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Nearest Southeast Submatrix that Makes Two Prescribed Eigenvalues

Alimohammad Nazaria, Atiyeh Nezamia

aDepartment of Mathematics, Arak University, P.O. Box 38156-8-8349, Arak, Iran

Abstract. Given four complex matrices A, B, C and D where A ∈ Cn×n and D ∈ Cm×m and given two distinct
arbitrary complex numbers λ1 and λ2, so that they are not eigenvalues of the matrix A, we find a nearest
matrix from the set of matrices X ∈ Cm×m to matrix D (with respect to spectral norm) such that the matrix(
A B
C X

)
has two prescribed eigenvalues λ1 and λ2.

1. Introduction

The spectral distance from an n×n matrix A to the set of matrices of rank at most r is equal to σr(A), and
σr(A) denotes the rth singular value of the matrix A.

Let Φ be a complex n × n matrix, and let L be a set of n × n matrices with a multiple zero eigenvalue. In
the paper [5], A.N. Malyshev obtained the following formula for 2-norm distance from Φ to L:

ρ2(Φ,L) = min
L∈L
∥Φ − L∥2 = max

ϕ≥0
σ2n−1(P(ϕ)), (1)

in which

P(ϕ) =
(
Φ ϕIn
0 Φ

)
, (2)

and σi(·) denotes the ith singular value of the corresponding matrix. It is assumed that the singular values
of any matrix are arranged in decreasing order.

The spectral norm distance of an n × n matrix Φ to the set of matrices with two prescribed eigenvalues
was computed by J. M. Gracia [2] for ϕ⋆ , 0 (where P(ϕ) gets its maximum at the point ϕ⋆) and for other
cases by Ross A. Lippert [4]. Let A ∈ Cn×n be an invertible matrix and D ∈ Cm×m, J.M. Gracia and F.E. Velasco
in their recent paper [3] found the spectral distance from a set of matrices X ∈ Cm×m to matrix D, such that,
the matrix

ΓX =

(
A B
C X

)
, (3)

2020 Mathematics Subject Classification. Primary 15A18, 15A60, 15A09, 93B10.
Keywords. Distance of matrices, Eigenvalues, Singular value, Moore-Penrose, Spectral norm
Received: 02 March 2019; Revised: 14 July 2019; Accepted: 26 April 2020
Communicated by Predrag Stanimirović
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has a multiple eigenvalue zero, i.e.

min
X∈Cm×m

m(0,ΓX)≥2

∥X −D∥ = sup
γ∈R
σ2m−1(P(γ,D)),

where

P(γ,D) =
(
M γN
0 M

)
,

M := D − CA−1B,

N := Im + CA−2B,

and m(λ0,ΓX) denotes the algebraic multiplicity of λ0 as an eigenvalue of ΓX.
Nazari and Nezami in [6] introduced a correction for Gracia and Velasco’s formula, when the matrix ΓD

is a block normal matrix.
In this paper, for the given four complex matrices A ∈ Cn×n, B, C and D ∈ Cm×m and for two given

distinct complex numbers λ1 and λ2 which are not eigenvalues of matrix A, we find the nearest matrix to
matrix D, from the set of matrices X ∈ Cm×m such that matrix ΓX has two prescribed eigenvalues λ1 and λ2.

Using the notations in [3], let us denote the Cartesian product Cn×n
× Cn×m

× Cm×m by Ln,m. Given
ΓD ∈ C(m+n)×(m+n) the spectrum of ΓD will be denoted by Λ(ΓD).

Two unitary vectors u, v are a pair of singular vectors of matrix ΓX for the singular value σ if ΓXv = σu
and (ΓX)Hu = σv.

2. Function P(γ)

Assume thatM1,M2 andN ∈ Cm×m that

M1 = (D − λ1Im) − C(A − λ1In)−1B, (4)

M2 = (D − λ2Im) − C(A − λ2In)−1B, (5)

N = Im + C(A − λ1In)−1(A − λ2In)−1B, (6)

and γ ∈ R and

P(γ) =
(
M1 γN

0 M2

)
, p(γ) = σ2m−1(P(γ)).

From Lemma 26 of [3] we have the Lemmas 2.1 to 2.4.

Lemma 2.1. For each γ ∈ R, σ2m−1(P(γ)) is an even function.

Lemma 2.2. IfM1,M2 andN ∈ Cm×m and rank(N) ≥ 2 for m ≥ 2, then

lim
γ→∞
σ2m−1

(
M1 γN

0 M2

)
= 0.

Lemma 2.3. The function p(γ) is bounded on R.

