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Summary
Missing values are a common phenomenon in all areas of applied research. While

various imputation methods are available for metrically scaled variables, methods for
categorical data are scarce. An imputation method that has been shown to work well
for high dimensional metrically scaled variables is the imputation by nearest neighbor
methods. In this paper, we extend the weighted nearest neighbors approach to impute
missing values in categorical variables. The proposed method, called wNNSelcat, explicitly
uses the information on association among attributes. The performance of different imputation
methods is compared in terms of the proportion of falsely imputed values. Simulation
results show that the weighting of attributes yields smaller imputation errors than existing
approaches. A variety of real data sets is used to support the results obtained by simulations.

Keywords: Attribute weighting; Categorical data; Weighted nearest neighbors; Kernel
function; Association.

1 Introduction

Categorical data are important in many fields of research, examples are surveys with
multiple-choice questions in the social sciences (Chen and Shao, 2000), single nucleotide
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polymorphisms (SNPs) in genetic association studies (Schwender, 2012) and tumor or
cancer studies (Eisemann et al., 2011). It is most likely that some respondents/patients do
not provide the complete information on the queries, which is the most common reason for
missing values. Sometimes, also the information may not be recorded or included into the
database. Whatever the reason, missing data occur in all areas of applied research. Since
for many statistical analyses a complete data set is required, the imputation of missing
values is a useful tool. For categorical data, although prone to contain missing values,
imputation tools are scarce.

It is well known that using the information from complete cases or available cases may lead
to invalid statistical inference (Little and Rubin, 2014). A common approach is to use an
appropriate imputation model, which accounts for the scale level of the measurements.
When the data are categorical the log-linear model is an appropriate choice (Schafer,
1997). The simulation studies of Ezzati-Rice et al. (1995) and Schafer (1997) showed
that it provides an attractive solution for missing categorical data problems. However, its
use is restricted to cases with a small number of attributes (Erosheva et al., 2002) since
model selection and fitting becomes very challenging for larger dimensions.

A non-parametric method called hot-deck imputation has been proposed as an alternative
(Rubin, 1987). This technique searches for the complete cases having the same values
on the observed variables as the case with missing values. The imputed values are drawn
from the empirical distribution defined by the former. The method is well suited even for
data sets with a large number of attributes (Cranmer and Gill, 2013). A variant, called
approximate Baysian bootstrap, works well in situations where the standard hot-deck fails
to provide proper imputation (Rubin and Schenker, 1986). But the hot-deck imputation
may yield biased results irrespective of the missing data mechanism (Schafer and Graham,
2002), and it may become less likely to find matches if the number of variables is large
(Andridge and Little, 2010).

Another popular non-parametric approach to impute missing values is the nearest neighbors
method (Troyanskaya et al., 2001). The relationship among attributes is taken into account
when computing the degree of nearness or distance. The method may easily be implemented
for high-dimensional data. However, the k-nearest neighbors (kNN) method, originally
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developed for continuous data, cannot be employed without modifications to non-metric
data such as nominal or ordinal categorical data (Schwender, 2012). As the accuracy
of the kNN method is mainly determined by the distance measure used to calculate the
degree of nearness of the observations, one needs different distance formula when data are
categorical. Some existing methods to impute attributes are based on the mode or weighted
mode of nearest neighbors (Liao et al., 2014).

Schwender (2012) suggested a weighted kNN method to impute categorical variables only,
that uses the Cohen or Manhattan distance for finding the nearest neighbors. The imputed
value is calculated by using weights that correspond to the inverse of the distance. One
limitation of this approach is that it can handle only variables that have the same number of
categories. Also the value of k, which strongly affects the imputation estimates, is needed.
There are some methods for imputing mixed data that can also be used for categorical
data, for example, see Liao et al. (2014) and Stekhoven and Bühlmann (2012). The
latter transform the categorical data to dichotomous data and use the classical k-nearest
neighbors method to the standardized data with mean 0 and variance 1. The imputed data
are re-transformed to obtain the estimates. However, it has been confirmed by several
studies that rounding may lead to serious bias, particularly in regression analysis (Allison
(2005), Horton et al. (2003)).

