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Abstract
The regularized near-cloak via the transformation optics approach in the time-

harmonic electromagnetic scattering is considered. This work extends the existing
studies mainly in two aspects. First, it presents a near-cloak construction by incor-
porating a much more general conducting layer between the cloaked and cloaking
regions. This might be of significant practical importance when production fluctu-
ations occur. Second, it allows the cloaked contents to be both passive and active
with an applied current inside. In assessing the near-cloaking performance, com-
prehensive and sharp estimates are derived for the scattering amplitude in terms of
the asymptotic regularization parameter and the material tensors of the conducting
layer. The scattering estimates are independent of the passive/active contents being
cloaked, which implies that one could nearly cloak arbitrary contents by using the
proposed near-cloak construction.
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1 Introduction

This work is concerned with the invisibility cloaking for electromagnetic (EM) waves via
the approach of transformation optics [24, 25, 32, 45]. This is a rapidly growing research
area with many potential applications, and we refer to [14, 22, 23, 42, 47, 48] and the
references therein for the recent progresses in both theories and experiments.

We consider two bounded simply connected smooth domains D and Ω in R3, with
D b Ω, and three real symmetric matrix-valued functions ε̃ = (ε̃ij)3

i,j=1, µ̃ = (µ̃ij)3
i,j=1

and σ̃ = (σ̃ij)3
i,j=1 in Ω, satisfying

c|ξ|2 ≤
3∑

i,j=1

ε̃ij(x)ξiξj ≤ C|ξ|2, c|ξ|2 ≤
3∑

i,j=1

µ̃ij(x)ξiξj ≤ C|ξ|2 (1.1)
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and

0 ≤
3∑

i,j=1

σ̃ij(x)ξiξj ≤ C|ξ|2, (1.2)

for all x ∈ Ω and ξ = (ξi)
3
i=1 ∈ R3. Here the constants c and C, or cl and Cl for l = 0, 1, 2

in the rest of the work, are used for generic positive constants whose meanings should
be clear from the contexts. Physically, functions ε̃, µ̃ and σ̃ stand respectively for the
electric permittivity, magnetic permeability and conductivity tensors of a regular EM
medium occupying Ω. In this work, we shall often refer to (1.1) and (1.2) as the regular
conditions for an EM medium, and write (Ω; ε̃, µ̃, σ̃) for an EM medium residing in Ω.
We always assume that the EM medium inclusion (Ω; ε̃, µ̃, σ̃) is located in a uniformly
homogeneous space where the EM parameters are given by ε0, µ0 and σ0. It is assumed
that σij0 = 0 and εij0 = µij0 = δij for the ease of our exposition, where δij is the Kronecker
delta function. We shall be concerned with an EM medium distribution in the whole
space R3 as follows:

R3; ε̃, µ̃, σ̃ =


ε0, µ0, σ0 in R3\Ω,
εc, µc, σc in Ω\D,
ε̃a, µ̃a, σ̃a in D,

(1.3)

where the mediums in D and Ω\D will be specified appropriately in the sequel wherever
it is necessary.

Next, we consider the EM scattering corresponding to an EM medium described in
(1.3). To this end, we first introduce the governing equations. Let ω ∈ R+ be the wave
frequency, and Ei, H i ∈ C3 be the incident EM fields that are (real analytic) entire
solutions to the time-harmonic Maxwell equations

∇∧ Ei − iωµ0H
i = 0 , ∇∧H i + iωε0E

i = 0 in R3. (1.4)

Then the EM wave propagation in the whole space R3 with an EM medium inclusion
(Ω; ε̃, µ̃, σ̃) as described in (1.3) is governed by the following Maxwell system

∇∧ Ẽ − iωµ̃H̃ = 0 in R3,

∇∧ H̃ + iω

(
ε̃+ i

σ̃

ω

)
Ẽ = J̃ in R3,

Ẽ− = Ẽ|Ω, Ẽ+ = (Ẽ − Ei)|R3\Ω
H̃− = H̃|Ω, H̃+ = (H̃ −H i)|R3\Ω

lim
|x|→+∞

|x|
∣∣∣∣(∇∧ Ẽ+)(x) ∧ x

|x|
− iωẼ+(x)

∣∣∣∣ = 0

(1.5)

where J̃ ∈ C3 denotes an electric current density, and supp(J̃) ⊂ Ω. In (1.5), Ẽ and H̃ are
respectively the electric and magnetic fields, and Ẽ+ and H̃+ are known as the scattered
fields (cf. [16, 41]). The last relation in (1.5) is called the Silver-Müller radiation
condition, which characterizes the radiating nature of the scattered wave fields Ẽ+ and
H̃+. For a regular EM medium (Ω; ε̃, µ̃, σ̃) and an active electric current J̃ ∈ L2(Ω)3,
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there exists a unique pair of solutions Ẽ, H̃ ∈ Hloc(∇∧;R3) (see [31, 41]), and Ẽ+ admits
the asymptotic expression as |x| → ∞ (cf. [16]):

Ẽ+(x) =
eiω|x|

|x|
A∞

(
x

|x|
;Ei
)

+O
(

1

|x|2

)
(1.6)

where A∞(x̂;Ei) with x̂ := x/|x| ∈ S2 is known as the scattering amplitude. In the
above and sequel, we shall often use the spaces

Hloc(∇∧;X) = {U |B ∈ H(∇∧;B)| B is any bounded subdomain of X}

and
H(∇∧;B) = {U ∈ (L2(B))3| ∇ ∧ U ∈ (L2(B))3}.

Clearly, the scattering amplitude A∞ depends also on the underlying passive EM medium
(Ω; ε̃, µ̃, σ̃) and the active electric current J̃ , hence we shall write A∞(x̂;Ei, (Ω; ε̃, µ̃, σ̃),
J̃) to emphasize such dependence if necessary. An important inverse scattering problem
arising from practical applications is to recover the medium (Ω; ε̃, µ̃, σ̃) and/or the current
J̃ by knowledge of A∞(x̂;Ei). This inverse problem is of fundamental importance to
many areas of science and technology, such as radar and sonar, geophysical exploration,
non-destructive testing, and medical imaging. We refer the readers to [4] [10] [30] [43]
[44] and the references therein for the studies on uniqueness and stability of this inverse
problem. In the present work, we are mainly concerned with the invisibility cloaking.

Definition 1.1. Consider an EM medium as described in (1.3), where (D; ε̃a, µ̃a, σ̃a) and
(Ω\D; εc, µc, σc) are the target and designed cloaking EM media respectively, and J̃ ∈
L2(Ω)3 is an active object in Ω. The medium (Ω; ε̃, µ̃, σ̃) is called an (ideal) invisibility
cloaking device if no scattered fields are generated outside Ω, or equivalently

A∞(x̂;Ei, (Ω; ε̃, µ̃, σ̃), J̃) = 0.