Lemma 2.4. If for some γ , 0, p(γ) = 0, then for each γ ∈ R, p(γ) = 0.

Now we bring, Lemma 5 of [5].
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Lemma 2.5. LetΩ be an open subset ofR and F : Ω −→ Cm×n be an analytic function onΩ. If the function σi(F(t))
has a positive local maximum (or minimum) at t⋆ ∈ Ω, then there exists a pair of singular vectors u ∈ Cm×1, v ∈ Cn×1

of F(t⋆) corresponding to σi(F(t⋆)) such that

Re
(
uH dF

dt
(γ⋆)v

)
= 0.

Let 0 , γ⋆ ∈ R, and the function p(γ) has a local extremum at γ⋆, then σ2m−1

(
M1 γ⋆N

0 M2

)
= σ⋆ > 0.

If u =
(

u1
u2

)
, v =

(
v1
v2

)
∈ C2m×1 are the right and left singular vectors associated to σ⋆ respectively, where

u1,u2, v1, v2 ∈ Cm×1, then

P(γ∗)v = σ⋆u, (7)

P(γ∗)Hu = σ⋆v, (8)

uH
1 u1 + uH

2 u2 = 1,
vH

1 v1 + vH
2 v2 = 1. (9)

By Lemma 2.5,

Re

( u1
u2

)H dP
dγ

(γ⋆)
(

v1
v2

) = 0.

Also by the definition of P(γ) we have

dP
dγ

(γ⋆) =
(

0 N

0 0

)
,

thus, from two above relations we obtain

Re(uH
1 Nv2) = 0. (10)

Now, by multiplying both sides of (7) from left by (uH
1 ,−uH

2 ), we can write

(uH
1 ,−uH

2 )
(
M1 γ⋆N

0 M2

) (
v1
v2

)
= σ⋆(uH

1 u1 − uH
2 u2),

therefore(
uH

1M1, γ⋆uH
1 N − uH

2M2

) (v1
v2

)
= σ⋆(uH

1 u1 − uH
2 u2),

so

uH
1M1v1 + γ⋆uH

1 Nv2 − uH
2M2v2 = σ⋆(uH

1 u1 − uH
2 u2). (11)

By multiplying (8) from left by (vH
1 ,−vH

2 ), we have the same relation as

vH
1M

H
1 u1 − γ⋆vH

2 N
Hu1 − vH

2M
H
2 u2 = σ⋆(vH

1 v1 − vH
2 v2). (12)

By taking conjugate transpose from both side (11), we have

vH
1M

H
1 u1 + γ⋆vH

2 N
Hu1 − vH

2M
H
2 u2 = σ⋆(uH

1 u1 − uH
2 u2). (13)
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By multiplying relation (12) by −1 and add to relation (13) we have the following relation

2γ⋆vH
2 N

Hu1 = −σ⋆(vH
1 v1 − vH

2 v2) + σ⋆(uH
1 u1 − uH

2 u2). (14)

The right hand side of the above relation is real, and since γ⋆ , 0, then vH
2 N

Hu1 is real, so the conjugate of
it, uH

1 Nv2 is also real. Thus from (10) we get

uH
1 Nv2 = 0. (15)

Now we can provide the following lemmas similar to [2].

Lemma 2.6. If γ⋆ > 0 is the local extremum of p(γ) and σ⋆ = p(γ∗) > 0 and u =
(

u1
u2

)
, v =

(
v1
v2

)
∈ C2m×1, where

u1,u2, v1, v2 ∈ Cm×1 are the right and left singular vectors corresponding to σ⋆ = p(γ∗) respectively, then

uH
1 Nv2 = 0.

Lemma 2.7. If u1,u2, v1 and v2 are the vectors in the previous Lemma and U = (u1,u2) and V = (v1, v2) are two
matrices in Cm×2, then

UHU = VHV.

Proof. We construct the proof similar to the [3]. From relations (14) and (15), we have

σ⋆(vH
1 v1 − v⋆2 v2) = σ⋆(uH

1 u1 − uH
2 u2).

Since σ⋆ > 0, then

vH
1 v1 − v⋆2 v2 = uH

1 u1 − uH
2 u2.

If we assume that α := vH
1 v1 − vH

2 v2, then α = uH
1 u1 − uH

2 u2. Then by (9) we get

2vH
1 v1 = 1 + α, 2uH

1 u1 = 1 + α, 2vH
2 v2 = 1 − α, 2uH

2 u2 = 1 − α,

and so

vH
1 v1 =

1 + α
2
= uH

1 u1, (16)

vH
2 v2 =

1 − α
2
= uH

2 u2. (17)

By multiplying both sides of (7) from left by (0,uH
1 ) and both sides of (8) from left by (vH

2 , 0) we have the
following equations.