For categorical data one has to use specific distances or similarity measures, which are
typically based on contingency tables. Commonly used distance measures include the
simple matching coefficient, Cohen’s kappa κc (Cohen, 1960), and the Manhattan or L1

distance. The Euclidean or variants of the Minkowski distance give an equal importance
to all the variables in the data matrix when computing the distance. But for a larger number
of variables, the equal weighting ignores the complex structure of correlation/association
among these variables. As will be demonstrated, better distance measures are obtained
by utilizing the association between variables. More specific, we propose a weighted
distance that explicitly takes the association among covariates into account. Strongly
associated covariates are given higher weights forcing them to contribute more strongly
to the computation of the distances than weakly associated covariates.

The paper is organized as follows: Section 2 reviews some available measures to calculate
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the distance for nominal data. The improved measure, which uses information on association
among attributes, is introduced. A weighted nearest neighbors procedure is described
in Section 3. In Section 4, the existing methods to impute missing categorical data,
and the measure of performance used for comparison are described. In section 5 the
performance of different imputation methods is compared in simulation studies. Section 6
gives applications of the proposed method to some real data sets.

2 Methods

At the core of nearest neighbor methods is the definition of the distance. In contrast to
continuous data, computation of distance or similarity between categorical data is not
straightforward since categorical values have no explicit notion of ordering. We first
consider distances for categorical variables that can be used to impute missing values.

2.1 Distances for Categorical Variables

Let data be collected in a (n × p)-matrix Z = (Zis), where Zis is the ith observation on
the sth attribute. Let zT

i = (Zi1, · · · ,Zip) denote the ith row or observation vector in the
data matrix Z. The categorical observations Zis in the data matrix Z can take values from
{1, . . . , ks}, s = 1, . . . , p, where ks is the number of categories of the sth attribute. Distances
can use the original variables Zis ∈ 1, . . . , ks or the vector representation. It is to note here
that ’k’ denotes the number of nearest neighbors, whereas ’k’ (or ’ks’) corresponds to the
number of categories that an attribute in the data matrix Z may assume.

Simple Matching of Coefficients (SMC)

The distance uses the original values Zis. This method simply considers the matching of
the values of the variables, that is, whether they are the same or not (Sokal and Michener,
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1958). The SMC distance between two observation vectors zi, z j is defined by

dS MC(zi, z j) =

p∑
s=1

I(Zis , Z js)

where I(.) is an indicator function defined by

I(.) =

 1 if Zis , Z js

0 otherwise.

Minkowski’s Distance

The Minkowski’s distance can be used for re-coded categorical variables.

For the computation the categorical variable Zis is transformed into binary variables. Let
zis

T = (zis1, . . . , zisks) be the dummy vector built from Zis with components being defined
by

zisc =

 1 if Zis = c,

0 otherwise.

Let ZD denote the matrix of dummies which is obtained from the original data matrix.
Thus, the ith row of the matrix ZD has the form (zT

i1, · · · , z
T
ip)T with dummy vectors zis,

s = 1, · · · , p.

The dummy vectors zis
T for a nominal variable with four categories can be written as

category zis1 zis2 zis3 zis4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
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By using the dummy vectors from ZD the Minkowski’s distance between two rows zi, z j

of Z is given by

dCat(zi, z j) =

 p∑
l=1

kl∑
c=1

|zilc − z jlc|
q


1/q

, (1)

By choosing q = 2, one obtains the Euclidean distance

dCat(zi, z j) =

 p∑
l=1

kl∑
c=1

(zilc − z jlc)2


1/2

,

and for q = 1 one obtains the Manhattan or L1 distance

dCat(zi, z j) =

p∑
l=1

kl∑
c=1

|zilc − z jlc|.

Thus the Euclidean distance and Manhattan distance are two special forms of the Minkowski’s
distance. It should be noted that it has a strong connection to the matching coefficient
distance. When q = 1, the Minkowski’s distance uses the number of matches between the
two covariates, ant the distance is equal to the simple matching coefficient (SMC) distance.

2.2 Selection of Attributes by Weighted Distances

The Euclidean or variants of Minkowski’s distance give an equal importance to all the
variables in the data matrix. When the number of variables is large and they are correlated/

associated, it is useful to give unequal weights to covariates when calculating the distance.
We present a weighted distance which explicitly takes the association among covariates
into account. More specifically, highly associated covariates will contribute more to the
computation of the distance than less associated covariates.

