Nearest Southeast Submatrix that Makes Two Prescribed Eigenvalues

Alimohammad Nazari ${ }^{\text {a }}$, Atiyeh Nezami ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Arak University, P.O. Box 38156-8-8349, Arak, Iran

Abstract

Given four complex matrices A, B, C and D where $A \in \mathbb{C}^{n \times n}$ and $D \in \mathbb{C}^{m \times m}$ and given two distinct arbitrary complex numbers λ_{1} and λ_{2}, so that they are not eigenvalues of the matrix A, we find a nearest matrix from the set of matrices $X \in \mathbb{C}^{m \times m}$ to matrix D (with respect to spectral norm) such that the matrix $\left(\begin{array}{ll}A & B \\ C & X\end{array}\right)$ has two prescribed eigenvalues λ_{1} and λ_{2}.

1. Introduction

The spectral distance from an $n \times n$ matrix A to the set of matrices of rank at most r is equal to $\sigma_{r}(A)$, and $\sigma_{r}(A)$ denotes the r th singular value of the matrix A.

Let Φ be a complex $n \times n$ matrix, and let \mathbb{L} be a set of $n \times n$ matrices with a multiple zero eigenvalue. In the paper [5], A.N. Malyshev obtained the following formula for 2-norm distance from Φ to \mathbb{L} :

$$
\begin{equation*}
\rho_{2}(\Phi, \mathbb{L})=\min _{L \in \mathbb{L}}\|\Phi-L\|_{2}=\max _{\phi \geq 0} \sigma_{2 n-1}(P(\phi)) \tag{1}
\end{equation*}
$$

in which

$$
P(\phi)=\left(\begin{array}{cc}
\Phi & \phi I_{n} \tag{2}\\
0 & \Phi
\end{array}\right)
$$

and $\sigma_{i}(\cdot)$ denotes the i th singular value of the corresponding matrix. It is assumed that the singular values of any matrix are arranged in decreasing order.

The spectral norm distance of an $n \times n$ matrix Φ to the set of matrices with two prescribed eigenvalues was computed by J. M. Gracia [2] for $\phi_{\star} \neq 0$ (where $P(\phi)$ gets its maximum at the point ϕ_{\star}) and for other cases by Ross A. Lippert [4]. Let $A \in \mathbb{C}^{n \times n}$ be an invertible matrix and $D \in \mathbb{C}^{m \times m}$, J.M. Gracia and F.E. Velasco in their recent paper [3] found the spectral distance from a set of matrices $X \in \mathbb{C}^{m \times m}$ to matrix D, such that, the matrix

$$
\Gamma_{X}=\left(\begin{array}{ll}
A & B \tag{3}\\
C & X
\end{array}\right)
$$

[^0]has a multiple eigenvalue zero, i.e.
$$
\min _{\substack{X \in \mathrm{C}_{n m} \times \geq \\ m\left(0, \mathrm{C}_{X}\right) \geq 2}}\|X-D\|=\sup _{\gamma \in \mathbb{R}} \sigma_{2 m-1}(P(\gamma, D)),
$$
where
\[

$$
\begin{aligned}
& P(\gamma, D)=\left(\begin{array}{cc}
\mathcal{M} & \gamma \mathcal{N} \\
0 & \mathcal{M}
\end{array}\right), \\
& \mathcal{M}:=D-C A^{-1} B, \\
& \mathcal{N}:=I_{m}+C A^{-2} B,
\end{aligned}
$$
\]

and $m\left(\lambda_{0}, \Gamma_{X}\right)$ denotes the algebraic multiplicity of λ_{0} as an eigenvalue of Γ_{X}.
Nazari and Nezami in [6] introduced a correction for Gracia and Velasco's formula, when the matrix Γ_{D} is a block normal matrix.

In this paper, for the given four complex matrices $A \in \mathbb{C}^{n \times n}, B, C$ and $D \in \mathbb{C}^{m \times m}$ and for two given distinct complex numbers λ_{1} and λ_{2} which are not eigenvalues of matrix A, we find the nearest matrix to matrix D, from the set of matrices $X \in \mathbb{C}^{m \times m}$ such that matrix Γ_{X} has two prescribed eigenvalues λ_{1} and λ_{2}.

Using the notations in [3], let us denote the Cartesian product $\mathbb{C}^{n \times n} \times \mathbb{C}^{n \times m} \times \mathbb{C}^{m \times m}$ by $L_{n, m}$. Given $\Gamma_{D} \in \mathbb{C}^{(m+n) \times(m+n)}$ the spectrum of Γ_{D} will be denoted by $\Lambda\left(\Gamma_{D}\right)$.

Two unitary vectors u, v are a pair of singular vectors of matrix Γ_{X} for the singular value σ if $\Gamma_{X} v=\sigma u$ and $\left(\Gamma_{X}\right)^{H} u=\sigma v$.

2. Function $P(\gamma)$

Assume that $\mathcal{M}_{1}, \mathcal{M}_{2}$ and $\mathcal{N} \in \mathbb{C}^{m \times m}$ that

$$
\begin{align*}
\mathcal{M}_{1} & =\left(D-\lambda_{1} I_{m}\right)-C\left(A-\lambda_{1} I_{n}\right)^{-1} B, \tag{4}\\
\mathcal{M}_{2} & =\left(D-\lambda_{2} I_{m}\right)-C\left(A-\lambda_{2} I_{n}\right)^{-1} B, \tag{5}\\
\mathcal{N} & =I_{m}+C\left(A-\lambda_{1} I_{n}\right)^{-1}\left(A-\lambda_{2} I_{n}\right)^{-1} B, \tag{6}
\end{align*}
$$

and $\gamma \in \mathbb{R}$ and

$$
P(\gamma)=\left(\begin{array}{cc}
\mathcal{M}_{1} & \gamma \mathcal{N} \\
0 & \mathcal{M}_{2}
\end{array}\right), \quad p(\gamma)=\sigma_{2 m-1}(P(\gamma)) .
$$

From Lemma 26 of [3] we have the Lemmas 2.1 to 2.4.
Lemma 2.1. For each $\gamma \in \mathbb{R}, \sigma_{2 m-1}(P(\gamma))$ is an even function.
Lemma 2.2. If $\mathcal{M}_{1}, \mathcal{M}_{2}$ and $\mathcal{N} \in \mathbb{C}^{m \times m}$ and $\operatorname{rank}(\mathcal{N}) \geq 2$ for $m \geq 2$, then

$$
\lim _{\gamma \rightarrow \infty} \sigma_{2 m-1}\left(\begin{array}{cc}
\mathcal{M}_{1} & \gamma \mathcal{N} \\
0 & \mathcal{M}_{2}
\end{array}\right)=0
$$

Lemma 2.3. The function $p(\gamma)$ is bounded on \mathbb{R}.
Lemma 2.4. If for some $\gamma \neq 0, p(\gamma)=0$, then for each $\gamma \in \mathbb{R}, p(\gamma)=0$.
Now we bring, Lemma 5 of [5].

