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Abstract—A classifier that couples nearest-subspace classifica-
tion with a distance-weighted Tikhonov regularization is proposed
for hyperspectral imagery. The resulting nearest-regularized-
subspace classifier seeks an approximation of each testing sample
via a linear combination of training samples within each class.
The class label is then derived according to the class which best
approximates the test sample. The distance-weighted Tikhonov
regularization is then modified by measuring distance within a
locality-preserving lower-dimensional subspace. Furthermore, a
competitive process among the classes is proposed to simplify
parameter tuning. Classification results for several hyperspectral
image data sets demonstrate superior performance of the pro-
posed approach when compared to other, more traditional
classification techniques.

Index Terms—Classification, hyperspectral data, Tikhonov
regularization.

I. INTRODUCTION

O
VER the last decade, hyperspectral imagery (HSI) ob-
tained by remote-sensing systems has been investigated

at length [1]. HSI provides high-resolution spectral information
over a wide range of the electromagnetic spectrum with hun-
dreds of observed spectral bands. Numerous supervised classi-
fication techniques for hyperspectral data have been developed
(e.g., [2]–[5]) for a variety of application areas, including
agricultural monitoring, environment-pollution monitoring, and
urban-growth analysis, among others.

The k-nearest-neighbor (k-NN) classifier (e.g., [6], [7]),
one of the simplest and oldest classification methods, has
been widely used for HSI classification. This nonparametric
classifier usually employs a Euclidean distance between the
training and testing samples, assigning class labels according
to the most frequently occurring class of the k nearest train-
ing samples. However, the high-dimensional nature of HSI
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data creates complications for k-NN classification in terms
of both computational complexity and classification accuracy.
Many dimensionality-reducing techniques have been proposed
to combat this so-called curse of dimensionality, such as the
popular linear discriminant analysis (LDA) [8] and its variants
(e.g., [9], [10]). Typically, parametric classification is employed
after dimensionality reduction, for example the maximum like-
lihood estimation (MLE) [11] of posterior probabilities. The
support vector machine (SVM) [12] is a state-of-the-art clas-
sifier which has also been shown to work well for hyperspectral
classification tasks. An SVM seeks to separate classes by learn-
ing an optimal decision hyperplane which best separates the
training samples in a kernel-induced high-dimensional feature
space. Nonlinear kernels may also be used within the SVM
framework to achieve nonlinear separation in the feature space
via linear separation in the kernel-induced space. Variations of
the SVM (e.g., [3], [13]) have been proposed to further im-
prove classification performance. For example, in [13], locality
Fisher’s discriminant analysis (LFDA) was employed to reduce
the dimensionality of hyperspectral data for the SVM classifier.
The LFDA-SVM technique of [13] was demonstrated to be
effective for HSI classification, especially when few training
samples are available.

Recently, Wright et al. [14] introduced sparse-representation
classification (SRC) for face recognition—in essence, SRC
represents a testing sample by a sparse linear combination of
training samples calculated via ℓ1 minimization. In [15], the
authors applied a sparse framework for HSI classification and
subsequently exploited sparsity for the classification task in
a graphical model [16], [17] and a kernel space [18], [19].
There are a number of additional works that invoke sparse
representation specifically for HSI classification—for example,
[20] adopted sparse representation in the special case that very
few labeled training samples are available; [21] considered dis-
criminative sparse representation; while [22] introduced sparse
representation in semisupervised learning.

An approach similar to SRC was taken by Zhang et al.

[23] who proposed collaborative-representation classification
(CRC) for face recognition. CRC is similar to SRC in that
a linear combination of training samples represents a testing
sample. However, contrary to the ℓ1-based sparsity-inducing
regularization of SRC, CRC uses an ℓ2-regularized minimiza-
tion, providing competitive face-recognition accuracy but at
significantly lower computational complexity.

In this paper, we couple nearest-subspace classification with
the distance-weighted Tikhonov regularization from [24], [25].
In the resulting system, which can be considered to be a

0196-2892 © 2013 IEEE



478 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 1, JANUARY 2014

nearest-regularized-subspace (NRS) classifier, an approxima-
tion for each testing sample is created via linear combination of
all available training samples within each class. In this manner,
an approximation of each test sample is generated from training
samples of each class independently. The class label is then
derived according to the class of the most accurate represen-
tation. In a general sense, this NRS classification is similar to
both SRC and CRC in that testing samples are approximated via
linear combinations of training samples; however, NRS differs
in that, not only does it use a noncollaborative approach to the
approximation, but it also employs non-uniform regularization.

We also introduce, as a further extension of the proposed
NRS paradigm, a discrimination-enhancing distance measure
[26] designed to improve classification accuracy. Furthermore,
a competitive strategy is presented for automatically obtaining
optimal performance for the proposed system, thus avoiding
involved parameter tuning via cross-validation. Classification
results are presented for several HSI data sets to demonstrate the
superior classification accuracy of the proposed approach when
compared to traditional classification techniques. Ultimately,
our work is composed of three main contributions: 1) the NRS
classification system based on a distance-weighted Tikhonov
regularization (an ℓ2-regularized term) calculating a represen-
tation for each testing sample; 2) a discrimination-enhancing
distance measure which improves the Tikhonov biasing term;
and 3) a competitive strategy that eliminates the need for
involved parameter tuning.

