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The principal interest is philosophical: not to confine
oneself to what is necessary for (current) practice, but
to see what is possible by way of theoretical analysis.
—Kreisel (1970).

An overcomplete logic is a logic that ‘ceases to make the difference’: Ac-
cording to such a logic, all inferences hold independently of the nature of
the statements involved. A negation-inconsistent logic is a logic having at
least one model that satisfies both some statement and its negation. A
negation-incomplete logic has at least one model according to which nei-
ther some statement nor its negation are satisfied. Paraconsistent logics are
negation-inconsistent yet non-overcomplete; paracomplete logics are nega-
tion-incomplete yet non-overcomplete. A paranormal logic is simply a logic
that is both paraconsistent and paracomplete.

Despite being perfectly consistent and complete with respect to classical
negation, nearly every normal modal logic, in its ordinary language and in-
terpretation, admits to some latent paranormality: It is paracomplete with
respect to a negation defined as an impossibility operator, and paraconsis-
tent with respect to a negation defined as non-necessity. In fact, as it will be
shown here, even in languages without a primitive classical negation, nor-
mal modal logics can often be alternatively characterized directly by way
of their paranormal negations and related operators. So, instead of talking
about ‘necessity’, ‘possibility’, and so on, modal logics could be seen just as
devices tailored for the study of (modal) negation. This paper shows how
and to what extent this alternative characterization of modal logics can be
realized.

1 Affirmative and negative modalities

In the course of the last hundred years or so, traditional modal logic was
extraordinarily reinvigorated, at the outset with the firsthand assistance of
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3.3 Nearly every normal modal logic is paranormal

symbolic logic, then by the successful development of both its algebraic and
relational semantics. Of all adverbs which have been formalized with the
help of modal languages, the most popular turned out to be a certain ‘2-like’
modality with a universal character and its ‘3-like’ existential dual, irrespec-
tive of their circumstantial readings —alethic, deontic, doxastic, temporal,
etc— on each particular application field. The gate to possible worlds (and
to some bad science fiction) was opened by the tacit assumption that the
usual classical connectives should be interpreted locally, while 2 and 3 were
supposed to have a global scope.

To be perfectly fair, not all modal semantics conform to the above pat-
tern. The traditional modal interpretation of intuitionistic and intermediate
logics, for example, as well as the ternary relations of relevance logics, end
up with a global interpretation of both the implication and the negation
connectives, all other connectives being interpreted classically and locally.
Other modal logics go farther, and are themselves built over non-empty sets
of non-classical worlds, be they many-valued, incomplete or even inconsis-
tent. On the other hand, several other linguistic modal bases have also been
tried at a few occasions. To mention just a particularly meaningful one, I
recall the contingency / non-contingency logics explored by several authors
since Montgomery and Routley (1966), trading 2 and 3 for the non-normal
modal connectives O and M, with which the former are interdefinable only
in the case of sufficiently convoluted classes of frames.

Traditional literature on modal logic such as Hughes and Cresswell (1968)
has it that a ‘modality’ is just an arbitrary finite sequence of 2’s, 3’s and
∼’s, where ∼ is a symbol for classical negation. Aristotle had a picture of
a ‘Square of Oppositions’ (soo) involving negation and quantification. An
analogous picture (see Figure 1) for the basic case involving modalities can
be found in  Lukasiewicz (1953) —and probably even earlier.

Figure 1: Square of Modalities (som)

The four modal corners from the above som were not really treated on
an equal footing in the recent literature of modal logic. To be sure, that
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circumstance alone should not count against any of the modalities thereby
contained, as no one still nowadays knows even what modal logic is, in
general abstract terms. In a brilliant book originated from a frustrated
attempt at such a definition, Segerberg (1982), p.128, the following comment
can be found:

Among the many possible operators that have never been proposed
by anyone, there is one that should be mentioned here, the unary `,
with `α bearing the intuitive reading ‘it is not necessary that α’ or
‘α is non-necessary’. The concept of non-necessity does not appear to
equal in intuitive significance that of impossibility, let alone those of
necessity or possibility. But from a theoretical point of view, ` is on
a par with a as well as with 2 and 3. [the symbols for a and ` are mine]

On that matter, according to Horn (1989), linguistic researches attest
that, at least for pragmatic reasons, the bottom-right corners of both the
soo and the som seem not to have exact natural language equivalents in
any of the world’s living natural languages (but it should be noticed that
this is no longer true if one considers artificially constructed languages such
as Lojban, check Cowan (1997)). The noted asymmetry does not seem to
have a convincing semantic explanation, and one can indeed find authors like
Béziau in a series of papers culminating recently at Béziau (2004), preaching
the study of the ‘nameless corner of the square of oppositions and modalities’
as an utterly intuitive enterprise. On what concerns the upper-right corner
of the som, one should note that, alongside the classical connectives and a
binary modality of strict implication, impossibility (a) was in fact the only
primitive unary modality appearing in the cornerstone study that marked
the contemporary revival of modal logic, the book of Lewis (1918).

In the philosophical literature (and only there!), modal logics are still
often seen simply as the study of operators ‘used to qualify the truth of
a judgement’ (check, for instance, Garson (2003)). Of course, such truth-
qualifying operators can analogously be used to qualify falsehood, and if the
left-hand side of the som can be seen as displaying operators that qualify
affirmation, the right-hand side can similarly purport to display operators
that qualify negation. But does that interpretation really make sense? Can
a and ` be seriously proposed as proxies for a negation operator? The
answer is very often yes, but to understand that ‘very often’ it is useful to
fix first some terminology.