For a concise definition we distinguish between cases that were observed in the corresponding
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component and missing values, only the former contribute to the computation of the
distance. Let us again consider the data matrix Z with dimension n × p. Let O = (ois)
denote the n × p matrix of dummies, with ois = 0 if the value is missing, and ois = 1 if the
the value is available in the data matrix Z. Let now Zis be a specific missing entry in the
data matrix Z, that is, ois = 0. For the computation of distances we use the corresponding
matrix of dummy variables ZD.

We propose to use as distance between the i-th and the j-th observation

dCatS el(zi, z j) =

 1
ai j

p∑
l=1

kl∑
c=1

|zilc − z jlc|
qI(oil = 1)I(o jl = 1)C(δsl)


1/q

, (2)

where I(.) denotes the indicator function and ai j =
∑p

l=1 I(oil = 1)I(o jl = 1) is the number
of valid components in the computation of distances. The crucial part in the definition of
the distance is the weight C(δsl). C(.) is a convex function defined on the interval [−1, 1]
that transforms the measure of association between attributes s and l, denoted by δsl, into
weights.

It is worth noting that the distance is now specific to the sth attribute, which is to be
imputed. For C(.) we use the power function C(δsl) = |δsl|

ω. So the attributes that have
a higher association with the sth attribute are contributing more to the distance and vice
versa. The higher the value of association, the more it contributes to the computation of
the distance. Note also that only the available pairs with I(oil = 1)I(o jl = 1) are used for
the computation of the distance. In the following we describe some of association among
variables that account for the number of categories each variable can take.

2.3 Measuring Association Among Attributes

One important issue in the computation of distances in equation (2) is how to compute the
association (δsl) among categorical variables as the usual Pearson coefficient of correlation
is not suitable for categorical covariates. In this section, we briefly describe some measures
that are used to calculate the association between categorical measurements.
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The measures of association for two nominal or categorical variables are typically based
on the χ2-statistic which tests the independence of variables in contingency tables.

Consider the association among attribute s and l where attribute s has i = 1, ..., ks categories
and attribute l has j = 1, ..., kl categories. The two attributes s and l can be presented in the
form of an ks × kl contingency table (Figure 1).

Attribute l
1 2 · · · j · · · kl Total

A
ttr

ib
ut

e
s

1 n11 n12 n1.

2 n21 n22 n2.

· · ·
. . .

i ni j ni.

· · ·
. . .

ks nkskl

Total n.1 n.2 n. j n

Figure 1: Contingency table with ks × kl cells

In the contingency table, ni j is the number of observations (Zs = i, Zl = j) and n = n.. is
the total number of values. The χ2-statistic between attributes s and l is defined as

χ2
sl =
∑

i, j

(ni j −
ni.n. j

n )2

ni.n. j
n

,

where ni. and n. j are the row and columns totals respectively and n is the total number of
observations in the contingency table.

Association measures based on the χ2-statistic are, in particular, the φ-coefficient, Pearson’s
contingency Coefficient and Cramer’s V.

8



Phi coefficient (φ)

For nominal variables with only two categories, i.e. ks = kl = 2, a simple measure of
association is the φ-coefficient

φsl =

√
χ2

sl

n
.

Pearson’s coefficient of contingency (PCC)

For ks = kl = k, that is, the variables have the same number of categories, Pearson’s
coefficient of contingency is computed as

Csl =

√
χ2

sl

χ2
sl + n

.

It can be corrected to reach a maximum value of 1 by dividing by the factor
√

(k − 1)/k,
where k is the number of rows(r = ks) or columns (c = kl) as both are equal. Pearson’s
corrected coefficient (PCC) of contingency is given by

PCCsl =
Csl

√
(k − 1)/k

.

It is suitable only when the number of categories of both covariates are the same.

Cohen’s kappa (κc)

For ks = kl = k, another useful measure of association was given by Cohen (1960),

κsl =
p0 − pe

1 − pe
,

where p0 = nii/n = n j j/n are the proportions of units with perfect agreement, which are the
diagonal elements in the contingency table and pe =

∑k
i= j

ni.n. j
n is the expected proportion
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of units under independence.

Cramer’s V

If the covariates have different number of categories (ks , kl), Cramer’s V is an attractive
option (Cramér, 1946). It is defined by

Cramer’s V =

√
χ2

sl/n
min(ks − 1, kl − 1)

,

where n = ks × kl is the total number of cells in the contingency table.

In this paper, we choose Cramer’s V as the measure of association (δsl) to be used in (2)
because its value lies between 0 and 1; and it can be used for unequal number of categories
of the attributes as well. The corresponding method is denoted by wNNSelcat.

