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Nearest Neighbor Pattern Classification 
T. M. COVER, MEMBER, IEEE, AND P. E. HART, MEMBER, IEEE 

Absfracf-The nearest neighbor decision rule assigns to an un- 
classified sample point the classification of the nearest of a set of 
previously classified points. This rule is independent of the under- 
lying joint distribution on the sample points and their classifications, 
and hence the probability of error R of such a rule must be at least 
as great as the Bayes probability of error R*--the min imum prob- 
ability of error over all decision rules taking underlying probability 
structure into account. However, in a large sample analysis, we will 
show in the M-category case that R* < R < R*(Z - MR*/(M-I)), 
where these bounds are the tightest possible, for all suitably smooth 
underlying distributions. Thus for any number of categories, the 
probability of error of the nearest neighbor rule is bounded above 
by twice the Bayes probability of error. In this sense, it may  be said 
that half the classification information in an iu6uite sample set is 
contained iu the nearest neighbor. 

I. INTRODUCTION 

N THE CLASSIFICATION problem there are two 
extremes of knowledge which the statistician may 
possess. Either he may have complete statistical 

knowledge of the underlying joint distribut’ion of the 
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observation 2 and the true category 8, or he may have 
no knowledge of the underlying distribution except that 
which can be inferred from samples. In the first extreme, 
a standard Bayes analysis will yield an optimal decision 
procedure and the corresponding minimum (Bayes) prob- 
ability of error of classification R*. In the other extreme, 
a decision to classify x into category 0 is allowed to depend 
only on a collection of n  correctly classified samples 
(q e,), (x2, e,), . . . , (z,, e,), and the decision procedure 
is by no means clear. This problem is in the domain of 
nonparametric statistics and no optima1 CIassification 
procedure exists with respect to all underlying statistics. 

If it is assumed that the classified samples (xi, 0,) are 
independently identically distributed according to the dis- 
tribution of (x, 0)) certain heuristic arguments may be 
made about good decision procedures. For example, it is 
reasonable to assume that observaGons which are close 
together (in some appropriate metric) will have the same 
classification, or at least will have almost the same 
posterior probability distribut’ions on their respective 
classifications. Thus to classify the unknown sample .2: 
we may wish to weight the evidence of the nearby xi’s 
most heavily. Perhaps the simplest nonparametric decision 
procedure of this form is the nearest neighbor (NN) rule, 
which classifies x in the category of its nearest neighbor. 
Surprisingly, it will be shown that, in the large sample 
case, this simple rule has a probability of error which 
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is less than twice the Bayes probability of error, and 
hence is less than twice the probability of error of any 
other decision rule, nonparametric or otherwise, based on 
the infinite sample set. 

The first formulation of a rule of the nearest neighbor 
type and primary previous contribution to the analysis 
of its properties, appears to have been made by Fix and 
Hodges [I] and [a]. They investigated a rule which might 
be called the k,-nearest neighbor rule. It assigns to an 
unclassified point the class most heavily represented among 
its k, nearest neighbors. Rx and Hodges established the 
consistency of this rule for sequences lc, ---f m such that 
lc,/n --+ 0. In reference [a], they investigate numerically 
the small sample performance of the Ic,-NN rule under 
the assumption of normal statistics. 

The NN rule has been used by Johns [3] as an example 
of an empirical Bayes rule. Kanal [4], Sebestyen [5] 
(who calls it the proximity algorithm), and Nilsson [6] 
have mentioned the intuitive appeal of the NN rule and 
suggested its use in the pattern recognition problem. 
Loftsgaarden and Quesenberry [7] have shown that a 
simple modification of the L,-NN rule gives a consistent 
estimate of a probability density function. In the above 
mentioned papers, no analytical results in the nonpara- 
metric case were obtained either for the finite sample 
size problem or for the finite number of nearest neighbors 
problem. 