Lemma 2.5. Let Ω be an open subset of \mathbb{R} and $F: \Omega \longrightarrow \mathbb{C}^{m \times n}$ be an analytic function on Ω. If the function $\sigma_{i}(F(t))$ has a positive local maximum (or minimum) at $t_{\star} \in \Omega$, then there exists a pair of singular vectors $u \in \mathbb{C}^{m \times 1}, v \in \mathbb{C}^{n \times 1}$ of $F\left(t_{\star}\right)$ corresponding to $\sigma_{i}\left(F\left(t_{\star}\right)\right)$ such that

$$
\operatorname{Re}\left(u^{H} \frac{d F}{d t}\left(\gamma_{\star}\right) v\right)=0
$$

Let $0 \neq \gamma_{\star} \in \mathbb{R}$, and the function $p(\gamma)$ has a local extremum at γ_{\star}, then $\sigma_{2 m-1}\left(\begin{array}{cc}\mathcal{M}_{1} & \gamma_{\star} \mathcal{N} \\ 0 & \mathcal{M}_{2}\end{array}\right)=\sigma_{\star}>0$. If $u=\binom{u_{1}}{u_{2}}, v=\binom{v_{1}}{v_{2}} \in \mathbb{C}^{2 m \times 1}$ are the right and left singular vectors associated to σ_{\star} respectively, where $u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{C}^{m \times 1}$, then

$$
\begin{align*}
& P\left(\gamma_{*}\right) v=\sigma_{\star} u, \tag{7}\\
& P\left(\gamma_{*}\right)^{H} u=\sigma_{\star} v, \tag{8}\\
& u_{1}^{H} u_{1}+u_{2}^{H} u_{2}=1, \tag{9}\\
& v_{1}^{H} v_{1}+v_{2}^{H} v_{2}=1 .
\end{align*}
$$

By Lemma 2.5,

$$
\operatorname{Re}\left(\binom{u_{1}}{u_{2}}^{H} \frac{d P}{d \gamma}\left(\gamma_{\star}\right)\binom{v_{1}}{v_{2}}\right)=0
$$

Also by the definition of $P(\gamma)$ we have

$$
\frac{d P}{d \gamma}\left(\gamma_{\star}\right)=\left(\begin{array}{cc}
0 & \mathcal{N} \\
0 & 0
\end{array}\right)
$$

thus, from two above relations we obtain

$$
\begin{equation*}
\operatorname{Re}\left(u_{1}^{H} \mathcal{N} v_{2}\right)=0 \tag{10}
\end{equation*}
$$

Now, by multiplying both sides of (7) from left by $\left(u_{1}^{H},-u_{2}^{H}\right)$, we can write

$$
\left(u_{1}^{H},-u_{2}^{H}\right)\left(\begin{array}{cc}
\mathcal{M}_{1} & \gamma_{\star} \mathcal{N} \\
0 & \mathcal{M}_{2}
\end{array}\right)\binom{v_{1}}{v_{2}}=\sigma_{\star}\left(u_{1}^{H} u_{1}-u_{2}^{H} u_{2}\right)
$$

therefore

$$
\left(u_{1}^{H} \mathcal{M}_{1}, \gamma_{\star} u_{1}^{H} \mathcal{N}-u_{2}^{H} \mathcal{M}_{2}\right)\binom{v_{1}}{v_{2}}=\sigma_{\star}\left(u_{1}^{H} u_{1}-u_{2}^{H} u_{2}\right)
$$

so

$$
\begin{equation*}
u_{1}^{H} \mathcal{M}_{1} v_{1}+\gamma_{\star} u_{1}^{H} \mathcal{N} v_{2}-u_{2}^{H} \mathcal{M}_{2} v_{2}=\sigma_{\star}\left(u_{1}^{H} u_{1}-u_{2}^{H} u_{2}\right) \tag{11}
\end{equation*}
$$

By multiplying (8) from left by $\left(v_{1}^{H},-v_{2}^{H}\right)$, we have the same relation as

$$
\begin{equation*}
v_{1}^{H} \mathcal{M}_{1}^{H} u_{1}-\gamma_{\star} v_{2}^{H} \mathcal{N}^{H} u_{1}-v_{2}^{H} \mathcal{M}_{2}^{H} u_{2}=\sigma_{\star}\left(v_{1}^{H} v_{1}-v_{2}^{H} v_{2}\right) \tag{12}
\end{equation*}
$$

By taking conjugate transpose from both side (11), we have

$$
\begin{equation*}
v_{1}^{H} \mathcal{M}_{1}^{H} u_{1}+\gamma_{\star} v_{2}^{H} \mathcal{N}^{H} u_{1}-v_{2}^{H} \mathcal{M}_{2}^{H} u_{2}=\sigma_{\star}\left(u_{1}^{H} u_{1}-u_{2}^{H} u_{2}\right) \tag{13}
\end{equation*}
$$

By multiplying relation (12) by -1 and add to relation (13) we have the following relation

$$
\begin{equation*}
2 \gamma_{\star} v_{2}^{H} \boldsymbol{N}^{H} u_{1}=-\sigma_{\star}\left(v_{1}^{H} v_{1}-v_{2}^{H} v_{2}\right)+\sigma_{\star}\left(u_{1}^{H} u_{1}-u_{2}^{H} u_{2}\right) \tag{14}
\end{equation*}
$$

The right hand side of the above relation is real, and since $\gamma_{\star} \neq 0$, then $v_{2}^{H} \mathcal{N}^{H} u_{1}$ is real, so the conjugate of it, $u_{1}^{H} \mathcal{N} v_{2}$ is also real. Thus from (10) we get

$$
\begin{equation*}
u_{1}^{H} \mathcal{N} v_{2}=0 . \tag{15}
\end{equation*}
$$

Now we can provide the following lemmas similar to [2].
Lemma 2.6. If $\gamma_{\star}>0$ is the local extremum of $p(\gamma)$ and $\sigma_{\star}=p\left(\gamma_{*}\right)>0$ and $u=\binom{u_{1}}{u_{2}}, v=\binom{v_{1}}{v_{2}} \in \mathbb{C}^{2 m \times 1}$, where $u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{C}^{m \times 1}$ are the right and left singular vectors corresponding to $\sigma_{\star}=p\left(\gamma_{*}\right)$ respectively, then

$$
u_{1}^{H} \mathcal{N} v_{2}=0 .
$$

Lemma 2.7. If u_{1}, u_{2}, v_{1} and v_{2} are the vectors in the previous Lemma and $U=\left(u_{1}, u_{2}\right)$ and $V=\left(v_{1}, v_{2}\right)$ are two matrices in $\mathbb{C}^{m \times 2}$, then

$$
U^{H} U=V^{H} V
$$

Proof. We construct the proof similar to the [3]. From relations (14) and (15), we have

$$
\sigma_{\star}\left(v_{1}^{H} v_{1}-v_{2}^{\star} v_{2}\right)=\sigma_{\star}\left(u_{1}^{H} u_{1}-u_{2}^{H} u_{2}\right)
$$

Since $\sigma_{\star}>0$, then

$$
v_{1}^{H} v_{1}-v_{2}^{\star} v_{2}=u_{1}^{H} u_{1}-u_{2}^{H} u_{2}
$$

If we assume that $\alpha:=v_{1}^{H} v_{1}-v_{2}^{H} v_{2}$, then $\alpha=u_{1}^{H} u_{1}-u_{2}^{H} u_{2}$. Then by (9) we get

$$
2 v_{1}^{H} v_{1}=1+\alpha, \quad 2 u_{1}^{H} u_{1}=1+\alpha, \quad 2 v_{2}^{H} v_{2}=1-\alpha, \quad 2 u_{2}^{H} u_{2}=1-\alpha
$$

and so

$$
\begin{align*}
& v_{1}^{H} v_{1}=\frac{1+\alpha}{2}=u_{1}^{H} u_{1}, \tag{16}\\
& v_{2}^{H} v_{2}=\frac{1-\alpha}{2}=u_{2}^{H} u_{2} . \tag{17}
\end{align*}
$$

By multiplying both sides of (7) from left by $\left(0, u_{1}^{H}\right)$ and both sides of (8) from left by $\left(v_{2}^{H}, 0\right)$ we have the following equations.

$$
\left(0, u_{1}^{H} \mathcal{M}_{2}\right)\binom{v_{1}}{v_{2}}=\sigma_{\star} u_{1}^{H} u_{2}
$$

and

$$
\left(v_{2}^{H} \mathcal{M}_{1}^{H}, 0\right)\binom{u_{1}}{u_{2}}=\sigma_{\star} v_{2}^{H} v_{1}
$$

so that

$$
\begin{align*}
u_{1}^{H} \mathcal{M}_{2} v_{2} & =\sigma_{\star} u_{1}^{H} u_{2} \tag{18}\\
v_{2}^{H} \mathcal{M}_{1}^{H} u_{1} & =\sigma_{\star} v_{2}^{H} v_{1} \tag{19}
\end{align*}
$$

By taking conjugate transpose of both sides of (19) and reduce from (18), we obtain

$$
u_{1}^{H} \mathcal{M}_{2} v_{2}-\sigma_{\star} u_{1}^{H} u_{2}=u_{1}^{H} \mathcal{M}_{1} v_{2}-\sigma_{\star} v_{1}^{H} v_{2}
$$