3 Using Nearest Neighbors to Impute Missing Values

Classical nearest neighbor approaches fix the number of neighbors that are used. We prefer
to use weighted nearest neighbors by using weights that are defined by kernel functions.
Uniform kernels yield the classical approach, however, smooth kernels typically provide
better results.

Let Zis be a missing value in the n × p matrix of observations. The k nearest neighbor
observation vectors are defined by

zD
(1), . . . , z

D
(k) with d(zi, z(1)) ≤ · · · ≤ d(zi, z(k))

where zD
(i) are rows from the matrix ZD, and d(zi, z(k)) is the computed distance using

equation (2). It is important to mention that the row zD
(i) is composed of values of dummy

variables of the form (zT
(i)1, · · · , z

T
(i)p)T , where zT

(i)s = (zis1, · · · , zisks) are the dummy values.
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For the imputation of the value Zis we use the weighted estimator

π̂isc =

k∑
j=1

w(zi, z( j))z( j)sc, (3)

with weights given by

w(zi, z( j)) =
K( d(zi,z( j))

λ
)∑k

h=1 K( d(zi,z(h))
λ

)
, (4)

where K(.) is a kernel function (triangular, Gaussian etc.) and λ is a tuning parameter.
Note that π̂T

is = (π̂is1, · · · , π̂isks) is a vector of estimated probabilities.

If one uses all the available neighbors that is k = n, then λ is the only and crucial tuning
parameter. The imputed estimate of Zis is the value of c ∈ {1, . . . , ks} that has the largest
value. In other words, the weighted imputation estimate of a categorical missing value Zis

is

Ẑis = arg maxks
c=1 π̂isc, (5)

If the maximum is not unique one value is selected at random. The proposed wNNSelcat
procedure can be described as follows:

1. Locate a missing value Zis in sample i and attribute s in the data matrix.

2. Compute dCatSel between observation vectors zi, z j using equation (2).

3. Rank samples (rows) of the matrix ZD based on dCatSel.

4. Compute the corresponding weights based on kernel function w(zi, z j) using equation
(4).

5. Compute the s probabilities by using equation (3)

6. Compute the missing value ẑis by using equation (5).
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7. Seek the next missing value in Z and repeat steps (2-6) until all missing values in Z
have been imputed imputed.

In this weighted nearest neighbor (wNNSelcat) method, one has to deal two tuning parameters,
λ in (4) and ω to be used in distance equation (2). These tuning parameters have to be
specified

3.1 A Pearson Correlation Strategy

As an alternative we consider a strategy that uses the dummy variables directly. Starting
from the matrix of dummies ZD we use the Pearson correlation coefficient between dummy
variables as association measure. The weighting scheme remains the same. The imputation
is again determined by

π̂isc =

k∑
j=1

w(zi, z( j))z( j)sc.

Although π̂T
isc = (π̂is1, . . . , π̂isks) might not be a vector of probabilities, simple standardization

by setting

π̃isc = π̂isc/

ks∑
r=1

π̂isr

yields a vector of probabilities that can be used to determine the mode. The method can
be seen as an adaptation of the weighting method proposed by Tutz and Ramzan (2015).
Only small modification are needed to apply the method to the dummy variables. One
is that the missing of an observation refers to a set of variables, namely all the dummies
that are linked to a missing value. For this method the Gaussian kernel and the Euclidean
distance are used throughout. The method is denoted by wNNSeldum.

3.2 Cross Validation

The imputation procedure wNNSelcat requires pre-specified values of the tuning parameters
λ and ω. In this section we present a cross validation algorithm that automatically choses
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those values for which the imputation error is minimum.

To estimate the tuning parameters ω and λ, we set some available values (ois) = 1 in the
data matrix as missing (ois) = 0. The advantage of this step is that these values are used to
estimate the tuning parameters. The procedure of cross validation to find optimal tuning
parameters is given as algorithm 1.