1.1 Basic modal semantics

Consider the standard language (or signature) of classical propositional
logic, with binary connectives for conjunction (∧), disjunction (∨), impli-
cation (⊃), and a unary connective for negation (∼). Let Scplcplcpl or S∧∨⊃∼
denote the set of formulas freely generated by a denumerable set of senten-
tial variables, P, over the above signature (the subscripts will be dropped
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when clear from the context). A frame here will be given by a non-empty set
of worlds, W, and a model over a given frame will be obtained by coupling it
with a (bi)valuation V : P×W → {0, 1}. Valuations can be used to define a
canonical notion of satisfiability, |=Mx ⊆ Pow(S)×Pow(S), for each world x
of a model M, with the help of the following clauses that tell us how each
connective should be understood:

|=Mx p iff V (p, x) = 1, for p ∈ P

|=Mx α ∧ β iff |=Mx α and |=Mx β

|=Mx α ∨ β iff |=Mx α or |=Mx β

|=Mx α ⊃ β iff |=Mx α implies |=Mx β

|=Mx ∼α iff 6|=Mx α

To write 6|=Mx α is to say that |=Mx α does not hold. I will also denote
that, alternatively, by writing α |=Mx . In general, for a given world x of a
model M of a given frame, I will assume that:

Γ |=Mx ∆ iff (∃γ ∈ Γ) γ �Mx or (∃δ ∈ ∆) �Mx δ

The notion of a valid inference and the corresponding entailment (semantic
global consequence relation) |=cplcplcpl ⊆ Pow(S)×Pow(S) associated to classical
propositional logic is fixed by setting Γ |=cplcplcpl ∆ iff Γ |=Mx ∆ for every world x
of every model M of an arbitrary frame. Of course, in the case of cplcplcpl, the
recourse to a set of worlds W does not help that much, as all the connectives
of this logic are evaluated locally, that is, evaluated inside each (classical)
world.

The expressive power of cplcplcpl is well-known: The logic has an adequate 2-
valued functional semantics, and in fact every 2-valued n-ary truth-function
can be written with the help of the above connectives. Some other particular
connectives that are often used in the literature and that will be mentioned
in the text below include the 0-ary connectives top (>) and bottom (⊥),
and the binary connectives for equivalence (≡) and coimplication ( 6⊂, the
‘dual’ to implication in a precise sense to be specified in Subsection 2.1).
Here is the intended interpretation of these connectives, together with some
possible ways of defining them in terms of the connectives taken above as
primitive or defined earlier on:

Definitions Characterizing properties
α 6⊂ β

def== ∼α ∧ β |=Mx α 6⊂ β iff β ⊃ α |=Mx
α ≡ β

def== (α ⊃ β) ∧ ∼(α 6⊂ β) |=Mx α ≡ β iff |=Mx α ⊃ β and |=Mx β ⊃ α

> def== α ⊃ α, for any α |=Mx >

⊥ def== α 6⊂ α, for any α ⊥ |=Mx
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In the case of ordinary normal modal logics, I will consider again a frame
based on non-empty set of classical worlds but now I will enrich it with an
accessibility relation R ⊆ W × W between the worlds, and read xRy as
‘x sees y’ or ‘y is accessible to x’. A model based on such a frame, as before,
will be assembled from a given valuation over the sentences and worlds,
and a corresponding inductive definition of the interpretation for the whole
set of formulas. This time the signature will contain two further unary
connectives, box (2, often read as ‘necessity’) and diamond (3, often read
as ‘possibility’), and be denoted by Snmlnmlnml or S∧∨⊃∼23. The interpretation of
the new connectives is given by the following clauses (where ⇒ substitutes
‘implies’ and & is used for ‘and’):

|=Mx 2α iff (∀y ∈ W)(xRy ⇒ |=My α)
|=Mx 3α iff (∃y ∈ W)(xRy & |=My α)

All other definitions are similar to the classical case. Several different modal
logics (that is, several different relations of global entailment) can be defined
in the above signature, according to the restrictions set over the accessibility
relations in each case. In fact, when talking about a logic, from here on, I
will always make sure that its set of formulas and an associated consequence
relation are clearly defined, be it in proof-theoretical, in semantical or in
abstract terms. The minimal normal modal logic, K, where no restrictions
are made over R, can be axiomatized by adding to any complete set of axioms
and rules for cplcplcpl any of the three following sets of further axioms and rules:

(1.1) ` 2(α ⊃ β) ⊃ (2α ⊃ 2β)
(1.2) ` α ⇒ ` 2α

(2.1) ` α0 ∧ . . . ∧ αn ⊃ α ⇒ ` 2α0 ∧ . . . ∧2αn ⊃ 2α,
where this rule reduces to (1.2) in case n = 0

(3.1) ` 2>
(3.2) ` 2α ∧2β ⊃ 2(α ∧ β)
(3.3) ` α ⊃ β ⇒ ` 2α ⊃ 2β

(The axioms for 3 are dual. For the purposes of this section, 3α may be defined
as ∼2∼α.)

The explicit definability of all ‘admissible modal operators’ from the
basic modal language was investigated, for instance, in Wansing (1996),
with respect to their associated ‘proof-theoretic semantics’. Among the
many new connectives that can now be defined in every nmlnmlnml, one could
pinpoint contingency (O) and non-contingency (M), definable for instance
by setting Oα def

=== 3α∨3∼α and Mα def
=== 3α ⊃ 2α, besides, of course, the two

new modalities at the right-hand side of the som, a and `, definable as in
Figure 1.
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1.2 Modal negations?