In this paper we shall show that, for any number n of 
samples, the single-NN rule has strictly lower probability 
of error than any other k,-NN rule against certain classes 
of distributions, and hence is admissible among the Ic,-NN 
rules. We will then establish the extent to which “samples 
which are close together have categories which are close 
together” and use this to compare in Section VI the 
probability of error of the NN-rule with the minimum 
possible probability of error. 

II. TI-IE NEAREST NEIGI~BOR RULE 

A set of n pairs (x1, &), + . . , (z,, 0,) is given, where 
the xi’s take values in a metric space X upon which is 
defined a metric d, and the 0,‘s take values in the set 
11, 2, ..* 7 ill}. Each 6’( is considered to be the index 
of the category to which the ith individual belongs, and 
each x3 is the outcome of the set of measurements made 
upon that individual. Vor brevity, we shall frequently 
say ‘(xi belongs to ei” when we mean precisely that the 
ith individual upon which measurements xi have been 
observed, belongs t’o category Bi. 

A new pair (2, 0) is given, where only the measurement 
x is observable by the statistician, and it is desired to 
estimate e by utilizing the information contained in the 
set of correctly classified points. We shall call 

x:, & {Xl, X2) * * * f x,1 
a nearest neighbor to x if 

min d(zi, x) = d(&, Z) i = 1, 2, * ** , n. (1) 

The nearest neighbor rule decides x belongs to the category 
e; of its nearest’ neighbor XL. A mistake is made if e:, # 8. 
Notice that the NN rule utilizes only the classification 
of the nearest neighbor. The n - 1 remaining classifica- 
tions Bi are ignored. 

III. ADMISSIBILITY OF NEAREST NEIGHBOR RULE 

If the number of samples is large it makes good sense 
to use, instead of the single nearest neighbor, the majority 
vote of the nearest k neighbors. We wish lc to be large 
in order to minimize the probability of a non-Bayes 
decision for the unclassified point x, but we wish Ic to be 
small (in proportion to the number of samples) in order 
that the points be close enough to x to give an accurate 
estimate of the posterior probabilities of the true class 
of x. 

The purpose of this section is to show that, among 
the class of L-NN rules, the single nearest neighbor rule 
(I-NN) is admissible. That is, for the n-sample problem, 
there exists no lc-NN rule, k # 1, which has lower prob- 
ability of error against all distributions. We shall show 
that the single NN rule is undominated by exhibiting 
a simple distribution for which it has strictly lower prob- 
ability of error P,. The example to be given comes from 
the family of distributions for which simple decision 
boundaries provide complete separation of the samples 
into their respective categories. l?ortunately, one ex- 
ample will serve for all n. 

Consider the two category problem in which the prior 
probabilities v1 = v2 = +, and the conditional density 
fl is uniform on the unit disk D, centered at (-3, 0), 
and the conditional density fz is uniform on the unit 
disk D, centered at (3, 0) as shown in Fig. 1. In the 
n-sample problem, the probability that i individuals come 
from category 1, and hence have measurements lying in 
D,, is (+)“(;). Without loss of generality, assume that the 
unclassified x lies in category 1. Then the NN rule will 
make a classification error only if the nearest neighbor x6 
belongs to category 2, and thus, necessarily, lies in D,. 
But’, from inspection of the distance relationships, if the 
nearest neighbor to x is in D,, then each of the xi must lie 
in D,. Thus the probability P,(l; n) of error of the NN 
rule in this case is precisely ($)*-the probability that 
Xl, x2, * -. , x, all lie in D,. Let lc = 2/c, + 1. Then t#he 
k-NN rule makes an error if k, or fewer points lie in D,. 
This occurs with probability 

Thus in this example, the I-NN rule has strictly lower 
P, than does any k-NN rule, k # 1, and hence is ad- 
missible in that class. Indeed 

1 In case of ties for the nearest neighbor, the rule may be modified 
to decide the most popular category among the ties. However, in 
those cases in which ties occur with nonzero probability, our results 
are trivially true. 
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P,(k; n) 1 + in k, for any n, 
(3) 

P,(lc;n) J 0 in n, for any li > 0, 

and 

P,(l;,; n) ---f 0, if O<&<a<l 
n- 

, for all n. 