Based on Definition 1.1, the designed cloaking medium (Ω\D; εc, µc, σc) makes the
target medium (D; ε̃a, µ̃a, σ̃a) and the active/radiating source J̃ invisibile to the exterior
EM detectors. From a practical point of view, the target medium and the electric
current, (D; ε̃a, µ̃a, σ̃a) and J̃ , should be allowed to be arbitrary for a cloaking device.
This viewpoint would be adopted for our subsequent construction and investigation of the
near-cloaking device. By the unique continuation principle for Maxwell’s equations (cf.
[16]), it is readily seen that for an ideal invisibility cloaking device, the scattered EM wave
fields are completely trapped inside the device. The ideal invisibility cloaking of generic
passive media was investigated in [21, 45], and it turns out that one has to implement
singular EM media. Indeed, the ideal invisibility constructions for the Maxwell equations
proposed in [21, 45] make use of cloaking media (Ω\D; εc, µc) which violate the regular
conditions (1.1). Furthermore, it is shown in [21] that if one intends to ideally cloak an
active current, in addition to the singular cloaking medium, one needs to implement a
special singular double coating to defeat the blow-up of the EM fields within the cloaked
region. The singular media present a great challenge for both theoretical analysis and
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practical fabrications. Several regularized constructions have been developed to avoid the
singular structures. A truncation of singularities has been introduced in [19, 20, 46], and
the ‘blow-up-a-point’ transformation from [25, 32, 45] has been regularized to become a
‘blow-up-a-small-region’ transformation in [28, 29, 36]. By incorporating regularization
into the cloaking construction, instead of the ideal/perfect invisibility, one considers the
approximate/near invisibility; that is, to build up a regularized cloaking device so that
the resulting scattering amplitude is nearly negligible in terms of an asymptotically small
regularization parameter ρ ∈ R+. This is the central focus of the current paper. For
this purpose, we shall adopt the blow-up-a-small-region strategy in the present study.
Nevertheless, the truncation-of-singularity construction and the blow-up-a-small-region
construction are equivalent to each other, as pointed out in [27]. Hence, all of the results
obtained in this work hold equally for the truncation-of-singularity construction.

Due to its practical importance, the approximate cloaking has recently been ex-
tensively studied. In [29, 5], approximate cloaking schemes were developed for elec-
tric impedance tomography which can be regarded as optics at zero frequency. In
[6, 7, 28, 33, 35, 36], several near-cloaking schemes were presented for scalar waves
governed by the Helmholtz equation. On the contrary, not much has been done yet for
the approximate cloaking of the full Maxwell equations. In [37], the approximate cloak-
ing was developed for the full Maxwell equations, where the near-cloaking construction is
composed of three parts: a cloaked region D(1) containing the target medium (ε̃a, µ̃a, σ̃a);
a conducting layer (D(2); ε̃l, µ̃l, σ̃l) located right outside the cloaked region D(1), and a
cloaking layer (Ω\D; ερc , µ

ρ
c) outside D = D(1) ∪ D(2), where ρ ∈ R+ is the regularizer

and (ερc , µ
ρ
c) degenerates to the singular cloaking medium in [21, 45] as ρ→ 0. The con-

ducting layer (D(2); ε̃l, µ̃l, σ̃l) between the cloaked and cloaking regions D(1) and Ω\D
appears to be crucial to a practical near-cloaking construction. In fact, it is shown [37]
that without the conducting layer, there always exist cloak-busting inclusions which defy
any attempt to achieve the near-cloak, no matter how small the regularization param-
eter ρ is. This reflects the highly unstable nature of the ideal invisibility cloaking with
singular structures. However, the results of [37] were established only for the spherical
geometry and the uniform cloaked content, namely both Ω and D were assumed to be
Euclidean balls and the medium parameters ε̃a, µ̃a and σ̃a were all constants multiple of
the identity matrix. Under these special settings, the Fourier-Bessel technique can be
used to derive the analytic series expansions of the EM fields [37], enabling one to assess
the corresponding near-cloaking performance. Later, the study in [37] was generalized
in [11] such that Ω and D could be general smooth domains and the cloaked content
could be an arbitrary regular passive medium. However, the conducting layer adopted in
[11] for the cloaking construction is the same as the one in [37], whose material tensors
depend uniformly on the asymptotic parameter ρ in a specific manner (see Remark 2.2).

In this work, we investigate the near-cloaking devices with more general conducting
layers. The material tensors of the conducting layers could be anisotropic, dependent on
or independent of the regularization parameter ρ. On the one hand, this would extend
the studies in the literature to an extremely general case, and on the other hand it would
be significant to practical applications when fabrication fluctuations occur. Moreover,
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only passive cloaked contents were studied for nearly cloaking so far, not any active
contents involved. We shall investigate the nearly cloaking of both passive and active
contents. In assessing the near-cloaking performance, we derive some systematic and
sharp asymptotic estimates of the scattering amplitude in terms of the regularization
parameter ρ and the material tensors of the conducting layer. Our estimates are inde-
pendent of the passive/active contents being cloaked. This implies that one could nearly
cloak an arbitrary content. Furthermore, the estimates can provide some practical guid-
ance in choosing an appropriate conducting layer to improve the near cloaking of active
contents. In addition, we emphasize that the asymptotic estimates were given in terms
of the boundary measurements in [11, 37], whereas the asymptotic estimates are derived
in terms of the scattering measurements in this work and the corresponding asymptotic
analysis is more delicate and technical.

In addition to the transformation-optics approach adopted in the present study, there
are several other effective approaches in the literature to realize the near-cloaking, and we
mention the one based on anomalous localized resonance [3, 39] and another one based
on special (object-dependent) coatings [1]. Finally, we also mention a recent interesting
work in [2], where the near-cloaking of a perfectly conducting obstacle was studied for
the full Maxwell equations.

The rest of the paper is organized as follows. In Section 2, we present the construction
of our near-cloaking device and state the main result of the paper in estimating the
cloaking performance. Section 3 is devoted to the proof of the main result.

2 Near-cloak construction and the main result

In this section, we present the construction of our near-cloaking device and formulate
the major result in assessing the corresponding cloaking performance.

Let D and Ω be two bounded simply connected smooth domains in R3 such that
D b Ω and D contains the origin. For ρ ∈ R+, we set

Dρ := {ρx; x ∈ D} .

Let 0 < ρ < 1 be a small parameter. Assume that there exists an orientation-preserving
and bi-Lipschitz mapping Fρ : Ω\Dρ → Ω\D such that

Fρ(Ω\Dρ) = Ω\D and Fρ|∂Ω = Identity. (2.1)

Now we define a transformation F by

F (x) =


x, x ∈ R3\Ω,
Fρ(x), x ∈ Ω\Dρ,
x
ρ , x ∈ Dρ ,

(2.2)

and an EM medium inside Ω\D by

ερc(x) = F∗ε0(x), µρc(x) = F∗µ0(x), σρc (x) = 0 (2.3)
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for x ∈ Ω\D. Here F∗ denotes the push-forward operator defined by

F∗m(x) :=
DF (y) ·m(y) ·DF (y)T

|det(DF )(y)|

∣∣∣∣
y=F−1(x)

, x ∈ Ω\D, (2.4)

where m(y) denotes an EM parameter in Ω\Dρ, such as ε, µ or σ, and DF represents
the Jacobian matrix of the transformation F . In the sequel, we may often write (2.3) as

(Ω\D; ερc , µ
ρ
c) = F∗(Ω\Dρ; ε0, µ0) := (F (Ω\Dρ);F∗ε0, F∗µ0).