Some particular restrictions on the accessibility relation R will produce de-
generate examples of modal logics. Call a world autistic in case there is no
world accessible to it according to R, and call it narcissistic in case it can
only see itself. The collection of all autistic frames (that is, frames whose
worlds are all autistic) determines a logic called Ver, and can be axiom-
atized by the addition of the axiom ` 2α to the axioms and rules of K.
The collection of all narcissistic frames (that is, frames whose worlds are all
narcissistic) determines a logic known as Triv, or KT ! as in Chellas (1980),
and can be axiomatized by the addition to the axioms and rules of K of the
axiom ` 2α ≡ α. It is easy to see that both Ver and Triv are but thin
disguises for classical propositional logic: In the first, 2 and 3 are unary
operators that produce tops, in the second, 2 and 3 behave like identity
operators. The logic that I will call TV and that is situated exactly midway
in between Triv and Ver is also important in the present story. It is deter-
mined by the class of all frames that are either narcissistic or autistic, and
axiomatized by the addition to K of the axiom ` α ⊃ 2α.

In what follows it will be helpful to use }n as an abbreviation for n
iterations of a given unary connective }. I will be saying that a logic L2

is a (deductive) fragment of a logic L1 (and L1 is an extension of L2) if L1

can be written in a signature containing all the symbols from the signature
of L2 and if, in that case, all valid inferences of L2 are also valid in L1.

Makinson (1971) proved that every normal modal logic is a fragment of
either Ver or Triv (and possibly of both, that is, of TV ). For instance, the
modal logic KT , determined by the class of reflexive frames and axiomatized
by the addition to K of the axiom ` 2α ⊃ α, is only a fragment of Triv but
not of Ver; on the other hand, the logic of provability GL, determined by the
class of transitive and reversely well-founded frames and axiomatized by the
addition to K of the axiom ` 2(2α ⊃ α) ⊃ 2α, is only a fragment of Ver
but not of Triv; finally, K5, determined by the class of euclidean frames and
axiomatized by the addition to K of the axiom ` 3α ⊃ 23α, is a fragment
of TV . More importantly, every extension of K obtained by the sole addition
of axioms of the form ` 3i2jα ⊃ 2k3lα, for i, j, k, l ∈ N, complete with
respect to a convenient combination of the so-called confluential (Church-
Rosser) frames, is a fragment of Triv —and in fact, very few of the most
widely known modal logics fail to be a fragment of Triv.

Can a and ` be understood as ‘negations’ inside all of the above logics?
For one thing, inside of Ver it seems already difficult to accept that reading:
All formulas of the form aα and `α would be theorems of this logic. . . But
what connectives are to count as ‘negations’, to start with? First of all, it
must be cleared up that there is no general —nor even partial— agreement
in the literature on an answer to that. As we will see, this is not to say,
however, that the very concept of negation is unruly!
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Consider from this point on a (non-overcomplete)1 logic L1 endowed
with some symbol ¬ intended to denote ‘negation’. Even if we consider no
other circumstantial symbols from L1’s signature and its corresponding set
of formulas S1, there is a number of pure positive meta-rules that might
be considered to govern the behavior of negation with respect to 
1, the
consequence relation associated to L1. For instance, the following two rules
can fully characterize classical negation inside a non-overcomplete logic:

(Explosion) (∀Γ,∆ ⊆ S1)(∀α ∈ S1) Γ, α,¬α 
1 ∆
(Implosion) (∀Γ,∆ ⊆ S1)(∀α ∈ S1) Γ 
1 α,¬α,∆

Any non-classical negation will have to fail one of the above rules, and pos-
sibly both. In that case, what are the ‘stable’ rules of negation, if any, i.e.
the rules that every negation ought to obey? This is the very issue about
which each author will have his preferred answer, and it seems that there is
little hope for any sort of agreement to be expected to settle around that.
However, there is some possibility of agreement, I submit, if one only turns
the attention to a small set of pure negative rules, such as:

(n-verificatio) (∃Γ,∆ ⊆ S1)(∃α ∈ S1) Γ,¬n+1α 6
1 ¬nα,∆
(n-falsificatio) (∃Γ,∆ ⊆ S1)(∃α ∈ S1) Γ,¬nα 6
1 ¬n+1α,∆

In the present environment, the above rules have at least 3 immediate pleas-
ant consequences for the behavior of ¬n+1 over ¬n: If ¬n+1 is to obey those
rules, it cannot produce only bottoms, it cannot produce only tops, and
it cannot be an identity operator. Seems sensible enough: Is anyone pre-
pared to accept or propose as a ‘real negation’ any symbol failing the above
rules? On the one hand, those rules are sufficient to confirm already our
intuition that the logic Ver should be ruled out as a system interpreting a
and ` as negation operators. What will we be able to say, however, about
its fragments? On the other hand, the last rules are clearly respected by
classical negation, and thus also by a and ` inside the logic Triv. With
that criterion in mind, from here on, I will assume, as in Marcos (2005d),
that a decent negation should respect (n-verificatio) and (n-falsificatio), for
all n ∈ N.

Consider now a fragment L2 of L1, such that L2 is directly embeddable
in L1 by way of an identity translation, that is, 
2⊆
1, where 
2 is the
consequence relation associated to L2. In case the signature of L2 also
contains ¬ then it is clear that ¬ will in L2 respect at most as many positive
rules as it did in the case of L1, never more. One might say in that case
that ¬ in L2 is sub-L1; if L1 is classical logic one might simply say that ¬
in L2 is subclassical. So, now one can at least ask the question: In which
normal modal logics the operators a and ` produce subclassical operators?
It is not difficult to check for instance that GL is not one of such logics: As
shown in Vakarelov (1989), the characterizing axiom of GL can be rewritten

1For a semantic account of that concept, check Section 2.

