believe that this is because profile features are more
robust to word degradations (common in our documents).
This approach is applied to a collection of Telugu books -
a language for which no commercial OCR exists. We show
from a selection of 33 Telugu books that starting with OCR
labels for only 30% of the collection we can recognize the
remaining 70% of the words in the collection with 70% ac-
curacy using this approach. Since the approach makes no
language specific assumptions, it should be applicable to a
large number of languages. In particular we are interested
in its applicability to Indic languages and scripts.

1. INTRODUCTION
There are a number of projects creating digital libraries from
scanned books. These include Google Books, the Universal
Digital Library (UDL) [1] and the Digital Library of India
(DLI) [2, 25]. A large percentage of these collections are in
non-Latin scripts. In DLI alone, 50% of the content comes
from Indian language books, for which recognition technol-
ogy has not fully matured. Though a few research prototype
OCRs are available for Indic scripts, there is no end-to-end
system that can recognize any given document image [10].
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Figure 1: Examples of words that are very hard to
recognize with a conventional OCR. Inspite of heavy
degradations, our framework correctly predicts the
recognized text for these words.

Our collection is a challenging set of scanned Telugu books.
Figure 1 shows some of the more difficult examples of words
present in the collection. The characters are broken, or
smeared and show a number of artifacts. Traditional OCR
systems recognize individual characters or words. They do
not recognize documents or collections. The fonts in a doc-
ument are often very similar. Hence, recognizing a word
would benefit from its reappearance in other parts of the
document. This is especially true if the document contains
many pages. Books are one example of documents contain-
ing a large number of pages with text in mostly the same
font.

We propose a novel and fast Collection OCR which applies
a retrieval based approach to recognition. We assume that a
part of the collection has been initially recognized using an
OCR or human annotations. The system then segments and
computes features over all word-images. A fast approximate
nearest neighbor technique based on Hierarchical K-Means is
used to determine, for each test image which training image
is closest. The label is propagated from that training image.

We demonstrate for a set of 33K words which occur multiple
times from a collection of Telugu books that given a train-
ing set of 30% of the data, then 70% of the remaining data
can be recognized with an accuracy of 70% using a single
pass of nearest neighbor recognition. The kinds of images
recognized include those shown in Figure 1. We are un-
aware of any conventional OCRs which can recognize such
images. Experiments are also performed on the entire 33
book Telugu dataset. Since no assumptions are made about
languages, the technique should be applicable to a wide va-
riety of different languages. In particular, our interest is in
applying it to Indic languages for which commercial OCRs
do not exist.
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We also show that robustness and accuracy depend on ap-
propriate features. Specifically, using discrete Fourier rep-
resentations of profile features works better than gradient
representations such as SIFT and Pyramid Histogram of
Gradients (PHOG). This is surprising given the success of
gradient features in recent image recognition and retrieval
work [23] and the reported advantages of gradient features
over profile features for handwritten word spotting [32].

The Collection OCR approach is fast. For example, for 3000
pages it takes 5.5 hrs to segment the word-images, 66 hours
to extract the profile features, and about 9 min to do the
recognition. In comparison a conventional OCR will take
about 50 hrs (if we assume 1 min per page). The segmen-
tation and feature extraction may be optimized for better
performance. So, even when combined with a conventional
OCR for recognizing an initial training set, it is practical to
apply it to large collections.

2. RECOGNIZINGDOCUMENTCOLLEC-

TIONS
A major hurdle in recognizing printed Indian language doc-
ument images, is the difficulty encountered in accurate seg-
mentation of components [10, 24]. In particular for the Tel-
ugu script, the vowel modifier is attached to the consonant.
The segmentation of a character into its constituent conso-
nant and vowel is quite tricky. Degradations in document
images often result in multiple segments for a single char-
acter. Since neither of these segments appears like a proper
character, the classifier rejects them all. Even modern En-
glish OCR systems fail when the assumptions they make
are violated. For example, crossed out words, touching lines
and broken characters cause OCR failures (see [31] for many
examples of OCR failures). Post-processing modules that
correct OCR errors rely heavily on language models, which
are hard to build for Indian languages [5].

