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ABSTRACT 

This dissertation addresses the problem of finding nearly 

optimal detector structures for non-Gaussian noise environments. 

It is assumed that the noise statistics are unknown except for 

a very loose characterization.  Under this condition, the goal 

is to study adaptive detector structures that are simple, yet 

capable of high levels of performance. 

Attention is focused on the discrete-time locally optimal 

detector for a constant signal in independent, identically dis- 

tributed noise.  A definition for non-Gaussian noise is given, 

several common univariate density models are exhibited, and 

some physical non-Gaussian noise data is discussed. 

Two approaches in designing adaptive detector nonlinearities 

are presented, where it is assumed that the noise statistics are 

approximately stationary.  Both proposals utilize simple measure- 

ments of the noise behavior to adapt the detector, and in several 

examples the adaptive detectors are shown capable of attaining 

nearly optimal performance levels.  A simulation is presented 

demonstrating their successful application. 

The physical noise data is examined, and found to be contam- 

inated with impulsive noise having a burst-like structure.  This 
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observation suggests that a nonstationary noise model and a time- 

varying detector may be appropriate.  A nonparametric structure 

is proposed to detect the presence of impulsive bursts, and the 

performance of the detection algorithm is evaluated.  It is then 

shown how information provided by the burst detector may be used 

to advantage in a signal detector.  Performance of the combined 

detector structure is analyzed and found to be superior relative 

to the performance of any single fixed detector structure in cer- 

tain noise environments.  A simulation of the proposed, structures 

is presented and compared to the simulation of the previous adap- 

tive detectors. ■: • 

The problem of approximating known locally optimal detector 

nonlinearities is examined and shown to be equivalent to the 

minimum mean square error approximation of known nonlinearities. 

A performance index for comparing the performance of subop- 

timal threshold detectors operating with constant false alarm 

rates is proposed and analyzed.  The ratio of indices for two 

detectors is shown to have appealing and useful properties in 

studying non-zero signal to noise ratio detection problems. 
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Introduction 

1.  Motivation 

Extracting information from raw data in the presence of noise is the 

ubiquitous problem of communication theory, and there are countless 

variations on this fundamental theme. In some contexts, it is important 

to estimate a signal or its parameters. In other contexts, it is desired to 

detect which, if any, signal is present. Both problems have received con- 

siderable theoretical and practical attention. 

In this thesis, a very simple detection problem is posed: Detect the 

presence (or absence) of a known constant-level signal in a sequence of 

observations that is corrupted by addition of a sequence of observations 

from a random noise process. The problem is further simplified by 

assuming that the noise observations are statistically independent of 

each other and the signal. In several cases, it is further assumed that all 

noise observations are identically distributed. 
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In spite of this apparent simplicity, there remain some important 

issues: Namely, how does one approach the detection problem in non- 

Gaussian noise environments when the noise statistics are only partially 

known? What considerations are important in the design of a detection 

algorithm if the goal is to achieve a high level of performance with simple 

adaptive structiires? How may a detector recognize an abrupt change in 

the noise and abate its effects? What properties should be possessed by a 

"good" procedure for approximating optimal detectors? How may the 

finite sample efficiency of a suboptimal detector be characterized? 

2.  Outline of the Thesis 

This thesis has been written as one approach in addressing these and 

similar issues. The orientation of the work is not directed toward purely 

theoretical ends, nor is it purely an application of known results. Rather, 

it attempts to combine elements of both areas. The previous questions 

are studied in the combined light of abstract and practical considera- 

tions. Thus, the results which will be presented range from theorems and 

proofs to numerical simulations of proposed systems. 

Chapters 

Chapter 2 introduces the detection problem which is common to all 

chapters. Specifically, the Neyman-Pearson and locally optimal detectors 

are discussed, along with a description of their particular performance 

measures. 