The paper is organized as follows: in Section II, we provide
a brief review of relevant classification methods, while in
Section III, we provide a detailed description of the proposed
NRS classifier and its variants. In Section IV, we experi-
mentally compare the performance of the proposed method
with several conventional HSI classification techniques. We
conclude by summarizing our results in Section V.

II. BACKGROUND

A. Nearest-Neighbor Classification

The nearest-neighbor (NN) algorithm (e.g., [6], [7]) is per-
haps the simplest supervised method to predict a testing-sample
label. The NN classifier attempts to find the training sample
nearest to the testing sample according to a given distance
measure, assigning the former’s category to the latter. Con-
sider a data set with training samples X = {xi}

n
i=1 in R

d (d-
dimensional feature space) and class labels ωi ∈ {1, 2, . . . , C},
where C is the number of classes, and n is the total number
of training samples. Let nl be the number of available training
samples for the lth class,

∑C
l=1 nl = n. Commonly, Euclidean

distance is used, such that the distance measure between train-
ing sample xi and given testing sample y is

d(xi,y) = ‖xi − y‖22. (1)

The k-NN classifier is a straightforward extension of the
original NN classifier. Instead of using only one sample closest
to testing point y, the k-NN classifier chooses the k nearest
samples from training data X. Typically, k is an odd number,
and majority voting is employed to decide the final label.

B. ℓ1- and ℓ2-Regularized Collaborative Representation

for Classification

Classification based on sparse representation has been re-
cently studied for both for face recognition [14], and HSI
analysis [15], [20]. The SRC approach offers classification
which is robust to noise and model errors; for more discussion
of the geometrical and graphical interpretations of SRC, we
refer the reader to [14].

In essence, an SRC method classifies a testing sample y

according to the class which produces the most accurate sparse
representation of y, i.e., the class which produces the most
parsimonious description using the training data as the “dictio-
nary” for forming the representation. First, an approximation of
y is calculated via a sparse linear combination of all available
training samples. That is, for training samples arranged column-
wise in the matrix X of dimensionality d× n, we desire to find
an n× 1 vector of sparse coefficients, α, such that Xα is near
to y. Basis pursuit denoising (BPDN) [27] offers one approach
for calculating α by solving the ℓ1-regularized minimization

α = argmin
θ

‖y −Xθ‖22 + λ‖θ‖1 (2)

where the regularization parameter, λ > 0, balances the influ-
ence of the residual and sparsity terms. We mention the BPDN
formulation in particular here because of its confluence with
several regularization techniques we present later. However,
other formulations may be equivalently substituted, such as the
least absolute shrinkage and selection operator (LASSO) [28]
or basis pursuit (BP) [27]. In any event, after α is calculated,
a representation for each class, ỹl, is created through a process
we term postpartitioning.

The postpartitioning approach separates X into l different
class-specific sub-dictionaries according to the given class la-
bels of the training data, Xl = {xi| ∀i s.t. ωi = l}; addition-
ally, the coefficient vector α is also “partitioned” similarly into
αl = {αi| ∀i s.t. ωi = l}. After this partitioning, class-specific
representations, ỹl, are calculated as

ỹl = Xlαl. (3)

We note that this use of all the training data concurrently, as in
postpartitioning, stands in contrast to the traditional approach
used in nearest-subspace (NS) classifiers [29], [30] which use
what we call prepartitioning. In such prepartitioning, the train-
ing data is first partitioned into Xl, and these partitions are
instead used to calculate each ỹl independently, via, e.g., BPDN
applied independently for each partition.

In SRC, after calculating each ỹl via (3), the class label of y
is then determined according to the class which minimizes the
residual, i.e.,

class(y) = arg min
l=1,...,C

(rl) (4)

where rl = ‖ỹl − y‖22 is the residual between the approxima-
tion and corresponding testing sample. A detailed description
of the SRC algorithm is given as Algorithm 1.
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Algorithm 1 The SRC Algorithm
Input: Training data X = {xi}

n
i=1, class labels ωi, testing

sample y ∈ R
d, λ

Calculate α via ℓ1-minimization of (2)
for all l ∈ {1, 2, . . . , C} do

Partition Xl, αl

Calculate ỹl = Xlαl

end for

Decide class(y) via (4)
Output: class(y)

In [14], [15], it was posited that the sparse representation
alone led to the observed improvements in classification ac-
curacy. However, both [31] and [23] raise concerns over the
SRC framework. In [31], it was shown via analysis of singular
values that face data sets are, generally, not a suitable fit for
SRC. To show that a sparse approach is unwarranted for face
recognition, a QR decomposition was used to calculate each ỹl

instead of sparse approximation; the resulting performance of
this technique was competitive with that of SRC.

Additionally, in [23], it was suggested that the improvement
in classification accuracy was not due to sparsity, but rather due
to the “collaborative” nature of the approximation. Specifically,
it was argued that using the entire training data set to form
approximations via postpartitioning rather than using preparti-
tioning as in NS allows for acceptable classification accuracy
when signal dimensionality is high or when the number of
available training samples are few. To support this argument,
[23] proposed the CRC approach which swapped the ℓ1 penalty
of SRC for an ℓ2 penalty in the style of Tikhonov regularization
[32], i.e.,

α = argmin
θ

‖y −Xθ‖22 + λ‖θ‖22. (5)

Rather than enforcing a strong assumption about the nature
of the data set’s geometry, the ℓ2-regularization (or shrinkage)
term instead serves only to overcome the potential for ill-
conditioning and ill-posedness in the inverse problem.

