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We apply Bayesian approach to construct a large number of minimally constrained equations of state (EOSs)
and study their correlations with a few selected properties of a neutron star (NS). Our set of minimal constraints
includes a few basic properties of saturated nuclear matter and low-density pure neutron matter EOS which is
obtained from a precise next-to-next-to-next-to-leading-order (N3LO) calculation in chiral effective field theory.
The tidal deformability and radius of NS with mass 1−2M� are found to be strongly correlated with the pressure
of β-equilibrated matter at densities higher than the saturation density (ρ0 = 0.16 fm−3) in a nearly model-
independent manner. These correlations are employed to parametrize the pressure for β-equilibrated matter,
around 2ρ0, as a function of neutron star mass and the corresponding tidal deformability. The maximum mass
of neutron star is also found to be strongly correlated with the pressure of β-equilibrated matter at densities
∼ 4.5ρ0.

I. INTRODUCTION

Gravitational-wave astronomy promises unprecedented
constraints on the Equation of State of neutron star matter
through the detailed properties of gravitational-waveform ob-
served during the merging of binary neutron stars (BNS). In
addition, X-ray observations from the Neutron star Interior
Composition Explorer (NICER) instruments have also pro-
vided a compelling constraint on the equation of state inde-
pendently. The tidal deformability parameters inferred from
these gravitational-wave events encode information about the
EOS. For the first time,a BNS event (GW170817) was ob-
served by the LIGO-Virgo detector from a low mass compact
binary neutron star merger with a total mass of the system
2.74+0.04

−0.01M� [1, 2]. Another gravitational-wave event likely
originating from the coalescence of BNSs, GW190425, was
observed [3] subsequently. These two events have already
triggered many theoretical investigations to constrain the EOS
of neutron star matter [3–12]. The upcoming runs of LIGO-
Virgo-KAGRA and the future detectors, e.g., Einstein Tele-
scope (ET) and Cosmic Explorer (CE), are expected to ob-
serve many more BNS signals emitted from coalescing neu-
tron stars. The mass and radius of NS, observed either in iso-
lation or in binaries, by NICER [13–15] have offered comple-
mentary constraints on the EOS. A sufficiently large number
of such observations over a wide range of NS masses may be
employed to constrain several key quantities associated with
the EOS of β-equilibrated matter which are not readily acces-
sible in the terrestrial laboratory. The behavior of the EOS
at supra-saturation densities are generally studied using the
observed maximum neutron star mass, together with radius
and tidal deformability corresponding to the neutron star with
canonical mass 1.4M� [16–18]. Recently, in Refs. [19–24],
efforts are made to constrain the EOS of β-equilibrated matter
which is relevant to the studies of NS properties. The values
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of tidal deformability of NS with mass 1 − 2M� are found
to be strongly correlated with the EOS at twice the saturation
density.

Statistical tools are quite helpful in providing a quantita-
tive interpretation of NS observables. A Bayesian approach is
often applied to analyze gravitational-wave signals, which in-
volves nearly 15 parameters for binary compact object merg-
ers, to infer their source properties [25]. It has been also ex-
tended to investigate the properties of short gamma-ray bursts
[26], neutron stars [27–29], the formation history of binary
compact objects [30–34] and to test general relativity [35–38].
Of late, Bayesian approach has become a useful statistical tool
for parameter estimation in the field of nuclear physics and
nuclear-astrophysics [39]. It allows one to obtain joint pos-
terior distributions of the model parameters and the correla-
tions among them for a given set of data. Various constraints
on the parameters known a priori are incorporated through
their prior distributions. The Bayesian techniques have also
been employed to constrain symmetry energy [40], masses
and radii of NSs [41] using the bounds on the EOS obtained
from chiral effective field theory. Bayesian techniques have
been extensively applied to constrain the EOS for symmetric
nuclear matter, β-equilibrated matter (BEM) and density de-
pendence of symmetry energy coefficient using various finite
nuclei and NS properties [42–53].

We use Bayesian approach to construct large sets of EOSs
which correspond to the Taylor and n

3 expansions[53]. The
expansion coefficients in the former case are the individual
nuclear matter parameters (NMPs), whereas in the latter case
they are their linear combinations. The EOSs are consistent
with a set of minimal constraints that includes a few low-order
nuclear matter parameters at the saturation density and EOS
for the pure neutron matter (PNM) at low densities obtained
from a precise next-to-next-to-next-to-leading-order (N3LO)
calculation in chiral effective field theory. The marginalized
posterior distributions of NMPs and the various NS proper-
ties obtained from set of minimal constraints are found to be
within reasonable bounds. The correlations of various NS
properties, such as tidal deformability, radius and maximum
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mass, with key EOS parameters are studied. These correla-
tions are investigated for a wide range of NS masses and den-
sities for the EOS.

The paper is organized as follows. The Taylor and n
3 expan-

sions for the EOS of neutron star matter and the Bayesian ap-
proach are briefly outlined in Sec. II. The results for the poste-
rior distributions of nuclear matter parameters and associated
NS properties together with their correlations with some key
quantities associated with EOS are presented in Sec. III. The
main outcomes of the present investigation are summarized in
Sec. IV.