By definition of \mathcal{M}_{1} and \mathcal{M}_{2} in the relation (4) and (5), we deduce that

$$
u_{1}^{H}\left(\left(D-\lambda_{2} I_{m}\right)-C\left(A-\lambda_{2} I_{n}\right)^{-1} B\right) v_{2}-\sigma_{\star} u_{1}^{H} u_{2}=u_{1}^{H}\left(\left(D-\lambda_{1} I_{m}\right)-C\left(A-\lambda_{1} I_{n}\right)^{-1} B\right) v_{2}-\sigma_{\star} v_{1}^{H} v_{2}
$$

By some computations and by lemma 2.6 we have

$$
\sigma_{\star} u_{1}^{H} u_{2}=\sigma_{\star} v_{1}^{H} v_{2}
$$

Since $\sigma_{\star}>0$,

$$
\begin{equation*}
u_{1}^{H} u_{2}=v_{1}^{H} v_{2}, \tag{20}
\end{equation*}
$$

then

$$
U^{H} U=\binom{u_{1}^{H}}{u_{2}^{H}}\left(u_{1}, u_{2}\right)=\left(\begin{array}{ll}
u_{1}^{H} u_{1} & u_{1}^{H} u_{2} \\
u_{2}^{H} u_{1} & u_{2}^{H} u_{2}
\end{array}\right)
$$

and

$$
V^{H} V=\binom{v_{1}^{H}}{v_{2}^{H}}\left(v_{1}, v_{2}\right)=\left(\begin{array}{ll}
v_{1}^{H} v_{1} & v_{1}^{H} v_{2} \\
v_{2}^{H} v_{1} & v_{2}^{H} v_{2}
\end{array}\right)
$$

and by (16) and (17) and (20), we have $U^{H} U=V^{H} V$.
The following lemma can be seen in [4].
Lemma 2.8. Let $q \geq 2$ and $\Gamma_{X} \in \mathbb{C}^{q \times q}$ and $\lambda_{1}, \lambda_{2} \in \Lambda\left(\Gamma_{X}\right)$, then

$$
\operatorname{rank}\left(\begin{array}{cc}
\Gamma_{X}-\lambda_{1} I_{q} & \gamma I_{q} \\
0 & \Gamma_{X}-\lambda_{2} I_{q}
\end{array}\right) \leq 2 q-2, \quad \forall \gamma \in \mathbb{R}
$$

By Theorem 1.1 from [1] and Theorem 5 from [3] we have the next Theorem.
Theorem 2.9. Given a matrix partitioned in the following form

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

with $A \in \mathbb{C}^{n \times n}$ and $D \in \mathbb{C}^{m \times m}$. For each matrix $X \in \mathbb{C}^{m \times m}$, let

$$
\Gamma_{X}=\left(\begin{array}{ll}
A & B \\
C & X
\end{array}\right)
$$

and let us call

$$
\begin{aligned}
& \rho:=\operatorname{rank}[A, B]+\operatorname{rank}\left[\begin{array}{l}
A \\
C
\end{array}\right]-\operatorname{rank} A, \\
& M:=\left(I_{n}-A A^{+}\right) B, \quad N:=C\left(I_{n}-A^{+} A\right),
\end{aligned}
$$

and

$$
P(X):=\left(I-N N^{\dagger}\right)\left(X-C A^{\dagger} B\right)\left(I-M^{\dagger} M\right)
$$

Then for each $X \in \mathbb{C}^{m \times m}$, we have

$$
\operatorname{rank} \Gamma_{X}=\rho+\operatorname{rank} P(X)
$$

Moreover, for each integer r such that $\rho \leq r<\operatorname{rank} \Gamma_{D}$,

$$
\min \left\{\|X-D\|: X \in \mathbb{C}^{m \times m}, \operatorname{rank} \Gamma_{X} \leq r\right\}=\sigma_{s+1}(P(D))
$$

where $s=r-\rho$.

3. Lower bound for minimum of problem

Assume that $\alpha=(A, B, C) \in L_{n \times m}$ and $X \in \mathbb{C}^{m \times m}$ and

$$
m\left(\lambda_{i}, \Gamma_{X}\right) \geq 1, \quad i=1,2
$$

by Lemma 2.8 we have

$$
\begin{aligned}
& \operatorname{rank}\left(\begin{array}{cccc}
A-\lambda_{1} I_{n} & B & \gamma I_{n} & 0 \\
C & X-\lambda_{1} I_{m} & 0 & \gamma I_{m} \\
0 & 0 & A-\lambda_{2} I_{n} & B \\
0 & 0 & C & X-\lambda_{2} I_{m}
\end{array}\right)= \\
& \operatorname{rank}\left(\begin{array}{cccc}
A-\lambda_{1} I_{n} & \gamma I_{n} & B & 0 \\
0 & A-\lambda_{2} I_{n} & 0 & B \\
C & 0 & X-\lambda_{1} I_{m} & \gamma I_{m} \\
0 & C & 0 & X-\lambda_{2} I_{m}
\end{array}\right) \leq 2(n+m)-2 .
\end{aligned}
$$

Then we call

$$
\begin{aligned}
& \mathcal{A}(\gamma):=\left(\begin{array}{cc}
A-\lambda_{1} I_{n} & \gamma I_{n} \\
0 & A-\lambda_{2} I_{n}
\end{array}\right), \\
& \mathcal{B}:=\left(\begin{array}{ll}
B & 0 \\
0 & B
\end{array}\right), \\
& C:=\left(\begin{array}{ll}
C & 0 \\
0 & C
\end{array}\right), \\
& \mathcal{X}(\gamma):=\left(\begin{array}{cc}
X-\lambda_{1} I_{m} & \gamma I_{n} \\
0 & X-\lambda_{2} I_{m}
\end{array}\right) .
\end{aligned}
$$

From Theorem 2.9, we have

$$
\begin{aligned}
& \rho(\gamma)=\operatorname{rank}\left[\begin{array}{ll}
\mathcal{A}(\gamma) & \mathcal{B}
\end{array}\right]+\operatorname{rank}\left[\begin{array}{c}
\mathcal{A}(\gamma) \\
\mathcal{C}
\end{array}\right]-\operatorname{rank} \mathcal{A}(\gamma), \\
& s(\gamma)=2 m+2 n-2-\rho(\gamma), \\
& M(\gamma)=\left(I_{2 n}-\mathcal{A}(\gamma) \mathcal{A}(\gamma)^{\dagger}\right) \mathcal{B}, \\
& N(\gamma)=C\left(I_{2 n}-\mathcal{A}(\gamma)^{\dagger} \mathcal{A}(\gamma)\right), \\
& P\left(\gamma, X-\lambda_{1} I_{m}, X-\lambda_{2} I_{m}\right):=\left(I_{2 m}-N(\gamma) N(\gamma)^{\dagger}\right)\left(X(\gamma)-C \mathcal{A}(\gamma)^{\dagger} \mathcal{B}\right)\left(I_{2 m}-M(\gamma)^{\dagger} M(\gamma)\right),
\end{aligned}
$$

and so

$$
\operatorname{rank}\left(\begin{array}{cc}
\mathcal{A}(\gamma) & \mathcal{B} \\
\mathcal{C} & \mathcal{X}(\gamma)
\end{array}\right)=\rho(\gamma)+\operatorname{rank}\left(P\left(\gamma, X-\lambda_{1} I_{m}, X-\lambda_{2} I_{m}\right)\right)
$$

Since

$$
m\left(\lambda_{i}, \Gamma_{X}\right) \geq 1, \quad i=1,2
$$

for any $\gamma \in \mathbb{R}$, we have

$$
\begin{align*}
& \rho(\gamma)+\operatorname{rank}\left(P\left(\gamma, X-\lambda_{1} I_{m}, X-\lambda_{2} I_{m}\right) \leq 2 n+2 m-2 \Longleftrightarrow\right. \\
& \operatorname{rank}\left(P\left(\gamma, X-\lambda_{1} I_{m}, X-\lambda_{2} I_{m}\right) \leq 2 n+2 m-2-\rho(\gamma)=s(\gamma)\right. \\
& \Longrightarrow \sigma_{s(\gamma)+1}\left(P\left(\gamma, X-\lambda_{1} I_{m}, X-\lambda_{2} I_{m}\right)=0 .\right. \tag{22}
\end{align*}
$$