(0,uH
1M2)

(
v1
v2

)
= σ⋆uH

1 u2,

and

(vH
2M

H
1 , 0)

(
u1
u2

)
= σ⋆vH

2 v1

so that

uH
1M2v2 = σ⋆uH

1 u2, (18)

vH
2M

H
1 u1 = σ⋆vH

2 v1. (19)
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By taking conjugate transpose of both sides of (19) and reduce from (18), we obtain

uH
1M2v2 − σ⋆uH

1 u2 = uH
1M1v2 − σ⋆vH

1 v2.

By definition ofM1 andM2 in the relation (4) and (5), we deduce that

uH
1 ((D − λ2Im) − C(A − λ2In)−1B)v2 − σ⋆uH

1 u2 = uH
1 ((D − λ1Im) − C(A − λ1In)−1B)v2 − σ⋆vH

1 v2.

By some computations and by lemma 2.6 we have

σ⋆uH
1 u2 = σ⋆vH

1 v2.

Since σ⋆ > 0,

uH
1 u2 = vH

1 v2, (20)

then

UHU =
(
uH

1
uH

2

)
(u1,u2) =

(
uH

1 u1 uH
1 u2

uH
2 u1 uH

2 u2

)
,

and

VHV =
(
vH

1
vH

2

)
(v1, v2) =

(
vH

1 v1 vH
1 v2

vH
2 v1 vH

2 v2

)
,

and by (16) and (17) and (20), we have UHU = VHV.

The following lemma can be seen in [4].

Lemma 2.8. Let q ≥ 2 and ΓX ∈ Cq×q and λ1, λ2 ∈ Λ(ΓX), then

rank
(
ΓX − λ1Iq γIq

0 ΓX − λ2Iq

)
≤ 2q − 2, ∀γ ∈ R.

By Theorem 1.1 from [1] and Theorem 5 from [3] we have the next Theorem.

Theorem 2.9. Given a matrix partitioned in the following form(
A B
C D

)
,

with A ∈ Cn×n and D ∈ Cm×m. For each matrix X ∈ Cm×m, let

ΓX =

(
A B
C X

)
,

and let us call

ρ := rank[A,B] + rank
[

A
C

]
− rankA,

M := (In − AA†)B, N := C(In − A†A),

and

P(X) := (I −NN†)(X − CA†B)(I −M†M).

Then for each X ∈ Cm×m, we have

rankΓX = ρ + rankP(X).

Moreover, for each integer r such that ρ ≤ r < rankΓD,

min{∥X −D∥ : X ∈ Cm×m, rankΓX ≤ r} = σs+1(P(D)),

where s = r − ρ.
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3. Lower bound for minimum of problem

Assume that α = (A,B,C) ∈ Ln×m and X ∈ Cm×m and

m(λi,ΓX) ≥ 1, i = 1, 2.

by Lemma 2.8 we have

rank


A − λ1In B γIn 0

C X − λ1Im 0 γIm
0 0 A − λ2In B
0 0 C X − λ2Im

 =

rank


A − λ1In γIn B 0

0 A − λ2In 0 B
C 0 X − λ1Im γIm
0 C 0 X − λ2Im

 ≤ 2(n +m) − 2.

Then we call

A(γ) :=
(

A − λ1In γIn
0 A − λ2In

)
,

B :=
(

B 0
0 B

)
,

C :=
(

C 0
0 C

)
,

X(γ) :=
(

X − λ1Im γIn
0 X − λ2Im

)
.

From Theorem 2.9, we have

ρ(γ) = rank
[
A(γ) B

]
+ rank

[
A(γ)
C

]
− rankA(γ),

s(γ) = 2m + 2n − 2 − ρ(γ), (21)

M(γ) =
(
I2n −A(γ)A(γ)†

)
B,

N(γ) = C(I2n −A(γ)†A(γ)),

P(γ,X − λ1Im,X − λ2Im) := (I2m −N(γ)N(γ)†)
(
X(γ) − CA(γ)†B

)
(I2m −M(γ)†M(γ)),

and so

rank
(
A(γ) B

C X(γ)

)
= ρ(γ) + rank(P(γ,X − λ1Im,X − λ2Im)).