II. METHODOLOGY

The energy per nucleon for neutron star matter E(ρ, δ) at a
given total nucleon density ρ and asymmetry δ can be decom-
posed into the energy per nucleon for the symmetric nuclear
matter, E(ρ, 0) and the density-dependent symmetry energy,
Esym(ρ) in the parabolic approximation as,

E(ρ, δ) = E(ρ, 0) + Esym(ρ)δ2 + ..., (1)

where, δ =
(
ρn−ρp
ρ

)
with ρn and ρp being the neutron and

proton densities, respectively. The value of δ at a given ρ is
determined by the condition of β-equilibrium and the charge
neutrality. Once δ is known, the fraction of neutrons, protons,
electrons, muons can be easily evaluated. In the following,
we expand E(ρ, 0) and Esym(ρ) appearing in Eq. (1) using
Taylor and n

3 expansions. The coefficients of expansion in
case of the Taylor correspond to the individual nuclear matter
parameters. In the latter case, they are expressed as linear
combinations of the nuclear matter parameters.

A. Taylor’s expansion

The E(ρ, 0) and Esym(ρ) can be expanded around the sat-
uration density ρ0 as [54–58],

E(ρ, 0) =
∑
n

an
n!

(
ρ− ρ0

3ρ0

)n
, (2)

Esym(ρ) =
∑
n

bn
n!

(
ρ− ρ0

3ρ0

)n
, (3)

so that,

E(ρ, δ) =
∑
n

1

n!
(an + bnδ

2)

(
ρ− ρ0

3ρ0

)n
, (4)

where the coefficients an and bn are the nuclear matter pa-
rameters. We truncate the sum in Eqs. (2) and (3) at fourth
order, i.e., n = 0 - 4. Therefore, the coefficients an and bn
correspond,

an ≡ ε0, 0,K0, Q0, Z0, (5)
bn ≡ J0, L0,Ksym,0, Qsym,0, Zsym,0. (6)

In Eqs. (5) and (6), ε0 is the binding energy per nucleon,
K0 the incompressibility coefficient, J0 the symmetry energy
coefficient, its slope parameter L0, Ksym,0 the symmetry en-
ergy curvature parameter, Q0(Qsym,0) and Z0(Zsym,0) are re-
lated to third- and fourth-order density derivatives of E(ρ, 0)
[ Esym(ρ)], respectively. The subscript zero indicates that all
the nuclear matter parameters are calculated at the saturation
density.

It may be noticed from Eq. (4) that the coefficients an and
bn may display some correlations among themselves provided
the asymmetry parameter depends weakly on the density. Fur-
thermore, Eq. (4) may converge slowly at high densities, i.e.,
ρ � 4ρ0. This situation is encountered for the heavier neu-
tron stars. Neutron stars with a mass around 2M�, typically
have central densities ∼ 4− 6ρ0.

B. n
3

expansion

An alternative expansion of E(ρ, δ) can be obtained by ex-
panding E(ρ, 0) and Esym(ρ) as [59, 60],

E(ρ, 0) =

6∑
n=2

(a′n−2)

(
ρ

ρ0

)n
3

, (7)

Esym(ρ) =

6∑
n=2

(b′n−2)

(
ρ

ρ0

)n
3

, (8)

E(ρ, δ) =

6∑
n=2

(a′n−2 + b′n−2δ
2)

(
ρ

ρ0

)n
3

. (9)

We refer this as the n
3 expansion. It is now evident from Eqs.

(7) and (8) that the coefficients of expansion are no longer the
individual nuclear matter parameters unlike in the case of Tay-
lor’s expansion. The values of the nuclear matter parameters
can be expressed in terms of the expansion coefficients a′ and
b′ as, respectively,

ε0
0
K0

Q0

Z0

 =


1 1 1 1 1
2 3 4 5 6
−2 0 4 10 18
8 0 −8 −10 0
−56 0 40 40 0



a′0
a′1
a′2
a′3
a′4

 , (10)


J0
L0

Ksym,0

Qsym,0

Zsym,0

 =


1 1 1 1 1
2 3 4 5 6
−2 0 4 10 18
8 0 −8 −10 0
−56 0 40 40 0



b′0
b′1
b′2
b′3
b′4

 . (11)

The relations between the expansion coefficients and the nu-
clear matter parameters are governed by the nature of func-
tional form for E(ρ, 0) and Esym(ρ). The off-diagonal ele-
ments in the above matrices would vanish for the Taylor ex-
pansion of E(ρ, 0) and Esym(ρ) as given by Eqs. (2) and (3),
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respectively. Therefore, each of the expansion coefficients is
simply the individual nuclear matter parameter given by Eqs.
(5) and (6). Inverting the matrices in Eqs. (10) and (11) we
have

a′0 =
1

24
(360ε0 + 20K0 + Z0),

a′1 =
1

24
(−960ε0 − 56K0 − 4Q0 − 4Z0),

a′2 =
1

24
(1080ε0 + 60K0 + 12Q0 + 6Z0),

a′3 =
1

24
(−576ε0 − 32K0 − 12Q0 − 4Z0),

a′4 =
1

24
(120ε0 + 8K0 + 4Q0 + Z0), (12)

b′0 =
1

24
(360J0 − 120L0 + 20Ksym,0 + Zsym,0),

b′1 =
1

24
(−960J0 + 328L0 − 56Ksym,0 − 4Qsym,0

−4Zsym,0),

b′2 =
1

24
(1080J0 − 360L0 + 60Ksym,0 + 12Qsym,0

+6Zsym,0),

b′3 =
1

24
(−576J0 + 192L0 − 32Ksym,0 − 12Qsym,0

−4Zsym,0),

b′4 =
1

24
(120J0 − 40L0 + 8Ksym,0 + 4Qsym,0

+Zsym,0). (13)

Each of the coefficients a′ and b′ are the linear combinations
of nuclear matter parameters in such a way that the lower-
order parameters may contribute dominantly at low densi-
ties. The effects of higher-order parameters become promi-
nent with the increase in density.