Algorithm 1 Cross-validation for wNNSelcat
Require: Z an n×p matrix, number of validation sets t, range of suitable values for tuning

parameters L andW
1: Zcv ← initial imputation using unweighted 5-nearest neighbors
2: for t = 1, . . . ,T do
3: Zcv

miss,t ← artificially introduce missing values to Zcv

4: for ω ∈ W do
5: for λ ∈ L do
6: Zcv

wNNS elcat ,t
← imputation of Zcv

miss,t using wNNSelcat procedure
7: ψ(λ,ω),t ← imputation error (PFC) of wNNSelcat procedure for λ & ω
8: end for
9: end for

10: Determine (λ, ω)best ← argmin 1
T

∑T
t=1 ψ(λ,ω),t

11: end for
12: Zimp ← wNNSelcat imputation of Z using (λ, ω)best

4 Evaluation of Performance

This section briefly describes some available methods to impute missing categorical data.
Then the performance of imputation methods is compared by using the mean proportion
of falsely imputed categories (PFC) given by

PFC =
1
m

∑
Zis:ois=0

I(Zis , Ẑis),

where I(.) is an indicator function which takes the value 1 if Zis , Ẑis and 0 otherwise, ω is
the number of missing values in the data matrix, Zis is the true value and Ẑis is its imputed
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value.

4.1 Existing Methods

In this section, we briefly review some existing procedures for the imputation of categorical
missing data.

Mode Imputation

This is perhaps the simplest and fastest method to fill the incomplete categorical data. The
missing values of an attribute are replaced by the attribute with maximal occurrence in that
variable, that is, the mode. The approach is very simple and totally ignores the association
or correlation among the attributes.

k-Nearest Neighbors Imputation

In this method, k neighbors are chosen based on some distance measure and their average
is used as an imputation estimate. The method requires the selection of a suitable value
of k, the number of nearest neighbors, and a distance metric. The function kNN in the R
package VIM (Templ et al., 2016) can impute categorical and mixed type of variables.

An adaptation of the k nearest neighbors algorithm proposed by Schwender (2012) can
impute missing genotype or categorical data. The procedure selects k nearest neighbors
based on distance measures (Cohen, Pearson, or SMC). The weighted average of the k

nearest neighbors is used to estimate the missing value, where the weights are defined by
the inverse of the distances. The limitation of this method is that it offers imputation only
for variables having an equal number of categories. We use the function knncatimpute
from R package scrime (Schwender and Fritsch, 2013) to apply this method.
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Random Forests

In recent years, random forest (Breiman, 2001) have been used in various areas including
imputation of missing values. The imputation of missing categorical data by random
forests is based on an iterative procedure that uses initial imputations using mode imputation
and then improves the imputed data matrix on successive iterations. A random forest
model is developed for each predictor with a missing value by using the rest of the predictors
and the model to estimate the missing value of that predictor. The imputed data matrix is
updated and the difference between previous and new imputation is assessed at the end of
each iteration. The whole process is repeated until a specific criterion is met (Stekhoven
and Bühlmann, 2012; Rieger et al., 2010; Segal, 2004; Pantanowitz and Marwala, 2009).

The main advantages of random forests include the ability to handle high dimensional
mixed-type data with non-linear and complex relationships, and robustness to outliers
and noise (Hill (2012), Rieger et al. (2010)). The missForest package in the statistical
programming language R offers this approach (Stekhoven, 2013).

5 Simulation studies

This section includes preliminary simulations to check if the suggested distance measure
contributes to better imputation or not. Using simulated data we compare our method with
three existing methods in the situations with binary or multi-categorical variables only,
and mixed (binary and multi-categorical) variables.

5.1 Binary Variables

In our fist simulation study we investigate the performance of imputation methods using
simulated binary data. We generate S = 200 samples of size n = 100 for p = 30 predictors
drawn from a multivariate normal distribution with N(0,Σ). The correlation matrix Σ
has an autoregressive type of order 1 with ρ = 0.8. The data are converted to binary
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variables by defining positive values as the first category and negative as the second. In
each sample randomly selected values are declared as missing with proportion of 10%,
20% and 30%. The missing values are imputed using mode imputation, random forests
(RF) and the proposed weighted nearest imputation methods. In the weighted nearest
imputation methods (wNNSelcat), the distance (2) is computed for q = 1, 2. We use the
Gaussian and the triangular kernel functions for each value of q (shown as Gauss.q1,
Gauss.q2, Tri.q1, and Tri.q2 in Figure 2).
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Figure 2: Simulation study for binary data: boxplots of PFCs for MCAR missing data with
n = 100, p = 30. Solid circles within boxes show mean values.