One particular advantage of CRC is that (5) may be solved
with a simple and closed form. To do this, we take the derivative
of the cost function of (5)

J(θ) = (y −Xθ)T (y −Xθ) + λθT
θ (6)

∂J(θ)

∂θ
= − 2XT (y −Xθ) + 2λθ. (7)

By setting the derivative to zero, we find the value of θ which
minimizes the cost function

θ = (XTX+ λI)
−1
XTy (8)

where I is an identity matrix of appropriate size. From (8), we
may calculate the approximation of y

ỹ = X(XTX+ λI)
−1
XTy = HCRCy. (9)

After calculating ỹ, the postpartitioning and classification is
carried out in a manner identical to the SRC via (3) and (4). It
is noted in [23] that HCRC is dependent upon only the available
training data. Thus, the projector HCRC may be precomputed
to reduce classification time for large-volume tasks. CRC was
shown to provide face-recognition accuracy comparable to SRC
with much lower computational cost. A detailed description of
CRC is given as Algorithm 2.

Algorithm 2 The CRC Algorithm
Input: Training data X = {xi}

n
i=1, class labels ωi, testing

sample y ∈ R
d, λ

Calculate α according to (9)
for all l ∈ {1, 2, . . . , C} do

Partition Xl, αl

Calculate ỹl = Xlαl

end for

Decide class(y) according to (4)
Output: class(y)

Algorithm 3 Proposed NRS Classifier
Input: Training data X = {xi}

n
i=1, class labels ωi, testing

sample y ∈ R
d, λ

Partition Xl

for all l ∈ {1, 2, . . . , C} do

Calculate Γl,y according to (11)
Calculate ỹl according to (12)

end for

Decide class(y) according to (4)
Output: class(y)

The common element between these works and the sparse ap-
proaches of [14], [15] is the assumption of a collaborative, post-
partitioning framework for calculating class representations,
ỹl. However, this general approach is only loosely justified
in previous literature with few significant details given for the
departure from the NS approach of prepartitioning.

We investigate the effects of pre- and postpartitioning empir-
ically for hyperspectral data in Fig. 1 using the Indian Pines
data set with 1496 training samples (see Section IV-A for a
detailed description of this data set). The classification accuracy
is calculated over a range of possible values for the free regular-
ization parameter, λ. We denote the prepartitioning technique
here as CRC-Pre. The only difference between CRC-Pre and
the postpartitioning-based CRC is that each ỹl is calculated
in the former using only the training samples from class l,
Xl. Even though HSI data resides in the context proposed
for collaborative techniques—namely high-dimensionality data
with few training samples—Fig. 1 shows collaborative postpar-
titioning may actually do more harm than good. From these
results, it is evident that advances in face recognition us-
ing collaborative approximations cannot be applied wholesale
to HSI classification. We argue that a different approach is
required.
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Fig. 1. Classification accuracy of pre- and postpartitioning (CRC-Pre and
CRC, respectively) for the Indian Pines HSI data set over a range of values
for the regularization parameter λ.

III. PROPOSED NRS CLASSIFIER

A. Basic NRS Algorithm

In this section, we propose the NRS classifier which couples
prepartitioning as in NS with non-uniform Tikhonov regular-
ization for the classification of hyperspectral data when few
training samples are available. Like CRC, NRS makes use of
Tikhonov regularization [32] to generate each ỹl. However,
instead of using uniform regularization as CRC does, we adopt
a technique proposed in [24], [25], therein termed multihypoth-
esis (MH) prediction, which biases atoms of Xl according to
their Euclidean distance from y. In [24], [25], MH prediction
was used to recover video macroblocks from a small set of
random linear measurements taken on the encoder side when
a set of high-quality keyframe macroblocks was available on
the decoder side via a linear combination of these keyframe
macroblocks. The non-uniform nature of the regularization was
used to penalize potentially inaccurate macroblocks from being
assigned large contributions in the final recovery.

Likewise, in supervised classification, we are given a set of
training, or hypothesis, data from which we desire to create
approximations via linear combination. Namely, we seek an
approximation of y for each class, ỹl, calculated from only the
training samples particular to class l, Xl. We calculate the per-
class coefficients, αl, according to

αl = argmin
θ

‖y −Xlθ‖
2
2 + λ‖Γl,yθ‖

2
2 (10)

where Γl,y is a biasing Tikhonov matrix specific to each class l
and test sample y, and λ is a global regularization parameter
which balances the minimization between the residual and regu-
larization terms. Specifically, we use a diagonalΓl in the form of

Γl,y =

⎡
⎢⎣
‖y − xl,1‖2 0

. . .
0 ‖y − xl,nl

‖2

⎤
⎥⎦ (11)

where x1,x2, . . . ,xnl
are the columns of Xl for the lth class.

According to the minimization defined in (10) and the structure
of Γl,y given in (11), hypotheses which are the most dissimilar
to y, in terms of Euclidean distance, should be given much less
contribution toward the linear combination than those which are
most similar. Using this distance-weighting measure for Γl,y

enforces a structural meaning to calculated weights without
making as stringent of an assumption as true sparsity. Each
testing sample ỹl can then be calculated in closed form in a
similar fashion to (5), resulting in

ỹl = Xl

(
XT

l Xl + λΓT
l,yΓl,y

)−1
XT

l y = HNRSy. (12)

After calculating ỹl for each class, the class assignment for y is
calculated according to (4).