C. Bayesian estimation of nuclear matter parameters

A Bayesian approach enables one to carry out detailed sta-
tistical analysis of the parameters of a model for a given set
of fit data. It yields joint posterior distributions of model pa-
rameters which can be used not only to study the distributions
of given parameters but also to examine correlations among
model parameters. One can also incorporate prior knowl-
edge of the model parameters and various constraints on them
through the prior distributions. This approach is mainly based
on the Bayes theorem which states that [61],

P (θ|D) =
L(D|θ)P (θ)

Z
, (14)

where θ and D denote the set of model parameters and the
fit data, respectively. The P (θ|D) is the joint posterior distri-
bution of the parameters, L(D|θ) is the likelihood function,
P (θ) is the prior for the model parameters and Z is the ev-
idence. The posterior distribution of a given parameter can

be obtained by marginalizing P (θ|D) over remaining param-
eters. The marginalized posterior distribution for a parameter
θi can be obtained as,

P (θi|D) =

∫
P (θ|D)

∏
k 6=i

dθk. (15)

We use Gaussian likelihood function defined as,

L(D|θ) =
∏
j

1√
2πσ2

j

e
− 1

2

(
dj−mj(θ)

σj

)2

. (16)

Here the index j runs over all the data, dj and mj are the data
and corresponding model values, respectively. The σj are the
adopted uncertainties. The evidence Z in Eq. (14) is obtained
by complete marginalization of the likelihood function. It is
relevant when employed to compare different models. How-
ever in the present work Z is not very relevant. To populate
the posterior distribution of Eq. (14), we implement a nested
sampling algorithm by invoking the Pymultinest nested sam-
pling [62] in the Bayesian Inference Library [25].

III. RESULTS AND DISCUSSIONS

We obtained the EOSs for β-equilibrated matter (BEM) us-
ing Taylor and n

3 expansions as discussed in previous section
Eqs. (4) and (9). The coefficients of the Taylor expansion are
the individual nuclear matter parameters, whereas, they cor-
respond to linear combinations of nuclear matter parameters
for the n

3 expansion. We have constructed marginalized poste-
rior distributions for the nuclear matter parameters by apply-
ing a Bayesian approach to both the expansions considered.
The nuclear matter parameters or the corresponding EOSs
are consistent with a set of minimal constraints that includes
basic properties of saturated nuclear matter and low-density
(ρ = 0.08− 0.16fm−3) EOS for the pure neutron matter from
(N3LO) calculation in chiral effective field theory [63]. This
large number of EOSs is employed to evaluate the properties
of neutron star such as tidal deformability, radius and maxi-
mum mass. The correlations of neutron star properties with
the pressure of β-equilibrated matter at a given density are
studied. Most of these correlations are sensitive to the choice
of the neutron star mass and EOS at a given density. Our re-
sults for the correlations of tidal deformability with pressure
for β-equilibrated matter are analogous to those obtained us-
ing a diverse set of nonrelativistic and relativistic mean-field
models (MFMs) that re-emphasize their model independence.
Such model-independent trends inspire us to parametrize the
pressure for β-equillibrated matter around 2ρ0 in terms of
neutron star mass and the corresponding tidal deformability.

A. Priors, likelihood and filters

We apply Bayesian approach to obtain two large sets of
EOSs corresponding to the Taylor and n

3 expansions. The
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posterior distributions for the NMPs are obtained by subject-
ing the EOSs to a set of minimal constraints which include
some basic properties of nuclear matter evaluated at the sat-
uration density ρ0 and EOS for the pure neutron matter at
low-density. The constraints on the nuclear matter parameters
are incorporated through the priors and those from the EOS
for the pure neutron matter through the likelihood function.
Not all the nuclear matter parameters are well constrained.
Only a very few low-order nuclear matter parameters con-
strained within narrow bounds are the binding energy per nu-
cleon ε0 = −16.0±0.3 MeV , nuclear matter incompressibil-
ity coefficients K0 = 240 ± 50 MeV for the symmetric nu-
clear matter and symmetry energy coefficient J0 = 32.0 ± 5
MeV. The values of ε0 and J0 are very well constrained by
the binding energy of finite nuclei over a wide range of nu-
clear masses [10, 64–68]. The value ofK0 is constrained from
the experimental data on the centroid energy of isoscalar giant
monopole resonance in a few heavy nuclei [69, 70]. The val-
ues of L0 have been extracted from experimental data on vari-
ety of phenomena in the finite nuclei as well as from neutron
star observations. The model-independent estimates of L0

is expected to be derived from the measurement of neutron-
skin thickness in asymmetric nuclei. Recent measurement of
neutron-skin thickness in 208Pb nucleus yields L0 = 106±37
MeV[71]. However, this value of L0 has only marginal over-
lap at the lower side with those determined using experi-
mental data on iso-vector giant dipole resonances in several
nuclei[72] and recent neutron star observations[73]. The re-
maining nuclear matter parameters, Q0, Z0, Ksym,0, Qsym,0

and Zsym,0 are constrained only poorly [24, 74–77]. The pri-
ors for the nuclear matter parameters employed in the present

TABLE I: The prior distributions of the nuclear matter parame-
ters . The nuclear matter parameters considered are the binding en-
ergy per nucleon ( ε0), incompressibility coefficient (K0), symme-
try energy coefficient (J0), it’s slope parameter (L0), symmetry en-
ergy curvature parameter (Ksym,0) andQ0(Qsym,0) andZ0(Zsym,0)
are related to third and fourth order density derivatives of E(ρ, 0) (
Esym(ρ)), respectively. All the nuclear matter parameters are evalu-
ated at saturation density ρ0 = 0.16 fm−3. The parameters of Gaus-
sian distribution (G) are the mean (µ) and standard deviation (σ).