Since

m(λi,ΓX) ≥ 1, i = 1, 2,

for any γ ∈ R, we have

ρ(γ) + rank(P(γ,X − λ1Im,X − λ2Im) ≤ 2n + 2m − 2⇐⇒

rank(P(γ,X − λ1Im,X − λ2Im) ≤ 2n + 2m − 2 − ρ(γ) = s(γ)

=⇒ σs(γ)+1(P(γ,X − λ1Im,X − λ2Im) = 0. (22)
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Lemma 3.1. If γ ∈ R and X ∈ Cm×m, then

|σi(P(γ,X − λ1Im,X − λ2Im)) − σi(P(γ,D − λ1Im,D − λ2Im))| ≤ ∥X −D∥, (23)

for i = 1, 2, · · · , 2m.

Proof. Similar to Lemma 22 of [3] the proof is obtained directly.

Now by relations (22) and (23) we have

σs(γ)+1(P(γ,D − λ1Im,D − λ2Im)) ≤ ∥X −D∥,

so

sup
γ∈R
σs(γ)+1(P(γ,D − λ1Im,D − λ2Im)) ≤ min

X∈Cm×m

m(λi,ΓX)≥1
i=1,2

∥X −D∥.

In continue we assume that λ1 and λ2 do not belong to Λ(A) and we solve the problem (If one of these
numbers be an eigenvalue of A, then s(γ) is not equal to 2m − 1).

There are two following cases for m:

• m > 1,

• m = 1.

The proof of existence a matrix X such that λ1 and λ2 are eigenvalues of matrix ΓX, is similar to the section
3 of [3]. For the cases m > 1 and m = 1 that N = 0, we introduce a method for constructing matrix X such
that λ1 and λ2 are eigenvalues of ΓX and for the case m = 1 whenN , 0, we prove that there is no matrix X.

4. The cases that λ1 and λ2 do not belong to Λ(A)

Firstly we consider m > 1 and since the local maximum of σ2m−1(P(γ,D−λ1Im,D−λ2Im)) happens in γ⋆,
we also consider the following three cases:

• γ⋆ , 0,

• γ⋆ = 0,

• γ⋆ = ∞.

4.1. The case γ⋆ , 0

By relation (21) we have s(γ) + 1 = 2m − 1, then we prove the following Theorem.

Theorem 4.1. If α = (A,B,C) ∈ Ln,m and D ∈ Cm×m, where λ1, λ2 < Λ(A), then

min
X∈Cm×m

m(λi,ΓX)≥1
i=1,2

∥X −D∥ = sup
γ∈R,0

σ2m−1(P(γ,D − λ1Im,D − λ2Im)).

Proof. It is sufficient to show that

sup
γ∈R
σ2m−1(P(γ,D − λ1Im,D − λ2Im)) ≥ min

X∈Cm×m

m(λi,ΓX)≥1
i=1,2

∥X −D∥.
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Set

M1 = (D − λ1Im) − C(A − λ1In)−1B,

M2 = (D − λ2Im) − C(A − λ2In)−1B,

N = Im + C(A − λ1In)−1(A − λ2In)−1B,

P(γ,D − λ1Im,D − λ2Im) =
(
M1 γN

0 M2

)
,

p(γ) = σ2m−1(P(γ,D − λ1Im,D − λ2Im)).

Let D⋆ be the matrix such that ΓD⋆ =

(
A B
C D⋆

)
has two eigenvalues λ1, λ2 and

∥D −D⋆∥ = max
γ∈R

p(γ),

and let the local maximum of p(γ) happens in γ⋆ > 0 and p(γ∗,D − λ1Im,D − λ2Im) = σ⋆ > 0. According to

Lemma 2.6, we assume that u =
(

u1
u2

)
, v =

(
v1
v2

)
∈ C2m×1, where u1,u2, v1, v2 ∈ Cm×1 are the right and left

singular vectors corresponding to σ⋆ = p(γ∗) respectively and

U = (u1,u2),V = (v1, v2) ∈ Cm×2.

We define ∆ = σ⋆UV† and prove that ∥∆∥ = σ⋆ and λ1, λ2 are the eigenvalues of(
A B
C D∗

)
,

where

D⋆ = D − ∆. (24)

By Lemma 2.7 we have VHV = UHU. There is a unitary matrix W ∈ Cm×m such that U =WV. Hence

∥D −D⋆∥ = σ⋆∥UV†∥ = σ⋆∥WVV†∥ = σ⋆∥VV†∥ = σ⋆.