Given these challenges, it is not surprising that Telugu and
other Indic languages and scripts have no commercial OCR
systems. Experimental work on recognizing Telugu script
was presented in [12, 22] and the word recognition accuracy
is about 70% on much cleaner data than that presented here.
Building recognizers for the kinds of degraded data present
in our collections (see Figure 2), thus requires thinking out
of the box.

Our approach has been motivated by work in word spotting
in handwriting [28, 30] and print [4, 13, 26]. Word spotting
approaches usually match entire word-images. Word-images
contain a lot of context, and hence it is easier to match
them than character images. This is also advantageous as
difficult segmentation decisions are avoided. Even in situa-
tions where some of the characters in the word are degraded,
matching to other instances of the same word may be accom-
plished. While whole word recognition schemes also try to
recognize the entire word [17, 15] 1, there are important dif-
ferences. These schemes would have to recognize the actual
degraded word, while we can transform it to the easier prob-
lem of matching the degraded word with another instance
of the same word. There is also an important distinction
between conventional OCR training and the notion of a doc-

1Both papers cited used it for handwriting not print

ument or collection OCR. In conventional OCR training, all
the training examples are distinct from the test data and
may hence be different in appearance from it. In our case
the training and test examples on the other hand are both
likely to be similar (modulo noise). What both word spot-
ting and whole word recognition share is the avoidance of
character segmentation.

Traditionally, most word spotting approaches match pairs
of words and then cluster them. Each cluster is then la-
beled. A common approach to image matching is to use dy-
namic time warping which is accurate but very expensive.
Some word spotting approaches use dynamic time warping
and skip the clustering stage altogether. However, this does
not change the essentially slow nature of word spotting for
large datasets. Our work takes advantage of recent advances
in fast approximate nearest neighbor techniques for image
recognition and retrieval. In particular, we use an approach
called Hierarchical K-Means (HKM) [23] which was shown
to have good performance in other image retrieval tasks.
Our experiments show that given the word segments and
features, the actual indexing and nearest neighbor opera-
tions required for recognition only take about 9 min for 3000
pages.

Our approach requires that a portion of the collection has
been labeled in some way. There are a number of ways this
can be done. For example, there may be a “crude” OCR
which does this. The OCR may use a rejection strategy so
that it recognizes some words accurately. Whenever it has
some doubts, it decides not to recognize. The word accuracy
of such an OCR may be poor - we assume 50% or less.

An alternative to an OCR is to manually label some por-
tion of the collection. Normally, manual labeling is expen-
sive, but reCAPTCHAs [35] provide one approach to gen-
erating labels for training examples on the cheap. In a re-
CAPTCHA, pairs of word-images are presented for recogni-
tion by humans. The label for one of the words is known
while that of the other is not. If the human recognizes the
known image, it is assumed that their judgement about the
other image is also valid. Judgements by multiple humans
are integrated to decide the correct label for the word. re-
CAPTCHAs are normally used after the OCR process to
improve accuracy. It is claimed that a high recognition rate
can be achieved. The labor provided by humans is essen-
tially free as reCAPTCHAs are required by many websites
for sign on. While they have been used for improving OCR
accuracy, the same idea may be applied to bootstrap the
recognition process to provide some number of recognized
outputs. In this paper, we are agnostic to what process is
used to bootstrap and provide the initial recognition results.

2.1 Overview of the Algorithm
We now briefly describe the procedure for recognizing book
collections (although the procedure may also be followed at
book level). First, all the books are automatically segmented
into words and features are computed over them (see later
sections). A random set of word-images is collected for which
text-labels are obtained.