227



3.3 Nearly every normal modal logic is paranormal

in terms of a as ` a(α∧aα) ⊃ aα, and this is not a valid formula in cplcplcpl.
One can count though on the following straightforward answer to the above
question:

The operators a and ` constitute subclassical negations inside a
given normal modal logic if and only if this logic is a fragment of
Triv.
Indeed, we already know that a and ` coincide with classical negation inside
Triv. As a consequence, those symbols define decent subclassical negations,
a fortiori, also in the fragments of Triv. On the other hand, a logic with
a subclassical negation is by definition a fragment of classical logic, as long
as both logics are written in the same language. But recall that Triv is
classical logic in disguise, possibly with some extra boxes and diamonds
coloring its inferences but behaving just like identity operators. This proves
our case. (Alternatively, suppose that you erase the boxes and diamonds
from any normal modal logic that is not a fragment of Triv. Then you
clearly transform a and `, taken to be defined as in Figure 1, into non-sub-
classical negations.) qed

Still and all, the reader should not imagine that all decent negations are
subclassical. Post’s cyclic many-valued negations, for instance, are coun-
terexamples to that. This paper will concentrate, in one way or another,
exclusively on the more usual subclassical negations.

The next sections will show which properties are enjoyed by a and `,
and to what classes of negations they belong to. It will also show how normal
modal logics can be naturally reconstructed on other signatures based on a,
` and related connectives.

2 Varieties of paranormality

For the sake of the following discussion, let L be an arbitrary logic with an
entailment relation |= (recall Section 1.1) defined over a set of formulas S of
a language that contains a negation symbol ¬ with a decent interpretation
(that is, respecting rules verificatio and falsificatio from the last section).
For all we know, such logic might turn out to have some queer models, such
as:
(Dadaistic) (∀α ∈ S)(∀x ∈ W) |=Mx α
(Nihilistic) (∀α ∈ S)(∀x ∈ W) α |=Mx

(To simplify notation, I will from this section on drop the contexts Γ’s
and ∆’s from the inferences.) From the above definitions, everything is true
for a dadaistic model, and everything is false for a nihilistic model. Follow-
ing Marcos (2005d), I will say that the logic L is overcomplete in case all
of its models are either dadaistic or nihilistic. Thus, for a non-overcomplete
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logic, (∃α, β ∈ S) α 6� β. Now, even in the case of such a logic, it might still
happen that negation has some funny models such as:

(¬-inconsistent) (∃α ∈ S)(∃x ∈ W) |=Mx α and |=Mx ¬α
(¬-incomplete, or (∃α ∈ S)(∃x ∈ W) α |=Mx and ¬α |=Mx
¬-undetermined)

So, a ¬-inconsistent model allows for some formula to be satisfied together
with its negation, and a ¬-undetermined model allows instead for both for-
mulas to be non-satisfied. Obviously, a dadaistic model is simply an ex-
treme case of an inconsistent model, and a nihilistic model an extreme case
of an undetermined model. In the present framework, and following Marcos
(2005b), L will be called a decent ¬-paraconsistent logic if it allows for non-
dadaistic ¬-inconsistent models, that is, if (∃α, β ∈ S) α,¬α 6|= β. Dually,
L will be called a decent ¬-paracomplete logic if it allows for non-nihilistic
¬-undetermined models, that is, if (∃α, β ∈ S) β 6|= α,¬α. In particular, a
paraconsistent logic will be non-explosive, and a paracomplete logic will be
non-implosive (recall the definitions of those properties from Section 1.2).
Following da Costa and Béziau (1997) and Béziau (1999), I will call L para-
normal if it is both paraconsistent and paracomplete.

Paranormality comes in several brands. Explosion or implosion might
be lost, but maybe it is possible to recover them, ‘with gentleness and time’.
Maybe there is something that we can say about a formula so as to guarantee
that it behaves consistently / determinedly? Here is a way of realizing this
intuition. Let #(p) be a (possibly empty) set of formulas on one single
variable such that:

(∃α ∈ S) #(α), α 6� and #(α),¬α 6�,
and yet

(∀α ∈ S) #(α), α,¬α �

Following Carnielli and Marcos (2002), any logic containing such a schema
of formulas is called ¬-gently explosive. A logic of formal inconsistency (lfilfilfi)
is a paraconsistent yet gently explosive logic. In such a logic, # is said to
express ¬-consistency.

Similarly, let ✩(p) be a (possibly empty) set of formulas on one single
variable such that:

(∃α ∈ S) 6� α,✩(α) and 6� ¬α,✩(α),
and yet

(∀α ∈ S) � ¬α, α,✩(α)

Any logic containing such a schema of formulas is called ¬-gently implo-
sive. A logic of formal undeterminedness (lfulfulfu) is a paracomplete yet gently
implosive logic. In such a logic, ✩ is said to express ¬-determinedness, or
¬-completeness.
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The following lines are very rough, but should suffice to inform the reader
about what lfilfilfis and lfulfulfus are good for. As the reader might have suspected,
¬-consistency and ¬-determinedness in paranormal logics serve as sorts of
‘normalizing connectives’. In fact, I will from here on call them ‘perfect’.
From the original meaning of the word, in Latin, we know that something
is perfect when it is ‘done to the end’, when it is somehow ‘complete’, and
‘nothing essential is lacking’. In case a logic has a negation lacking the ‘con-
sistency presupposition’, if one adds to it the power to express consistency
then one can somehow recover what had been lost: Consistency in this case
is the sought perfection. To put it in a different and semi-formal way, con-
sider a logic L1 in which explosion holds good for a decent negation ¬, that
is, a logic that validates, in particular, (∀α ∈ S1) α,¬α �1. Let L2 now be
some other logic written in the same signature as L1 such that: (i) L2 is a
proper fragment of L1 that validates many or most inferences of L1 that are
compatible with the failure of explosion; (ii) L2 is expressive enough so as to
be an lfilfilfi, thus, in particular, there will be in L2 a set of formulas #(p) such
that (∀α ∈ S2) #(α), α,¬α �2 holds good; (iii) L1 can in fact be recovered
from L2 by the addition of #(p) as a new set of valid schemas / axioms.
These constraints alone suggest that the reasoning of L1 might somehow
be recovered from inside L2, if only a sufficient number of ‘consistency as-
sumptions’ are added in each case. Thus, typically the following derivability
adjustment theorem (datdatdat) can be proved:

(∀Γ∀∆∃Σ) Γ �1 ∆ iff #(Σ),Γ �2 ∆.