Now we prove that λ1 and λ2 are eigenvalues of ΓD⋆ .
From [2], Page 287, equations (31) and (32) we have

∆v2 = σ⋆u2, (25)

uH
1 ∆ = σ⋆vH

1 . (26)

and from [2], Page 287, since we have ∆V = σ⋆U, so

D⋆V = DV − σ⋆U, (27)

so rankVHV = rankV and ∥(v1, v2)H
∥ = 1, thus we deduce that rankVHV ≥ 1. Therefore we have the

following cases:

• rankV = 2,

• rankV = 1, v2 = 0

• rankV = 1, v2 , 0
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4.1.1. rankV = 2
Since rankV = 2, so v1, v2 are linearly independent. Hence we should find the vectors w1,w2 ∈ Cn×1 such

that (
A B
C D⋆

) (
w2 w1
v2 v1

)
=

(
w2 w1
v2 v1

) (
λ1 −γ⋆
0 λ2

)
. (28)

Because λ1 and λ2 are not eigenvalues of matrix A, let us assume that

w2 = −(A − λ1In)−1Bv2,

w1 = −(A − λ2In)−1Bv1 + γ⋆(A − λ2In)−1(A − λ1In)−1Bv2.

We prove that w1 and w2 are holding in (28). By (27), we know

D⋆vi = Dvi − σ⋆ui, i = 1, 2; (29)

from the second line (28), we have

−C(A − λ1In)−1Bv2 +D⋆v2 = λ1v2,

−C(A − λ2In)−1Bv1 + γ⋆C(A − λ2In)−1(A − λ1In)−1Bv2 +D⋆v1 = −γ⋆v2 + λ2v1,

by (29), we find

−C(A − λ1In)−1Bv2 + (D − λ1Im)v2 − σ⋆u2 = 0,

−C(A − λ2In)−1Bv1 + γ⋆C(A − λ2In)−1(A − λ1In)−1Bv2 + (D − λ2Im)v1 − σ⋆u1

= −γ⋆v2.

From these relation and by definitionsM1,M2 andN , we have

M1v2 = σ⋆u2, M2v1 + γ⋆Nv2 = σ⋆u1,

This equation is the section of equation (7) and above relations also is correct, so equation (28) is hold. So
w1 and w2 satisfy the required conditions in (28). Therefore λ1 and λ2 are eigenvalues of ΓD⋆ .

4.1.2. rankV = 1, v2 = 0
From Lemma 27 in [3], we know that u2 = 0 and u1 , 0, so it suffices to find vectors w1,w2 ∈ C1×n,w2 , 0

such that(
w1 uH

1
w2 0

) (
A B
C D⋆

)
=

(
λ̄1 0
1 λ̄2

) (
w1 uH

1
w2 0

)
. (30)

Let

w1 = −uH
1 C(A − λ1In)−1, w2 = −uH

1 C(A − λ1In)−1(A − λ2In)−1.

Now we prove that w1 and w2 are hold in (30). By taking conjugate transpose from both sides of (30) and
second line it and definitionN , we earn

−uH
1 C(A − λ1In)−1B + uH

1 (D⋆ − λ1Im) = 0,

uH
1 N = 0.

The second equation is right from Lemma 27 in [3] . In order to prove the first equation, since v2 = 0 and
by (26), and definitionM1, we write

uH
1M1 = σ⋆vH

1 ⇐⇒M
H
1 u1 = σ⋆v1,

This equation is the section of equation (8) and the above relations also correct, so equation (30) is held. In
this Case w2 , 0, if w2 = 0 then −uH

1 CA−2 = 0, so −uH
1 CA−2B = 0 and uH

1 [Im + CA−2B] = uH
1 and by definition

N we have uH
1 N = uH

1 , that, it is wrong by Lemma 27 in [3]. So w1,w2 satisfy in the condition (30) and λ1
and λ2 are eigenvalues of ΓD⋆ .
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4.1.3. rankV = 1, v2 , 0
We prove that there are vectors w1,w2 ∈ Cn×1, w1 , 0 such that(

A B
C D⋆

) (
w2 w1
v2 0

)
=

(
w2 w1
v2 0

) (
λ1 1
0 λ2

)
. (31)

Let us assume that

w2 = −(A − λ1In)−1Bv2, w1 = −(A − λ2In)−1(A − λ1In)−1Bv2.

We want to show that w1 and w2 are hold in (31). From (29) and the second line of (31), we have

−C(A − λ1In)−1Bv2 + (D − λ1Im)v2 − σ⋆u2 = 0,

−C(A − λ2In)−1(A − λ1In)−1Bv2 = v2.

Now, by replacingM1 andN in both above formulas, we have

M1v2 = σ⋆u2, Nv2 = 0.