NMPs Pr-Dist µ σ

(in MeV)
ε0 G -16 0.3

K0 G 240 50

Q0 G -400 400

Z0 G 1500 1500

J0 G 32 5

L0 G 50 50

Ksym,0 G -100 200

Qsym,0 G 550 400

Zsym,0 G -2000 2000

work are listed in Table I. The prior distributions of ε0,K0

and J0 are assumed to be Gaussian with rather smaller width,
whereas, the other higher order nuclear matter parameters cor-
respond to Gaussian distribution with very large width. We
have also repeated our calculations with uniform priors for
the higher order nuclear matter parameters and the result for
the median values are found to be practically unaltered and
uncertainties are modified marginally, up to 10%(not shown).
In what follows, we present only those results which are ob-
tained with priors as listed in Table I.

We know that the direct application of the lattice QCD sim-
ulations are challenging to hadronic physics at finite density
due to sign problem in Monte Carlo simulations. However,
analytical calculations in terms of the effective degrees of
freedom at low energy (ρ < ρ0) like chiral effective theory
is valid with negligible uncertainty. The precise next-to-next-
to-next-to-leading-order (N3LO) calculation are usually fitted
to the nucleon–deuteron scattering cross section or few-body
observables, and even saturation properties of heavier nuclei
[78]. The low-density EOS for the pure neutron matter ob-
tained from a (N3LO) calculation in chiral effective field the-
ory [63] is employed as pseudodata to obtain a simple like-
lihood function as given by Eq. (16). The ds and the σs in
Eq. (16) are the pseudodata for the energy per neutron and the
corresponding uncertainties taken from Ref. [63]. This has
been employed in past many of the analyses as their pseudo-
data [22, 79–82]. We have considered the values of energy
per neutron over the density range ρ = 0.08 - 0.16fm−3. At
the densities lower than 0.08fm−3, the neutron star matter is
expected to be clusterized.

We have filtered the nuclear matter parameters by demand-
ing that (i) pressure for the β-equilibrated matter should in-
crease monotonically with density (thermodynamic stability),
(ii) speed of sound must not exceed the speed of light (causal-
ity) and (iii) maximum mass of neutron star must exceeds
2M� (observational constraint). The causality breaks down
at higher density mostly for the Taylor EOS. In such cases,
we use the stiffest EOS, P (ε) = Pm + (ε − εm), where, Pm
and εm are the pressure and corresponding energy density at
which the causality breaks [83].

B. Posterior distribution of nuclear matter parameters

To undertake the correlation systematics as proposed, we
need a large number of EOSs with diverse behavior and cor-
responding neutron star properties. The posterior distributions
for the nuclear matter parameters for the Taylor and n

3 expan-
sions are obtained by subjecting the EOS to a set of minimal
constraints as discussed above. The joint posterior distribu-
tion of the NMPs for a given model depends on the product
of the likelihood and the prior distribution of nuclear matter
parameters (Eq. (14)). The posterior distribution of each in-
dividual parameter is obtained by marginalizing the joint pos-
terior distribution with the remaining model parameters. If
the marginalized posterior distribution of a nuclear matter pa-
rameter is localized more than the corresponding prior distri-
bution, then, the nuclear matter parameter is said to be well
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constrained by the data used for model fitting.
The corner plots for the marginalized posterior distribu-

tions for the nuclear matter parameters in one and two dimen-
sions obtained for Taylor and n

3 expansions are displayed in
Figs.1 and 2, respectively. The differences between the one-
dimensional posterior distributions for the nuclear matter pa-
rameters and corresponding prior distributions reflect the role
of low-density EOS for pure neutron matter in constraining
the nuclear matter parameters. The EOS for the pure neutron
matter mainly constraints the values of J0, L0 andKsym,0 and
to some extent Qsym,0 and Zsym,0. The shapes and the orien-
tations of the confidence ellipses suggest that the correlations
among most of the NMPs are weak. Most Strong correlations
exist only between Q0 − Z0, L0 − J0 and L0 − Ksym,0 for
both the expansions with correlation coefficient r' 0.8. The
K0 − Q0 correlation is slightly better in case of n

3 expan-
sion (r∼ -0.6) as compared to Taylor (r∼ -0.18). The me-
dian values of the nuclear matter parameters and the corre-
sponding 68%(90%) confidence intervals obtained from the
marginalized posterior distributions are listed in Table III(see
Appendix ). We also provide the values for the nuclear matter
parameters obtained without the PNM constraints. The low-
density pure neutron matter mainly constraints those nuclear
matter parameters which are associated with the density de-
pendence of the symmetry energy. The median values of L0

and Ksym,0, which determined the linear and quadratic den-
sity dependence of the symmetry energy, become smaller sug-
gesting softer symmetry energy ”at high-density” with the in-
clusion of pure neutron matter constrains. Furthermore, the
uncertainties on L0 reduced by more than 50%. The median
value of Qsym,0 remain more or less unaltered. From the re-
cent measurement of the neutron-skin thickness for 208Pb nu-
cleus (PREX-II)[71, 84], ∆Rskin = 0.283 ± 0.071 fm, the
value of L0 has been determined to be 106 ± 37 MeV [71] .
This value of L0 agrees with the ones obtained in the present
work with PNM constrained only within 90% confidence in-
terval.