It is obvious that every density family, save for one, comprise non- 

GaiLssian densities.  These densities often characterize the noise in phy- 
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sical situations where classical assumptions leading to a Gaussian noise 

model are violated, and are of considerable practical interest. An impli- 

cit assumption in many cases is that the non-Gaussian densities deviate 

from the nominal Gaussian model in a particular way; most importantly, 

they are heavy-tailed relative to the Gaussian density. An exphcit char- 

acterization for these densities is given in the chapter, and several useful 

non-Gaussian univariate density models are exhibited. The chapter con- 

cludes with a discussion of the importance of recognizing the effects of 

heavy-tailed noise and its impact on the detection problem as seen in 

previous work. 

The appendix also introduces some non-Gaussian physical noise data 

which is used later in the thesis for simulation studies. 

Chapters 

The thrust of Chapter 3 is to consider the design of simple detector 

structures. It is assumed that little is known about the non-Gaussian 

noise environment, and that the goal is to design detectors with very sim- 

ple structures and adaptation algorithms. Two alternative approaches 

are proposed: one is an "open loop" procedure where the observed noise 

density tails are characterized, and this information is used to update 

the detector structure. The other approach is a "closed loop" procedure 

where a very simple detector nonhnearity, a three-sectioned piecewise 

linear fimction, is proposed. An adaptive algorithm is then developed for 

finding the optimum nonlinearity parameters. 

The performance of the two alternative structiires and adaptation 

algorithms is examined under some known non-Gaussian noise density 
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models, as well as in a simulation using physical noise data to drive the 

algorithm. 

Chapter 4 

Chapter 4 also proposes a detector structure for a non-Gaxissian 

noise environment, but assumes a different philosophy. There it is 

observed that stationary noise models may be inappropriate when the 

noise source contains bursts of impulsive noise; i.e., the impulse produc- 

ing event is short and well dehneated in the noise observation sequence. 

Recognizing this fact, a nonstationary model for the noise is proposed, 

and a time varying detector structure is designed that capitahzes upon 

the abihty of a subsidiary detector to recognize the presence of impulsive 

bursts. An algorithm for the subsidiary noise burst detector is 

developed using a nonparametric approach. The performance of the time 

varying detector and of the noise burst detector is examined in detail, 

and the physical noise data again is used to simulate the detection sys- 

tem. • .^'     .       .     . 

Chapter 5 

Answered in Chapter 5 is a question hinted at earlier in Chapter 3: 

what is the "best" way in which to approximate a known locally optimal 

detector structure? The term "best way" is interpreted as meaning the 

procedure yielding an approximation having the greatest efficacy, and a 

theorem is proven showing that the answer turns out to be any procedure 

that minimizes mean square error relative to the density induced meas- 

xare.   Implications of this theorem are discussed and its application is 
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illustrated in two examples. 

Chapter 6 

Throughout the thesis, concern is placed on locally optimal detection 

and the performance measure of efficacy. Chapter 6 changes course and 

examines the finite sample size performance of detectors which approxi- 

mate the Neyman-Pearson structure. WhUe closely related to previous 

work on performance bounding, this new work does not assume that the 

detector test statistic is generated by a likelihood ratio of the exact or 

approximate hjrpothesis densities. Bounds on the error probabilities are 

combined to form a single performance index, and several theorems 

establish its properties. The ratio of two indices is designated as the rela- 

tive bound efficiency, which is shown to have a useful interpretation. The 

finite sample performance of some well known detectors is examined 

using relative bound efficiency. 

Chapter? 

The results presented in the thesis are summarized in Chapter 7, and 

some suggestions for further study are made. 



2 

Signal Detection 
and the Non-Gaussian 

Noise Environment 

Although diverse in purpose and form, radar, sonar, and data com- 

munication systems have at their heart a common important problem: 

detection of a signal in a noisy environment. This problem has received 

considerable attention in both the engineering and statistical hterature, 

with viewpoints ranging from concrete details to abstract theory. 

The purpose of this chapter is not to provide a thorough review of the 

detection problem, or of the noise environment modeling problem. 

Rather, this chapter is intended only to provide a common groimd from 

which some particular problems in detection theory may be viewed; 

therefore mathematical rigor is suppressed for the sake of compactness. 

Complete exposition of the theory is available from the cited references. 