Similarly, we set
(D\D1/2; ε̃l, µ̃l, σ̃l) = F∗(Dρ\Dρ/2; εl, µl, σl), (2.5)

where εl(x), σl(x) and µl(x) are given by

εl(x) = ρ−rα(x/ρ), σl(x) = ρ−sβ(x/ρ), µl(x) = ρ−tγ, x ∈ Dρ\Dρ/2, (2.6)

for r, s, t ∈ R. Here α(x) = (αij(x)) and β(x) = (βij(x)) are the material tensors for a
regular EM medium in D\D1/2, and are assumed to satisfy

c0|ξ|2 ≤
3∑

i,j=1

mij
l (x)ξiξj ≤ C0|ξ|2 for ∀ξ ∈ R3 and a.e. x ∈ D\D1/2, (2.7)

for ml = α or β. γ = (γij) is assumed to be of the form

γ−1 = η (δij), (2.8)

where η is a constant satisfying c0 ≤ η ≤ C0. Now, we consider an EM medium
distribution in R3 as follows:

R3; ε̃ρ, µ̃ρ, σ̃ρ =


ε0, µ0, σ0 in R3\Ω,
ερc , µ

ρ
c , σ

ρ
c in Ω\D,

ε̃l, µ̃l, σ̃l in D\D1/2,

ε̃a, µ̃a, σ̃a in D1/2,

(2.9)

where (Ω\D; ερc , µ
ρ
c , σ

ρ
c ) and (D\D1/2; ε̃l, µ̃l, σ̃l) are given in (2.3) and (2.5) respectively,

and (D1/2; ε̃a, µ̃a, σ̃a) is an arbitrary regular EM medium. Associated with the EM
medium distribution (R3; ε̃ρ, µ̃ρ, σ̃ρ), the EM scattering due to the incident fields (Ei, H i)
can be described by

∇∧ Ẽρ − iωµ̃ρH̃ρ = 0 in R3,

∇∧ H̃ρ + iω

(
ε̃ρ + i

σ̃ρ
ω

)
Ẽρ = J̃ in R3,

Ẽ−ρ = Ẽρ|Ω, Ẽ+
ρ = (Ẽρ − Ei)|R3\Ω,

H̃−ρ = H̃ρ|Ω, H̃+
ρ = (H̃ρ −H i)|R3\Ω,

lim
|x|→∞

|x|
∣∣∣(∇∧ Ẽ+

ρ )(x) ∧ x

|x|
− iωẼ+

ρ (x)
∣∣∣ = 0,

(2.10)
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where J̃ ∈ L2(D)3 denotes an electric current in D. We shall assume that

(σ̃a(x)ξ) · ξ ≥ c0|ξ|2 for ∀ξ ∈ R3 and a.e. x ∈ supp(J̃) ∩D1/2. (2.11)

We refer to (2.10) as the scattering problem in the physical space.

We are now in a position to state the main result of this paper.

Theorem 2.1. Let (R3; ε̃ρ, µ̃ρ, σ̃ρ) be the passive EM medium described by (2.3)–(2.8),

(2.9) and (2.11), J̃ ∈ L2(D)3 be an active current in D, and ζ1, ζ2 be the parameters
given by

ζ1 := min

(
s+ 1, s+ 5− 2(t+ r), 5− 2t− s

)
, (2.12)

ζ2 := min

(
s, s+ 2− t− r, 2− t

)
. (2.13)

Assume r, s, t ∈ R are chosen such that ζ1 > 0. Let Ãρ∞(x̂) := A∞(x̂;Ei, (Ω; ε̃ρ, µ̃ρ, σ̃ρ), J̃)

be the scattering amplitude corresponding to Ẽ+
ρ in (2.10). Then there exists a positive

constant ρ0 such that for any ρ < ρ0,

‖Ãρ∞(x̂;Ei)‖L∞(S2)

≤C
(
ρmin(ζ1,3)‖Ei‖H(∇∧;Ω) + ρ

ζ1
2 ‖J̃‖L2(D1/2)3 + ρζ2‖J̃‖L2(D\D1/2)3

) (2.14)

where C is a positive constant depending only on α, β, γ, ω, c0 in (2.11), C0 in (2.7) and
Ω, D, but independent of ρ, r, s, t and ε̃a, µ̃a, σ̃a, J̃ , Ei.

The proof of Theorem 2.1 will be given in Section 3. In the rest of this section, we
give some remarks about the implications and practical significance of Theorem 2.1 to
the approximate invisibility cloaking.

Remark 2.1. By Theorem 2.1, it is readily seen that (2.9) yields a near-invisibility cloak,
which is capable of nearly cloaking a passive medium (D1/2; ε̃a, µ̃a, σ̃a), an active current

in both D1/2 and D\D1/2, with an accuracy of orders ρmin(ζ1,3), ρζ1/2, and ρζ2 respec-
tively. We note that ζ2 is required to be positive in order to achieve the cloaking effect,
but Theorem 2.1 will be proved without this requirement. Hence, the estimate (2.14) is
rather general in this sense. The estimate (2.14) is independent of the passive medium
(D1/2; ε̃a, µ̃a, σ̃a) and the active current J̃ , so the contents being cloaked could be arbi-
trary. Clearly, this is of significant importance for a near-cloaking device in applications.
We mention that the cloaking of active contents was studied in [21], where the authors
considered the ideal cloaking by employing the singular cloaking medium (ερc , µ

ρ
c) in the

theoretic limiting case ρ = +0. However, it was shown there that one cannot cloak an
active content by merely using (ερc , µ

ρ
c) in the theoretic limiting case ρ = +0, otherwise

one would have the blow-up of the EM fields within the cloaked region. Theorem 2.1
indicates that our near-cloaking construction (2.9) is much more stable, even in cloaking
active contents.
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Remark 2.2. By (2.5) and (2.6), it is straightforward to show that in the physical space,

ε̃l(x) = ρ1−rα(x), σ̃l(x) = ρ1−sβ(x), µ̃l(x) = ρ1−tγ(x), x ∈ D\D1/2. (2.15)

Hence, if we take r = t = 0, s = 2, and α = β = γ = C0(δij) with C0 being a
positive constant, we obtain the conducting layer employed in [11, 37]. In this case we
have min(ζ1, 3) = 3, hence Theorem 2.1 recovers the results in [11, 37] in near-cloaking
passive mediums within an accuracy of order ρ3. It is interesting to note that by taking
r = s = t = 1, the conducting layer (2.15) is independent of the asymptotic parameter
ρ, and the estimate (2.14) reduces to

|Ãρ∞(x̂;Ei)| ≤ C
(
ρ2‖Ei‖H(∇∧;Ω) + ρ‖J̃‖L2(D)3

)
. (2.16)

That is, by employing a regular conducting layer without relating to the regularization
parameter ρ, one could achieve a near-invisibility cloak which is capable of cloaking a
passive content and an active content with an accuracy of order ρ2 and ρ respectively.
On the other hand, we emphasize that our incorporation of the anisotropic parameters
α and β is of significant interests in applications where some fabrication fluctuations
occur. Moreover, our general estimate would provide a guideline for practically choosing
the conducting layer to produce customized near-cloaking effects. For instance, if we
take r = 0, t = −s with s ∈ R+, then one can check that the larger the index s is, the
better accuracy of near-cloaking the current J̃ that one can achieve.

3 Proof of the major result

This section is devoted to the proof of Theorem 2.1, the major result of this work. We
first collect some important function spaces that are needed for the subsequent analysis.