Given the feature representation, we build an HKM (see
Section 4.2) over the labeled dataset. Each of the unlabeled
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Figure 2: Example document images. Notice the
considerable degradations, cuts etc. in the passage.
An OCR would not be able to recognize the charac-
ters in this situation. We propose the matching of
word-images in lieu of recognizing the characters.

word-image’s features is looked up in the HKM tree and is
assigned to the nearest cluster. The label of the cluster cen-
troid is assigned to the given test word-image. In cases where
the labeled dataset does not contain the exemplar for a given
word, such a word would still be assigned to a cluster. But,
the distance between this unlabeled word and the cluster
centroid would ideally be large. To handle such cases, we
follow a refuse-to-label scheme, whenever the distance be-
tween the test word and the cluster centroid is greater than
a certain threshold, τ . The overall algorithm followed is de-
scribed below: Let us call the books B1, B2, ..., B33, each
containing Ni number of pages.

1. From each book Bi, choose a random set of pages Pi

that shall be labeled. The remaining pages in the book
are called Ti, the test data.

2. Obtain labels for words in every Pi, either manually
or through an OCR.

3. Build a HKM over ∀iWi, where Wi is the list of words
in pages Pi.

4. Lookup each word W ′
∈ Ti against the HKM; obtain

the Nearest Neighbor NNW ′ and distance to NN, dW ′

5. If dW ′ < τ , label the word with the text equivalent of
NNW ′ ; ignore otherwise

3. PREVIOUSWORK
Building OCRs for Indian languages is a very challenging
task, owing to the large number of classes and the complex-
ity of scripts [10, 24]. OCRs for Telugu script were pre-
viously presented in [12, 22]. Word based recognition has
been suggested for handwritten documents [15, 17], but is
not commonly used for print. Natarajan et al. [20] use a
HMM to model characters, which are concatenated to form
a word model, which is then recognised as a whole.

On the other hand, recognition-free approaches such as Word
Spotting were proposed to enable search over handwritten [3,
28, 30] and printed documents [4, 13, 26]. Pramod and Jawa-
har [26] use an automatic annotation approach to assign text
labels to a large collection of document images. However,
they annotate for only those words that are considered useful
for retrieval.

There is much less research focused on OCR at the book
level. Rasagna et al. [27] cluster word images in an entire

DFT

Word Image

Figure 3: Extraction of Profile-Features and their
fixed length versions. For each word image, Upper,
Lower, Projection and Transition Profiles are com-
puted. These features are run through a DFT, and
the top 84 coefficients chosen for each.

Telugu book using locality sensitive hashing and use this to
correct character labels based on majority voting. Xiu and
Baird [36], measure the disagreements between OCR results
and language models using mutual entropy across a passage.
This measure is then used to correct frequent OCR errors, or
to add new words to the language model. The procedure was
demonstrated on about 50 pages. Neeba and Jawahar [21]
use a word-image matching scheme to verify OCR outputs
and in turn improve the character recogniser.

Adapting the OCR to the data has been an important ap-
proach to OCR document with novel styles. Unsupervised
learning of character appearances was demonstrated in Ho
and Nagy [11]. Style adaptation of OCRs has been suggested
by Sarkar and Nagy [33], and Mathis and Breuel [18]. This
essentially consists of modifying the parameters of the OCR
(for example the mixture of Gaussians used in the genera-
tive models) based on the data. We are not aware of any
specific applications to book level collections.

4. WORDMATCHING
In this work, our aim is to label word-images by matching
them with a set of labeled examples. We shall focus on
matching word-images as a whole. Toward this end, appro-
priate features and matching schemes need to be identified
to maximise performance.

4.1 Word-Image Representation
We examine three types of features. Profile features have
been previously used for representing word-images [27, 28].
Gradient based features have been claimed to be better than
Profile features for handwritten word-images [32]. So we use
two popular features SIFT and dense PHOG features. In the
case of SIFT and PHOG, we shall use a Bag-of-Words [34]
model representation to reduce the time required to match
word-images.

Profile Features. Profile features were popularised by Rath
and Manmatha [28], where these features were used to rep-
resent words from handwritten documents. The profile fea-
tures we extract include (see [28] for more details):

• The Projection Profile which counts the number of ink
pixels in each column.