The essentials behind such sort of datdatdats were highlighted in Batens (1989),
but some very specific instances of datdatdats could already be found in one of the
forerunning formal studies on paraconsistent logic, da Costa (1963). It is
no exaggeration to say that such theorems constitute the fundamental idea
behind both the ‘Brazilian approach’ to paraconsistency (ccc-systems and
lfilfilfis) and the ‘Belgian approach’ (inconsistency-adaptive logics). As I see
it, the main difference between the two approaches is in fact methodological
(but also a bit ideological). As I argued in Marcos (2001), while retaining
in a paraconsistent logic ‘most rules and schemata of classical logic’ was
a desideratum laid down already in da Costa (1974), it was never really
systematically pursued by the ‘Brazilian school’. The approach favored by
Batens (1989) and the ‘Belgian school’, in contrast, took the motto to the
letter: Assuming consistency by default, maximality is pursued by way of
allowing for non-monotonic reasoning to take place. Another remarkable
peculiarity is that in an lfilfilfi, by its very design, the clauses in the above
theorem can in fact be internalized at the object-level language, making its
statement more convenient and language-independent. Sometimes, more-
over, there are yet other ways of reproducing classical reasoning inside an
lfilfilfi through a direct translation, without the addition of further premises.
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For its importance, I will dub the ability of recovering consistent reasoning
in one way or another the Fundamental Feature of lfilfilfis.

Clearly, all that was said for consistency and lfilfilfis in the previous para-
graph can be easily dualized for determinedness and lfulfulfus.

I will from here on consider only the simpler case in which # reduces
to a single schema, thus to a consistency connective # whose contradictory
opposite (its classical negation), will represent an inconsistency connective to
be denoted by  . A similar thing will be done for ✩, in that I will be working
from here on more simply with a unary determinedness connective ✩ and
the accompanying undeterminedness connective ★.

2.1 Duality, at last

I have been mentioning duality all along, with a strong semantic intuition,
but in a very loose way. Let me here make a short digression to explain
precisely what that is supposed to mean.

Given an arbitrary connective }, let its dual be denoted by }d. Given
a set of formulas Γ, let Γd denote the result of substituting all connectives
of Γ by their duals. Given a logic L1 with a consequence relation 
1 over
a set of formulas S1, the dual logic L2 will be defined by setting S2 = Sd

1

and Γd 
2 ∆d iff ∆ 
1 Γ. So, semantically, all we have to do, somehow,
is to read the original inferences from right to left, instead of reading them
from left to right, and change the names of the logical constants whenever
necessary (some connectives can of course be self-dual inside a given logic).

This little trick is just enough for conjunction to be characterizable
as dual to disjunction (even more, each elimination rule for conjunction
will be dual to a corresponding introduction rule for disjunction, and so
on), implication as dual to coimplication (and this coincides in fact with
the algebraic intuition about duality explored already in Rauszer (7374)),
box as dual to diamond, explosive negation as dual to implosive nega-
tion, (para)consistency as dual to (para)completeness, lfilfilfis as dual to lfulfulfus,
dadaism as dual to nihilism, and so on.

The place where duality will show up in the Square of Modalities (Fig-
ure 1) is in place of the relation of ‘subalternation’. According to the tradi-
tional semantic intuition behind subalternation, the truth of each upper cor-
ner implies the truth of the corresponding bottom corner, but not the other
way around. The application of this simple idea is not without problems:
The subalternation in the soo only works well once you grant existential
import to the universal quantifier, the subalternation in the som works fine
only if you are talking about normal modal logics extending KD, the ‘deon-
tic’ system with the seriality presupposition (in which 3> is provable). The
above definitions of duality, however, suggest a full horizontal symmetry in
the very same square, allowing for the mentioned provisos to be dispensed
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Figure 2: Square Of Perfections (sop)

with. With that in mind, it does not really seem illuminating thus to think
of diamond as subalternate to box (nor the other way around). That’s why I
proposed from the start the update of the (som) with the denomination ‘du-
alitas’ in the place of ‘subalternatio’. Now, Figure 2 shows how the square
would look like if rebuilt so as to apply to the perfect connectives introduced
in Section 2. Notice that, according to the traditional semantic intuition of
the square, ✩p and  p are ‘contrary’ (they cannot both be simultaneously
true), #p and ★p are ‘subcontrary’ (they cannot both be simultaneously
false).

2.2 The route from modality to paranormality,
and the easy way back

Where K is some class of frames and sig is some propositional signature, let
(L)sig denote the logic whose set of formulas is Ssig and whose set of valid
inferences is determined with the help of the canonical interpretation of the
connectives in sig. With this abbreviation, every normal modal logic L,
in its usual language with set of formulas Snmlnmlnml, will here be denoted as
(L)∧∨⊃∼23.