The resulting PFCs are shown in Figure 2. It is clear from the figure that the weighted
imputation methods (wNNSelcat and wNNSeldum) yield smaller error than mode, hot deck
and random forest imputation methods. The highest errors are obtained by hot deck and
mode imputation. It seems that the selection of the kernel function and the value of q

do not affect the results. The average values of the PFCs are nearly equal for q = 1, 2
when using the triangular kernel. For the Gaussian kernel, q = 2 produces slightly smaller
imputation errors. Overall the (wNNSelcat and wNNSeldum) procedures give similar results.
We skip the Hotdeck method in our further simulations as it produced poor imputations.

5.2 Multi-categorical Variables

In this section, we investigate the performance of imputation methods using multi-categorical
data. We generate S = 200 samples of size n = 100 for p = 10, 50 predictors drawn
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from a multivariate normal distribution with N(0,Σ). The correlation matrix Σ has an
autoregressive type of order 1 with ρ = 0.9. These values are then converted to the desired
number of categories. In each sample, miss = 10%, 20%, 30% of the total values were
replaced by missing values completely at random (MCAR).

In the case where all attributes have an equal number of categories (ks = k), another
benchmark proposed by Schwender (2012), is also considered. To compare the performance,
the proportion of falsely imputed categories (PFC) is computed for each imputation method.
We distinguish the cases when the probabilities are the same for all categories and the case
when they are not equal.

Effect of the Number of categories

ks = k (the number of categories is the same for all the attributes)

We construct categories from the continuous data by setting cut points. In the first simulation
setting, we assume that all the categories within each attribute have the same probability.
For example, for an attribute having four categories ks = 4, the quartiles Q1,Q2,Q3

are used as cut points, where Q1,Q2,Q3 are the usual lower quartile, median and upper
quartile respectively, which divide the data into an equal four parts. So in this case,
π1 = π2 = π3 = π4 = 0.25. In general, to create c categories of a variable one needs
c − 1 cut points.

In our second simulation setting, the number of categories (ks) of all the attributes is the
same but the categories within each attribute may have the unequal probabilities (πc ,

1/k). The purpose is to investigate whether πc do have any effect on the imputation results.

We use q = 1, 2 in the distance calculation of wNNSelcat method to get L1 and L2 metrics
(shown as wNNSelcatq1 and wNNSelcatq2 in Figure 3 ). The tuning parameters are chosen
by cross validation and these optimal values, λopt and mopt, are used to estimate the final
imputed values. Using dummy variable method, the missing values are imputed and shown
as wNNSeldum in Figure 3.
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Figure 3: Simulation study for multi-categorical data (the number of categories is the same
for all the attributes): Boxplots of PFCs for MCAR missing pattern with ks = 4, S = 200
samples of size n = 100, p = 50 were drawn from a multivariate normal distribution using
autoregressive correlation structures to form the categories. Solid circles within boxes
show mean values. Upper row shows when the probability of occurrence of each category
is the same and lower row for probability of occurrence of each category is not same.

It is seen from Figure 3 (upper panel), that for πc = 1/k, wNNSeldum method yields the
smallest imputation errors followed by wNNSelcat. For the wNNSelcat method, both values
of q produce similar results. The method by Schwender (2012) is also used as benchmark
as all the attribute have an equal number of categories. We used Cohen, PCC and SMC
distances to compute the nearest neighbors for this method (light-gray boxes in Figure
3). The PCC distance gives higher imputation errors than the Cohen and SMC distances
which yield almost similar results. The same findings can be seen for πc , 1/k, in the
lower panel of Figure 3. Overall, the replacement of missing values by the mode yields
the highest errors followed by KNN and random forests, while weighted nearest neighbors
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imputation with weighting as proposed here provides the smallest errors.

ks , k (the number of categories is different for the attributes)

In this simulation setting, we explore whether the wNNSelcat method works in the situation
when the attributes have an unequal number of categories (ks , k). Following the same
process as in the previous subsections, we use ks = {3, 4} and ks = {3, 4, 5} for the
predictors in this case. Furthermore, the probability of occurrence of each category (πc) is
not same i.e., πc , 1/ks. We set n = 100, p = 50 and miss = 10%, 20%, 30% values are
deleted at random. The rest of the procedure of imputing missing values is the same.
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Figure 4: Simulation study for multi-categorical data (the number of categories is different
for the attributes): Boxplots of PFCs for MCAR missing pattern with ks , k, S = 200
samples were drawn from multivariate normal distribution using autoregressive correlation
structures to form the categories. Solid circles within boxes show mean values.