Lemma 3.1. If $\gamma \in \mathbb{R}$ and $X \in \mathbb{C}^{m \times m}$, then

$$
\begin{equation*}
\left|\sigma_{i}\left(P\left(\gamma, X-\lambda_{1} I_{m}, X-\lambda_{2} I_{m}\right)\right)-\sigma_{i}\left(P\left(\gamma, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)\right)\right| \leq\|X-D\| \tag{23}
\end{equation*}
$$

for $i=1,2, \cdots, 2 m$.
Proof. Similar to Lemma 22 of [3] the proof is obtained directly.
Now by relations (22) and (23) we have

$$
\sigma_{s(\gamma)+1}\left(P\left(\gamma, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)\right) \leq\|X-D\|
$$

so

$$
\sup _{\gamma \in \mathbb{R}} \sigma_{s(\gamma)+1}\left(P\left(\gamma, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)\right) \leq \min _{\substack{X \in \mathbb{C}^{m \times m} \\ m\left(\lambda_{i}, \Gamma\right) \geq 1 \\ i=1,2}}\|X-D\| .
$$

In continue we assume that λ_{1} and λ_{2} do not belong to $\Lambda(A)$ and we solve the problem (If one of these numbers be an eigenvalue of A, then $s(\gamma)$ is not equal to $2 m-1$).

There are two following cases for m :

- $m>1$,
- $m=1$.

The proof of existence a matrix X such that λ_{1} and λ_{2} are eigenvalues of matrix Γ_{X}, is similar to the section 3 of [3]. For the cases $m>1$ and $m=1$ that $\mathcal{N}=0$, we introduce a method for constructing matrix X such that λ_{1} and λ_{2} are eigenvalues of Γ_{X} and for the case $m=1$ when $\mathcal{N} \neq 0$, we prove that there is no matrix X.

4. The cases that λ_{1} and λ_{2} do not belong to $\Lambda(A)$

Firstly we consider $m>1$ and since the local maximum of $\sigma_{2 m-1}\left(P\left(\gamma, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)\right)$ happens in γ_{\star}, we also consider the following three cases:

- $\gamma_{\star} \neq 0$,
- $\gamma_{\star}=0$,
- $\gamma_{\star}=\infty$.

4.1. The case $\gamma_{\star} \neq 0$

By relation (21) we have $s(\gamma)+1=2 m-1$, then we prove the following Theorem.
Theorem 4.1. If $\alpha=(A, B, C) \in L_{n, m}$ and $D \in \mathbb{C}^{m \times m}$, where $\lambda_{1}, \lambda_{2} \notin \Lambda(A)$, then

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \\ m\left(\lambda_{i}, \Gamma\right) \geq 1 \\ i=1,2}}\|X-D\|=\sup _{\gamma \in \mathbb{R}^{* 0}} \sigma_{2 m-1}\left(P\left(\gamma, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)\right) .
$$

Proof. It is sufficient to show that

$$
\sup _{\gamma \in \mathbb{R}} \sigma_{2 m-1}\left(P\left(\gamma, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)\right) \geq \min _{\substack{X \in \mathbb{C}^{n n \times m} \\ m\left(\lambda_{i}, \Gamma\right) \geq 1 \\ i=1,2}}\|X-D\| .
$$

Set

$$
\begin{aligned}
& \mathcal{M}_{1}=\left(D-\lambda_{1} I_{m}\right)-C\left(A-\lambda_{1} I_{n}\right)^{-1} B, \\
& \mathcal{M}_{2}=\left(D-\lambda_{2} I_{m}\right)-C\left(A-\lambda_{2} I_{n}\right)^{-1} B, \\
& \mathcal{N}=I_{m}+C\left(A-\lambda_{1} I_{n}\right)^{-1}\left(A-\lambda_{2} I_{n}\right)^{-1} B, \\
& P\left(\gamma, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)=\left(\begin{array}{cc}
\mathcal{M}_{1} & \gamma \mathcal{N} \\
0 & \mathcal{M}_{2}
\end{array}\right), \\
& p(\gamma)=\sigma_{2 m-1}\left(P\left(\gamma, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)\right) .
\end{aligned}
$$

Let D_{\star} be the matrix such that $\Gamma_{D_{\star}}=\left(\begin{array}{cc}A & B \\ C & D_{\star}\end{array}\right)$ has two eigenvalues λ_{1}, λ_{2} and

$$
\left\|D-D_{\star}\right\|=\max _{\gamma \in \mathbb{R}} p(\gamma)
$$

and let the local maximum of $p(\gamma)$ happens in $\gamma_{\star}>0$ and $p\left(\gamma_{*}, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)=\sigma_{\star}>0$. According to Lemma 2.6, we assume that $u=\binom{u_{1}}{u_{2}}, v=\binom{v_{1}}{v_{2}} \in \mathbb{C}^{2 m \times 1}$, where $u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{C}^{m \times 1}$ are the right and left singular vectors corresponding to $\sigma_{\star}=p\left(\gamma_{*}\right)$ respectively and

$$
U=\left(u_{1}, u_{2}\right), V=\left(v_{1}, v_{2}\right) \in \mathbb{C}^{m \times 2}
$$

We define $\Delta=\sigma_{\star} U V^{+}$and prove that $\|\Delta\|=\sigma_{\star}$ and λ_{1}, λ_{2} are the eigenvalues of

$$
\left(\begin{array}{cc}
A & B \\
C & D^{*}
\end{array}\right),
$$

where

$$
\begin{equation*}
D_{\star}=D-\Delta . \tag{24}
\end{equation*}
$$

By Lemma 2.7 we have $V^{H} V=U^{H} U$. There is a unitary matrix $W \in \mathbb{C}^{m \times m}$ such that $U=W V$. Hence

$$
\left\|D-D_{\star}\right\|=\sigma_{\star}\left\|U V^{\dagger}\right\|=\sigma_{\star}\left\|W V V^{\dagger}\right\|=\sigma_{\star}\left\|V V^{\dagger}\right\|=\sigma_{\star}
$$

Now we prove that λ_{1} and λ_{2} are eigenvalues of $\Gamma_{D_{\star}}$.
From [2], Page 287, equations (31) and (32) we have

$$
\begin{align*}
\Delta v_{2} & =\sigma_{\star} u_{2} \tag{25}\\
u_{1}^{H} \Delta & =\sigma_{\star} v_{1}^{H} . \tag{26}
\end{align*}
$$

and from [2], Page 287, since we have $\Delta V=\sigma_{\star} U$, so

$$
\begin{equation*}
D_{\star} V=D V-\sigma_{\star} U \tag{27}
\end{equation*}
$$

so $\operatorname{rank} V^{H} V=\operatorname{rank} V$ and $\left\|\left(v_{1}, v_{2}\right)^{H}\right\|=1$, thus we deduce that $\operatorname{rank} V^{H} V \geq 1$. Therefore we have the following cases:

- $\operatorname{rank} V=2$,
- $\operatorname{rank} V=1, v_{2}=0$
- $\operatorname{rank} V=1, v_{2} \neq 0$

4.1.1. $\operatorname{rank} V=2$

Since $\operatorname{rank} V=2$, so v_{1}, v_{2} are linearly independent. Hence we should find the vectors $w_{1}, w_{2} \in \mathbb{C}^{n \times 1}$ such that

$$
\left(\begin{array}{cc}
A & B \tag{28}\\
C & D_{\star}
\end{array}\right)\left(\begin{array}{cc}
w_{2} & w_{1} \\
v_{2} & v_{1}
\end{array}\right)=\left(\begin{array}{cc}
w_{2} & w_{1} \\
v_{2} & v_{1}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1} & -\gamma_{\star} \\
0 & \lambda_{2}
\end{array}\right) .
$$