We already know from the above that the usual language of normal
modal logics is expressive enough so as to be able to define a decent paracon-
sistent negation ` and a decent paracomplete negation a. It is not difficult
now to see how the corresponding perfect connectives for consistency and
inconsistency (# and  ), and for determinedness and undeterminedness (✩
and ★) can also be produced. Of course, those connectives will only have
their expected behavior under specific circumstances. Consider some nor-
mal modal logic L not extending TV (recall Section 1.2). Then, here is a
possible set of definitions for the above connectives and the properties they
should have in L:
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Definitions Properties enjoyed by them
`α

def== 3∼α p,`p 6� q

#α def== α ⊃ 2α #p, p 6� and #p,`p 6�,
and yet #p, p,`p �

 α def== α ∧`α �  α iff #α �,
 α � α and  α � `α

aα
def== 2∼α q 6� ap, p

✩α
def== α 6⊂ 3α 6� p,✩p and 6� ap,✩p,

and yet � ap, p,✩p

★α
def== aα ∨ α ★α � iff � ✩α,

α � ★α and aα � ★α

Indeed, as a consequence of the above definitions:
A necessary and sufficient condition for
(L)∧∨⊃`# to characterize a modal lfilfilfi, and for
(L)∧∨⊃a✩★ to characterize a modal lfulfulfu
is that L does not extend TV .
It is obvious that the condition is necessary. Indeed, if L is TV , Triv or
V er, then it is not paranormal with respect to the new connectives above.
Conversely, to show that this restriction provides a sufficient condition to
verify the expected properties of the new connectives, consider first the case
of ` and #, and define a model M1 such that W = {x, y}, V (p, x) = 1,
V (p, y) = 0 and V (q, x) = 1, and any R such that (x, y) ∈ R ⊆ W × W.
Such models are always possible in logics that do not extend TV , and all you
have to do is to vary the accessibility relation according to the strictures of
each class of frames. But then, p,`p 6|=M1

x q. Next, consider any model M2

based on a frame such that W = {x}, V (p, x) = 1. Then, #p, p 6|=M2
x ,

once 2 is not an operator producing only bottoms —and we know that it
is not, from rule (1.2) or axiom (3.1) (recall Section 1.1). Finally, consider
a model M3 exactly like M1, except that now V (p, x) = 0. In this model
#p,`p 6|=M3

x , for every logic distinct from V er. It is clear, moreover, that
#p, p,`p � for any normal modal logic.
The case of a and ✩ is similar. qed

Now, what if we start from a paranormal language and try to define the
usual connectives of normal modal logics? Can that be done at all? Again,
the answer is very often yes, but, as we will see below, to understand that
‘very often’ one had better pay a lot of attention to the initial choice of the
language.

Consider first the connectives `, #, a and ✩ to be primitively defined
by the clauses:

|=Mx `α iff (∃y ∈ W)(xRy & α |=My )

|=Mx #α iff |=Mx α implies (∀y ∈ W)(xRy ⇒ |=My α)
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|=Mx aα iff (∀y ∈ W)(xRy ⇒ α |=My )

|=Mx ✩α iff α |=Mx and (∃y ∈ W)(xRy & |=My α)

Consider next an arbitrary normal modal logic (L)∧∨⊃`#, where the non-
classical connectives from the signature are interpreted as above. The ques-
tion now is whether (L)∧∨⊃∼23 can be recovered from that. And the answer
is that it can, if only the following definitions are set:

⊥ def== α ∧`α ∧#α, for any α 2α def== ∼`α

∼α def== α ⊃ ⊥ 3α def== `∼α
Furthermore, to obtain an inconsistency connective one can obviously just
set  α def

=== ∼#α. It is not difficult to check, indeed, that even inside the
minimal normal modal logic K the new connectives ∼, 2 and 3 behave
exactly as they should. For instance, in K the following rules hold good:
(α,∼α |=) and (|= ∼α, α). As we know, those two rules fully characterize
classical negation (recall Section 1.2). Therefore:
For every normal modal logic, (L)∧∨⊃∼23 and (L)∧∨⊃`# 
characterize the same logic under two different signatures.

Can the same be done if one starts from the language containing a and
✩ instead of ` and #? The answer now is not as immediate as one might
expect. Indeed, consider an arbitrary modal logic (L)∧∨⊃a✩, where the non-
classical connectives are interpreted as above. How can a classical negation
now be defined so as to work as expected for all classes of frames? It is easy
to see that the above definitions will not do. An alternative is to set:

∼α def== α ⊃ aα 2α def== a∼α 3α def== ∼aα

In this case, however, in spite of (|= ∼α, α) holding good for every normal
modal logic, (α,∼α |=) holds good only for extensions of KT . Therefore,
all one can guarantee in general is that:
For every extension of KT , (L)∧∨⊃∼23 and (L)∧∨⊃a✩★

characterize the same logic under two different signatures.
To recover full generality and symmetry in the second result, the easiest

solution is to change implication for coimplication (putting both implication
and coimplication in the signature is too easy a solution, as those two con-
nectives alone already provide a functionally complete set of connectives for
classical logic). So, using the coimplication alone one can set:

> def== ✩α ∨aα ∨ α, for any α ∼α def== α 6⊂ >
This new negation behaves classically already in K, and with its help one
can define box and diamond, again, exactly as in the preceding set of def-
initions. Obviously, a connective for undeterminedness can be defined by
setting ★α def

=== ∼✩α. The last paragraph shows that:
For every normal modal logic, (L)∧∨6⊂∼23 and (L)∧∨6⊂a✩★

characterize the same logic under two different signatures.
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3 Imagine there are no sea battles. . .