3.1 Function spaces

Let Γ be the smooth boundary of a bounded domain in R3, with ν being its outward
unit normal vector. It is known that Hs(Γ) is well-defined for |s| ≤ 2 (cf. [26], [34]). By
THs(Γ) we denote the subspace of all the functions U ∈ Hs(Γ)3, which are orthogonal
to the unit outward normal vector ν. For |s| ≤ 2, we can decompose a U ∈ Hs(Γ)3

into a sum of the form U = Ut + νUν , where Ut and Uν are the tangential and normal
components, i.e., Ut = −ν ∧ (ν ∧ U), Uν = 〈ν, U〉. This gives rise to a decomposition of
Hs(Γ)3 for |s| ≤ 2: Hs(Γ)3 = THs(Γ)

⊕
NHs(Γ). Since Γ is smooth, we know THs(Γ)

coincides with ν ∧ Hs(Γ)3. Let Div be the surface divergence operator on Γ, then we
will frequently use in the sequel the following dual space of TH1/2(Γ):

TH
−1/2
Div (Γ) =

{
U ∈ TH−1/2(Γ)| Div(U) ∈ H−1/2(Γ)

}
,

and a skew-symmetric bilinear form B: TH
−1/2
Div (Γ) ∧ TH−1/2

Div (Γ) → C, given by the
non-degenerate duality product (cf. [17]):

B(j,m) =

∫
Γ

j · (m ∧ ν) ds, ∀ j,m ∈ TH−1/2
Div (Γ) . (3.1)
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3.2 Proof of Theorem 2.1

We first present a lemma with some key ingredients of the transformation optics, whose
proof is available in [37].

Lemma 3.1. Let (Ω; ε, µ, σ) be a regular EM medium, J ∈ L2(Ω)3 be a current in Ω,
and x′ = F(x) : Ω → Ω be a bi-Lipschitz and orientation-preserving mapping, whose
restriction on ∂Ω is the identity. Suppose that E,H ∈ H(∇∧; Ω) are the EM fields
satisfying

∇∧ E − iωµH = 0 in Ω,

∇∧H + iω
(
ε+ i

σ

ω

)
E = J in Ω,

If we define the pull-back fields by

E′ = (F−1)∗E := (DF)−TE ◦ F−1,

H ′ = (F−1)∗H := (DF)−TH ◦ F−1,

J ′ = (F−1)∗J :=
1

|det(DF)|
(DF)J ◦ F−1 ,

then the pull-back fields E′, H ′ ∈ H(∇′∧; Ω) satisfy the following Maxwell equations

∇′ ∧ E′ − iωµ′H ′ =0 in Ω,

∇′ ∧H ′ + iω

(
ε′ + i

σ′

ω

)
E′ =J ′ in Ω,

where ∇′∧ denotes the curl operator in the x′-coordinates, ε′, µ′ and σ′ are the push-
forwards of ε, µ and σ via F , i.e., (Ω; ε′, µ′, σ′) = F∗(Ω; ε, µ, σ). Moreover, we have

ν ∧ E′ = ν ∧ E, ν ∧H ′ = ν ∧H on ∂Ω.

Next, for the EM fields (Ẽρ, H̃ρ) described by (2.10) associated with the physical
scattering problem, we define

Eρ = F ∗Ẽρ and Hρ = F ∗H̃ρ, (3.2)

where F is the transformation given by (2.2). They by Lemma 3.1 it is straightforward
to verify that the two fields Eρ, Hρ ∈ Hloc(∇∧;R3), and satisfy the following system

∇∧ Eρ − iωµρHρ = 0 in R3,

∇∧Hρ + iω
(
ερ + i

σρ
ω

)
Eρ = J in R3,

E−ρ = Eρ|Dρ , E+
ρ = (Eρ − Ei)|R3\Dρ ,

H−ρ = Hρ|Dρ , H+
ρ = (Hρ −H i)|R3\Dρ ,

lim
|x|→∞

|x|
∣∣∣(∇∧ E+

ρ )(x) ∧ x

|x|
− iωE+

ρ (x)
∣∣∣ = 0,

(3.3)
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where J(x) and the EM medium (ερ, µρ, σρ) are given by

J(x) := F ∗J̃(x) =
1

ρ2
J̃

(
x

ρ

)
, x ∈ Dρ, (3.4)

and

R3; ερ, µρ, σρ =


ε0, µ0, σ0 in R3\Dρ,

εl, µl, σl in Dρ\Dρ/2,

εa, µa, σa in Dρ/2,

(3.5)

with (Dρ\Dρ/2; εl, µl, σl) given in the form (2.6)–(2.8), and

(Dρ/2; εa, µa, σa) := (F−1)∗(Dρ/2; ε̃a, µ̃a, σ̃a). (3.6)

For our subsequent use, we note by (2.2), (2.4) and straightforward calculations that

ma(x) = ρ−1m̃a(ρ
−1x), x ∈ Dρ/2 (3.7)

for m = ε, µ, σ, hence it follows from (2.11) that

(σa(x)ξ) · ξ ≥ c0ρ
−1|ξ|2 ∀ ξ ∈ R3 , x ∈ supp(J) ∩Dρ/2. (3.8)

Next we shall establish a series of lemmas which provide several crucial relations and
estimates for the proof of Theorem 2.1.

Lemma 3.2. Let BR be a central ball of radius R such that Dρ b BR. Then the solutions
Eρ, Hρ ∈ Hloc(∇∧;R3) to the system (3.3) satisfy∫

Dρ\Dρ/2
σlE

−
ρ · E−ρ dx+

∫
Dρ/2

σaE
−
ρ · E−ρ dx

=<
∫
∂BR

(ν ∧ E+
ρ ) ·

[
ν ∧ (ν ∧H+

ρ )
]
dsx + <

∫
∂BR

(ν ∧ Ei) ·
[
ν ∧ (ν ∧H+

ρ )
]
dsx

+<
∫
∂BR

(ν ∧ E+
ρ ) ·

[
ν ∧ (ν ∧H i)

]
dsx + <

∫
Dρ

J · E−ρ dx.

(3.9)

Proof. First of all, it is easy to see that the solutions (E±ρ , H
±
ρ ) to (3.3) satisfy

∇∧ E−ρ = −iωµρH−ρ in Dρ, (3.10)

∇∧H−ρ = −iω
(
ερ + i

σρ
ω

)
E−ρ in Dρ, (3.11)

∇∧ E+
ρ = iωH+

ρ , ∇∧H+
ρ = −iωE+

ρ in BR\Dρ, (3.12)

ν ∧ E−ρ = ν ∧ E+
ρ + ν ∧ Ei on ∂Dρ, (3.13)

ν ∧H−ρ = ν ∧H+
ρ + ν ∧H i on ∂Dρ. (3.14)
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Using (3.12) and integrating by parts we can deduce

− iω
∫
BR\Dρ

E+
ρ · E+

ρ ds =

∫
BR\Dρ

(∇∧H+
ρ ) · E+

ρ dx

=

∫
BR\Dρ

H+
ρ · (∇∧ E+

ρ ) dx−
∫
∂(BR\Dρ)

(ν ∧ E+
ρ ) ·H+

ρ dsx

=− iω
∫
BR\Dρ

H+
ρ dsx +

∫
∂BR

(ν ∧ E+
ρ ) ·

[
ν ∧ (ν ∧H+

ρ )
]
dsx

−
∫
∂Dρ

(ν ∧ E+
ρ ) ·

[
ν ∧ (ν ∧H+

ρ )
]
dsx ,

(3.15)

while using (3.10)–(3.11) and integrating by parts, we can write

−
∫
Dρ\Dρ/2

iω
(
εl + i

σl
ω

)
E−ρ · E−ρ dx−

∫
Dρ/2

iω
(
εa + i

σa
ω

)
E−ρ · E−ρ dx

=

∫
Dρ

(∇∧H−ρ ) · E−ρ dx+

∫
Dρ

J · E−ρ dx

=

∫
Dρ

H−ρ · (∇∧ E−ρ ) dx−
∫
∂Dρ

(ν ∧ E−ρ ) ·H−ρ dsx +

∫
Dρ

J · E−ρ dx

=

∫
Dρ

H−ρ · (−iωµρH−ρ ) dx+

∫
Dρ

J · E−ρ dx

+

∫
∂Dρ

(ν ∧ E−ρ ) ·
[
ν ∧ (ν ∧H−ρ )

]
dsx.