Because λ_{1} and λ_{2} are not eigenvalues of matrix A, let us assume that

$$
\begin{aligned}
& w_{2}=-\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{2} \\
& \quad w_{1}=-\left(A-\lambda_{2} I_{n}\right)^{-1} B v_{1}+\gamma_{\star}\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{2}
\end{aligned}
$$

We prove that w_{1} and w_{2} are holding in (28). By (27), we know

$$
\begin{equation*}
D_{\star} v_{i}=D v_{i}-\sigma_{\star} u_{i}, \quad i=1,2 \tag{29}
\end{equation*}
$$

from the second line (28), we have

$$
\begin{aligned}
& -C\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{2}+D_{\star} v_{2}=\lambda_{1} v_{2} \\
& -C\left(A-\lambda_{2} I_{n}\right)^{-1} B v_{1}+\gamma_{\star} C\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{2}+D_{\star} v_{1}=-\gamma_{\star} v_{2}+\lambda_{2} v_{1}
\end{aligned}
$$

by (29), we find

$$
\begin{aligned}
& -C\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{2}+\left(D-\lambda_{1} I_{m}\right) v_{2}-\sigma_{\star} u_{2}=0 \\
& -C\left(A-\lambda_{2} I_{n}\right)^{-1} B v_{1}+\gamma_{\star} C\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{2}+\left(D-\lambda_{2} I_{m}\right) v_{1}-\sigma_{\star} u_{1} \\
& =-\gamma_{\star} v_{2}
\end{aligned}
$$

From these relation and by definitions $\mathcal{M}_{1}, \mathcal{M}_{2}$ and \mathcal{N}, we have

$$
\mathcal{M}_{1} v_{2}=\sigma_{\star} u_{2}, \quad \mathcal{M}_{2} v_{1}+\gamma_{\star} \mathcal{N} v_{2}=\sigma_{\star} u_{1}
$$

This equation is the section of equation (7) and above relations also is correct, so equation (28) is hold. So w_{1} and w_{2} satisfy the required conditions in (28). Therefore λ_{1} and λ_{2} are eigenvalues of $\Gamma_{D_{\star}}$.

4.1.2. $\operatorname{rank} V=1, v_{2}=0$

From Lemma 27 in [3], we know that $u_{2}=0$ and $u_{1} \neq 0$, so it suffices to find vectors $w_{1}, w_{2} \in \mathbb{C}^{1 \times n}, w_{2} \neq 0$ such that

$$
\left(\begin{array}{cc}
w_{1} & u_{1}^{H} \tag{30}\\
w_{2} & 0
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & D_{\star}
\end{array}\right)=\left(\begin{array}{cc}
\bar{\lambda}_{1} & 0 \\
1 & \bar{\lambda}_{2}
\end{array}\right)\left(\begin{array}{cc}
w_{1} & u_{1}^{H} \\
w_{2} & 0
\end{array}\right) .
$$

Let

$$
w_{1}=-u_{1}^{H} C\left(A-\lambda_{1} I_{n}\right)^{-1}, \quad w_{2}=-u_{1}^{H} C\left(A-\lambda_{1} I_{n}\right)^{-1}\left(A-\lambda_{2} I_{n}\right)^{-1}
$$

Now we prove that w_{1} and w_{2} are hold in (30). By taking conjugate transpose from both sides of (30) and second line it and definition \mathcal{N}, we earn

$$
\begin{aligned}
& -u_{1}^{H} C\left(A-\lambda_{1} I_{n}\right)^{-1} B+u_{1}^{H}\left(D_{\star}-\lambda_{1} I_{m}\right)=0, \\
& u_{1}^{H} \mathcal{N}=0 .
\end{aligned}
$$

The second equation is right from Lemma 27 in [3]. In order to prove the first equation, since $v_{2}=0$ and by (26), and definition \mathcal{M}_{1}, we write

$$
u_{1}^{H} \mathcal{M}_{1}=\sigma_{\star} v_{1}^{H} \Longleftrightarrow \mathcal{M}_{1}^{H} u_{1}=\sigma_{\star} v_{1}
$$

This equation is the section of equation (8) and the above relations also correct, so equation (30) is held. In this Case $w_{2} \neq 0$, if $w_{2}=0$ then $-u_{1}^{H} C A^{-2}=0$, so $-u_{1}^{H} C A^{-2} B=0$ and $u_{1}^{H}\left[I_{m}+C A^{-2} B\right]=u_{1}^{H}$ and by definition \mathcal{N} we have $u_{1}^{H} \mathcal{N}=u_{1}^{H}$, that, it is wrong by Lemma 27 in [3]. So w_{1}, w_{2} satisfy in the condition (30) and λ_{1} and λ_{2} are eigenvalues of $\Gamma_{D_{\star}}$.
4.1.3. $\operatorname{rank} V=1, v_{2} \neq 0$

We prove that there are vectors $w_{1}, w_{2} \in \mathbb{C}^{n \times 1}, w_{1} \neq 0$ such that

$$
\left(\begin{array}{cc}
A & B \tag{31}\\
C & D_{\star}
\end{array}\right)\left(\begin{array}{cc}
w_{2} & w_{1} \\
v_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
w_{2} & w_{1} \\
v_{2} & 0
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1} & 1 \\
0 & \lambda_{2}
\end{array}\right)
$$

Let us assume that

$$
w_{2}=-\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{2}, \quad w_{1}=-\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{2}
$$

We want to show that w_{1} and w_{2} are hold in (31). From (29) and the second line of (31), we have

$$
\begin{aligned}
& -C\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{2}+\left(D-\lambda_{1} I_{m}\right) v_{2}-\sigma_{\star} u_{2}=0 \\
& -C\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{2}=v_{2}
\end{aligned}
$$

Now, by replacing \mathcal{M}_{1} and \mathcal{N} in both above formulas, we have

$$
\mathcal{M}_{1} v_{2}=\sigma_{\star} u_{2}, \quad \mathcal{N} v_{2}=0
$$

These relations are a combination of Lemma 28 in [3] and (8), then (31) is held. In this case $w_{1} \neq 0$, if $w_{1}=0$ we have

$$
-\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{2}=0
$$

so

$$
C\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{2}=0
$$

and

$$
\left[I_{m}+C\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)^{-1} B\right] v_{2}=v_{2}
$$

By replacing the matrix \mathcal{N} in the above relation we have

$$
\mathcal{N} v_{2}=v_{2}
$$

but this relation is wrong by Lemma 28 in [3]. So w_{1}, w_{2} satisfy the condition (31) and λ_{1} and λ_{2} are eigenvalues of $\Gamma_{D_{\star}}$.
4.2. The case $\gamma_{\star}=0$

Assume that $\sigma_{2 m-1}\left(\begin{array}{cc}\mathcal{M}_{1} & 0 \\ 0 & \mathcal{M}_{2}\end{array}\right)=\sigma_{\star}>0$, then two cases happens.

- Case 1: $\sigma_{m}\left(\mathcal{M}_{1}\right) \geq \sigma_{m}\left(\mathcal{M}_{2}\right)>0$,
- Case 2: $\sigma_{m}\left(\mathcal{M}_{2}\right) \geq \sigma_{m}\left(\mathcal{M}_{1}\right)>0$.