In general, then, the I-NN rule is strictly better 
than the k # l-NN rule in those cases where the 
supports of the densities fl, fz, . . . , fM are such that each 
in-class distance is greater than any between-class distance. 

For a given x the conditional loss is minimum when the 
individual is assigned to the category j for which ri(x) is 
lowest. Minimizing the conditional expected loss ob- 
viously minimizes the unconditional expected loss. Thus 
the minimizing decision rule 6*, called the Bayes decision 
rule with respect to r], is given by deciding the category j 
for which ri is lowest. Using 6*, the conditional Bayes 
risk r*(x) is 

I I 

Fig. 1. Admissibility of nearest neighbor rule. 

IV. BAYES PROCEDURE 

In this section we shall present the simplest version 
of the Bayes decision procedure for minimizing the prob- 
ability of error in classifying a given observation x into 
one of M  categories. All the statistics will be assumed 
known. Bear in mind, however, that the NN rule is 
nonparametric, or distribution free, in the sense that it 
does not depend on any assumptions about the under- 
lying statistics for its application. The Bayes risk serves 
merely as a reference-the limit of excellence beyond 
which it is not possible to go. 

Let x denote the measurements on an individual and 
X the sample space of possible values of x. We shall refer 
to x as the observation. On the basis of x a decision must 
be made about the membership of the individual in one 
of Al specified categories. 

For the purposes of defining the Bayes risk, we assume 
fib), fdx>, - - * , fM(x), probability densities at x with 
respect to a u-finite measure V) such that an individual 
in category i gives rise to an observation x according 
to density fi. Let L(i, j) be the loss incurred by assigning 
an individual from category i to category j. 

Let vl, 712, - . . , T.~, vi 2 0, c vi = 1, be the prior prob- 
abilities of the 116 categories. The conditional probability 
gi(x) of an individual with measurement’s x belonging 
to category i is, by the Bayes theorem, 

qi =&, i=l,2 ,a.*, M. (4) 

Thus the random variable x transforms the prior prob- 
ability vect’or r] into the posterior probability vector q(x). 
If the statistician decides to place an individual with 
measuremen& x into category j, the conditional loss is 

(5) 

and the resulting overall minimum expected risk R*, 
called the Bayes risk, is given by 

R* = l+*(x), (7) 
where the expectation is with respect to the compound 
density 

f(x) = 2 %fi(X). 

V. CONVERGENCE OF NEAREST NEIGHBORS 

Most of the properties of the NN rules hinge on the 
assumption that the conditional distributions of &!, and 0 
approach one another when x6 -+ x. In order to put 
bounds on the NN risk for as wide a class of underlying 
statistics as possible, it will be necessary to determine 
the weakest possible conditions on the statistics which 
guarantee the above convergence. 

Lemma (Convergence of the Nearest Neighbor) 

Let x and x1, x2, . *. be independent identically dis- 
tributed random variables taking values in a separable 
metric space X. Let x!, denote the nearest neighbor to x 
from the set (x1, x2, . . . , x,}. Then a; -+ x with prob- 
ability one. 

Bemark: In particular, 2: + x with probability one 
for any probability measure in Euclidean n-space. We 
prove the lemma in this generality in order to include 
in its coverage such standard pathological candidates for 
counterexamples as the Cantor ternary distribution func- 
tion defined on X the real line. 

Since the convergence of the nearest neighbor to x is 
independent of the metric, the bounds on the risks of 
the NN rule will be independent of the metric on X. 

Proof: Let X,(r) be the sphere (Z e X: d(z, 2) 5 r] of 
radius r centered at x, where d is the metric defined on X. 