The effect of the ℓ2-regularization term is twofold. First, if
the training samples are sufficiently similar in each class, or if a
large set of training samples is used (nl ≫ d), the matrix XT

l Xl

will either have poor conditioning or be near-singular. The con-
sequence is that the calculation of its inverse will be inaccurate
(or impossible), creating a lack of backwards stability in the
inverse problem, leading to the calculated weights being of high
variance and conveying little to no meaning. Enforcing the reg-
ularization term enforces stability on the problem by effectively
inflating the singular values of Xl, improving the conditioning
of the problem. Second, the form of the biasing matrix Γl,y used
in the regularization term allows for discrimination between
classes. Without this term, it is possible, in certain conditions,
for each Xl to approximate y with arbitrary accuracy, thus
removing any discriminative power from rl. This situation can
be effected by setting λ = 0, causing (10) to become a least-
squares (LSQ) problem. As illustrated in Fig. 1, a near-zero
regularization term destroys the accuracy of the classifier.

To further investigate the relationship between NRS and
CRC-Pre and the effects of the non-uniform Tikhonov matrix
of (11), we compare the properties of both HCRC and HNRS

in terms of their eigendecompositions as they relate to the
singular values of the data matrix Xl; the regularization pa-
rameter λ; and, in the case of NRS, the generalized singular
values between Xl and the Tikhonov matrix Γl,y . We show
how NRS achieves varying degrees of shrinkage according to
each particular test sample and contrast this with the uniform
shrinkage applied by CRC-Pre. We also demonstrate how this
variability across test samples gives NRS more flexibility in
determining complex decision boundaries.

To do this, we will first decompose HCRC according to the
singular value decomposition (SVD) of Xl, namely

Xl = ŨΣṼT (13)

where Ũ and Ṽ are both orthogonal matrices, and Σ is a
diagonal matrix of the singular values, {σ1, σ2, . . . , σd}, of
the data matrix Xl. We substitute this decomposition into the
equation for HCRC given in (9)

HCRC = ŨΣṼT (ṼΣΣṼT + λI)−1ṼΣŨT (14)

= ŨΣ(ΣΣ+ λI)−1ΣŨT (15)

= ŨM̃ŨT (16)
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where M̃ is a diagonal matrix consisting of the values
{μ̃1, μ̃2, . . . , μ̃d} ∈ [0, 1]

μ̃i =
σ2
i

σ2
i + λ

. (17)

To decompose HNRS, we instead employ generalized SVD of
both Xl and Γl,y

Xl =UΣXZT (18)

Γl,y =VΣΓZ
T (19)

where Z = Q[0,R]T ; Q, U, and V are orthogonal; and R is
upper-triangular. The diagonal matrices ΣX and ΣΓ contain
the singular values {σX,1, σX,2, . . . , σX,p} and {σΓ,1, σΓ,2,
. . . , σΓ,p} where p = min(d, nl), since the generalized singular
values of the two matrices cannot be calculated beyond the
smallest column rank of the two. We note that ΣX and ΣΓ

are both zero-padded such that the dimensions are appropriate.
The singular values provided by the generalized SVD decom-
position have two unique properties, first, σX,i ∈ [0, 1], and
σΓ,i ∈ [0, 1]; and, second, σ2

X,i + σ2
Γ,i = 1.

Next, we substitute these decompositions into (12), and,
using a procedure similar that used to calculate (16), we find

HNRS =UΣX(ΣXΣX + λΣΓΣΓ)
−1ΣXUT (20)

=UMUT (21)

where M is a diagonal matrix containing the values in the
range [0, 1]

μi =
σ2
X,i

σ2
X,i + λσ2

Γ,i

. (22)

Additionally, since M must be of dimensionality d× d, in the
event that nl < d, the entries {μnl+1, . . . μd} are set to zero.
The same is true for the values of M̃. Since the matrices Ũ

and U are orthogonal, the two decompositions of (16) and (21)
represent the eigendecompositions of the projection matrices
HCRC and HNRS.

We can observe that the values of μ̃i are dependent on
the structure of the training samples given for each class and
the value of the regularization parameter λ. This means that the
same amount of shrinkage is applied to all test samples for
a given class, creating a more general decision boundary (as
evidenced by Figs. 3 and 4 which we describe shortly). The
values of μi, however, are additionally dependent on the dis-
tance relationships between the columns of Xl and y according
to the distance metric used to construct Γl,y . In fact, from the
properties of the singular values provided by the generalized
SVD (i.e., σ2

X,i + σ2
Γ,i = 1), we can describe μi entirely by the

singular values of Γl,y

μi =
1− σ2

Γ,i

1− (1− λ)σ2
Γ,i

. (23)

We plot the value of μi as a function of σΓ,i for several different
values of the regularization parameter, λ, in Fig. 2. Here, we

Fig. 2. Relationship between the singular values, σΓ,i, and the eigenvalues of
HNRS, μi, for different values of the regularization parameter, λ.