• Upper and Lower Profile measures the number of back-
ground pixels between the word and the word-boundary
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Figure 4: Representation of SIFT features in the
Bag-of-Words model. Extracted SIFT features from
a word image are assigned to the closest visterm.
The word is then represented as a histogram of its
constituent visterm occurrences

• Transition Profile is calculated as the number of ink-
background transitions per column.

Profiles for an example word are shown in Figure 3. Each
profile is a vector whose size is the same as the width of the
word. The dimensionality of the feature, therefore, varies
with the word used. One approach to matching features
with different feature-lengths, uses Dynamic Time Warping
(DTW) [4, 28].

Profile + DFT. Fixed length descriptions for the Profile
features can be obtained by computing a Discrete Fourier
Transform (DFT) of the profiles [14, 29]. The noisy higher
order coefficients of the DFT are discarded, resulting in a ro-
bust representation for the word-images. We use 84 Fourier
coefficients for each of the profile feature. With this repre-
sentation, word-images can be matched by comparing fea-
ture vectors using a distance metric, such as the Euclidean
distance.

SIFT + BoW. Another type of features use a point-based
representation for the word-images. SIFT [16] (Scale Invari-
ant Feature Transform) has proved to be a very robust inter-
est point detector and feature descriptor for many computer
vision tasks. The interest point detector is based on the dif-
ference between multi-scale Gaussians of the given image.
The scale-invariance property of SIFT and its high repeata-
bility across various affine transformations makes it a good
candidate to be used in document images [3]. SIFT interest
points and features are detected from each word-image - an
example is shown in Figure 4.

Following the Bag-of-Words (BoW) [34] approach, these fea-
tures are vector quantized using K-Means clustering over a
large set of SIFT features. Each feature in a word-image is
represented as the index of the cluster center it is closest to,
known as the visterm. The word-image is then represented
as a histogram of the occurrences of each visterm. For ex-
ample, if an image has F1, F2, ..., F300 features, and say the
visterm size is 1000. Each feature in the image is assigned
to the closest visterm, say W100, W200, W150, W240, ..., W100.
The number of times a visterm occurs in a word, is stored
in a histogram of length 1000. The histograms are then nor-

Figure 5: A depiction of HoG feature extraction. A
2x2 grid is shown for clarity. In the implementation,
a 4x4 grid is used.

malised by number of features in the word image. Given this
representation, two words are compared by finding the Eu-
clidean distance between the corresponding histogram fea-
ture vectors. Since the geometric configuration of the fea-
tures is ignored and only their incidence is taken into ac-
count, it is called a Bag-of-Words representation of the image
akin to the representation in text retrieval. This process is
depicted in Figure 4. Such a representation reduces the time
required for explicit match of SIFT features, when matching
two images.

PHOG + BoW. Unlike SIFT, which is a sparse detector,
one could use a dense representation with similar descrip-
tors. This is performed using the Pyramid Histogram of
Oriented Gradients (PHOG) [6]. A single level HoG [7] was
recently used for handwritten documents by Rodriguez and
Perronnin [32]. However, a pyramidal HoG at multiple scales
was shown to be much more effective in object recognition
tasks [6].

In this technique, a fixed size window is moved across the
word-image. At each instance of the sliding window, a HoG
descriptor is computed similar to the one shown in Figure 5.
Once the entire word-image is scanned by the window, the
window size is doubled and the process repeated. The pro-
cess is stopped when the size of the window exceeds the
smaller dimension of the word-image. The set of features
thus extracted are vector quantized, and the word-image is
represented as a histogram of the occurrences of each vis-
term.

In detail, the initial window size is 16 × 16 pixels, which is
moved across the image by 8 pixels. The 16 × 16 window is
divided into a grid of size 16 with cells of size 4 × 4 pixels
each. The gradients at each pixel are quantized into one
of 8 orientation bins. The oriented gradients in each grid
are accumulated, and the histograms for all the grids are
concatenated together. With this setting, we obtain a 128
dimension representation for each window. In the next it-
eration, the window size is doubled to 32 × 32, and moved
across by 16 pixels and so on. To ensure that the feature
length for PHOG is fixed, all the word-images are initially
scaled to a standard size.