Consider first a point x E X having the property that 
every sphere X,(r), r > 0, has nonzero probability measure. 
Then, for any 6 > 0, 

P( min d(xii, x) 2 6) = (1 - P(S,(6))” + 0 69 k=1,2,.**.n 

and thercfore, since d(q x) is monotonically decreasing 
in lc, the nearest neighbor to x converges to x with prob- 
abilit’y one. 
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It remains to argue that the random variable x has 
this property with probability one. We shall do so by 
proving that the set N of points failing to have this 
property has probability measure zero. Accordingly, let 
N be the set of all x for which there exists some rZ suffi- 
ciently small that P(S,(r,)) = 0. 

By the definition of the separability of X, there exists 
a countable dense subset A of X. For each z e N there 
exists, by the denseness of A, a, in A for which ag E S,(r,/3). 
Thus, there exists a small sphere X,,(r,/Z) which is strictly 
contained in the original sphere X,(r,) and which contains 
3. Thus P(X,,(r,/2)) = 0. Then the possibly uncountable 
set N is contained in t’he countable union (by the count- 
ability of A) of spheres uZ,,,, S,Z(r,). Since N is contained 
in the countable union of sets of measure zero, P(N) = 0, 
as was to be shown. 

VI. NEAREST NEIGHBOR PROBABILITY OF ERROR 

Let 2; E {x,, x1, ... , z,) be the nearest neighbor t,o 
II: and let 8; be the category to which the individual having 
measurement 2; belongs. If 0 is indeed the category of IL’, 
theNN rule incurs loss L(e, 0;). If (5, e), (x1, 0,), . . . , (z,, 0%) 
are random variables, we define the n-sample NN risk 
R(n) by the expectation 

R(n) = E[L(e, e:)] 

and the (large sample) NN risk ZZ by 

(10) 

R = lim R(n). (11) n-m 

Throughout this discussion we shall assume that the 
pairs (x, S), (x1, e,), . . . , (x,,, 0,) are independent identi- 
cally distributed random variables in X X 8. Of course, 
except in trivial cases, there will be some dependence 
between t,he elements xi, ei of each pair. 

We shall first consider t,he M  = 2 cat’egory problem 
with probability of error criterion given by the 0 - 1 
loss matrix 

w> 

where L counts an error whenever a mistake in classifica- 
tion is made. The following theorem is the principal result 
of this discussion. 

Theorem 

Let X be a separable metric space. Let fl and f2 be 
such that, with probability one, x is either 1) a cont’inuity 
point of f1 and fz, or 2) a point of nonzero probability 
measure. Then the NN risk R (probability of error) has 
the bounds 

R* I R 5 2R*(l - R*). (13) 

These bounds are as tight as possible. 
Remarks: In particular, the hypotheses of the theorem 

are satisfied for probability densities which consist of any 

mixture of &functions and piecewise continuous density 
functions on Euclidean d-space. Observe t’hat 0 5 R” 5 
R 5 2R*(l - R*) 5 8; so Ii?* = 0 if and only if R = 0, 
and R* = 3 if and only if R = 3. Thus in the extreme 
cases of complete certainty and complete uncertaint’y the 
NN probability of error equals the Bayes probabilit,y 
of error. Conditions for equality of R and R* for other 
values of R” will be developed in the proof. 

Proof: Let us condition on the random variables x and 
2: in the n-sample KN problem. The conditional NN risk 
r(x, a:) is then given, upon using the conditional in- 
dependence of e and e;, by 

r(x, 2;) = E[L(e, e:,) / 5, x;] = P,{e # ei, / X, XL} 

= P?(e = 1 1 x)Pr(e:, = 2 1 XL) 

+ Pr{ e = 2 1 x}Pr(e:, = 1 IX;) 

where the expectation is taken over e and e;. 

development of (4) the above may be written as 

r(x, 23 = 7jl(x)fj2(x!J + $e(x)~i(x!J. 