Fig. 3. Decision boundary determined using the NRS classifier on a two-class
synthetic data set, calculated for λ = 1. The decision boundary for the SVM
classifier using the radial-basis kernel is also shown.

see the inverse relationship between the size of the singular
values of Γl,y and the resulting eigenvalues of HNRS. As y

becomes more distant from the class training samples Xl, the
entries of Γl,y increase, and its singular values ΣΓ increase
accordingly in proportion to ΣX. This increase in ΣΓ forces
the eigenvalues of HNRS to decrease. Essentially, classes whose
training samples are distant from y incur a stiffer shrinkage
penalty than classes which contain training samples in close
proximity to y. By increasing the shrinkage penalty on such
class’s approximations, ‖ỹl − y‖22 grows, making these class
assignments unlikely for y. By including proximity information
into the regularization, we see that the NRS classifier is a blend
between distance, or exemplar, based classifiers such as k-NN,
and NS-style classifiers such as CRC-Pre.

Figs. 3 and 4 show the decision boundaries produced for
two synthetic 2-D data sets using the proposed NRS as well
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Fig. 4. (Top) Decision boundaries determined using the NRS classifier for
λ = 1 and the SVM classifier using the radial-basis kernel for two synthetic
normally distributed intersecting classes with common mean. (Bottom) Closer
inspection of the class intersection.

as the SVM classifier using a radial-basis kernel and the CRC-
Pre classifier. In both experiments, the data sets are not lin-
early separable and require complex boundaries for accurate
classification. In Fig. 3, both the SVM and NRS classifiers
produce a flexible boundary which accurately cuts between the
two classes; however, the SVM boundary appears to be a more
general fit, with the NRS boundary being more data dependent.
The CRC-Pre classifier, however, cannot accurately distinguish
between the two classes. In Fig. 4, we see two overlapping
classes with shared means. Here, the NRS boundary performs
better by cutting closer to the mean, reducing incorrect classi-
fication for samples generated from Class 1 near the mean, as
compared to the SVM. The CRC-Pre classifier performs well
in this environment, creating an almost linear set of decision
boundaries between the two classes.

There are several differences between the proposed method
and the previously discussed k-NN, SRC, and CRC techniques.
First, the NRS classifier, unlike the k-NN classifier, does not
limit its classification to the correspondence between testing

samples and the provided training data alone. Instead, by
forming an approximation from each class, NRS compares the
testing sample with what can be considered to be an imaginary
training sample which could have conceivably been drawn
from the same process that produced the class training data
provided. Secondly, the NRS classifier does not rely on time-
consuming iterative sparse-recovery algorithms, as is the case
with SRC and other such sparse techniques for classification.
While recent investigations of sparse regularization have been
of wide interest in signal processing in general, in this area at
least, they do not seem to provide significant performance gains
to outweigh their computationally expensive implementations.
Lastly, while both NRS and CRC employ Tikhonov regular-
ization to calculate class approximations, NRS cleaves to the
traditional NS approach of prepartitioning and calculating class
approximations independently while additionally employing a
non-uniform shrinkage on the coefficients of αl.

When constructing the biasing matrix Γl,y as in (11), we
see that only the Euclidean distance between training and test
samples is considered. In Section IV, it is demonstrated that this
approach to biasing provides gains in classification accuracy for
HSI data sets; however, it is well known that using Euclidean
distances for very high-dimensional data can be an exercise
in futility for certain data distributions. In the next section,
we propose a method to alter the construction of Γl,y by
using a generalized distance measure chosen to maximize class
discrimination.

B. Dynamic Regularization for Classification

In Section III-A, we see that the proposed NRS classifier
does not estimate or explicitly account for class probability
distributions—instead it measures only the ability of each class
to approximate a given target sample given a regularization pa-
rameter, λ. This regularization parameter is a significant factor
in our proposed system, and, in fact, in all regularization-based
techniques which make use of weighted-sum penalty functions.
From Fig. 1, we can see that the setting of this parameter can
also greatly affect classification accuracy. Both the SRC and
CRC approaches offer little information on how this parameter
should be set other than to suggest that cross-validation (CV)
approaches could be used—splitting the training set into two
parts and testing for a value which maximizes classification
accuracy. However, the CV approach might not give an accurate
estimation of the optimal λ when very few training samples
are available, or might even be infeasible for extremely small
training sets.

We propose to eliminate the need for CV estimations of λ
by constructing a classifier which does not require fine-tuning
of many side variables (for which classifiers such as SVM are
notorious) at the cost of somewhat increased computation. We
do this by making the observation that, in the case of classifi-
cation, we are actually unconcerned with the accuracy of the
approximations ỹl; rather, we want just that their proximities
to y are such that they allow us to discriminate the class of y
accurately.

To observe the behavior of the NRS classifier with respect to
λ, a two-feature synthetic testing environment is considered in
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Fig. 5. Behavior of the NRS classifier for a synthetic three-class problem in
two dimensions for a test sample drawn from class C3. (a) The 20 training
samples per class and the solution paths for each class as λ decreases from 10

4

to 10
−5. (b) Per-class NRS-classifier approximation accuracy. Approximations

generated by the true class (C3) are more accurate for λ > 10
−6.

Fig. 5. For this data set, all samples exist in only two dimen-
sions, facilitating the visualization of the classifier behavior.
Three classes of synthetic data randomly drawn from Gaussian
distributions are created with a single test sample drawn from
one of these three classes. By treating each approximation as a
function of λ for a fixed training set and test sample, ỹl(λ), and
by varying λ over a range of values (in this case 104 to 10−10),
a set of approximations over the domain of λ tested, which we
term a solution path, is generated for each class.