Section 1 provides a short introduction to the detection problem and the 

-6- 
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theorelical foundations upon which the remainder of the thesis will rest. 

Specifically, the Neyman-Pearson and locally optimal detector structures 

are introduced with their associated performance measures. In Section 

2, note is made of a particular type of noise environment which will be of 

concern in this thesis, and some noise models are discussed. The notion 

of a non-Gaussian density is developed to the degree necessary to give it 

a characterization. Finally, Section 3 discusses the impact of non- 

Gaussian noise on the detection problem and summarizes some results 

which are backgroimd and motivation to the approaches in this thesis. 

The Appendix outlines the characteristics of some physical noise data 

which is used later in the thesis to drive various simulations. 

1.  Detector Structures and Performance Measures 

Neyman-^'earsoii Detector Structure 

A binary hypothesis test may be used Lo model the problem of 

detecting a known signal in the presence of noise. Consider the following 

detection problem in discrete time over a signaling interval of length M. 

Let   9s = Ols^ sy\   be   a  known  signal  sequence  with  amphtude 

parameter d > 0, and let n = [n^, . . . ,TIJ^I he an independent identically 

distributed (iid) noise sequence independent of the signal. Section 2 will 

provide justification for the iid restriction on the noise. The detector 

observes x, a data sequence [x^, . . . ,Xfil, and decides between: 

Ho 

H, 

X = n 

X = n+iSs 

Here, without loss of generality, we restrict ourselves to the special case 



of distinguishing between the two signals So= 0 and Sj = s. In the frame- 

work of Neyman-Pearson (NP) hypothesis testing [1-3], the observation x 

and Lhe mulLivariate noise density /^ are used to calculate a likelihood 

ratio Ayvp. This test statistic and a fixed threshold Tf^p are compared to 

arrive at a decision: H^ is chosen when A^rp > Tt^p, and HQ is chosen when 

A./i/p <: T/^p. More precisely, -   i .    . 

_ /fl.(x)     /M(x-es)   >' ^ 

no        ■ 

u 
Since Lhe noise is iid, /^(n) = Ylf {n^) where / is the univariate density 

T = l 

of the noise. For the sake of brevity, in the remainder of this thesis we 

adopt the -convention that /() is the univariate noise density unless 

explicitly stated othenmse. Because the logarithm function is monotonic 

a test equivalent to (2.1) is 

Hi 

Xi^P=]nAi^P   ^it^p=lnr,vp (2.2) 

Ho 

where 

M u    f(x—es) 
^NP = S 9^PM) = E ^      .\fy (2.3) 

The function gNP;i is memoryless, but time varying because the signal 

varies with time. Consideration of the time varyiag signal case adds noth- 

ing beyond unnecessary complication to the essence of this discussion. 

Therefore, we will sacrifice completeness for clarity, restrict attention to 

the constant signal S|=s  for i = 1 M,  and replace the sequence 
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l9MP;il with a memoryless nonlinearity, g>^p.  Figure 2.1 presents a block 

diagram of the NP detector structure generated by (2.2) and (2.3). 

Neyman-Pearson Detector Performance 

The performeince of a Neyman-Pearson detector is usually measured 

in terms of its faZse alarm rate a and its power of detection /S. These 

quantities are defined as 

a = Prob(say//i j//Q true) 

/S = Prob(say Hi I Hi true) 

These probabilities are determined by the distribution of A^vp under HQ 

and Hj, respectively, and the value of the threshold t^p.  Thus, 

oe 

« = fPH.WdX (2.4) 

/3 = fpH.WdX (2.5) 

The Neyman-Pearson detector is optimal [1-3] in the sense that, for 

any given false alarm rate aQ, the NP test achieves the maximum proba- 

bility of detection ^ in the set of aH possible tests with a<,aQ. 