These relations are a combination of Lemma 28 in [3] and (8), then (31) is held. In this case w1 , 0, if w1 = 0
we have

−(A − λ2In)−1(A − λ1In)−1Bv2 = 0,

so

C(A − λ2In)−1(A − λ1In)−1Bv2 = 0,

and

[Im + C(A − λ2In)−1(A − λ1In)−1B]v2 = v2.

By replacing the matrixN in the above relation we have

Nv2 = v2,

but this relation is wrong by Lemma 28 in [3]. So w1,w2 satisfy the condition (31) and λ1 and λ2 are
eigenvalues of ΓD⋆ .

4.2. The case γ⋆ = 0

Assume that σ2m−1

(
M1 0

0 M2

)
= σ⋆ > 0, then two cases happens.

• Case 1: σm(M1) ≥ σm(M2) > 0,

• Case 2: σm(M2) ≥ σm(M1) > 0.

From Theorem 3.7 of [4], we have:

Theorem 4.2. Let M ∈ Cm×m and ∆M be a perturbation such that M−∆M has two eigenvalues λ1, λ2 (or a multiple
eigenvalue, λ = λ1 = λ2). Then we have

max{σm(M1), σm(M2), p(γ⋆)} ⩽ ∥∆M∥2,

and in a more precise way

max{σm(M1), σm(M2), p(γ⋆)} = min
∆M
∥∆M∥2.
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4.2.1. Case 1
LetM1 = UΣVH be the singular value decomposition ofM1 with the smallest singular value σm and let

um and vm be the corresponding right and left singular vectors of σm respectively. It is known that

uH
mNvm , 0.

If uH
mNvm = 0, according to the definition ofN , we have

uH
mNvm = uH

m(Im + C(A − λ1In)−1(A − λ2In)−1B)vm
= uH

mvm + uH
mC(A − λ1In)−1(A − λ2In)−1Bvm

= 0,

so

uH
mImvm = −uH

mC(A − λ1In)−1(A − λ2In)−1Bvm,

since um and vm are right and left singular vectors ofM1 corresponding to the σm respectively, since m > 1,
consequently

Im = −(uH
m)†uH

mC(A − λ1In)−1(A − λ2In)−1Bvm(vm)†

and finally

Im = −C(A − λ1In)−1(A − λ2In)−1B,

therefore

N = 0,

and this is impossible. Thus

uH
mNvm , 0.

Assume that

ŨΣ̃ṼH = M̃2 =M2 +
(λ2 − λ1)N

uH
mNvm

vmuH
mN , (32)

is the SVD of M̃2. We prove that σm is the singular value of M̃2.
FromM1vm = σmum,we have

M̃2vm = M2vm +
(λ2−λ1)N

uH
mNvm

vmuH
mNvm

=
[
(D − λ2Im) − C(A − λ2In)−1B

]
vm +

(λ2−λ1)N
uH

mNvm
vmuH

mNvm

= (D − λ1Im)vm + (λ1 − λ2)Imvm − C(A − λ1In)−1Bvm
+ C(A − λ1In)−1Bvm − C(A − λ2In)−1Bvm + (λ2 − λ1)Nvm

= M1vm + (λ1 − λ2)vm + C
(
(A − λ1In)−1

− (A − λ2In)−1
)

Bvm

+ (λ2 − λ1)Nvm
= M1vm + (λ1 − λ2)vm
+ C[(A − λ1In)−1(A − λ2In)−1(A − λ2In)
− (A − λ2In)−1(A − λ1In)−1(A − λ1In)]Bvm + (λ2 − λ1)Nvm
= M1vm + (λ1 − λ2)vm

+ C
[
(A − λ1In)−1(A − λ2In)−1(A − λ2In − A + λ1In)

]
Bvm

+ (λ2 − λ1)Nvm.

(33)
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Since we can permute the product of two matrices (A−λ2In)−1 and (A−λ1In)−1, so the relation (33) is equal
to σmum. Similarly, we can also prove that

M̃
H
2 um = σmvm,

and this shows that σm is the singular value of M̃2. If σ̃m is the smallest singular value of M̃2, then σm ≥ σ̃m.
Now we define the matrix D −D⋆ as

D −D⋆ = (um, ũm)
(
σm 0
0 σ̃m

)
(vm, ṽm)H, (34)

where ũm and ṽm are the right and left singular vectors corresponding to σ̃m.