Looking at the approximation accuracy of the solution paths
in Fig. 5(b), an interesting phenomenon becomes apparent. For
large values of λ, the regularization term ‖Γl,yαl‖

2
2 becomes

the dominant term in the cost function of (10), and the rep-
resentations approach the zero vector to minimize this biased
norm. However, for small λ, the representations approach the
test sample, y. Between these two modes, an inflection point
occurs wherein the solution path rapidly changes direction. This
feature is common to any minimization problems which utilize

Fig. 6. Effect of noise on the optimal setting for ǫ in terms of overall
classification accuracy of the NRS classifier for the Pavia Centre data set.
Curves correspond to differing levels of noise corruption applied to the data
set. The horizontal lines correspond to the value of ǫ which matches the level
of noise in the data set.

a weighted sum of cost functions as Tikhonov regularization
does. For classes whose members best represent y, this saddle
point is less pronounced. For classes whose members are most
dissimilar, the inflection point is quite pronounced, as the
“initial” trajectories of these classes are oriented away from y.
However, the solution path created by the correct class tends
to approach y more rapidly, i.e., the approximations for the
third class, ỹ3, are more accurate for larger values of λ than
the approximations generated by the other classes. The rapidity
of convergence can be seen in Fig. 5.

We propose to use this feature to eliminate the need for
setting a fixed value of λ prior to classification. We do this
by setting a threshold, ǫ, on the approximation accuracy in
terms of mean square error (MSE), (1/d)‖ỹl(λ)− y‖22, and
determining the classification based upon the first class to
pass this threshold as λ is stepped from large to small values,
causing the proposed method to resemble a “race” between the
classes. From Fig. 5(b), we can see that, for this small scale
demonstration, ǫ is a more robust parameter, as any choice
within the range of [10−25, 100] would leave the classification
unchanged. This is in contrast to the parameter λ, for which, in
different test environments, small deviations from the optimal
setting may degrade classification performance significantly.

Also, the addition of noise to the data set can cause the
optimal choice for λ to shift away from a priori expected
values. Instead of indirectly accounting for noise by adjusting
λ, an approximation of the noise energy can be used to set ǫ
directly. We demonstrate this in Fig. 6 wherein five different
levels of zero-mean iid Gaussian noise were applied to the
Pavia Centre data set. A wide range of possible values for
ǫ were tested under these varying-noise conditions, and the
overall classification accuracy is shown as a function of ǫ. The
horizontal lines shown in Fig. 6 represent the values of ǫ which
match the true noise levels tested. We can see from this chart
that the peak classification accuracy for the range of tested ǫ at
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each noise level corresponds closely with the overall accuracy
achieved by setting ǫ to match the true noise level.

Additionally, if only a small number of training samples are
available to drive the classification, the effectiveness of using
CV approaches to estimate an optimal fixed setting for λ can
be greatly diminished. Also, it is reasonable to assume that
not every test sample requires the same value of λ to ensure
correct classification. The proposed method accounts for the
individuality of each test sample by sidestepping the need for a
fixed λ at all, testing each sample’s classification across a range
of λ. Together, these features make dynamic regularization
more robust than using a fixed λ and ensure stable classifier
performance for the practitioner.

C. Enhancing Discrimination Power

One popular method of enhancing discrimination for hy-
perspectral classification is through LDA [8]. LDA projects
from its natural, perhaps high-dimensional, space into a lower-
dimensional subspace via a transform procedure aimed at
maximizing between-class scatter while minimizing within-
class scatter. Recently, an extension of LDA, locality Fisher’s
discriminant analysis (LFDA) [33], was proposed. LFDA com-
bines the separability-enhancing power of LDA with locality-
preserving projections (LPP) [34] to form a transformation, L,
which can handle multimodal non-Gaussian class distributions
while preserving the local structure of the class distributions in
the projected subspace.

In LFDA [13], the affinity between xi and xj is defined

as Ai,j = exp(−‖xi − xj‖
2/γiγj), where γi = ‖xi − x

(knn)
i ‖

denotes the local scaling of data samples in the neighborhood of
xi, and x

(knn)
i is the knn-nearest neighbor of xi. The resulting

affinity matrix, A, is a symmetric matrix of size n× n, which
measures the distance among data samples. In LFDA, the local

between-class, S(lb), and within-class, S(lw), scatter matrices
are defined as

S(lb) =
1

2

n∑

i,j=1

W
(lb)
i,j (xi − xj)(xi − xj)

⊤ (24)

S(lw) =
1

2

n∑

i,j=1

W
(lw)
i,j (xi − xj)(xi − xj)

⊤ (25)

where W(lb) and W(lw) are n× n matrices defined as

W
(lb)
i,j =

{
Ai,j(1/n− 1/nl), if yi = yj = l
1
n
, if yi �= yj

(26)

W
(lw)
i,j =

{
Ai,j

nl
, if yi = yj = l

0, if yi �= yj
(27)

where nl is the number of available training samples for the lth

class,
∑C

l=1 nl = n. This weight assignment provides an im-
portant benefit to the traditional LDA formulation—if a class-
conditional probability distribution function is multi-modal,
different modes will contribute to the scatter independently,
thereby resulting in a more accurate representation of multi-
modal data. This important neighborhood-preserving property

ensures that local neighborhood relationships in the original
space are retained in the projected subspace. LFDA obtains
good between-class separation while preserving the within-
class local structure simultaneously. The modified Fisher’s ratio
in LFDA employs these local scatter matrices to estimate the
dimensionality-reduction projection as the solution, L, to gen-
eralized eigenvalue problem, S(lb)L = ΛS(lw)L. The reader is
referred to [13], [33] for more details on LFDA.