I argued in Marcos (2005d) that the development of a really good theory
about ‘what negation is’, in logic, presupposes the previous development
of a modern and comprehensive formal version of the received theory of
oppositions.2 This was nothing short than a big issue in ancient Greek
philosophy. Even nowadays, though, if one looks in retrospect, it is difficult
to get a feeling that the deep philosophical advances made on this topic
have received the formal counterpart they deserved. If we are to trust Plato
on his account of the pre-Socratic philosophy, Heraclitus of Ephesus has
seemingly spent his whole life thinking about opposition, and Parmenides
spent his own thinking about how he could oppose Heraclitus on that. The
dispute was allegedly also fed by their respective disciples, Cratylus and
Zeno of Elea. It has often been argued that Aristotle’s theory of opposition,
and the Square of Oppositions that would be polished from it along the
following centuries,3 was born from an attempt to reconcile the opponents
and make sense of the above dispute. A sympathizer of Heraclitus (whom he
dubbed ‘the Obscure’) in some respects and a strong critic in many others,
Aristotle seems also to have been the first (later, Apuleius, Boethius and
Peter of Spain were also not entirely without fault) to pervert the initial
idea of a theory of oppositions into a long and problematic theory of modal
syllogisms.

In the last section we have seen how the language of normal modal logic
could have been alternatively chosen as the language of paranormal nega-
tions and related operators. Maybe, had Aristotle not been the tutor of
Alexander, there would never have been so much talk about sea battles,
the contingency of the future and the necessity of the past. Had modal
logic and kripke-like semantics been developed with the objective of under-
standing negation and exploring the viability of reasoning under inconsistent
situations, and maybe the reader would have been surprised to learn only
here and now that yes, the same modal ideas and tools could be used to
talk about boxes and diamonds!

The negative modalities ` and a have received some attention in the
last decades as legitimate interpretations of negation. From this point on,
let → and − denote intuitionistic implication and negation. In Došen (1984)
and subsequent papers, Kosta Došen showed how to axiomatize the logics
(L)∧∨→−a and (L)∧∨→−`, for L = K and for many extensions of K. Those
logics were treated as bi-modal, with one accessibility relation (reflexive and
transitive) used to interpret the intuitionistic connectives and another acces-
sibility relation (that of L) used to interpret a and `. A similar approach
had in fact been undertaken a decade earlier by Dimiter Vakarelov, and was

2In particular, as argued in Section 2.1, it could be advantageous in such a theory to
talk about ‘duality’ instead of ‘subalternation’.

3For the historical development of the soo, check Parsons (2004).
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published in Vakarelov (1989), where the logics (L)∧∨→a>⊥ and (L)∧∨→`>⊥
were axiomatized, for L = K and for many extensions of K, and also for
signatures containing classical instead of intuitionistic implication.

An interesting problem that was left open was that of axiomatizing such
logics in the language containing only the usual positive classical connectives
of normal modal logics (∧,∨,⊃,2,3), extended only by the paranormal
negations a or `, without recourse to the perfect connectives (#, ,✩,★),
as above. Consider the paraconsistent case and the set of formulas S∧∨⊃`.
(Recall that the case where the related signature is extended by the addition
of the connective # was fully solved above, where the logics obtained were
shown to provide just different versions of the usual normal modal logics.)
Suppose someone might object to the addition of the connective # as a
‘natural connective’ of our logics. This person then should take equal care
so as not to add neither a bottom, ⊥, nor a classical negation, ∼, to the
original signature: On the one hand, we have already seen how ∼ and ⊥
can be defined from #; on the other hand, from a primitive ∼ one could
easily define ⊥ def

=== α ∧ ∼α, for an arbitrary α, and from a primitive ⊥ one
could define ∼α def

=== α ⊃ ⊥, and in both cases # could be recovered by
setting #α def

=== (α ⊃ ⊥) ∨ (`α ⊃ ⊥). Notice also that, whenever a classical
negation ∼ is present, the consistency connective # will be sufficient so as to
define the remaining perfect connectives from Figure 2: Just set ★α def

=== #∼α,
✩α def

=== ∼#∼α, and  α def
=== ∼#α.

On what concerns the above problem, vividly denounced in Béziau (2002)
for the case of S5, an axiomatization of (L)∧∨⊃` was offered in Béziau (9798)
only for that extreme case in which L = S5. As Jean-Yves Béziau confessed,
the extension of this result to the case of other normal modal logics proved
non-obvious. I have recently found a thorough solution to the problem, but
for limitations of space I can only display here the corresponding axioms.
For the case of L = K, an adequate axiomatization is given by adding to
any complete set of axioms and rules for positive classical propositional logic
the following further axioms and rules:

(I.1) ` α ⊃ β ⇒ ` `β ⊃ `α
(I.2) ` α ⇒ ` `α ⊃ β
(I.3) ` `(α ∧ β) ⊃ (`α ∨`β)

It is not difficult to extend this axiomatization so as to cover other logics.
Indeed, for L = KT you just have to add ` α ∨ `α as a new axiom, for
L = KB it suffices to add ` ``α ⊃ α as a new axiom, for L = K5 the axiom
` `α ⊃ (``α ⊃ β) will do. In fact, and here comes the great surprise,
again it is possible to recover all normal modal logics from this simpler sig-
nature, if we now define classical negation by setting ∼γ def

=== γ ⊃ `(α ⊃ α),
for an arbitrary formula α. So:
For every normal modal logic, (L)∧∨⊃∼23 and (L)∧∨⊃`

characterize the same logic under two different signatures.
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The paracomplete case is a bit more complicated (recall the need we
had for a coimplication in Section 2.2), as it can be proved that there is no
definable classical negation in (K)∧∨⊃a, but only in (KT )∧∨⊃a. But there
is a classical negation in (K)∧∨6⊂a. The difficulties and details of the above
mentioned solutions are to be found in Marcos (2005a).