We prove that ∥D −D⋆∥ = σm and λ1 and λ2 are eigenvalues of
(

A B
C D⋆

)
. For proving ∥D −D⋆∥ = σm,

we know that σm is one of the singular values of M̃2 and um, vm are the corresponding singular vectors.
Assume that ũm and ṽm are the corresponding singular vectors of σ̃m for M̃2, then we have uH

mũm = vH
mṽm

(since U and V are unitary matrices, there are ũm and ṽm). Therefore, from the definition of matrix D −D⋆,
we have

∥D −D⋆∥ = max(σm, σ̃m) = σm.

Now we prove that λ1 and λ2 are eigenvalues of ΓD⋆ .
By the definition of the matrix D −D⋆ in (34), we have

(D −D⋆)(vm, ṽm) = (um, ũm)
(
σm 0
0 σ̃m

)
. (35)

If we apply SVD for the matrixM1, we see that

Dvm = σmum + C(A − λ1In)−1Bvm + λ1vm (36)

and from (32)

Dṽm = σ̃mũm −
(λ2 − λ1)N

uH
mNvm

vmuH
mN ṽm + C(A − λ2In)−1Bṽm + λ2ṽm. (37)

Considering the relations (35), (36) and (37) we obtain the following equations:

D⋆vm = C(A − λ1In)−1Bvm + λ1vm, (38)

D⋆ṽm = λ2ṽm + C(A − λ2In)−1Bṽm −
(λ2 − λ1)N

uH
mNvm

vmuH
mN ṽm. (39)

To prove that λ1 and λ2 are eigenvalues of ΓD⋆ , we need to find the vectors w1,w2 ∈ Cn×1 such that:(
A B
C D⋆

) (
w1 w2
vm ṽm

)
=

(
w1 w2
vm ṽm

) (
λ1 −

(λ2−λ1)
uH

mNvm
uH

mN ṽm

0 λ2

)
,

then from the above equation and relations (38) and (39), if we define two vectors w1 and w2 as follows

w1 = (λ1In − A)−1Bvm,

w2 = (λ2In − A)−1Bṽm +
(λ2−λ1)(λ2In−A)−1(λ1In−A)−1

uH
mNvm

vmuH
mN ṽm,

so λ1 and λ2 are eigenvalues of ΓD⋆ .
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4.2.2. Case 2
As the Case 1 we have the following results.
LetM2 = UΣVH be the singular value decomposition ofM2 with the smallest singular value σm and let

um and vm be the corresponding right and left singular vectors of σm respectively. Because

uH
mNvm , 0,

assume that

ŨΣ̃ṼH = M̃1 =M1 +
(λ1 − λ2)N

uH
mNvm

vmuH
mN ,

is the SVD of M̃1. If σ̃m is the smallest singular value of M̃1, then σm ≥ σ̃m.Now we define the matrix D−D⋆
as

D −D⋆ = (um, ũm)
(
σm 0
0 σ̃m

)
(vm, ṽm)H,

where ũm and ṽm are the right and left singular vectors corresponding to the σ̃m. Then ∥D − D⋆∥ = σm and

λ1 and λ2 are eigenvalues of
(

A B
C D⋆

)
.

4.3. The case γ⋆ = ∞
The case γ⋆ = ∞ is very similar to the case of γ⋆ = ∞ in [3], especially all ofMmust be replaced byM1

orM2. By definition ∆ = σ⋆UV† and D⋆ = D − ∆, for proving that λ1 and λ2 are eigenvalues of the matrix(
A B
C D⋆

)
, we will separate two cases: v2 , 0 and v2 = 0. By sections 4.1.2 and 4.1.3 of this paper and

section 5.3 in [3], it is very obvious that λ1 and λ2 are eigenvalues of matrix
(

A B
C D⋆

)
, and ∥D−D⋆∥ = σ⋆.

4.4. The case m = 1
When m = 1, then from Theorem 4.2 we have

min
X∈C1×1

m(λi,ΓX)≥1
i=1,2

∥X −D∥ =
{
∞, i f N , 0,
max(|M1|, |M2|), i f N = 0.

So, whenN , 0,

min
X∈C1×1

m(λi,ΓX)≥1
i=1,2

∥X −D∥ = ∞,

i.e. there is no matrix X such that λ1 and λ2 be eigenvalues of matrix ΓX.
WhenN = 0, it suffices finding matrix D⋆ so that |D −D⋆| = max(|M1|, |M2|).
If |M1| > |M2|, we assume that D⋆ = λ1 + C(A − λ1In)−1B, so(

A B
C D⋆

) (
−(A − λ1 In )−1B −(A − λ1 In)−1B − (A − λ2 In )−1(A − λ1In )−1B

1 1

)
=

(
−(A − λ1 In )−1B −(A − λ1 In )−1B − (A − λ2 In )−1(A − λ1 In)−1B

1 1

) (
λ1 λ1 − λ2 + 1
0 λ2

)
.