In this paper,we define a generalized distance measure by
comparing the distances between points within the projection
space of L, namely

DLFDA(x,y) = ‖Lx− Ly‖2,

=
√

(Lx− Ly)T (Lx− Ly)

=
√

(x− y)TP(x− y) (28)

where x and y are vectors of d× 1, L is a projection matrix
of size d′ × d (d′ is the reduced dimensionality), P = LTL is a
symmetric positive matrix, and DLFDA(x,y) is a single scalar.
Using (28), we modify the construction of the biasing Tikhonov
matrix of (11) to become

Γl,y =

⎡
⎢⎣
DLFDA(y,xl,1) 0

. . .
0 DLFDA(y,xl,nl

)

⎤
⎥⎦ . (29)

We refer to the classifier using this construction of Γl,y as
NRS-LFDA. By comparing distance relationships within the
LFDA-projected space, we gain two distinct advantages when
biasing our Tikhonov regularization of (10). First, by reducing
the dimensionality of the space in which distances are calcu-
lated, distances become more meaningful to the classification
task, rather than having all distances be large. Second, the
space is chosen in such a manner that inter-class separability
is increased, further penalizing classes whose memberships lie
mostly distant from the target point. Additionally, the LPP of
LFDA means that samples which are truly neighbors of y are
also seen as neighbors within the projected space. Without
such locality preservation, calculating distances within a lower-
dimensional space (such as that produced by LDA) might not
give any information on within-class distance relationships
with y and might offer little benefit in terms of classification
accuracy. In the next section, we present results which demon-
strate that the NRS-LFDA technique presented here does indeed
improve classification accuracy as compared to the original
NRS which uses Euclidean distances in the original space.

IV. EXPERIMENTAL RESULTS

A. Experimental Hyperspectral Data

In this section, we demonstrate the effectiveness of the
proposed NRS and NRS-LFDA classifiers on HSI data sets.
The first HSI data set in our tests was acquired using NASA’s
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)



LI et al.: NEAREST REGULARIZED SUBSPACE FOR HYPERSPECTRAL CLASSIFICATION 485

TABLE I
PER-CLASS SAMPLES FOR TRAINING AND TESTING

DATA FOR THE INDIAN PINES DATA SET

Fig. 7. False-color image of the Indian Pines data set.

sensor and was collected over northwest Indiana’s Indian Pines
test site in June 1992.1 The image represents a vegetation-
classification scenario with 145 × 145 pixels and 220 spectral
bands, post water-band removal, in the 0.4- to 2.45-μm region
of the visible and infrared spectrum with a spatial resolution of
20 m. The two main crops, soybean and corn, shown in the HSI
are in their early-growth stage. The notation no till, min till, and
clean till indicate the amount of previous crop residue remain-
ing. There are 16 different land-cover classes in the original
ground truth; however, we conduct our experiments with eight
classes, allowing for more training samples from a statistical
viewpoint [35]. The eight classes used in our experiments are
Corn-no-till, Corn-min-till, Soybean-no-till, Soybean-min-till,

Soybean-clean-till, Grass/Pasture, Hay-windowed, and Woods.
Approximately 8600 labeled pixels are employed to train and
validate the efficacy of the proposed classification methods.
The pixels chosen for validation were drawn randomly from the
ground truth. This data is partitioned into approximately 1496
training pixels and 7102 testing pixels, with the training pixels
randomly selected from the 8600 chosen validation samples.
The class-specific number of training and testing samples are
given in Table I. Additionally, a false-color representation of
the HSI is given in Fig. 7.

1ftp://ftp.ecn.purdue.edu/biehl/MultiSpec

TABLE II
PER-CLASS SAMPLES FOR TRAINING AND TESTING

DATA FOR THE UNIVERSITY OF PAVIA DATA SET

TABLE III
PER-CLASS SAMPLES FOR TRAINING AND TESTING

DATA FOR THE PAVIA CENTRE DATA SET

The other two HSI data sets used in this work were col-
lected by the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor. The images, covering the city of Pavia, Italy,
were collected under the HySens project managed by DLR (the
German Aerospace Agency). The image has 115 spectral bands
prior to water-band removal, with a spectral coverage from
0.43- to 0.86-μm and a spatial resolution of 1.3 m. Two scenes
are used in our experiment. The first is the university area which
has 103 spectral bands with a spatial coverage of 610 × 340
pixels. The second one is the Pavia city center which has 102
spectral bands with 1096 × 715 pixels formed by combining
two separate images representing different areas of the Pavia
city. The labeled ground truth of each data set is comprised
of nine classes. The numbers of training and testing samples
used for the University of Pavia data set are 1476 and 7380,
respectively. The numbers of training and testing samples used
for the Pavia Centre data set are 1477 and 8862, respectively.
The selection of the validation samples for both data sets were
chosen in the same manner as the Indian Pines data set. The
numbers of training and testing samples for University of Pavia
and Pavia Centre data sets are given in Table II and Table III,
respectively. Also, false-color representations of the two data
sets are given in Figs. 8 and 9.