(3.16)

Now by taking the real parts of both sides of (3.16), we obtain∫
Dρ\Dρ/2

σlE
−
ρ · E−ρ dx+

∫
Dρ/2

σaE
−
ρ · E−ρ dx

=<
∫
∂Dρ

(ν ∧ E−ρ ) ·
[
ν ∧ (ν ∧H−ρ )

]
dsx + <

∫
Dρ

J · E−ρ dx .

(3.17)

On the other hand, taking the real parts of both sides of (3.15), then adding them to
(3.17), we arrive at∫

Dρ\Dρ/2
σlE

−
ρ · E−ρ dx+

∫
Dρ/2

σaE
−
ρ · E−ρ dx

=<
∫
∂BR

(ν ∧ E+
ρ ) ·

[
ν ∧ (ν ∧H+

ρ )
]
dsx + <

∫
Dρ

J · E−ρ dx

−<
∫
∂Dρ

(ν ∧ E+
ρ ) ·

[
ν ∧ (ν ∧H+

ρ )
]
dsx + <

∫
∂Dρ

(ν ∧ E−ρ ) ·
[
ν ∧ (ν ∧H−ρ )

]
dsx .

(3.18)

For the last two terms in (3.18), we can use the transmission conditions (3.13)–(3.14)
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and integration by parts to write∫
∂Dρ

(ν ∧ E−ρ ) ·
[
ν ∧ (ν ∧H−ρ )

]
dsx −

∫
∂Dρ

(ν ∧ E+
ρ ) ·

[
ν ∧ (ν ∧H+

ρ )
]
dsx

=

∫
∂Dρ

(ν ∧ Ei) ·
[
ν ∧ (ν ∧H+

ρ )
]
dsx +

∫
∂Dρ

(ν ∧ E+
ρ ) ·

[
ν ∧ (ν ∧H i)

]
dsx

+

∫
∂Dρ

(ν ∧ Ei) ·
[
ν ∧ (ν ∧H i)

]
dsx ,

(3.19)

while the following holds for the first two terms in the RHS of (3.19),

<
∫
∂Dρ

(ν ∧ Ei) ·
[
ν ∧ (ν ∧H+

ρ )
]
dsx + <

∫
∂Dρ

(ν ∧ E+
ρ ) ·

[
ν ∧ (ν ∧H i)

]
dsx

=<
∫
∂BR

(ν ∧ Ei) ·
[
ν ∧ (ν ∧H+

ρ )
]
dsx + <

∫
∂BR

(ν ∧ E+
ρ ) ·

[
ν ∧ (ν ∧H i)

]
dsx .

(3.20)

In fact, we immediately derive by integration by parts that

−
∫
∂Dρ

(ν ∧ Ei) ·
[
ν ∧ (ν ∧H+

ρ )
]
dsx +

∫
∂BR

(ν ∧ Ei) ·
[
ν ∧ (ν ∧H+

ρ )
]
dsx

=

∫
BR\Dρ

(∇∧H+
ρ ) · Ei dx−

∫
BR\Dρ

H+
ρ · (∇∧ Ei) dx

=iω

∫
BR\Dρ

[
−E+

ρ · Ei +H+
ρ ·H i dx

] (3.21)

and

−
∫
∂Dρ

(ν ∧ E+
ρ ) ·

[
ν ∧ (ν ∧H i)

]
dsx +

∫
∂BR

(ν ∧ E+
ρ ) ·

[
ν ∧ (ν ∧H i)

]
dsx

=iω

∫
BR\Dρ

[
−Ei · E+

ρ +H i ·H+
ρ

]
dx .

(3.22)

Clearly, (3.20) is a direct consequence of (3.21)-(3.22). For the last term in (3.19), we
can use the Maxwell equations (1.4) and integration by parts to obtain∫

∂Dρ

(ν ∧ Ei) ·
[
ν ∧ (ν ∧H i)

]
dsx =

∫
Dρ

(
(ν ∧H i) · Ei −H i · (∇∧ Ei)

)
dx

=iω

∫
Dρ

(
−|Ei|2 + |H i|2

)
dx.

(3.23)

Now combining (3.18)-(3.20) with (3.23) gives (3.9), so completes the proof of Lemma 3.2.
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In order to reduce the concerned scattering problem in the whole space R3 to a
bounded domain problem, we next introduce the following auxiliary Maxwell system,

∇∧ E − iωµ0H = 0 in R3\BR,

∇∧H + iωε0E = 0 in R3\BR,

lim
|x|→+∞

|x|
∣∣∣(∇∧ E)(x) ∧ x

|x|
− iωE(x)

∣∣∣ = 0.

(3.24)

Associated with the system (3.24), we introduce a boundary operator Λ, which maps the
tangential component of the electric field to the tangential component of the magnetic
field:

Λ(ν ∧ E|∂BR) = ν ∧H|∂BR : TH
−1/2
Div (∂BR)→ TH

−1/2
Div (∂BR), (3.25)

where E,H ∈ Hloc(∇∧;R3\BR) are the unique solutions to (3.24). We choose R such
that Dρ b BR b Ω and ω is not an interior EM eigenvalue in the sense that the following

Maxwell equations have only the trivial solutions Ẽ = H̃ = 0:{
∇∧ Ẽ − iωµ0H̃ = 0 in BR,

∇∧ H̃ + iωε0Ẽ = 0 in BR,
(3.26)

if ν ∧ Ẽ|∂BR = 0 or ν ∧ H̃|∂BR = 0. We know the boundary operator Λ in (3.25) is
continuous and invertible [41].

Next, we shall establish some crucial estimates of the solutions Eρ, Hρ ∈ Hloc(∇∧;R3)
to the system (3.3).

Lemma 3.3. The solutions Eρ, Hρ to the system (3.3) admit the following estimate,∫
Dρ\Dρ/2

|E−ρ |2 dx ≤ Cρs
{
‖ν ∧ E+

ρ ‖TH−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖

TH
−1/2
Div (∂BR)

+‖ν ∧ Ei‖
TH
−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖

TH
−1/2
Div (∂BR)

+‖ν ∧H i‖
TH
−1/2
Div (∂BR)

‖ν ∧ E+
ρ ‖TH−1/2

Div (∂BR)

}
+Cρ2s−1‖J̃‖2L2(D\D1/2)3 + Cρs‖J̃‖2L2(D1/2)3 (3.27)

where C is a constant depending only on c0 in (3.8).