SinceN = 0, the above relation is hold and the two vectors(
−(A − λ1In)−1B

1

)
,

(
−(A − λ1In)−1B − (A − λ2In)−1(A − λ1In)−1B

1

)
are linearly independent. Therefore λ1 and λ2 are eigenvalues of

(
A B
C D⋆

)
and |D−D⋆| = max(|M1|, |M2|) =

|M1|.
If |M2| > |M1|, the argument is similar.
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5. Numerical examples

In this section for the given four complex matrices A ∈ Cn×n, B, C and D ∈ Cm×m and for the given two
complex numbers λ1 and λ2, we find the nearest matrix D⋆ to matrix D from the set of matrices X ∈ Cm×m,
such that the matrix

ΓD⋆ =

(
A B
C D⋆

)
has two prescribed eigenvalues λ1 and λ2.

Example 5.1. Let

ΓD =

(
A B
C D

)
,

where

A =


5 1 3 9 5
7 1 7 1 5
5 0 6 1 8
9 4 7 6 4
2 4 9 0 3

 , B =


6 5 4
7 2 6
5 0 3
3 7 7
1 2 3

 ,

C =

 6 0 2 4 7
7 3 1 8 3
4 4 8 3 8

 , D =

7 7 6
3 9 4
2 3 8

 .
The set of eigenvalues of the matrix ΓD is equal to

{35.636798, 10.011182,−3.102620,−3.102620,

−0.101225,−0.101225, 3.664355, 2.095356} .

We find the nearest submatrix D⋆ to the matrix D such that the matrix ΓD⋆ have two eigenvalues 7 and 13.
The following results can be obtained for the problem. By subsection 4.1 we have

γ⋆ = 5.1888125, σ⋆ = 5.022005.

So by (24) we have

D −D⋆ =

 −1.210412 2.781868 2.815794
−0.318987 −4.095686 1.307919
1.315925 0.813897 −3.511032

 ,
∥D −D⋆∥ = 5.022007,

and the set of eigenvalues of the matrix
(

A B
C D⋆

)
is equal to

{35.7292282, 13.0000000,−2.6318610 + 3.04709591i,

−2.6318610 − 3.04709591i,−2.1080252, 7.0000000,

2.7298252 + 0.5791467i, 2.7298252 − 0.5791467i} .

The behavior of σ2m−1(P(γ,D − λ1Im,D − λ2Im)) is shown in Figure 1.
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Figure 1:

Example 5.2. For the matrix ΓD in the previous example we find the nearest submatrix D⋆ to matrix D such that
the matrix ΓD⋆ have two eigenvalues 17 and 25.

The following results can be obtained for the problem: By subsection 4.2 we have

γ⋆ = 0, p(γ⋆) = 15.57954326,

Then by Case1 of subsection 4.2.1 and (32) respectively we have

M2 =

 7.46107768 25.93855446 31.92616887
36.57155300 9.44580424 38.35263256
35.77308604 25.88561251 16.39206578

 ,
M̃1 =

 −27.54916572 −3.10094508 −10.77183205
−22.62452901 −26.98246631 −17.21071049
−15.63095423 −4.70638090 −30.49094956

 ,
by (34) we compute

D −D⋆ =

 −9.61734431 7.57837149 5.59282542
2.24397165 −12.17200253 5.484390350
5.51621342 7.88783877 −11.19195324

 ,
so

∥D −D⋆∥ = 18.6543550,

and the set of eigenvalue of the matrix
(

A B
C D⋆

)
is equal to

{34.97824316, 25.00000000, 17.00000000,−3.30416657 + 3.26137482i,

−3.30416657 − 3.26137482i,−1.95815033, 2.68333536, 6.88620506} .

The behavior of σ2m−1(P(γ,D − λ1Im,D − λ2Im)) is shown in Figure 2.
In Figure 2 we can see that the value max(σ2m−1(P(γ,D − λ1Im,D − λ2Im))) must be 15.57954326. It is shown

that ∥D −D⋆∥ = σm(M2) > max(σ2m−1(P(γ,D − λ1Im,D − λ2Im))), that is right by Theorem 4.2.

Remark 5.3. If λ1, λ2 are eigenvalues of matrix A, then in the similar method we can provide some the proofs, and
instead of (A − λ1I)−1, (A − λ2I)−1 we must replace (A − λ1I)†, (A − λ2I)†.
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