C. Properties of neutron stars

Once the EOS for the core and crust are known the val-
ues of NS mass, radius and tidal deformability corresponding
to given central pressure can be obtained by solving Tolman-
Oppenheimer-Volkoff equations [85, 86]. The EOSs for core
region of neutron star, correspond to the β-equilibrated matter
over the density range 0.5− 8ρ0, are obtained from the poste-
rior distributions of nuclear matter parameters for the Taylor
and n

3 expansions. The core EOSs are matched to the crust
EOSs for obtaining the NS properties. The EOS for outer crust
is taken to be the one given by Baym, Pethick, and Sutherland
[87]. The inner crust that joins the inner edge of the outer
crust and the outer edge of the core is assumed to be poly-
tropic [88], p(ε) = c1 + c2ε

γ . Here, the parameters c1 and c2
are determined in such a way that the EOS for the inner crust
matches with the outer crust at one end (ρ = 10−4 fm−3) and
with the core at the other end (0.5ρ0 ). The polytropic index γ
is taken to be equal to 4/3. The radii of neutron star with mass

∼ 1M� are more sensitive to the treatment of crust EOS [89].
It is demonstrated that the treatment of crust EOS employed in
the present work may introduce the uncertainties of about 50-
100 m in radii of NSs having mass 1.4M�. It is shown in Ref.
[90] that the choice of EOS for inner crust does not signifi-
cantly impact the values of tidal deformability which depends
on the Love number k2 as well as the compactness parameter.

We have obtained the distributions of Λ1.4, R1.4, R2.07

and Mmax using the posterior distributions for the nuclear
matter parameters corresponding to the Taylor and n

3 expan-
sions. The corner plots for these NS properties are displayed
in Fig. 3. The effective priors for the NS properties as shown
by green lines are obtained using the priors for the nuclear
matter parameters. The posterior distributions of NS proper-
ties are narrower than the corresponding effective priors in-
dicating the significance of the low-density EOS for the pure
neutron matter. The posterior distributions of Λ1.4 and R1.4

for both the expansions are quite close to each other. The dif-
ferences begin to appear for the case of R2.07 which become
even larger for the maximum mass. This is due to the fact that
the Taylor EOSs are much more stiffer than the those for n

3 .
The dichotomy in the high-density behavior of the Taylor and
n
3 expansions would help us to understand the extent to which
the correlations of the EOSs with the properties of NS, for
masses in the range 1 - 2M�, are model dependent. It is clear
from off-diagonal plots that Λ1.4 is strongly correlated with
R1.4, the correlation coefficient is r∼ 0.9. The Λ1.4 and R1.4

also display stronger correlations with R2.07 (r ∼ 0.8) for the
case of Taylor and somewhat moderate correlations (r ∼ 0.7)
for the n

3 expansion. The maximum mass of neutron star is
almost uncorrelated with the other NS properties considered.

We have summarized in Table IV (see Appendix ) the me-
dian values of NS properties along with 68% (90%) confi-
dence intervals. Like in the case of nuclear matter parameters,
the NS properties get significantly constrained by the EOS of
pure neutron matter at low-density. For instance, the median
values of Λ1.4 become smaller by about 15% and the associ-
ated uncertainties by about 40% with the pure neutron matter
constraints. The median values of R1.4 and the corresponding
uncertainties also become noticeably smaller. The R2.07 and
Mmax do not show significant changes with the inclusion of
low-density pure neutron matter constraints. With the PNM
constraints, the 90% confidence interval of the neutron star
properties such as tidal deformability, radius and mass over-
lap with the currently available bounds, Λ1.4 ∈ [70, 580] [4],
R1.4 ∈ [11.41, 13.61] km [97], R2.07 ∈ [11.8, 13.1] km [96]
and Mmax ≥ 2.09M� [98]. The Mmax = 2.48+0.06

−0.07M� ob-
tained for the Taylor EOSs is on the slightly higher side in
comparison to the ones derived by combining the GW170817
observations of merging of binary neutron stars and quasiuni-
versal relation [99]. The observed electromagnetic emissions
in the form of kilonova and the detection of a gamma-ray burst
has been linked to the formation of a black hole and thus,
have been utilized to infer the maximum mass of a stable neu-
tron star. However, such inference of the maximum mass is
subjected to uncertainties originating from model dependence
of postmerger dynamics. Recent observation of GW190814
event, a neutron star black hole/binary neutron star merger,
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FIG. 1: Corner plots for the nuclear matter parameters (in MeV) obtained for Taylor expansions for the EOS of asymmetric nuclear matter.
The one dimensional marginalized posterior distributions (salmon) and the prior distributions (green lines) are displayed along the diagonal
plots . The vertical lines indicate 68% confidence interval of nuclear matter parameters. The confidence ellipses for two-dimensional posterior
distributions are plotted with 1σ, 2σ and 3σ confidence intervals along the off-diagonal plots. The distributions of nuclear matter parameters
are obtained by subjecting them to minimal constraints (see text for details).
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FIG. 2: The same as Fig. 1, but, for n
3

expansions for the EOS of asymmetric nuclear matter.



8

FIG. 3: Corner plots for the marginalized posterior distributions
(salmon) of the tidal deformability Λ1.4, radii R1.4 (km) and R2.07

(km) and the maximum mass Mmax (M�) for Taylor (top) and n
3

(bottom) expansions. The green lines represent effective priors ob-
tained using the priors for nuclear matter parameters (see also Table
I).

has triggered an assessment of the maximum mass of a sta-
ble neutron star [100]. While there are different opinions
available in the literature, the nature of a compact object in
the range of 2.5 - 2.67 M� being neutron star or black hole
seems to be an unsettled issue to date [99–104]. So the max-
imum mass (Mmax) we got for the Taylor model supporting
the static NS of mass greater than 2.5 M� may not be ruled

out at present.
We obtain joint probability distribution P (M,R) for a

given mass and radius for both the Taylor and n
3 expansions.