4.2 Efficient Nearest-Neighbour Search
Traditional nearest neighbor algorithms are slow, especially
when the datasets are large. However, recent work has led to
fast approximate nearest neighbor algorithms. It is known
that in the limit, the error rate for NN algorithms can never
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ban’gaaru itarulaku mikkili

Figure 6: Examples from the groundtruth dataset.
The text label for the words is given on top.

exceed twice the Bayes error [8].

In an NN classifier, whenever a word-image matches a par-
ticular labeled example better than any other labeled ex-
ample, there is a high probability that they share the same
label. Suppose we have M labeled images and N unlabeled
images, the NN classifier has a time complexity of O(N ·M).
In many cases, such as when the feature length is large or
the distance computation is expensive, the running time of
this algorithm may be large. This process is speeded up
by several orders of magnitude using approximate nearest
neighbor algorithms. We will look at one such algorithm
based on Hierarchical K-Means (HKM) [23].

Let us assume that we were able to cluster all the word-
images using K-Means (with a very large K - say 100,000).
Then, any two word-images which are part of the same clus-
ter are more likely to have the same label. We can also do
this for word-images which were not part of the original clus-
tering process. We just find out which cluster they belong
to and the label of that cluster is the label of the test word.
Note, that we need a lot of clusters since we want to have a
single label per cluster. It is fine for two clusters to share a
label but not for the same cluster to have different labels. It
would take a long time for K-Means to cluster, when there
are many clusters. For example, it would take 31 yrs to do
K-Means clustering for a million words.

Hierarchical K-Means is a way to quickly approximate K-
Means. The idea [23] is that a small number of clusters -
say B - are created at the top level. B is known as the
branching factor. Then each of these B clusters is expanded
to B more clusters giving B2 clusters at the second level.
This process is repeated up to a certain depth D so that
there are BD clusters or leaf nodes at depth D. If we take
a new point, to find out which cluster it belongs to, it takes
B · D comparisons unlike traditional K-Means which would
take BD comparisons. For example, if B = 10, D = 6 then
there are a million leaf nodes. K-Means requires 106 (a
million) comparisons while HKM only needs 60 comparisons.
To build the entire HKM tree for a dataset of size N requires
O(N ·B ·D) time while K-Means would require O(N ·BD).
If N = a million word image features, this means K-Means
would require O(1012) and HKM O(600). On a modern
desktop processor the difference is 31 yrs for K-Means vs
13 hrs for HKM. For our experiments here we usually chose
D = logB(N).

Feature Distance Measure Accuracy

Profile Features DTW + Backtrack 81%
Profiles (Scaled) Euclidean 68.8%
Profiles + DFT Euclidean 79%

SIFT (1K visterms) Euclidean 26.4%
SIFT (100K visterms) Euclidean 8%
PHOG (100 visterms) Euclidean 20.8%
PHOG (1K visterms) Euclidean 41.8%

PHOG (100K visterms) Euclidean 14.12%

Table 1: Word Recognition accuracy across various
features and matching schemes

5. RESULTS AND DISCUSSION

5.1 Dataset
The recognition system is built using a collection of 33 Tel-
ugu books. These books are obtained from the Digital Li-
brary of India [2]. The collection consists of 3269 pages,
with more than 269,000 words. All the images are provided
to us in bitonal format. A segment of an example image is
shown in Figure 2 and as can be seen there are many cuts
and degradations of the characters. To begin with, the docu-
ment images are segmented into words using a profile-based
segmentation algorithm. The segmented words are stored
separately, which we shall henceforth refer as a word-image.

We built a groundtruth dataset of 33,000 word-images. Each
of these word-images is labeled with the corresponding text
label. The label set consists of 1000 Telugu words repre-
sented in the Latin script using the OmTrans transcription
scheme. The number of occurrences of each label in the
groundtruth dataset varies from 5 to 500. The size of the
word-images range from 30 × 30 to 500 × 300 pixels. The
dataset contains degraded images, and considerable varia-
tion in font and print style. There is also a certain amount
of noise in the word-images. Examples of such words in the
dataset are shown in Figure 6. We shall use this dataset to
evaluate the various design choices in the rest of the paper.