The resulting PFCs for miss = 30% only are shown in Figure 4. The left panel shows
the results for ks = {3, 4} and the right panel for ks = {3, 4, 5}. It is to be noted that the
KNN method of Schwender (2012) is not applicable in these settings. Clearly, the mode
imputation shows the highest errors followed by random forests. It is interesting that the
random forest method perform pretty well and yields similar results as the wNNSelcat
method. Here again, the smallest errors are obtained by the wNNSeldum method in both
settings considered. The detailed results for other the settings are shown in Table 1.
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Table 1: Comparison of imputation methods using multi-categorical simulated data

miss MODE RF
wNNSelcat

wNNSeldum
q = 1 q = 2

ks = {3, 4}
10% 0.6377 0.3578 0.3290 0.3291 0.3198
20% 0.6385 0.3767 0.3524 0.3533 0.3087
30 % 0.6404 0.3973 0.3803 0.3817 0.3314

ks = {3, 4, 5}
10% 0.6989 0.4066 0.4227 0.3969 0.3198
20% 0.6974 0.4212 0.4399 0.4205 0.3392
30 % 0.6963 0.4437 0.4682 0.4484 0.3607

5.3 Mixed (Binary and Multi-categorical) Variables

As shown in the previous subsections that weighted imputation yields better estimates of
the missing values. Specifically, wNNSeldum performs better than wNNSelcat in the case of
the multi-categorical data, while for binary data both methods perform very similar. In this
section we examine the performance of these methods when the data contains a mixture
of binary and multi-categorical variables

We use ks = {2, 3, 4} for S = 200 samples of size n = 100, p = 50 drawn from a
multivariate normal distribution using autoregressive correlation structure. One third of
the variables selected at random are converted to binary and the rest to ks = 3, 4 categories.
Then miss=10%, 20% and 30% of the total values are randomly deleted to create missing
values. The rest procedure is the same as in previous subsections. The boxplots of resulting
PFCs are shown in Figure 5. For mixed data, the smallest imputation errors are obtained by
the wNNSeldum procedure. It is interesting to see that the random forest method performs
as well as the wNNSelcat method.

The detailed results, using triangular kernel function also, are given in Table 2. It is
obvious that estimates using the mode yields the worst results as in the previous simulations.
The random forest method provides imputation estimates that are closer to wNNSelcat. In
a comparison of wNNSelcat and random forest methods, wNNSelcat shows slightly better
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Figure 5: Simulation study for mixed data: Boxplots of PFCs for MCAR missing
pattern with binary and multi-categories in the data, S = 200 samples were drawn from
multivariate normal distribution using autoregressive correlation structures to form the
categories. Solid circles within boxes show mean values.

Table 2: Comparison of imputation methods using binary and multi-categorical simulated
data

miss MODE RF
wNNSelcat wNNSeldum

Gauss.q1 Gauss.q2 Tri.q1 Tri.q2

10% 0.6011 0.3120 0.3030 0.3034 0.3270 0.3219 0.2658
20% 0.6054 0.3301 0.3273 0.3266 0.3518 0.3464 0.2826
30% 0.6060 0.3448 0.3484 0.3482 0.3701 0.3648 0.2963

results, except for 30% missing values where the smallest average PFC=0.3484 is obtained
by random forest. Overall, the wNNSeldum gives the smallest PFCs in all the simulation
settings considered here.

6 Applications

The results of simulation studies show that the suggested weighted nearest neighbors
imputation methods (wNNSelcat and wNNSeldum) perform better than other competitors.
In this section we apply the imputation methods to real data sets. We use three different
data sets with binary, multi-categorical and mixed variables.
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SPECT heart data (Binary only)

The dataset describes Single Proton Emission Computed Tomography (SPECT) images.
Each of the 267 patients is classified into two categories: normal and abnormal based
on p = 22 binary feature patterns. Kurgan et al. (2001) discuss this processed data set
summarizing about 3000 2D SPECT images.

DNA Promoter gene sequence (Multi-categorical)

The data for promoter instances was used by Harley and Reynolds (1987) and for non-promoters
by Towell et al. (1990). The total data set contains sequences of p = 57 base pairs from
n = 106 candidates/samples. Each of the 57 variables can be grouped into one of the
four DNA nucleotides; adenine, thymine, guanine or cytosine. The response variable is
promoter or non-promoter instances.