They display qualitatively very much similar trends. In Fig.
4, we plot the P (M,R) obtained for the n

3 expansion. The
90% confidence interval is represented by red dashed line.
The color gradient from orange to dark purple represents the
lowest to highest probability. The most probable values for
R1.4 and R2.07 are approximately 13.3 and 12.3 km, respec-
tively. The P (M,R) is maximum for M ∼ 1.4 − 2.0M�,
R ∼ 12.4 − 13.4 km. The 90% confidence interval has sig-
nificant overlap with LIGO-Virgo and NICER estimations. It
may be however pointed out that the main objective of the
present work is to construct large sets of EOSs with diverse
behavior to assess various correlation systematics as follows.

D. Correlations of neutron star properties with EOS

We randomly select 1000 EOSs and corresponding NS
properties from marginalized posterior distributions obtained
for the Taylor as well as n

3 expansions. They are used to study
the correlations of various NS properties with key quantities
determining the behavior of the EOS. The correlations of Λ1.4,
R1.4, R2.07 and Mmax with the pressure of β-equilibrated
matter over a wide range of densities are evaluated. The val-
ues of correlation coefficients are plotted as a function of den-
sity in Fig.5. We also display the values of correlation coef-
ficients for NS properties with the pressure of β-equilibrated

FIG. 4: Plot for joint probability distribution P (M,R) as a func-
tion of mass and radius of neutron star obtained for n

3
expansion.

The red dashed line represents the 90% confidence interval. The
outer and inner gray shaded regions indicate the 90% (solid) and
50% (dashed) confidence interval of the LIGO-Virgo analysis for
BNS component from the GW170817 event [91–93]. The rectan-
gular regions enclosed by dotted lines indicate the constraints from
the millisecond pulsar PSR J0030+0451 ( purple & black ) NICER
x-ray data [94, 95] and PSR J0740+6620 (green) [96]
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matter calculated using unified EOSs for a diverse set of 41
nonrelativistic and relativistic microscopic mean-field models
(MFMs) [89]. The various NS properties considered show
strong correlations with PBEM(ρ) around a particular density.
The density at which the correlation is maximum increases
with the NS mass. The values of Λ1.4 and R1.4 are strongly
correlated with PBEM(ρ) at density ∼ 1.5− 2.5ρ0. The R2.07

is strongly correlated with PBEM(ρ) around 3ρ0. The Mmax

is strongly correlated with PBEM(ρ) around 4.5ρ0. Our results
for the Taylor and n

3 expansions for the region of maximum
correlations are in line with those obtained using a diverse set
of mean-field models, except for the case of R2.07. Thus, it
seems possible that the EOS over a range of densities beyond
ρ0 can be constrained in a nearly model-independent manner
with the help of various NS observables.

FIG. 5: The correlation coefficients r(x,PBEM(ρ)), as approximated
by both Taylor and n

3
expansion along with the mean-field theory

calculations, is shown in this figure. Here, x represents either of the
tidal deformability Λ1.4, radiiR1.4,R2.07, or maximum massMmax

of the neutron star, whereas, PBEM(ρ) represents the pressure for β-
equilibrated matter at a density ρ. The calculations are performed
with neutron star properties obtained using marginalized posterior
distributions of nuclear matter parameters in Taylor and n

3
expan-

sions. For the comparison the results are also displayed for a diverse
set of nonrelativistic and relativistic microscopic mean-field models
(MFMs).

In Table V(see the Appendix ), we list the values of corre-
lation coefficients obtained between the NS properties and the

FIG. 6: The variations of pressure for β-equilibrated matter
[PBEM(ρ)] at selected densities versus tidal deformability Λ1.4, radii
R1.4 and R2.07 and maximum mass Mmax of neutron star. The
red dashed lines are obtained by linear regression [see Eq. (17 in
Sec.III D].

EOS at some selected densities. The correlation coefficients
are obtained using 100 and 1000 EOSs, corresponding to Tay-
lor and n

3 expansions, randomly selected from the posterior
distributions. We also present the results which are obtained
by combining 1000 EOSs corresponding to each of the expan-
sions. The values of correlation coefficients for the combined
set of EOSs are close to those obtained separately. The values
of the correlation coefficients are close to those obtained for
mean-field models are listed in second column. We plot in Fig.
6, the variations of PBEM(ρ), at selected densities, with Λ1.4,
R1.4, R2.07 and Mmax for which the correlations are stronger.
We compare our results with those obtained from a diverse set
of mean-field models. The correlation lines obtained by com-
bining results of the Taylor and n

3 expansions are also plotted
to estimate the values of PBEM(ρ) at selected densities with
help of NS properties. The equations for the correlation lines
are obtained using linear regression as,

PBEM(2ρ0)

MeVfm−3
= (0.96± 0.10) + (0.0473± 0.0002)Λ1.4,

PBEM(2ρ0)

MeVfm−3
= (−85.63± 0.89) + (8.01± 0.06)

R1.4

km
,

PBEM(3ρ0)

MeVfm−3
= (−233.16± 2.85) + (25.86± 0.23)

R2.07

km
,

PBEM(4.5ρ0)

MeVfm−3
= (−895.85± 4.00) + (524.75± 1.70)

Mmax

M�
.

(17)

We extend our analysis for the correlations of the pressure



10

TABLE II: The median values and associated 68%(90%) uncertainties for the parameters, appearing in Eq. (18), obtained from their marginal-
ized posterior distributions. The values of parameters b0, b1 and b2 as listed are scaled up by a factor of 10.