B. Experiments

We compare our proposed methods with k-NN, SRC, CRC-
Pre, SVM, and the recently proposed LFDA-SVM [13] clas-
sifiers. For the k-NN classifier, we find that k = 3 usually
provides better classification performance compared to other
values (such as 1, 5, 7, etc.). For SRC, we chose the parameter
λ = 0.01 in our experiments. Additionally, we use the l1_ls2

2http://www.stanford.edu/boyd/l1_ls
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Fig. 8. False-color image of the Pavia University data set.

Fig. 9. False-color image of the Pavia Centre data set.

solver to calculate sparse approximations. We note that, while
there exist a large number of sparse solvers suitable for SRC
implementation, some of which are optimized for speed and
others for representational accuracy, the classification accuracy
of the SRC, in relation to the other methods tested, is only
nominally affected. For CRC-Pre, the optimal parameter λ is
0.2 for the Indian Pines data set, 0.25 for the University of Pavia
data set, and 0.6 for the Pavia Centre data set. The optimal
parameters for SVM and LFDA-SVM can be found in [13].
To find a proper setting for the LFDA-projection dimension
parameter, d′, described in the previous section, the available
training data was used to empirically gauge an effective range
for d′, as shown in Fig. 10. For NRS-LFDA, the dimensionality
of LFDA is around 10 for the experimental data sets, and we
found that it is not sensitive to sample size. Additionally, for
both NRS and NRS-LFDA, a threshold of ǫ = 10−3 was used.
In practical situations, the number of available training samples
is often insufficient for each class. We illustrate the sensitivity

Fig. 10. Overall classification accuracy of three HSI data sets as a function of
reduced dimensionality for the NRS-LFDA classifier.

Fig. 11. Classification accuracy versus the number of training samples for the
Indian Pines data set.

of each classifier to the number of available training samples
by testing over different percentages of the data set used for
training while retaining the prior probability of each class.
To avoid any bias, we randomly choose a subset of training
samples for each sample-size value and repeat the experiment
10 times, reporting the average classification accuracy.

It is obvious from Fig. 11 that the proposed methods—the
NRS and NRS-LFDA classifiers—outperform other ap-
proaches, especially under the small training-size classification
scenario. The k-NN classifier has the worst classification accu-
racy, while SVM does not perform as well as either CRC-Pre
or SRC for the cases of small training size. It is worthwhile
mentioning that the NRS-LFDA classifier has, on average,
3% better accuracy than the NRS classifier and even greater
improvements in accuracy over the other tested classifiers,
which verifies that the discriminant-enhancing LFDA distance



LI et al.: NEAREST REGULARIZED SUBSPACE FOR HYPERSPECTRAL CLASSIFICATION 487

Fig. 12. Classification accuracy versus the number of training samples for the
University of Pavia data set.

Fig. 13. Classification accuracy versus the number of training samples for the
Pavia Centre data set.

metric works well for hyperspectral data. Figs. 12 and 13
show the overall accuracy as a function of number of training
samples for the University of Pavia and Pavia Centre data sets,
respectively. For these two Pavia data sets, SRC and CRC-Pre
have unfavorable classification accuracies, even lower than
k-NN. The proposed NRS-LFDA and NRS classifiers still
provide the best classification accuracy of the tested classifiers
for these data sets.

Fig. 14 provides a visual inspection of the classification maps
generated using the whole HSI scene for the Indian Pines data
set (145 × 145, including unlabeled pixels). To facilitate com-
parison between classification methods, only areas for which
we have ground truth are shown in these maps. In Fig. 14,
our proposed techniques show the best spatial homogeneity of
the tested approaches. This homogeneity is most pronounced
within the Soybean-min till and Soybean-clean till areas.

Fig. 14. Thematic maps resulting from classification using 748 training
samples for the Indian Pines HSI data set. (a) Ground truth; (b) k-NN; (c) CRC-
Pre; (d) SRC; (e) LFDA-SVM; (f) NRS; (g) NRS-LFDA.

Finally, we compare the computational complexity of the
classification methods. All the experiments are carried out using
MATLAB on a 3.2-GHz machine with 5.8 GB of RAM. As an
example, the execution times (in seconds) to train and validate
with the Indian Pine data set is shown in Table IV. We find
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TABLE IV
EXECUTION TIME (IN SECONDS) TO TRAIN AND VALIDATE WITH THE

INDIAN PINES DATA SET (748 SAMPLES FOR TRAINING,
THE WHOLE SCENE FOR TESTING)

that the NRS classifier generally runs around 15 times slower
than CRC-Pre, but around 10 times faster than SRC. Notice
that both CRC-Pre and SRC require either prior information
on the optimal parameter λ, or for a CV approach to be
used to estimate this parameter. However, the NRS and NRS-
LFDA classifiers do not require such fine tuning. If we were to
provide the optimal λ for them, the execution time decreases
accordingly (NRS: 135 s, NRS-LFDA: 346 s).

V. CONCLUSION

In this paper, we have presented a classification framework
for hyperspectral data using a regularized nearest-subspace ap-
proach. For each class, an approximation of the testing sample
was calculated via a linear combination of all training samples
within the class. A distance-weighted Tikhonov regularization
was used to calculate the linear combination of hypotheses
in a stable manner. Furthermore, a discrimination-enhancing
distance measure based on LFDA was proposed to improve
the classification accuracy of the proposed NRS classifier.
Additionally, a competitive strategy was introduced to avoid
extensive parameter tuning via cross validation. Through our
experiments on hyperspectral image data sets, the proposed
NRS classifier and its variants provided superior classification
performance with fewer training samples than traditional clas-
sification methods.
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