Lymphography data (Binary and Multi-categorical)

The data were obtained from n=148 patients suffering from cancer in the lymphatic of the
immune system. For each patient, p = 18 different properties were recorded on a nominal
scale. Nine variables out of 18 are binary and the rest have more than two classes. Based
on this information, the patients were classified into one of the four categories; normal,
metastases, malign lymph or fibrosis.

In each data set, miss = 10%, 20%, 30% values are randomly deleted and imputation is
carried out using mode, random forest, wNNSelcat and wNNSeldum methods. The imputation
error is computed in terms of PFC. The results of 30 independent runs are shown in Figure
6.

For the wNNSelcat method, we use the Gaussian and triangular kernel function each for
the value q = 1, 2 (shown as Gauss.q1, Gauss.q2, Tri.q1, and Tri.q2 in Figure 6) as
we intended to explore the behavior of the kernel function and the value of q on the real
data sets also. It is seen from the figure that the Gaussian kernel yields smaller PFCs as
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Figure 6: Real data: Boxplots of PFCs obtained by different imputation methods.
The SPECT data (upper row), DNA promoter gene sequence data (middle row) and
Lymphography data (lower row) with 10%, 20% and 30% missing values is shown. Grey
boxes show the proposed wNNSelcat and dark grey show wNNSeldum method. Solid circles
within boxes show mean values.

23



compared to PFCs obtained by using the triangular kernel for DNA and Lymphography
data, while both kernels produce similar results for SPECT data. The value of q does not
affect the results and produces similar PFCs. These findings confirm the simulation results
obtained in the previous section.

The strongest difference between the performance of wNNSelcat and wNNSeldum is seen for
the DNA promoter data. For the SPECT heart data which contains only binary variables,
neither the kernel function nor the value of q have significant impact on the values of PFCs.
The PFCs obtained by wNNSelcat and wNNSeldum are also nearly similar. These results are
consistent with the previous findings from simulation studies on binary data.

The random forest method also performs well for the Lymphography data and produces
PFCs smaller than some of the wNNSelcat methods (Tri.q1, and Tri.q2), although
the smallest PFCs are obtained by wNNSeldum. Overall, wNNSeldum perform better than
wNNSelcat method for multi-categorical data, whereas both methods perform equally well
in the case of binary data.

Table 3: Comparison of imputation methods using real data

Gaussian Triangular

Data MODE RF q = 1 q = 2 q = 1 q = 2 wNNSeldum

SPECT 10% 0.3070 0.1802 0.1632 0.1641 0.1633 0.1639 0.1662
20% 0.3124 0.1851 0.1807 0.1810 0.1806 0.1809 0.1818
30% 0.3127 0.2026 0.2011 0.2012 0.2004 0.1999 0.2011

DNA 10% 0.6966 0.6803 0.5900 0.5875 0.6350 0.6297 0.4586
20% 0.6962 0.6827 0.6168 0.6136 0.6415 0.6419 0.4818
30% 0.6955 0.6908 0.6335 0.6315 0.6458 0.6455 0.5062

Lymphography 10% 0.3915 0.3135 0.2922 0.2934 0.3331 0.3338 0.2813
20% 0.3881 0.3304 0.3152 0.3174 0.3373 0.3411 0.2965
30% 0.3896 0.3511 0.3305 0.3314 0.3398 0.3405 0.3114
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7 Concluding Remarks

We proposed a weighted distance metric based on kernel function to impute missing
multi-categorical data. The method uses a distance function, called dS elCat, that utilizes
information from other covariates by taking information on association into account. To
estimate the tuning parameters, a cross validation algorithm is suggested, which automatically
selects the best possible values producing the smallest imputation errors. The procedure
does not require a specified value of the number of nearest neighbors (k) and provides
as accurate results as the best existing methods. Simulation results show that L1 and L2

metrics yield similar results. Moreover, the Gaussian kernel provided smaller imputation
errors than the triangular kernel.

To our surprise the simple method, which uses dummy variables and the classical correlation
coefficient, showed the best performance. For binary data, both procedures wNNSelcat
and wNNSeldum yield similar results, whereas, for multi-categorical data wNNSeldum yields
smaller imputation errors. The wNNSeldum method outperforms in simulations as well as
in real data application all competitors.
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