The performance measures a and /3 are not restricted to the charac- 

terization of NP tests only. The performance of any threshold detection 

scheme may be parameterized via (2.4) and (2.5). In principle, if the 

noise density / is known, and a known nonlinearity g processes the 

observations, then pu^ and Pfj^ may be computed via transformation of 

the hypothesis densities in the case where x is a single observation and 
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Hi 

Hr 

Rg. 2.1. Block diagram of the Neyman-Pearson optimal 
detector structure for detection of a knovm constant signal 
in additive iid noise. 
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M = l. For rmiltiple observations, M>1, and JD^^ and JD^^ may be com- 

puted via //-fold convolutions of the transformed hypothesis densities, as 

is well known. See, for example, references [3 pp. 215-219] and [4]. In 

other instances, carrying out this procedure may be a difficult or intract- 

able problem, especially when M is large. One must then resort to calcu- 

lating a and /3 via Monte Carlo simulations [5,6], series expansions [3, pp. 

219-226] and [7], numerical approximation methods [8,9,49], perfor- 

mance bounding [2, pp. 116-133] and [10], or the Central Limit Theorem 

[11 pp. 308-319] and [4]. 

The measures a and jS are often inconvenient to compute, even 

though they give a complete characterization of detector performance. 

Small changes in the detector nonlinearity or noise density may change a 

tractable computation into an intractable problem. Further, with the 

exception of Central Limit Theorem based techniques, most methods give 

little qualitative or quantitative insight into understanding how changes 

in the threshold or sample size affect performance. All of the techniques 

offer little illumination of performance sensitivity as a function of 

changes in the nonlinearity shape. 

Locally Optimal Detector Structure 

In cases where the signal-to-noise ratio is very small, ©«0, and the 

test statistic may be calculated via the locally optimal (LO) detector 

[12,13]. The test becomes 
■ i- ■ 

Hi 

Ho =  E 9LoA''i)   i ho (2.6) 
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where 

de       /(xi) 
9 = 0 /(Xi) 

(2.7) 

Simply put, gio-^ is the coefficient of 6 in the Taylor series expansion of 

9NP;i about 0 = 0. Despite the fact that s may be time varying, the 

transformation operating on z^ is not a function of i. Instead, (2.6) and 

(2.7) imply that the output of a single memoryless nonlinearity gio 

should be correlated with the signal. Once again, to simplify the discus- 

sion, we restrict the signal to be constant, rescale the test statistic by s, 

and limit our efforts to consideration of gio - -J'/ f . if y^^ is substi- 

tuted for gup, then Figure 2.1 also represents a block diagram of the LO 

detector structure generated by (2.6) and (2.7). 

Locally Optimal Detector Performance 

Rather than derive rigorously the performance measures of efficacy 

and asymptotic relative efficiency for locally optimal detectors, we briefly 

summarize some of the important points of these useful measures. A 

thorough treatment of this subject is available in [3,12-14]. 

The Neyman-Pearson detector is optimal in the sense that for given 

a, it maximizes jS when the signal amplitude 6 is nonzero. The locally 

optimal detector, on the other hand, is optimal in the sense that, for 

given a, it maximizes   T;^/5(e)        .   Zero signal strength is obviously a 

limiting worst case. A useful way of comparing two detectors in this lim- 

iting case is to compute their ARE, or asymptotic relative efficiency, 

where, 



ARE„  ,   =11X11^"'^'!; ^^^      (2.8) 

and M(a,p,6) is interpreted as the number of data observations neces- 

sary to provide a (a./S) performance level for signal level 6. As seen in 

(2.8), asjrmptotic relative efficiency is the ratio of the number of samples 

necesseiry in each of two alternative detectors to maintsdn the same pro- 

babilities of false alarm and detection as the signal-to-noise ratio 

approaches zero. Regularity conditions [13] ensure that as 6 -*0, both Afj 

and M2^°°; thus, ARE is a small signal, large sample size measure of per- 

formance. 

A simple expression is available to compute ARE, and is defined as 

•  -    ■     ARE,       = ^^ (2.9) 

where r\f{g) is the efficacy of detector g in noise density / . It may be 

shown [3, p. 228; 13], for iid noise and a fixed detector nonhnearity g, 

that 

■  ,     ; ^   ■ r 12 
■ ■ " DO 

fg'{x)fix)dx . 