Proof. Without loss of generality, we may assume that supp(J) = Dρ/2. By using (2.6)-
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(2.7), (3.8), (3.40) and the Cauchy-Schwartz inequality, we first deduce from (3.9) that

c0ρ
−s‖E−ρ ‖2L2(Dρ\Dρ/2)3 + c0ρ

−1‖E−ρ ‖2L2(Dρ/2)3

≤
∫
Dρ\Dρ/2

σlE
−
ρ · E−ρ dx+

∫
Dρ/2

σaE
−
ρ · E−ρ dx

≤
{
‖ν ∧ E+

ρ ‖TH−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖

TH
−1/2
Div (∂BR)

+ ‖ν ∧ Ei‖
TH
−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖

TH
−1/2
Div (∂BR)

+ ‖ν ∧H i‖
TH
−1/2
Div (∂BR)

‖ν ∧ E+
ρ ‖TH−1/2

Div (∂BR)

}
+
∣∣∣ ∫

Dρ

J · E−ρ dx
∣∣∣.

(3.28)

For the last term above, it follows from the relation

‖J̃(
·
ρ

)‖L2(Dρ) = ρ3/2‖J̃(·)‖L2(D)

and (3.4) that∣∣∣ ∫
Dρ

J · E−ρ dx
∣∣∣ ≤‖J‖L2(Dρ\Dρ/2)3‖E−ρ ‖L2(Dρ\Dρ/2)3 + ‖J‖L2(Dρ/2)3‖E−ρ ‖L2(Dρ/2)3

≤ ρs

2c0
‖ρ−2J̃(

·
ρ

)‖2L2(Dρ\Dρ/2)3 +
c0ρ
−s

2
‖E−ρ ‖2L2(Dρ\Dρ/2)3

+
ρ

2c0
‖ρ−2J̃(

·
ρ

)‖2L2(Dρ/2)3 +
c0ρ
−1

2
‖E−ρ ‖2L2(Dρ/2)3

=
ρs−1

2c0
‖J̃‖2L2(D\D1/2) +

c0ρ
−s

2
‖E−ρ ‖2L2(Dρ\Dρ/2)3

+
1

2c0
‖J̃‖2L2(D1/2)3 +

c0ρ
−s

2
‖E−ρ ‖2L2(Dρ\Dρ/2)3 ,

(3.29)

where the two terms involving E−ρ can be estimated by using (3.28)-(3.29) as follows

c0ρ
−s

2
‖E−ρ ‖2L2(Dρ\Dρ/2)3 +

c0ρ
−1

2
‖E−ρ ‖2L2(Dρ/2)3

≤
{
‖ν ∧ E+

ρ ‖TH−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖

TH
−1/2
Div (∂BR)

+ ‖ν ∧ Ei‖
TH
−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖

TH
−1/2
Div (∂BR)

+ ‖ν ∧H i‖
TH
−1/2
Div (∂BR)

‖ν ∧ E+
ρ ‖TH−1/2

Div (∂BR)

}
+
ρs−1

2c0
‖J̃‖2L2(D\D1/2) +

1

2c0
‖J̃‖2L2(D1/2)3 ,

(3.30)

which, along with (3.28), implies (3.27).
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For our subsequent analysis, we need some estimates (Lemma 3.5) for the traces of
the solutions (Eρ, Hρ) to the system (3.3). To the purpose we first establish an important
auxiliary Sobolev extension result.

Lemma 3.4. For any φ ∈ H1/2(∂D)3, there exists U ∈ H2(Ω)3 such that

(i) ν ∧ U = 0 on ∂D,

(ii) ν ∧ (ν ∧ (∇∧ U)) = ν ∧ (ν ∧ φ) on ∂D,

(iii) ‖U‖H2(D)3 ≤ C‖φ‖H1/2(∂D)3 with C being a constant depending only on D,

(iv) U = 0 in D1/2.

Proof. First, we let (V, p) ∈ H1(D)3 ∧ L2(D) be the solution to the following Stokes
system (cf. [12]) 

−∆V +∇p = 0 in D,

div V = 0 in D,

V = ν ∧ (ν ∧ φ) on ∂D.

(3.31)

Moreover, there exists a positive constant C depending only on D such that

‖V ‖H1(D)3 ≤ C‖φ‖H1/2(∂D)3 . (3.32)

Next, we introduce the following auxiliary system
∇∧ (∇∧ U) = ∇∧ V in D,

div U = 0 in D,

ν · U = 0 on ∂D,

ν ∧ U = 0 on ∂D.

(3.33)

We know from [15, section 1.5] that there exists a solution U ∈ H2(D)3 to the system
(3.33) and it holds for some positive constant C depending only on D that

‖U‖H2(D)3 ≤ C‖∇ ∧ V ‖L2(Ω)3 . (3.34)

We shall show ∇∧ U = V . To that end, we first note that (cf. [13] and [16])

ν · (∇∧ U) = −Div(ν ∧ U) = 0 on ∂D. (3.35)

But it follows from [40, Theorem 3.37] that

∇∧ (∇∧ U − V ) = 0 in D,

so there exists a u ∈ H1(D) such that

∇∧ U − V = ∇u in D. (3.36)
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Clearly, we also have u ∈ H2(D). Then by taking the divergence of both sides of (3.36),

∆u = 0 in D. (3.37)

On the other hand, by taking the inner-product of both sides of (3.36) with ν, we deduce

∂u

∂ν
= ν · (∇∧ U)− ν · V = 0 on ∂D,

which together with (3.37) immediately implies ∇u = 0 in D. Therefore it follows from
(3.36) that

∇∧ U = V in D. (3.38)

By (3.31) and (3.38), we see ν∧(ν∧(∇∧U)) = ν∧(ν∧V ) = ν∧(ν∧φ) on ∂D, which,
along with (3.33) and (3.34), indicates readily that U fulfills the first 3 requirements of
the extension function stated in the lemma. In order for U to also meet Condition (iv),
we can multiply U by a properly selected smooth cut-off function χ that vanishes in
D1/2 and takes values 1 near ∂D, then χU will meet all the desired 4 conditions.

Lemma 3.5. The following estimate holds for the solutions (Eρ, Hρ) to the system (3.3):

∥∥(ν ∧ E−ρ )(ρ ·)
∥∥
TH−1/2(∂D)

≤ Cρ
ζ1
2
−2

{
‖ν ∧ E+

ρ ‖
1/2

TH
−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖1/2

TH
−1/2
Div (∂BR)

+‖ν ∧ Ei‖1/2
TH
−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖1/2

TH
−1/2
Div (∂BR)

+‖ν ∧H i‖1/2
TH
−1/2
Div (∂BR)

‖ν ∧ E+
ρ ‖

1/2

TH
−1/2
Div (∂BR)

}
+Cρ

ζ1
2
−2‖J̃‖L2(D1/2)3 + Cρζ2−2‖J̃‖L2(D\D1/2)3 , (3.39)

where ζ1 and ζ2 are given in (2.12)–(2.13), and C is a positive constant dependent only
on D, Ω and c0 in (3.8), but independent of Ei, H i, J̃ and ρ.

Proof. It suffices to show that the same estimate in (3.39) holds for
∥∥(ν ∧ E−ρ )(ρ ·)

∥∥
H−1/2(∂D)3 .