5.2 Feature Selection
The goal in this section is to identify the right features to
match word-images. The groundtruth dataset is divided into
two sets: Train and Test, with a random 50:50 split. The
Train set will be assumed to consist of labeled examples
while the Test set is considered to be unlabeled (the labels
will only be used for evaluation in the latter case). The
classifier is an NN classifier, so that for each instance in the
Test set, the label of the closest exemplar in the Train set is
assigned. Since the label for each Test data point is present
in the Train set, we do not use the refuse-to-predict scheme
in these experiments.

The summary of feature selection results is given in Table 1.
The first feature we consider is the classical Profile features.
These features are of unequal length across the dataset. The
matching in such cases is performed using DTW (Dynamic
Time Warping). The score from the DTW matrix is nor-
malised by the length of the backtrack path of the DP ar-
ray. The disadvantage of DTW is the high time complexity.
Recognition of the Test set alone takes around 75 hours.
This expense can be avoided by using a fixed-length descrip-
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Matching Scheme Accuracy Time
NN Classifier 79% 4 hours
HKM (B = 8) 76.5% 31 secs
HKM (B = 32) 75.1% 38 secs

Table 2: Word Recognition accuracy with Hierar-
chical K-Means based matching

tion for each image, so that the Euclidean distance may be
used to compare the word-images.

A fixed-length representation can be obtained by scaling all
word-images to the same size and extracting profile features
from them. However, this changes the aspect ratio of words.
Another method is to transform the features to the DFT
domain and picking a fixed set of important coefficients from
the transform domain. With either representation, the time
for recognizing the Test set is about 4 hours. We also look
at SIFT and PHOG based representations for word-images.

As Table 1 shows the best performing feature was the Pro-
file feature with DTW matching. This is closely followed
by Profiles + DFT with Euclidean distance matching. Sur-
prisingly, the gradient features - SIFT and PHOG - perform
rather poorly inspite of their great success with generic vi-
sion tasks. Rodriguez and Perronnin [32] show that for
word spotting in handwriting, gradient features work bet-
ter than profile features. However, our results do not agree
with their conclusion. We suspect that this is because of
the large amount of degradations present in our document
images which drastically affect the oriented gradients. The
profile features are thus more robust to degradations. The
DTW algorithm is too expensive to run and not practical
and hence we perform the remaining experiments with the
Profiles + DFT with Euclidean distance comparison.

5.3 Performance of HKM
Our next experiment evaluates the performance of Hierar-
chical K-Means based word recognition. We use the HKM
version of the FLANN software [19]. The algorithm first
traverses the HKM tree and add the unexplored branches in
each node along the path to a priority queue. It then finds
the closest center in the priority queue to the given query,
and uses this node to restart the traversal. The process is
stopped when a predetermined number of nodes are visited.

The result from this experiment is given in Table 2. As can
be seen, HKM gives a tremendous speedup of over 500 times
as compared to a brute-force NN classifier. This comes at
very little loss in accuracy due to the indexing scheme.

5.4 Effect of Labeled Data Quantity
One of the important questions we address in this work is
what amount of labeled word-images, is required to reli-
ably recognize unlabeled word-images. Unlike a 50:50 split
that was used in the previous experiments, we shall vary
the Train, Test proportions here. We stick to the Profiles
+ DFT features and the Euclidean distance based NN clas-
sifier as well as the HKM based approaches with the two
parameters in Table 2. The recognition accuracy for differ-
ent percentage of training data is shown in Figure 7.
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Figure 7: Graph of % Training data Vs Recognition
performance

For the NN classifier, it can be seen that for a labeled dataset
of as small as 20%, the recognition performance is a re-
spectable 71%. The performance improves with additional
data until it tapers around 76.5% (for the 50:50 split), after
which there is no significant improvement. For the HKM
approach with B = 8, we can achieve 70% accuracy with
just 30% of the data.