From Theorem 3.7 of [4], we have:
Theorem 4.2. Let $M \in \mathbb{C}^{m \times m}$ and ΔM be a perturbation such that $M-\Delta M$ has two eigenvalues λ_{1}, λ_{2} (or a multiple eigenvalue, $\lambda=\lambda_{1}=\lambda_{2}$). Then we have

$$
\max \left\{\sigma_{m}\left(\mathcal{M}_{1}\right), \sigma_{m}\left(\mathcal{M}_{2}\right), p(\gamma \star)\right\} \leqslant\|\Delta M\|_{2}
$$

and in a more precise way

$$
\max \left\{\sigma_{m}\left(\mathcal{M}_{1}\right), \sigma_{m}\left(\mathcal{M}_{2}\right), p\left(\gamma_{\star}\right)\right\}=\min _{\Delta M}\|\Delta M\|_{2}
$$

4.2.1. Case 1

Let $\mathcal{M}_{1}=U \Sigma V^{H}$ be the singular value decomposition of \mathcal{M}_{1} with the smallest singular value σ_{m} and let u_{m} and v_{m} be the corresponding right and left singular vectors of σ_{m} respectively. It is known that

$$
u_{m}^{H} \mathcal{N} v_{m} \neq 0
$$

If $u_{m}^{H} \mathcal{N} v_{m}=0$, according to the definition of \mathcal{N}, we have

$$
\begin{aligned}
u_{m}^{H} \mathcal{N} v_{m} & =u_{m}^{H}\left(I_{m}+C\left(A-\lambda_{1} I_{n}\right)^{-1}\left(A-\lambda_{2} I_{n}\right)^{-1} B\right) v_{m} \\
& =u_{m}^{H} v_{m}+u_{m}^{H} C\left(A-\lambda_{1} I_{n}\right)^{-1}\left(A-\lambda_{2} I_{n}\right)^{-1} B v_{m} \\
& =0,
\end{aligned}
$$

so

$$
u_{m}^{H} I_{m} v_{m}=-u_{m}^{H} C\left(A-\lambda_{1} I_{n}\right)^{-1}\left(A-\lambda_{2} I_{n}\right)^{-1} B v_{m}
$$

since u_{m} and v_{m} are right and left singular vectors of \mathcal{M}_{1} corresponding to the σ_{m} respectively, since $m>1$, consequently

$$
I_{m}=-\left(u_{m}^{H}\right)^{\dagger} u_{m}^{H} C\left(A-\lambda_{1} I_{n}\right)^{-1}\left(A-\lambda_{2} I_{n}\right)^{-1} B v_{m}\left(v_{m}\right)^{\dagger}
$$

and finally

$$
I_{m}=-C\left(A-\lambda_{1} I_{n}\right)^{-1}\left(A-\lambda_{2} I_{n}\right)^{-1} B
$$

therefore

$$
\mathcal{N}=0
$$

and this is impossible. Thus

$$
u_{m}^{H} \mathcal{N} v_{m} \neq 0
$$

Assume that

$$
\begin{equation*}
\tilde{U} \tilde{\Sigma} \tilde{V}^{H}=\tilde{\mathcal{M}}_{2}=\mathcal{M}_{2}+\frac{\left(\lambda_{2}-\lambda_{1}\right) \mathcal{N}}{u_{m}^{H} \mathcal{N} v_{m}} v_{m} u_{m}^{H} \mathcal{N}, \tag{32}
\end{equation*}
$$

is the SVD of $\tilde{\mathcal{M}}_{2}$. We prove that σ_{m} is the singular value of $\tilde{\mathcal{M}}_{2}$.
From $\mathcal{M}_{1} v_{m}=\sigma_{m} u_{m}$, we have

$$
\begin{align*}
\tilde{\mathcal{M}}_{2} v_{m} & =\mathcal{M}_{2} v_{m}+\frac{\left(\lambda_{2}-\lambda_{1}\right) \mathcal{N}}{u_{m}^{H} \mathcal{N} v_{m}} v_{m} u_{m}^{H} \mathcal{N} v_{m} \\
& =\left[\left(D-\lambda_{2} I_{m}\right)-C\left(A-\lambda_{2} I_{n}\right)^{-1} B\right] v_{m}+\frac{\left(\lambda_{2}-\lambda_{1}\right) \mathcal{N}}{u_{m}^{H} \mathcal{N} v_{m}} v_{m} u_{m}^{H} \mathcal{N} v_{m} \\
& =\left(D-\lambda_{1} I_{m}\right) v_{m}+\left(\lambda_{1}-\lambda_{2}\right) I_{m} v_{m}-C\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{m} \\
& +C\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{m}-C\left(A-\lambda_{2} I_{n}\right)^{-1} B v_{m}+\left(\lambda_{2}-\lambda_{1}\right) \mathcal{N} v_{m} \\
& =\mathcal{M}_{1} v_{m}+\left(\lambda_{1}-\lambda_{2}\right) v_{m}+C\left(\left(A-\lambda_{1} I_{n}\right)^{-1}-\left(A-\lambda_{2} I_{n}\right)^{-1}\right) B v_{m} \\
& +\left(\lambda_{2}-\lambda_{1}\right) \mathcal{N} v_{m} \tag{33}\\
& =\mathcal{M}_{1} v_{m}+\left(\lambda_{1}-\lambda_{2}\right) v_{m} \\
& +C\left[\left(A-\lambda_{1} I_{n}\right)^{-1}\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{2} I_{n}\right)\right. \\
& \left.-\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)\right] B v_{m}+\left(\lambda_{2}-\lambda_{1}\right) \mathcal{N} v_{m} \\
& =\mathcal{M}_{1} v_{m}+\left(\lambda_{1}-\lambda_{2}\right) v_{m} \\
& +C\left[\left(A-\lambda_{1} I_{n}\right)^{-1}\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{2} I_{n}-A+\lambda_{1} I_{n}\right)\right] B v_{m} \\
& +\left(\lambda_{2}-\lambda_{1}\right) \mathcal{N} v_{m} .
\end{align*}
$$

Since we can permute the product of two matrices $\left(A-\lambda_{2} I_{n}\right)^{-1}$ and $\left(A-\lambda_{1} I_{n}\right)^{-1}$, so the relation (33) is equal to $\sigma_{m} u_{m}$. Similarly, we can also prove that

$$
\tilde{\mathcal{M}}_{2}^{H} u_{m}=\sigma_{m} v_{m}
$$

and this shows that σ_{m} is the singular value of $\tilde{\mathcal{M}}_{2}$. If $\tilde{\sigma}_{m}$ is the smallest singular value of $\tilde{\mathcal{M}}_{2}$, then $\sigma_{m} \geq \tilde{\sigma}_{m}$. Now we define the matrix $D-D_{\star}$ as

$$
D-D_{\star}=\left(u_{m}, \tilde{u}_{m}\right)\left(\begin{array}{cc}
\sigma_{m} & 0 \tag{34}\\
0 & \tilde{\sigma}_{m}
\end{array}\right)\left(v_{m}, \tilde{v}_{m}\right)^{H}
$$

where \tilde{u}_{m} and \tilde{v}_{m} are the right and left singular vectors corresponding to $\tilde{\sigma}_{m}$.
We prove that $\left\|D-D_{\star}\right\|=\sigma_{m}$ and λ_{1} and λ_{2} are eigenvalues of $\left(\begin{array}{cc}A & B \\ C & D_{\star}\end{array}\right)$. For proving $\left\|D-D_{\star}\right\|=\sigma_{m}$, we know that σ_{m} is one of the singular values of $\tilde{\mathcal{M}}_{2}$ and u_{m}, v_{m} are the corresponding singular vectors. Assume that \tilde{u}_{m} and \tilde{v}_{m} are the corresponding singular vectors of $\tilde{\sigma}_{m}$ for $\tilde{\mathcal{M}}_{2}$, then we have $u_{m}^{H} \tilde{u}_{m}=v_{m}^{H} \tilde{v}_{m}$ (since U and V are unitary matrices, there are \tilde{u}_{m} and \tilde{v}_{m}). Therefore, from the definition of matrix $D-D_{\star}$, we have

$$
\left\|D-D_{\star}\right\|=\max \left(\sigma_{m}, \tilde{\sigma}_{m}\right)=\sigma_{m}
$$

Now we prove that λ_{1} and λ_{2} are eigenvalues of $\Gamma_{D_{\star}}$.
By the definition of the matrix $D-D_{\star}$ in (34), we have

$$
\left(D-D_{\star}\right)\left(v_{m}, \tilde{v}_{m}\right)=\left(u_{m}, \tilde{u}_{m}\right)\left(\begin{array}{cc}
\sigma_{m} & 0 \tag{35}\\
0 & \tilde{\sigma}_{m}
\end{array}\right) .
$$