Pressure a0 a1 a2 b0 b1 b2

(in MeV fm−3)
PBEM(1.5ρ0) 0.544

+0.031(0.050)

−0.029(0.060) 1.869
+0.158(0.260)

−0.161(0.309) 7.451
+0.237(0.390)

−0.234(0.450) 0.176
+0.001(0.001)

−0.001(0.002) 0.740
+0.004(0.007)

−0.004(0.008) 1.152
+0.013(0.021)

−0.012(0.025)

PBEM(2ρ0) 0.146
+0.030(0.050)

−0.030(0.059) −0.598
+0.163(0.269)

−0.159(0.320) 27.909
+0.233(0.397)

−0.240(0.469) 0.493
+0.001(0.001)

−0.001(0.002) 2.234
+0.004(0.007)

−0.004(0.008) 3.728
+0.012(0.021)

−0.012(0.025)

PBEM(2.5ρ0) 7.345
+0.030(0.050)

−0.030(0.060) −15.102
+0.161(0.272)

−0.167(0.321) 68.411
+0.239(0.396)

−0.238(0.475) 0.906
+0.001(0.001)

−0.001(0.002) 4.518
+0.004(0.007)

−0.004(0.008) 8.115
+0.012(0.021)

−0.012(0.025)

FIG. 7: Dependence of correlation coefficients between tidal
deformability (ΛM ) and the pressure of β-equilibrated matter
(PBEM(ρ)) on neutron star mass (M) and density (ρ) is depicted in
this plot. Here ρ0=0.16 fm−3 is used only for scaling purposes.

for the β-equilibrated matter with tidal deformability over a
wide range of neutron stars mass. In Fig. 7, we display color-
coded graph for the correlations of tidal deformability of neu-
tron star for the mass 1.2 − 2.0M� with the pressure for β-
equilibrated matter at densities 0.5 − 5ρ0 (r(ΛM , PBEM(ρ))).
One can easily obtain the value of correlation coefficient as
a function of density at a given NS mass. The PBEM(ρ) at
ρ ∼ 1.5 − 2.5ρ0 are strongly correlated (r ∼ 0.8 − 1 ) with
tidal deformability for NS masses in the range 1.2 − 2.0M�.
Hence, PBEM(ρ) can be parametrized at a given ρ as,

PBEM(ρ)

MeVfm−3
= a(M) + b(M)ΛM , (18)

with mass-dependent coefficients a(M) and b(M) expanded
as

a(M) = (a0 + a1(M −M0) + a2(M −M0)2), (19)
b(M) = (b0 + b1(M −M0) + b2(M −M0)2), (20)

respectively, where M0 is taken to be 1.4M� and the values
of ai and bi are estimated using a Bayesian approach with
the help of PBEM(ρ) and tidal deformability obtained for Tay-
lor and n

3 expansions. For a given ρ, the Eq. (18) is fit-
ted using the tidal deformability corresponding to NS mass

FIG. 8: The median values of pressure for β-equilibrated matter is
shown here as a function of neutron star mass and its tidal deforma-
bility at densities 1.5ρ0 (top), 2.0ρ0 (middle) and 2.5ρ0 (bottom).
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1.2− 2.0M�. The priors for ai and bi are taken to be uniform
in the range of -100 to 100. The calculations are performed
for ρ= 1.5, 2.0 and 2.5 ρ0. All the ais are strongly correlated
with corresponding bis. The median values of parameters ai
and bi and associated uncertainties are summarized in Table
II. It may be noticed that the values of a0 and b0 for the case
of PBEM(2ρ0) are not the same as those in Eq. (17). This
may be partly due to the strong correlations between a0 and
b0 of Eq. (18). Moreover, Eq. (17) is fitted to the values
of tidal deformability at a fixed NS mass 1.4M�. To vali-
date our parametrized form for PBEM(ρ), we have calculated
the values of PBEM(2ρ0) using Eq. (18) with the help of tidal
deformability for 1.4M� obtained for large number of mean-
field models which includes the once considered in Fig. 5
along with those taken from [23, 81, 105]. The average devi-
ation of PBEM(2ρ0), obtained using Eq. (18), from the actual
values is about 10%. We find marginal improvement when the
terms corresponding to quadratic in tidal deformability are in-
cluded in Eq. (18).

In Fig.8, we display the variations of tidal deformability as
a function of mass and pressure for β-equilibrated matter at
ρ=1.5, 2.0 and 2.5 ρ0. These results are obtained using the
parametrized form for PBEM(ρ) as given by Eq. (18). One
can easily estimate the values of PBEM(ρ) for ρ ∼ 2ρ0 once
the values of tidal deformability known in NS mass ranges
1.2− 2.0M�.

IV. CONCLUSIONS

We have used Taylor and n
3 expansions of equations of state

to construct marginalized posterior distributions of the nuclear
matter parameters which are consistent with the minimal con-
straints. Only a few low-order nuclear matter parameters, such
as the energy per nucleon, incompressibility coefficient for the
symmetric nuclear matter and symmetry energy coefficients
at the saturation density (ρ0), are constrained in narrow win-
dows along with the the low-density pure neutron matter EOS
obtained from a precise next-to-next-to-next-to-leading-order
(N3LO) calculation in chiral effective field theory. The tidal
deformability, radius and maximum mass are evaluated using
large sets of minimally constrained EOSs.