It should be highlighted that one of the most remarkable features of
all the above mentioned paranormal logics is the validity of the replace-
ment property (a.k.a. self-extensionality). A very common and desirable
property of logical systems, and a typical property of the usual systems of
normal modal logic, replacement is known to fail in the great majority of
well-known systems of paraconsistent logic, and that often translates into
trouble for the study of their algebraic counterparts (check for instance the
section 3.12 of the survey paper Carnielli and Marcos (2002)). The above
modal paraconsistent logics, by their very nature, shun such difficulties.

One last comment. I have hinted above to the reticence that is sometimes
to be found about the use of consistency connectives and lfilfilfis, notwithstand-
ing the possibility they inaugurate of internalizing nice properties such as
the datdatdats (recall Section 2). I have also mentioned the unavoidability of such
connectives as soon as we are talking about positive classical propositional
logic extended by some paraconsistent negation and by either a classical
negation or a bottom. But the question might still remain as to whether
that consistency connective makes any sense if there is no paraconsistent
negation around. Let us assume the above modal interpretation of this con-
sistency connective and of the related inconsistency connective to be taken
as primitive, and let us conservatively extend classical propositional logic
by the addition of such connectives. It is not difficult to see that the re-
sulting language has little expressive power: No diamonds nor boxes can in
general be defined, and the new connectives are not even ‘normal’ modal
connectives in the sense of the former. In the language whose formulas are
S∧∨⊃≡∼# , however, one could read  α as saying that ‘α is the case, but
could have been otherwise’: It works as a kind of (local) connective for ‘ac-
cidental truth’. Similarly, # could be read as expressing a (local) notion of
‘essential truth’. In Marcos (2005c) I have axiomatized the minimal such
logic of essence and accident, (K)∧∨⊃≡∼# , by extending positive classical
propositional logic with the following axioms and rules:

(K0.1) ` ϕ ≡ ψ ⇒ ` #ϕ ≡ #ψ (K0.2) ` ϕ ⇒ ` #ϕ
(K1.1) ` (#ϕ ∧#ψ) ⊃ #(ϕ ∧ ψ)
(K1.2) ` ((ϕ ∧#ϕ) ∨ (ψ ∧#ψ)) ⊃ #(ϕ ∨ ψ)
(K1.3) `  ϕ ⊃ ϕ (K1.4) `  ϕ ≡ ∼#ϕ

A similar interpretation could be proposed for the determinedness connec-
tive. One could read ✩α as saying that ‘α is not the case, but it could
have been’. This suggests that ✩ could work as a kind of (local) connective
for ‘counterfactual truth’. I will leave this here as a path that seems worth
exploring. It is easy if you try.
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Béziau, J.-Y. (2004). Paraconsistent logic from a modal viewpoint. Journal of
Applied Logic. In print. Preprint available at:
http://www.cle.unicamp.br/e-prints/abstract 16.html.

Carnielli, W. A. and Marcos, J. (2002). A taxonomy of C-systems. In Carnielli,
W. A., Coniglio, M. E., and D’Ottaviano, I. M. L., editors, Paraconsistency: The
logical way to the inconsistent, volume 228 of Lecture Notes in Pure and Applied
Mathematics, pages 1–94. Marcel Dekker. Preprint available at:
http://www.cle.unicamp.br/e-prints/abstract 5.htm.

Chellas, B. F. (1980). Modal logic — an introduction. Cambridge University Press.

Cowan, J. W. (1997). The Complete Lojban Language. Logical Language Group
Inc.

da Costa, N. C. A. (1963). Inconsistent Formal Systems (Cathedra Thesis, in
Portuguese). UFPR, Curitiba. Editora UFPR, 1993.
http://www.cfh.ufsc.br/∼nel/historia logica/sistemas formais.htm.

da Costa, N. C. A. (1974). On the theory of inconsistent formal systems. Notre
Dame Journal of Formal Logic, 11:497–510.
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L’Institut Mathématique (Beograd) (N.S.), 35(49):3–14.

Garson, J. (Winter 2003). Modal logic. In Zalta, E. N., editor, The Stanford
Encyclopedia of Philosophy (on-line).
http://plato.stanford.edu/archives/win2003/entries/logic-modal.

Horn, L. R. (1989). A Natural History of Negation. University of Chicago Press,
Chicago.

238

http://www.logic.ru/Russian/LogStud/02/LS_2_e_Beziau.pdf
http://www.cle.unicamp.br/e-prints/abstract_16.html
http://www.cle.unicamp.br/e-prints/abstract_5.htm
http://www.cfh.ufsc.br/~nel/historia_logica/sistemas_formais.htm
http://plato.stanford.edu/archives/win2003/entries/logic-modal


3.3 Nearly every normal modal logic is paranormal

Hughes, G. E. and Cresswell, M. J. (1968). An Introduction to Modal Logic.
Methuen and Co., London.

Kreisel, G. (1970). Hilbert’s programme and the search for automatic proof pro-
cedures. In Symposium on Automatic Demonstration (Versailles, 1968), volume
125 of Lecture Notes in Mathematics, pages 128–146. Springer-Verlag, Berlin.

Lewis, C. I. (1918). A Survey of Symbolic Logic. University of California Press.

 Lukasiewicz, J. (1953). A system of modal logic. J. Computing Systems, 1:111–149.

Makinson, D. (1971). Some embedding theorems for modal logic. Notre Dame
Journal of Formal Logic, 12(2):252–254.

Marcos, J. (2001). On a problem of da Costa. CLE e-Prints, 1(8). To appear in
Logica Trianguli.
http://www.cle.unicamp.br/e-prints/abstract 8.htm.

Marcos, J. (2005a). Admissible falsehood and refutable truth. Forthcoming.

Marcos, J. (2005b). Ineffable inconsistencies. In J.-Y. Béziau and W. A. Carnielli,
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