(14) 

By the 

(15) 

We wish first to show that’ r(Ic, ai) converges to the 
random variable 2+ji (x) +jZ (x) with probability one. 

We have not required that fl, f2 be continuous at the 
points x of nonzcro probability measure v(x), because 
these points may be trivially taken into account as follows. 
Let v(x,) > 0; then 

Pr{x, # XL] = (1 - ZJ(Xg))n ---f 0. (16) 

Since x$ once equalling x0, equals x0 thereafter, 

r(x, xi) --$ 2&(x0)&(x0) 

with probability one. 

(17) 

For the remaining points, the hypothesized continuity 
of fl and f2 is needed. Here x is a continuity point of f, 
and fz with conditional probability one (conditioned on 
I% such that v(x) = 0). Then, since 7i is continuous in 
fl and f2, x is a continuity point of +j with probability one. 
By the lemma, XL converges to the random variable x 
with probability one. Hence, with probability one, 

ri(x3 --$ 4(x) (18) 
and, from (15), with probability one, 

r(x, XL) t r(x) = 2rj1(x)qZ(x), (19) 

where r(x) is the limit of the n-sample conditional NN risk. 
As shown in (6) the conditional Bayes risk is 

r*(x) = min (+jl(x), $(x) } 
@O> 

= min ( el(x), 1 - q,(x) ) . 

Now, by the symmetry of r* in +jl, we may write 

f”(x) = 24l(X)?iZ(X) = 2?j,(4o(I - 41(x)) 

= 2r*(x)(l - r*(x)). cw 
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Thus as a by-product of the proof, we have shown in measure v such that, with probability one, x is eit’her 
the large sample case, that with probability one a randomly 1) a continuity point of fl, f2, . . . , fl,f, or 2) a point 
chosen x will be correctly classified with probability of nonzero probability measure. Then the NN probability 
2r*(x)(l - r*(x)). For the overall NK risk R, we have, of error R has the bounds 
by definition, 

R = limE[r(x, x3] 
. 

(22) 
(29) 

where the expectation is taken over x and 2:. Now L, These bounds are as tight as possible. 

and hence r, is bounded by one; so applying the dominated Proof: Since XL --$ x with probability one, the posterior 

convergence theorem, probabilit)y vector $(x;) 3 q(x) with probability one. 
The conditional n-sample NN risk r(x, XL) is 

R = E[lim r(x, x3]. (23) n r(x, 2;) = E[L(e, eg [ x, XL] = 2 $*(x)qf(x;) (30) 
The limit, from (19) and (21), yields ifi 

R = E[r(x)] 
which converges with probability one to the large sample 
conditional risk r(x) defined by 

= m@l(X)~2(X)] 

= E[2r*(x)(l - r*(x))]. (24) 
r(x) = z %(x)%(x) = 1 - $ 9Xx). (31) 

Since the Bayes risk R* is the expectation of r*, we have The conditional Baycs risk r*(x), obtained by selecting, 

R = 2R*(l - R*) - 2 Var r*(x). (25) 
for a given x, the maximum +j;(x), say ?ik(x), is given by 

Hence 

R i 2R*(l - R”), (26) 
with equality iff Var r * = 0, which holds iff r* = R* 
with probability one. Investigating this condition we find 
that for R = 2R”(l - R*) it is necessary and sufficient 
that 

F;% = R*/(l - R”) or (1 - R*)/R* (27) 22 

for almost every x (with respect to the probability meas- 
ure v). 

Rewriting (24), we have 

R = E[r*(x) + r*(x)(l - 2r*(x))] 

= R* + E[r*(x)(l - 2r*(x))] 

2. R* cw 

with equality if and only if r*(x)(l - 2r*(x)) = 0 almost 
everywhere (with respect to v). Thus the lower bound 
R = R* is achieved if and only if r* equals 0 or 3 almost 

r*(x) = 1 - my ( Sj(x)} = 1 - qii(x). 