The correlations of neutron star properties over a wide
range of mass with various key quantities characterizing the
EOS are investigated. We find that the values of tidal deforma-
bility and radius for the neutron star with 1.4M� are strongly
correlated with the pressure for the β-equilibrated matter at
density∼ 2ρ0. The radius for 2.07M� neutron star is strongly
correlated with the pressure for β-equilibrated matter at den-
sity ∼ 3ρ0. The maximum mass of neutron star is corre-
lated with the pressure for the β-equilibrated matter at density
∼ 4.5ρ0. These correlation systematics are in harmony with
those obtained for unified EOSs for the β-equilibrated mat-
ter available for a diverse set of nonrelativistic and relativis-
tic mean-field models. We exploit the model independence
of correlations to parametrize the pressure for β-equilibrated
matter, in the density range 1.5− 2.5ρ0, in terms of the mass
and corresponding tidal deformability of neutron star. Such

parametric form may facilitate back-of-the-envelope estima-
tion of the pressure at densities around 2ρ0 for a given value
of tidal deformability of neutron stars with mass in the range
of 1.2− 2.0M�.
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Appendix A: Some useful tables
We present our results in tabular form which are obtained with the minimal constraints. The values of the nuclear matters, properties of

neutron stars and their correlations with various key quantities associated with EOS are listed in Tables III–V. These results are depicted in
Figs. 1 - 6.

TABLE III: The median values and associated 68%(90%) uncertainties for the nuclear matter parameters from their marginalized posterior
distributions. The results are obtained for Taylor and n

3
expansions with and without pure neutron matter (PNM) constraints.

NMPs without PNM with PNM

(in MeV) Taylor n
3

Taylor n
3

ε0 −16.02
+0.23(0.41)

−0.28(0.56) −15.99
+0.27(0.43)

−0.27(0.51) −16.00
+0.27(0.42)

−0.30(0.54) −16.00
+0.27(0.44)

−0.28(0.56)

K0 236.42
+42.78(74.34)

−42.58(79.62) 233.38
+48.94(76.14)

−42.73(83.95) 237.43
+44.24(72.25)

−45.75(83.22) 231.96
+44.80(72.94)

−41.33(76.63)

Q0 −436.23
+273.36(419.17)

−306.50(603.76) −411.84
+207.53(301.56)

−210.88(409.00) −419.81
+262.95(437.69)

−272.47(531.58) −418.89
+187.43(300.76)

−179.25(377.42)

Z0 1441.51
+792.45(1298.64)

−696.39(1381.30) 1600.07
+1067.33(1883.00)

−1362.28(2615.10) 1403.84
+704.56(1133.85)

−690.82(1386.25) 1638.14
+1241.83(1906.75)

−1277.48(2244.23)

J0 32.37
+4.08(6.79)

−4.26(8.83) 32.37
+4.69(7.22)

−4.71(10.23) 31.88
+0.87(1.43)

−0.92(−1.85) 31.87
+0.93(1.49)

−0.82(1.68)

L0 59.88
+41.14(65.90)

−39.84(78.17) 55.60
+37.59(63.89)

−43.88(84.62) 51.25
+13.32(21.60)

−13.91(25.54) 52.25
+13.55(22.73)

−12.76(23.04)

Ksym,0 −85.86
+192.67(327.83)

−151.57(266.76) −40.03
+161.60(271.89)

−135.08(234.67) −96.65
+141.41(225.69)

−127.49(216.74) −67.44
+127.18(206.09)

−114.80(200.38)

Qsym,0 731.13
+308.54(543.01)

−347.82(669.47) 705.36
+311.23(511.39)

−352.72(727.86) 699.56
+324.38(521.95)

−323.52(639.30) 726.49
+300.40(510.33)

−358.51(631.86)

Zsym,0 −2.07
+1190.67(2153.84)

−820.92(1473.09) −1390.39
+1518.69(2526.53)

−1856.18(3623.74) 55.34
+1205.62(2255.28)

−782.52(1415.84) −1622.35
+1606.61(2788.70)

−1911.81(3468.40)

TABLE IV: Similar to Table III, but, for the neutron star properties, namely the tidal deformability (Λ1.4), radii (R1.4 andR2.07) and maximum
mass (Mmax) .

NS properties without PNM with PNM
Taylor n

3
Taylor n

3

Λ1.4 527.72
+250.72(477.68)

−186.11(292.57) 455.85
+223.65(465.72)

−163.05(243.23) 426.20
+139.93(224.58)

−130.32(205.18) 386.52
+132.76(213.24)

−102.84(199.09)

R1.4(km) 14.69
+1.78(3.43)

−1.63(2.74) 14.15
+1.87(3.34)

−1.69(2.58) 13.37
+0.67(1.03)

−0.75(1.60) 13.22
+0.64(0.99)

−0.67(1.59)

R2.07(km) 13.24
+0.82(1.49)

−0.82(1.42) 12.27
+0.88(1.52)

−0.80(1.52) 12.72
+0.55(0.85)

−0.59(1.07) 12.02
+0.54(0.88)

−0.58(1.23)

Mmax(M�) 2.45
+0.07(0.11)

−0.06(0.13) 2.19
+0.10(0.19)

−0.09(0.09) 2.48
+0.06(0.10)

−0.07(0.14) 2.20
+0.10(0.16)

−0.09(0.11)

TABLE V: The comparison of values for Pearson’s correlation coefficient (r) obtained from randomly selected 100 and 1000 EOSs using both
Taylor and n

3
expansions. The values of correlation coefficients are also obtained by combining 1000 EOSs from each of the expansions. For

comparison, the values of r obtained for a diverse set of mean-field models are also presented in 2nd column.

Name of Pairs MFMs Taylor n
3

combined
41 100 1000 100 1000 2000

Λ1.4-PBEM(2ρ0) 0.90 0.98 0.98 0.99 0.98 0.98

R1.4-PBEM(2ρ0) 0.83 0.93 0.93 0.94 0.93 0.93

R2.07-PBEM(3ρ0) 0.81 0.93 0.91 0.92 0.92 0.93

Mmax-PBEM(4.5ρ0) 0.99 0.97 0.98 0.95 0.96 0.99
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