If we apply SVD for the matrix \mathcal{M}_{1}, we see that

$$
\begin{equation*}
D v_{m}=\sigma_{m} u_{m}+C\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{m}+\lambda_{1} v_{m} \tag{36}
\end{equation*}
$$

and from (32)

$$
\begin{equation*}
D \tilde{v}_{m}=\tilde{\sigma}_{m} \tilde{u}_{m}-\frac{\left(\lambda_{2}-\lambda_{1}\right) \mathcal{N}}{u_{m}^{H} \mathcal{N} v_{m}} v_{m} u_{m}^{H} \mathcal{N} \tilde{v}_{m}+C\left(A-\lambda_{2} I_{n}\right)^{-1} B \tilde{v}_{m}+\lambda_{2} \tilde{v}_{m} \tag{37}
\end{equation*}
$$

Considering the relations (35), (36) and (37) we obtain the following equations:

$$
\begin{align*}
& D_{\star} v_{m}=C\left(A-\lambda_{1} I_{n}\right)^{-1} B v_{m}+\lambda_{1} v_{m} \tag{38}\\
& D_{\star} \tilde{v}_{m}=\lambda_{2} \tilde{v}_{m}+C\left(A-\lambda_{2} I_{n}\right)^{-1} B \tilde{v}_{m}-\frac{\left(\lambda_{2}-\lambda_{1}\right) \mathcal{N}}{u_{m}^{H} \mathcal{N} v_{m}} v_{m} u_{m}^{H} \mathcal{N} \tilde{v}_{m} \tag{39}
\end{align*}
$$

To prove that λ_{1} and λ_{2} are eigenvalues of $\Gamma_{D_{\star}}$, we need to find the vectors $w_{1}, w_{2} \in \mathbb{C}^{n \times 1}$ such that:

$$
\left(\begin{array}{cc}
A & B \\
C & D_{\star}
\end{array}\right)\left(\begin{array}{cc}
w_{1} & w_{2} \\
v_{m} & \tilde{v}_{m}
\end{array}\right)=\left(\begin{array}{cc}
w_{1} & w_{2} \\
v_{m} & \tilde{v}_{m}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1} & -\frac{\left(\lambda_{2}-\lambda_{1}\right)}{u_{m}^{H} \mathcal{N} v_{m}} u_{m}^{H} \mathcal{N} \tilde{v}_{m} \\
0 & \lambda_{2}
\end{array}\right)
$$

then from the above equation and relations (38) and (39), if we define two vectors w_{1} and w_{2} as follows

$$
\begin{aligned}
& w_{1}=\left(\lambda_{1} I_{n}-A\right)^{-1} B v_{m} \\
& w_{2}=\left(\lambda_{2} I_{n}-A\right)^{-1} B \tilde{v}_{m}+\frac{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2} I_{n}-A\right)^{-1}\left(\lambda_{1} I_{n}-A\right)^{-1}}{u_{m}^{H} \mathcal{N} v_{m}} v_{m} u_{m}^{H} \mathcal{N} \tilde{v}_{m}
\end{aligned}
$$

so λ_{1} and λ_{2} are eigenvalues of $\Gamma_{D_{\star}}$.

4.2.2. Case 2

As the Case 1 we have the following results.
Let $\mathcal{M}_{2}=U \Sigma V^{H}$ be the singular value decomposition of \mathcal{M}_{2} with the smallest singular value σ_{m} and let u_{m} and v_{m} be the corresponding right and left singular vectors of σ_{m} respectively. Because

$$
u_{m}^{H} \mathcal{N} v_{m} \neq 0,
$$

assume that

$$
\tilde{U} \tilde{\Sigma} \tilde{V}^{H}=\tilde{\mathcal{M}}_{1}=\mathcal{M}_{1}+\frac{\left(\lambda_{1}-\lambda_{2}\right) \mathcal{N}}{u_{m}^{H} \mathcal{N} v_{m}} v_{m} u_{m}^{H} \mathcal{N}
$$

is the SVD of $\tilde{\mathcal{M}}_{1}$. If $\tilde{\sigma}_{m}$ is the smallest singular value of $\tilde{\mathcal{M}}_{1}$, then $\sigma_{m} \geq \tilde{\sigma}_{m}$. Now we define the matrix $D-D_{\star}$ as

$$
D-D_{\star}=\left(u_{m}, \tilde{u}_{m}\right)\left(\begin{array}{cc}
\sigma_{m} & 0 \\
0 & \tilde{\sigma}_{m}
\end{array}\right)\left(v_{m}, \tilde{v}_{m}\right)^{H}
$$

where \tilde{u}_{m} and \tilde{v}_{m} are the right and left singular vectors corresponding to the $\tilde{\sigma}_{m}$. Then $\left\|D-D_{\star}\right\|=\sigma_{m}$ and λ_{1} and λ_{2} are eigenvalues of $\left(\begin{array}{cc}A & B \\ C & D_{\star}\end{array}\right)$.

4.3. The case $\gamma_{\star}=\infty$

The case $\gamma_{\star}=\infty$ is very similar to the case of $\gamma_{\star}=\infty$ in [3], especially all of \mathcal{M} must be replaced by \mathcal{M}_{1} or \mathcal{M}_{2}. By definition $\Delta=\sigma_{\star} U V^{\dagger}$ and $D_{\star}=D-\Delta$, for proving that λ_{1} and λ_{2} are eigenvalues of the matrix $\left(\begin{array}{cc}A & B \\ C & D_{\star}\end{array}\right)$, we will separate two cases: $v_{2} \neq 0$ and $v_{2}=0$. By sections 4.1.2 and 4.1.3 of this paper and section 5.3 in [3], it is very obvious that λ_{1} and λ_{2} are eigenvalues of matrix $\left(\begin{array}{cc}A & B \\ C & D_{\star}\end{array}\right)$, and $\left\|D-D_{\star}\right\|=\sigma_{\star}$.

4.4. The case $m=1$

When $m=1$, then from Theorem 4.2 we have

$$
\min _{\substack{X \in \mathbb{C}^{1 \times 1} \\ m\left(\lambda_{i}, \Gamma \times X\right) \geq 1 \\ i=1,2}}\|X-D\|= \begin{cases}\infty, & \text { if } \quad \mathcal{N} \neq 0, \\ \max \left(\left|\mathcal{M}_{1}\right|,\left|\mathcal{M}_{2}\right|\right), & \text { if } \quad \mathcal{N}=0 .\end{cases}
$$

So, when $\mathcal{N} \neq 0$,

$$
\min _{\substack{X \in \mathbb{C}^{1 \times 1} \\ m\left(\lambda_{i}, \Gamma_{X}\right) \geq 1 \\ i=1,2}}\|X-D\|=\infty,
$$

i.e. there is no matrix X such that λ_{1} and λ_{2} be eigenvalues of matrix Γ_{X}.

When $\mathcal{N}=0$, it suffices finding matrix D_{\star} so that $\left|D-D_{\star}\right|=\max \left(\left|\mathcal{M}_{1}\right|,\left|\mathcal{M}_{2}\right|\right)$.
If $\left|\mathcal{M}_{1}\right|>\left|\mathcal{M}_{2}\right|$, we assume that $D_{\star}=\lambda_{1}+C\left(A-\lambda_{1} I_{n}\right)^{-1} B$, so

$$
\left.\begin{array}{l}
\left(\begin{array}{ll}
A & B \\
C & D_{\star}
\end{array}\right)\left(\begin{array}{cc}
\left(A-\lambda_{1} I_{n}\right)^{-1} B & -\left(A-\lambda_{1} I_{n}-1\right. \\
B-\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)^{-1} B
\end{array}\right)= \\
\left(-\left(A-\lambda_{1} I_{n}\right)^{-1} B\right.
\end{array} \quad-\left(A-\lambda_{1} I_{n}\right)^{-1} B-\left(A-\lambda_{1} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)^{-1} B\right)\left(\begin{array}{l}
\lambda_{1} \\
0
\end{array} \begin{array}{l}
\lambda_{1}-\lambda_{2}+1 \\
0
\end{array}\right) .
$$

Since $\mathcal{N}=0$, the above relation is hold and the two vectors

$$
\binom{-\left(A-\lambda_{1} I_{n}\right)^{-1} B}{1}, \quad\binom{-\left(A-\lambda_{1} I_{n}\right)^{-1} B-\left(A-\lambda_{2} I_{n}\right)^{-1}\left(A-\lambda_{1} I_{n}\right)^{-1} B}{1}
$$

are linearly independent. Therefore λ_{1} and λ_{2} are eigenvalues of $\left(\begin{array}{cc}A & B \\ C & D_{\star}\end{array}\right)$ and $\left|D-D_{\star}\right|=\max \left(\left|\mathcal{M}_{1}\right|,\left|\mathcal{M}_{2}\right|\right)=$ $\left|\mathcal{M}_{1}\right|$.