We shall make use of the following duality identity∥∥(ν ∧ E−ρ )(ρ ·)
∥∥
H−1/2(∂D)3 = sup

‖φ‖
H1/2(∂Ω)3

≤1

∣∣∣ ∫
∂D

(ν ∧ E−ρ )(ρx) · φ(x) dsx

∣∣∣. (3.40)

For y ∈ Dρ, we let x := y/ρ ∈ D, and

E(x) := E−ρ (ρx) = E−ρ (y), H(x) := H−ρ (ρx) = H−ρ (y) .

Using Lemma 3.4, there exists a U ∈ H2(D)3 for any φ ∈ H1/2(∂D)3 such that Condi-
tions (i)-(iv) in Lemma 3.4 are satisfied. Using (2.8) and this extension function U and
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its properties, we can compute as follows:∫
∂D

(ν ∧ E−ρ )(ρx) · φ(x) dsx (3.41)

= −
∫
∂D

η−1(ν ∧ E)(x) · (ν ∧ (ν ∧ (γ−1∇∧ U)))(x) dsx

=

∫
∂D

(ν ∧ (γ−1∇∧ U))(x) · η−1E(x) dsx −
∫
∂D

(ν ∧ (γ−1∇∧ E))(x) · η−1U(x) dsx

=

∫
D

(∇∧ (γ−1∇∧ U))(x) · η−1E(x) dx−
∫
D

(∇∧ (γ−1∇∧ E))(x) · η−1U(x) dx.

On the other hand, for y ∈ Dρ\Dρ/2 it follows from (2.6) and (3.4) that

∇y ∧ E−ρ (y) = iωµl(y)H−ρ (y),

∇y ∧H−ρ (y) =− iω
(
εl(y) + i

σl(y)

ω

)
E−ρ (y) + J(y) .

(3.42)

Then it is straightforward to verify for x ∈ D\D1/2 that

∇x ∧ E(x) =iωρ1−tγH(x),

∇x ∧H(x) =− iω
(
ρ1−rα(x) + iρ1−sβ(x)

ω

)
E(x) + ρ−1J̃(x) ,

(3.43)

and

∇x ∧ (γ−1(x)∇x ∧ E(x)) = ω2

(
ρ2−t−rα(x) + iρ2−t−sβ(x)

ω

)
E(x) + iωρ−tJ̃(x). (3.44)

By combining (3.41) with (3.44), we obtain∫
∂D

(ν ∧ E−ρ )(ρx) · φ(x) dsx

= η−1

∫
D\D1/2

[
(∇∧ (γ−1∇∧ U))(x)− ω2

(
ρ2−t−rα(x) + iρ2−t−sβ(x)

ω

)
U(x)

]
· E(x)dx

−iωη−1ρ−t
∫
D\D1/2

J̃(x) · U(x) dx. (3.45)

This immediately yields∣∣∣∣∫
∂D

(ν ∧ E−ρ )(ρx) · φ(x)

∣∣∣∣
≤Cρθ‖E‖L2(D\D1/2)‖U‖H2(D\D1/2) + Cρ−t‖J̃‖L2(D\D1/2)‖U‖H2(D\D1/2)

≤C
(
ρ−3/2+θ‖E−ρ ‖L2(Dρ\Dρ/2) + ρ−t‖J̃‖L2(D\D1/2)

)
‖φ‖H1/2(∂D)3 ,

(3.46)
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where θ = min(0, 2− t−r, 2− t−s), and C is a positive constant depending on α, β, γ, ω
and D, but independent of φ, J̃ , E−ρ , ρ. Then by (3.40) we know from (3.46) that

‖(ν ∧ E−ρ )(ρ ·)‖H−1/2(∂D)3 ≤ C
(
ρ−3/2+θ‖E−ρ ‖L2(Dρ\Dρ/2)3 + ρ−t‖J̃‖L2(D\D1/2)3

)
.

Finally, by means of the estimates (3.2) and (3.27) we can directly show the existence
of two generic constants C1 and C2 such that

‖(ν ∧ E−ρ )(ρ ·)‖H−1/2(∂D)3

≤C1ρ
−3/2+θ

{
ρs/2

[
‖ν ∧ E+

ρ ‖TH−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖

TH
−1/2
Div (∂BR)

+ ‖ν ∧ Ei‖
TH
−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖

TH
−1/2
Div (∂BR)

+ ‖ν ∧H i‖
TH
−1/2
Div (∂BR)

‖ν ∧ E+
ρ ‖TH−1/2

Div (∂BR)

]1/2

+ ρ(2s−1)/2‖J̃‖L2(D\D1/2)3 + ρs/2‖J̃‖L2(D1/2)3

}
+ ρ−t‖J̃‖L2(D\D1/2)3

≤C2ρ
s/2−3/2+θ

{
‖ν ∧ E+

ρ ‖
1/2

TH
−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖1/2

TH
−1/2
Div (∂BR)

+ ‖ν ∧ Ei‖1/2
TH
−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖1/2

TH
−1/2
Div (∂BR)

+ ‖ν ∧H i‖1/2
TH
−1/2
Div (∂BR)

‖ν ∧ E+
ρ ‖

1/2

TH
−1/2
Div (∂BR)

}
+ C2(ρ(2s−1)/2−3/2+θ + ρ−t)‖J̃‖L2(D\D1/2) + C2ρ

s/2−3/2+θ‖J̃‖L2(D1/2),

which proves (3.39) with

ζ1 = 2(2 +
s

2
− 3

2
+ θ) = min

(
s+ 1, s+ 5− 2(t+ r), 5− 2t− s

)
,

ζ2 = 2 + min

(
2s− 1

2
− 3

2
+ θ,−t

)
= min

(
s, s+ 2− t− r, 2− t

)
.

Lemma 3.6. For τ ∈ R+, let Eτ , Hτ ∈ Hloc(∇∧;R3\Dτ ) be the solutions to the following
scattering problem

∇∧ E+
τ − iωµ0H

+
τ = 0 in R3\Dτ ,

∇∧H+
τ + iωε0E

+
τ = 0 in R3\Dτ ,

ν ∧ E+
τ = ψ ∈ TH−1/2

Div (∂Dτ ) on ∂Dτ ,

lim
|x|→∞

|x|
∣∣∣(∇∧ E+

τ )(x) ∧ x

|x|
− iωE+

τ (x)
∣∣∣ = 0.

(3.47)
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Then there exists τ0 ∈ R+ such that the following estimate holds for τ < τ0,

‖ν ∧ Eτ‖TH−1/2
Div (∂BR)

≤ Cτ2‖ψ(τ ·)‖H−1/2(∂D)3 . (3.48)

Moreover, if ψ(x) = Ei(x) is the solution to (1.4) it holds that

‖ν ∧ Eτ‖TH−1/2
Div (∂BR)

≤ Cτ3‖ν ∧ Ei‖
TH
−1/2
Div (∂BR)

. (3.49)

The constants C in (3.48)-(3.49) are generic, depending only on R,ω, τ0 and D.

Proof. The proof follows a natural modification of the estimates derived in [11, Section
3].

Remark 3.1. For the results in Lemma 3.6, we would like to mention some closely related
studies on the scattering estimates due to small EM scatterers in [8, 10], and on the low-
frequency asymptotics of EM scattering in [9, 18, 38, 41]).

We are now ready to prove the main result of this work, Theorem 2.1. For the sake of
exposition, we refer to the system (3.3) as the scattering problem in the virtual space and
denote by Aρ∞(x̂) := A∞(x̂;Ei, (Ω; ερ, µρ, σρ), J) the corresponding scattering amplitude.