6. RECOGNIZING INBOOKCOLLECTIONS
Our final system is built on all the words from the 33 book
dataset. From the previous experiments, we infer that in
the presence of 30% labeled words, we achieve about 70%
recognition accuracy of unlabeled words. Keeping with this
observation, we use labels for one-third of the pages in each
book. It is too expensive to do a word-by-word transcription
of this size (100K words). Instead, we use a transcription
done at the page level and not at the word level. Thus, to
obtain word level annotations, the transcribed text is au-
tomatically aligned with the word-images (which are seg-
mented from the page-image). Such alignments can be done
as in [9]. In cases where there are segmentation errors, the
alignment between the word-images and their labels may be
erroneous. However, we do not correct these mistakes as the
effort is prohibitive.

An HKM is built over the 100K labeled images, for the Pro-
files + DFT features. The NN for each test point is done
using a lookup in the HKM and the label propagated to
the test image from the NN word-image. The time taken
for building the HKM over the 100K labeled words was 93
seconds, while the recognition of the remaining 200K words
took 112 seconds.

Example results from this recognition method are given in
Figure 8. As we observe, a large number of words are cor-
rectly recognized inspite of heavy degradations. We benefit
from the presence of similar looking labeled examples, which
allows our Collection OCR to yield good results. In cases
where our procedure fails, the features are unable to distin-
guish between different words. For example, consider the
results for the word man’chi (row 2) of Figure 8. The first
erroneous word is man’ta, which differs in the last (third)
character. Notice the strong similarity between the first cor-
rect and the first erroneous word. In the second erroneous
example, the second half of the word (lin’chi) matches with
the label, and is hence misclassified. Besides errors caused
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Figure 8: Example recognition results from the book collection. Notice the severe degradations in some of
the correctly recognized words. We recognize these words where OCR easily fails. Most of the errors are
due to similar looking words (or part of), or due to erroneous labeled data.

by very similar looking words, we observe errors due to er-
roneously labeled training images.

We follow a refuse-to-predict scheme, to avoid wrongly la-
beling word-images which do not have any similar labeled
exemplar. This is enforced by thresholding the NN distance.
The threshold τ determines the quality of recognition. With
a larger value of τ , a large number of words would be labeled
which might result in many errors. With a smaller value of
τ , it is more likely that a lesser number of words would be
recognized, but their labels would be more accurate. By eye-
balling the results for a handful examples, we set a threshold
which gives recognition results of acceptable accuracy. At
such a threshold, about 50% of the unlabeled data was recog-
nised, the labels for the rest were not predicted. The reason
for such a high percentage of rejection, is because the labels
for a large number of words are not included in the 30%
of labeled words. This would include a significant number
of unique words in the collection. We discuss in the next
subsection how such words may be handled.

6.1 Recognizing the Un-Labeled Images
Some fraction of word-images remain unrecognized at the
end of the Collection OCR phase. These words do not con-
tain a labeled exemplar in the training data. To address
this issue, we could generate synthetic exemplars for a large
vocabulary using text rendering. These exemplars can then
be matched with the unlabeled images, to identify the NN
exemplar and in turn the recognised text.

To evaluate this step, we generated exemplars for the 1000
word dataset (see Section 5.1), using a standard font for Tel-
ugu. The recognition accuracy over the 33K labeled dataset
using these exemplars was about 33%. Our font (a modern
Telugu font) is not a good match to the older fonts of the
collection. We believe it is possible to improve on this sub-
stantially by choosing better fonts for rendering. We shall
leave this exploration for future work.

7. CONCLUSIONS AND FUTUREWORK
This paper presents a Collection OCR which recognizes words
by exploiting their similarities in the collection. Given labels
for a fraction of the words, word-images are matched using
an efficient nearest neighbor algorithm (HKM). Labels are
propagated from these nearest neighbors. It is also shown
that profile features are more robust compared to gradient
features for matching printed word-images. In future work,
we shall look at recognizing the data that was not labeled in
the first pass. Word models could also be improved using an
iterative approach, that could lead to improving the labeling
and cleaning up the initial labeling.
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