By the Cauchy-Schwarz inequality 

= [I - ?jk(x)]’ = (r*(x))‘. 

Adding (M - l)@ (x) to each side, 

(M - 1) 5 @ f(x) >_ (r*(x))’ + (111 - l)+?:(x) 
i-1 

or 

= (r*(x))’ + (M - l)(l - r*(x))’ 

5 $3(x) 2 !$+$ + (1 - r*(x))’ 
,=I 

Substituting (35) into (31), 

r(x) _< 2r*(x) - j+$y (r*(x))‘. 

(32) 

(33) 

(34) 

(35) 

(36) 

,everywhere and Er* = R*. Examples of probability 
distributions achieving the upper and lower bounds will 

Taking expectations, and using the dominated convergence 
theorem as before 

be given at the end of this section following the extension 
to M  categories. 

- 

Consider now the M-category problem with the prob- R = 2R* - 2-s (R*)” - & Var r*(x). (37) 

ability of error criterion given by the loss function L(i, j) = 0, 
for i = j, and L(i, j) = 1, for i # j. The substitution Hence 
trick of (21) can no longer be used when Ad # 2. 

R 5 R* 2 
M  

(3% 
Theorem (Extension of Theorem 1 to Al # 2) 

- M  _ 1 R* > 

Let X be a separable metric space. Let fl, f2, -. - , f,w with equality if and only if Var r*(x) = 0. Of course, 
be probability densities with respect to some probability Var r* = 0 implies r*(x) = R* with probability one. 
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The upper bound is attained for the no-information 
experiment fl = fz = . . . = f,,{, with 71~ = 1 - R*, R* = 1 min {~ld~, ~f?l dv 

and vi = R*/(M - 1); i = 2, . . . , M. The lower bound 

s 

1 
R = R* is attained, for example, when vi = l/ill, i = = min. (x, 1 - ~1 c/n: = a. (43) 
1, 2, ..a , ill, and 0 

MR* 
Exhibiting corresponding terms WC have 

ori<n:<i+l---- M - 1 Iit* < R 5 2R*(l - R*) 

i 0, elsewhere. 

VII. EXAMPLE In this example we have found an exact expression 
Let the real valued random variable x have triangular for the NN risk R(n) for any finite sample size. Observe 

densities fl and fz with prior probabilities r]l = r12 = 3, that R(1) = 3, in agreement with simpler considerations, 
as shown in Fig. 2. The density f = vlfl + q2f2 on x is and that R(n) converges to its limit approximately as l/n”. 
uniform on [0, 11, thus facilitating calculation of the dis- 
tribution of the nearest neighbor XL. VIII. THE LNN RULE 

li‘rom Section V it is also possible to conclude that the 
kth nearest neighbor to x converges to x with probability 
one as the sample size n increases with k fixed. Since each 
of the nearest neighbors casts conditionally independent 
votes as to the category of x, we may conclude, in the 
2-category case for odd k, that the conditional k-NN 
risk rk(x) is given in the limit (with probability one) as n 
increases, by 

r,(x) = $I(x)(“y (!)$i(x)(l - q,(x))“-i 
i=o 

Fig. 2. Triangle densities for example. 

+ (1 - ?ii(J-1) ix(g),, (;)$:(:I:)(1 - sl(.?l))“-i. (45) 

Note that the conditional NN risks T&(Z) are monotonically 
decreasing in lc (to min (+,$(x>, 1 - 7jl(x) }), as we might 
suspect. Thus the least upper bounds on the uncondi- 
tional NN risks R, will also be monotonically decreasing 
in k (to R*). 