Noting that mapping F (see (2.2)) is identity outside Ω, we know (Eρ, Hρ) = (Ẽρ, H̃ρ)
in R3\Ω, and hence

Aρ∞(x̂;Ei) = Ãρ∞(x̂;Ei), x̂ ∈ S2. (3.50)

Using these relations, it is easy to see that Theorem 2.1 is a direct consequence of the
following theorem.

Theorem 3.1. Let (R3; ε, µ, σ) be the EM medium described in (3.5)–(3.7), and J be the
current density given in (3.4), satisfying (3.8), and Aρ∞(x̂) be the scattering amplitude
corresponding to E+

ρ in (3.3). Then there exists a positive constant ρ0 such that the
following estimate holds for ρ < ρ0,

|Aρ∞(x̂;Ei)| ≤ C
(
ρmin(ζ1,3)‖Ei‖H(∇∧;Ω) + ρ

ζ1
2 ‖J̃‖L2(D1/2)3 + ρζ2‖J̃‖L2(D\D1/2)3

)
(3.51)

where ζ1 and ζ2 are given in (2.12)–(2.13), and C is a positive constant depending only
on α, β, γ, ω, c0 in (3.8), C0 in (2.7) and Ω, D, but independent of ρ, r, s, t and εa, µa, σa,
J̃ , Ei.

Proof. Let E+
1 , H+

1 ∈ Hloc(∇∧;R3\Dρ) and E+
2 , H+

2 ∈ Hloc(∇∧;R3\Dρ) be the solu-
tions to the following two Maxwell scattering systems respectively,

∇∧ E+
1 − iωµ0H

+
1 = 0 in R3\Dρ,

∇∧H+
1 + iωε0E

+
1 = 0 in R3\Dρ,

ν ∧ E+
1 = ν ∧ Eρ ∈ TH−1/2

Div (∂Dρ) on ∂Dρ,

lim
|x|→+∞

|x|
∣∣∣∣(∇∧ E+

1 )(x) ∧ x

|x|
− iωE+

1 (x)

∣∣∣∣ = 0 ,

(3.52)
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∇∧ E+
2 − iωµ0H

+
2 = 0 in R3\Dρ,

∇∧H+
2 + iωε0E

+
2 = 0 in R3\Dρ,

ν ∧ E+
2 = ν ∧ Ei ∈ TH−1/2

Div (∂Dρ) on ∂Dρ,

lim
|x|→+∞

|x|
∣∣∣∣(∇∧ E+

2 )(x) ∧ x

|x|
− iωE+

2 (x)

∣∣∣∣ = 0.

(3.53)

It is easy to see that
E+
ρ = E+

1 − E
+
2 in R3\Dρ. (3.54)

By taking τ = ρ in Lemma 3.6 and using Lemma 3.5, we have

‖ν ∧ E+
ρ ‖TH−1/2(∂BR)

≤C1ρ
ζ1
2

{
‖ν ∧ E+

ρ ‖
1/2

TH
−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖1/2

TH
−1/2
Div (∂BR)

+ ‖ν ∧ Ei‖1/2
TH
−1/2
Div (∂BR)

‖Λ(ν ∧ E+
ρ )‖1/2

TH
−1/2
Div (∂BR)

+ ‖ν ∧H i‖1/2
TH
−1/2
Div (∂BR)

‖ν ∧ E+
ρ ‖

1/2

TH
−1/2
Div (∂BR)

}
+ C1ρ

3‖ν ∧ Ei‖
TH
−1/2
Div (∂BR)

+ C1ρ
ζ1
2 ‖J̃‖L2(D1/2)3 + C1ρ

ζ2‖J̃‖L2(D\D1/2)3 .

(3.55)

In the sequel, we let
‖Λ‖L(TH−1/2(∂BR),TH−1/2(∂BR)) ≤ ε0. (3.56)

Then it follows from (3.55) and (3.56) that

‖ν ∧ E+
ρ ‖TH−1/2(∂BR)

≤C1ε0ρ
ζ1
2 ‖ν ∧ E+

ρ ‖TH−1/2(∂BR) + C2
1ε0ρ

ζ1‖ν ∧ Ei‖
TH
−1/2
Div (∂BR)

+
1

4
‖ν ∧ E+

ρ ‖TH−1/2(∂BR) + C2
1ρ

ζ1‖ν ∧H i‖TH−1/2(∂BR)

+
1

4
‖ν ∧ E+

ρ ‖TH−1/2(∂BR) + C1ρ
3‖ν ∧ Ei‖

TH
−1/2
Div (∂BR)

+ C1ρ
ζ1
2 ‖J̃‖L2(D1/2)3 + C1ρ

ζ2‖J̃‖L2(D\D1/2)3 .

(3.57)

By taking ρ0 ∈ R+ to be sufficiently small such that C1ε0ρ
ζ1/2 < 1/4, then the first,

third and fifth terms in the RHS of estimate (3.57) can be absorbed by the LHS, leading
to the existence of a constant C2 > 0 such that

‖ν ∧ E+
ρ ‖TH−1/2(∂BR)

≤ C2ρ
ζ1
(
‖ν ∧ Ei‖TH−1/2(∂BR) + ‖ν ∧H i‖TH−1/2(∂BR)

)
+ C2ρ

3‖ν ∧ Ei‖
TH
−1/2
Div (∂BR)

+C1ρ
ζ1
2 ‖J̃‖L2(D1/2)3 + C1ρ

ζ2‖J̃‖L2(D\D1/2)3 . (3.58)

We can directly verify that Ei and H i satisfies the vector-valued Helmholtz equtions

∆Ei + ω2Ei = 0, ∆H i + ω2H i = 0 in Ω ,
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then obtain by the interior estimates for elliptic equations that

‖ν ∧ Ei‖
TH
−1/2
Div (∂BR)

+ ‖ν ∧H i‖
TH
−1/2
Div (∂BR)

≤C3

(
‖Ei‖H(∇∧;BR) + ‖H i‖H(∇∧;BR)

)
≤C4

(
‖Ei‖L2(Ω) + ‖H i‖L2(Ω)

)
≤C5‖Ei‖H(∇∧;Ω),

(3.59)

where C3, C4 and C5 are generic positive constants depending only on R, Ω and ω. By
combining (3.58) and (3.59), one readily has that

‖ν ∧ E+
ρ ‖TH−1/2(∂BR) ≤ C6

(
ρmin(ζ1,3)‖Ei‖H(∇∧;Ω)

+ ρ
ζ1
2 ‖J̃‖L2(D1/2)3 + ρζ2‖J̃‖L2(D\D1/2)3

)
.

(3.60)

Moreover, we know by (3.56) that

‖ν ∧H+
ρ ‖TH−1/2(∂BR) ≤ C6ε0

(
ρmin(ζ1,3)‖Ei‖H(∇∧;Ω)

+ ρ
ζ1
2 ‖J̃‖L2(D1/2)3 + ρζ2‖J̃‖L2(D\D1/2)3

)
.

(3.61)

Now the desired estimate (3.51) follows directly from (3.60)–(3.61) and the following
integral representation (cf. [16])

Aρ∞(x̂) =
iω

4π
x̂ ∧

∫
∂BR

{
ν(y) ∧ E+

ρ (y) + (ν(y) ∧H+
ρ (y) ∧ x̂

}
e−iωx̂·y dsy . (3.62)
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