If $\left|\mathcal{M}_{2}\right|>\left|\mathcal{M}_{1}\right|$, the argument is similar.

5. Numerical examples

In this section for the given four complex matrices $A \in \mathbb{C}^{n \times n}, B, C$ and $D \in \mathbb{C}^{m \times m}$ and for the given two complex numbers λ_{1} and λ_{2}, we find the nearest matrix D_{\star} to matrix D from the set of matrices $X \in \mathbb{C}^{m \times m}$, such that the matrix

$$
\Gamma_{D_{\star}}=\left(\begin{array}{cc}
A & B \\
C & D_{\star}
\end{array}\right)
$$

has two prescribed eigenvalues λ_{1} and λ_{2}.
Example 5.1. Let

$$
\Gamma_{D}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where

$$
\begin{array}{ll}
A=\left(\begin{array}{lllll}
5 & 1 & 3 & 9 & 5 \\
7 & 1 & 7 & 1 & 5 \\
5 & 0 & 6 & 1 & 8 \\
9 & 4 & 7 & 6 & 4 \\
2 & 4 & 9 & 0 & 3
\end{array}\right), & B=\left(\begin{array}{lll}
6 & 5 & 4 \\
7 & 2 & 6 \\
5 & 0 & 3 \\
3 & 7 & 7 \\
1 & 2 & 3
\end{array}\right) \\
C=\left(\begin{array}{lllll}
6 & 0 & 2 & 4 & 7 \\
7 & 3 & 1 & 8 & 3 \\
4 & 4 & 8 & 3 & 8
\end{array}\right), & D=\left(\begin{array}{lll}
7 & 7 & 6 \\
3 & 9 & 4 \\
2 & 3 & 8
\end{array}\right) .
\end{array}
$$

The set of eigenvalues of the matrix Γ_{D} is equal to

$$
\{35.636798,10.011182,-3.102620,-3.102620,
$$

$$
-0.101225,-0.101225,3.664355,2.095356\}
$$

We find the nearest submatrix D_{\star} to the matrix D such that the matrix $\Gamma_{D_{\star}}$ have two eigenvalues 7 and 13 .
The following results can be obtained for the problem. By subsection 4.1 we have

$$
\gamma_{\star}=5.1888125, \quad \sigma_{\star}=5.022005 .
$$

So by (24) we have

$$
D-D_{\star}=\left(\begin{array}{ccc}
-1.210412 & 2.781868 & 2.815794 \\
-0.318987 & -4.095686 & 1.307919 \\
1.315925 & 0.813897 & -3.511032
\end{array}\right)
$$

$$
\left\|D-D_{\star}\right\|=5.022007
$$

and the set of eigenvalues of the matrix $\left(\begin{array}{cc}A & B \\ C & D_{\star}\end{array}\right)$ is equal to
$\{35.7292282,13.0000000,-2.6318610+3.04709591 i$,

$$
\begin{aligned}
& -2.6318610-3.04709591 i,-2.1080252,7.0000000 \\
& 2.7298252+0.5791467 i, 2.7298252-0.5791467 i\}
\end{aligned}
$$

The behavior of $\sigma_{2 m-1}\left(P\left(\gamma, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)\right)$ is shown in Figure 1.

Figure 1:

Example 5.2. For the matrix Γ_{D} in the previous example we find the nearest submatrix D_{\star} to matrix D such that the matrix $\Gamma_{D_{\star}}$ have two eigenvalues 17 and 25 .

The following results can be obtained for the problem: By subsection 4.2 we have

$$
\gamma_{\star}=0, \quad p\left(\gamma_{\star}\right)=15.57954326
$$

Then by Case1 of subsection 4.2.1 and (32) respectively we have

$$
\begin{aligned}
\mathcal{M}_{2} & =\left(\begin{array}{ccc}
7.46107768 & 25.93855446 & 31.92616887 \\
36.57155300 & 9.44580424 & 38.35263256 \\
35.77308604 & 25.88561251 & 16.39206578
\end{array}\right), \\
\tilde{\mathcal{M}}_{1} & =\left(\begin{array}{ccc}
-27.54916572 & -3.10094508 & -10.77183205 \\
-22.62452901 & -26.98246631 & -17.21071049 \\
-15.63095423 & -4.70638090 & -30.49094956
\end{array}\right),
\end{aligned}
$$

by (34) we compute

$$
D-D_{\star}=\left(\begin{array}{ccc}
-9.61734431 & 7.57837149 & 5.59282542 \\
2.24397165 & -12.17200253 & 5.484390350 \\
5.51621342 & 7.88783877 & -11.19195324
\end{array}\right)
$$

so

$$
\left\|D-D_{\star}\right\|=18.6543550
$$

and the set of eigenvalue of the matrix $\left(\begin{array}{cc}A & B \\ C & D_{\star}\end{array}\right)$ is equal to
$\{34.97824316,25.00000000,17.00000000,-3.30416657+3.26137482 i$,

$$
-3.30416657-3.26137482 i,-1.95815033,2.68333536,6.88620506\}
$$

The behavior of $\sigma_{2 m-1}\left(P\left(\gamma, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)\right)$ is shown in Figure 2.
In Figure 2 we can see that the value $\max \left(\sigma_{2 m-1}\left(P\left(\gamma, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)\right)\right)$ must be 15.57954326. It is shown that $\left\|D-D_{\star}\right\|=\sigma_{m}\left(\mathcal{M}_{2}\right)>\max \left(\sigma_{2 m-1}\left(P\left(\gamma, D-\lambda_{1} I_{m}, D-\lambda_{2} I_{m}\right)\right)\right)$, that is right by Theorem 4.2.

Remark 5.3. If λ_{1}, λ_{2} are eigenvalues of matrix A, then in the similar method we can provide some the proofs, and instead of $\left(A-\lambda_{1} I\right)^{-1},\left(A-\lambda_{2} I\right)^{-1}$ we must replace $\left(A-\lambda_{1} I\right)^{\dagger},\left(A-\lambda_{2} I\right)^{\dagger}$.

Figure 2:

References

[1] J.M. González de Durana, J.M. Gracia, Geometric multiplicity margin for a submatrix, Linear Algebra Appl. 349 (2002) 77-104.
[2] J.M. Gracia, Nearest matrix with two prescribed eigenvalues, Linear Algebra Appl. 401 (2005) 277-294.
[3] Juan-Miguel Gracia, Francisco E. Velasco,Nearesr Southeast Submatrix that makes multiple a prescribed eigenvalue. Part 1. Linear Algebra and its Applica- tions 430(2009)1196-1215.
[4] Ross A. Lippert, Fixing two eigenvalues by a minimal perturbation, Linear Algebra Appl. 406 (2005) 177-200.
[5] A.N. Malyshev, A formula for the 2-norm distance from a matrix to the set of matrices with multiple eigenvalues, Numer.Math., 83, pp. 443-454, 1999.
[6] A. Nazari, A. Nezami, Computational aspect to the nearest southeast submatrix that makes multiple a prescribed eigenvalue, Journal of Linear and Topological Algebra Vol. 06, No. 01, 2017, 67-72

[^0]: 2020 Mathematics Subject Classification. Primary 15A18, 15A60, 15A09, 93B10.
 Keywords. Distance of matrices, Eigenvalues, Singular value, Moore-Penrose, Spectral norm
 Received: 02 March 2019; Revised: 14 July 2019; Accepted: 26 April 2020
 Communicated by Predrag Stanimirović
 Corresponding author: Alimohammad Nazari
 Email addresses: a-nazari@araku.ac.ir (Alimohammad Nazari), atiyeh.nezami@gmail.com (Atiyeh Nezami)