Observe that in (45) TV is symmetric in 7jl and 1 - 7jl. 
Thus r,C may be expressed solely in terms of r* = min 
{ fil, 1 - ql) in the form 

7-r = p&Jr*) 

The probability of error for this example in t.he n-sample 
single NN case is 

R(4 = fi’[rllvzf,(4fdx!) + ~~d(x)f~(x:,)l 

= B:[2(1 - X.,:) + (1 - X)X:]. (40) 
Upon performing a lengthy but straightforward cal- 

culation, we obtain 

K(n) = ;+ 
(n + l:(,, + 2) 

-. (41) 

Thus 

22 = lim R(n) = 4. (42) 72’ m 

The NN risk R is to be compared to the Bayes risk 

(k-1)/2 k ZT * c 0 j7 (rY)‘(l - r*)k--i 
j=” 

+ (1 - ?“*> j=C& ($?“;“)‘(l - ,.*)i,-i. (46) 

Now let /&(r*) be defined to be the least concave function 
greater than am. Then 

r,, = pB(r*) I pI;(r*), (47) 
and, by Jensen’s inequality, 

R, = Erk = Epk(r*) 5 E&(r*) < jk(Er*) = &(R*). (48) 

So ,&(R*) is an upper bound on the large sample k-NN 
risk Rk. It may further be shown, for any R*, that .&(R*) 
is the least upper bound on Rk by demonstrating simple 
statistics which achieve it. Hence me have the bounds 
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R* 5 Rk I j%(R*) 5 &cm-1(R*) 5 . . . 

I iI = 2R*(l - R*) (49) 

where the upper and lower bounds on R, are as tight 
as possible. 

IX. CONCLUSIONS 

The single NN rule has been shown to be admissible 
among the class of k,-NN rules for the n-sample case 
for any n. It has been shown that the NN probability 
of error R, in the M-category classification problem, is 
bounded below by the Bayes probability of error R” and 
above by R*(2 - MR*/(M - 1)). Thus any other decision 
rule based on the infinite data set can cut the probability 
of error by at most one half. In this sense, half of the 
nvailable information in an infinite collection of classified 
s.tmples is contained in the nearest neighbor. 

111 

[41 

[51 

bl 
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A Generalized Form of Price’s Theorem and Its Converse 
JOHN IA. BROWN, JR., SENIOR MEMBEK, IEEE 

Abstract-The case of n unity-variance random variables 
x1, XZ,. * *, x, governed by the joint probability density w(xl, xz, * * * x,) 
is considered, where the density depends on the (normalized) 
cross-covariances pii = E[(xi - jzi)(xi - li)]. It is shown that the 
condition 

holds for an “arbitrary” function f(xl, x2, * * * , x,) of n variables if 
and only if the underlying density w(xl, XZ, * * * , x,) is the usual 
n-dimensional Gaussian density for correlated random variables. 
This result establishes a generalized form of Price’s theorem in 
which: 1) the relevant condition (*) subsumes Price’s original con- 
dition; 2) the proof is accomplished without appeal to Laplace 
integral expansions; and 3) conditions referring to derivatives with 
respect to diagonal terms pii are avoided, so that the unity variance 
assumption can be retained. 
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RICE’S THEOREM and its various extensions 
([l]-[4]) have had great utility in the determination 
of output correlations between zero-memory non- 

linearities subjected to jointly Gaussian inputs. In its 
original form, the theorem considered n jointly normal 
random variables, x1, x2, . . . x,, with respective means 
21, LE2, . . . ) Z, and nth-order joint probability density, 

P(z 1, .x2, . 1  . , :r,,) = (27p ply,, y 

. exp 
{ -a F  F  ;;;, ~ (2,. - 2,)(:r, - 5,) 

I 
, (1) 

where IM,l is the determinant’ of J1,, = [p,,], 

Pr-. = E[(sr - 5$.)(x, - ,2J] = xvx, - &IL:, 

is the correlation coefficient of x, and x,, and Ail,, is the 
cofactor of p.? in ilf,. 

From [l], the theorem statement is as follows: 

“Let there be n zero-memory nonlinear devices specified 
by the input-output relationship f<(x), i = 1, 2, . 1  . , n. 
Let each xi be the single input to a corresponding fi(x) 