Vfig) = (2.10) 

fg^[x)f{x)dx 

where g has zero mean under /.  This definition of efficacy is subject to 

the following regularity conditions in a neighborhood of 6 = 0: 

(i)    ; is as3rmptotically normal with zero mean and unity 
var^^Aj 

variance.   Here, Xg  is the test statistic of a detector using 
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memoryless nonlinearity g. 

(ii) e = kM~^,-where k is a nonzero cousiani. 

The LO detector maximizes efficacy [13]; as a result ARE iS 1 for 

all detectors g satisfying the regularity conditions. Note that (2.10) is a 

ratio of two expectations, and is therefore usually more convenient to 

compute them an if-fold convolution of a probability density. 

A criticism of ARE is that it is a performance measure based upon a 

limiting case. While ARE measures asymptotic performance, it may not 

give a good indication of the relative merits of two detectors in a small 

sample, nonzero signal environment. Some recent work [15,16,50] has 

concentrated on examining the convergence of relative efficiency to ARE. 

Further, because efficacy is only a ratio of two expectations, it may be 

argued that two detectors with identical efficacies need not have similar 

small sample performance. 

Despite these criticisms, ARE, efficacy, and the LO detector shall 

receive the most attention in this thesis for several reasons. First, 

efficacy is a convenient, accepted, and well studied measure of perfor- 

mance. Second, smaU signal detection is an important problem, and the 

zero (or infinitesimal) signal is the limiting bound. The NP and LO detec- 

tors are as3TTiptotically equivalent in the Umiting case, even though LO 

detection is not optimal for a nonzero signal [13,51]. Third, for very small 

signals there is a close correspondence between the forms of the NP and 

LO detectors, which suggests that by paying attention to the LO detection 
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problem, it should be possible to gain insight into the issue of NP detec- 

tor design. The relationship between the nonlinearities for the two types 

of detectors is 

sgioix) = ^lnsrA'p(z) (2.11) 
9 = 0 

and, from [17] 

gNp{x)=   f gLoix)dx (2.12) 
x-9s 

" -      .  - ■ "     ' . "I 

The latter equation implies that if 0 is small, and if g^o is approximately 

constant over the range of integration, then S'ATP ^ ^^gio- 

2. The Non-Gaussian Noise Environment 

General Assumptions | 

Before discussing some noise models of interest later in the thesis, it 

is necessary to state some of the fundamental assumptions about the 

noise environment and the models which will be used. First, as stated in 

the previous section, we are interested in the discrete time environment. 

Second, we assume that the noise samples are independent and identi- 

cally distributed. This is a very strong assumption with extensive and 

rigorous requirements on the noise behavior, but it allows simplification 

of the analysis. For example, the difficult problem of modeling depen- 

dent non-Gaussian noise is eradicated by the independence assiimption. 

Fvirther, a noise with a nonstationary distribution imphes that time veiry- 

Ing detector structures are necessary, which, in general, may be quite 

difficult to specify and implement. 
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What is of more interest than strict mathematical fulfillment of the 

iid requirement is that the assumption be approximately true for the 

physical case of interest. Even though noise is usually correlated due to 

the finite bandwidth of a channel, adjacent samples may be approxi- 

mately independent, provided the sampling rate is low enough. The noise 

environment is always nonstationary. as no real source has unchanging 

statistics for the infinite past and the infinite future. Over finite inter- 

vals, however, the statistics may appear stationary, or the noise statistics 

may be changing slowly enough that they appear approximately station- 

ary and may be tracked by an adaptive system. 

To provide a starting point, then, it is not unreasonable to assume iid 

noise. This assumption is a divergence from the reality of physical noise 

environments, but for that price clarity and mathematical simpUcity are 

purchased. An implication of this assiunption is that the noise environ- 

ment is described adequately by a univariate density. 

There is an abundance of information on the measured statistics of 

physical noise sources, a full report on which is beyond the intended 

scope of this chapter. Instead, as the emphasis is on understanding the 

problem of finding near-optimal detectors for non-Gaussian noise, the fol- 

lowing subsections present some common noise models which will be 

used in the following chapters. For convenience, the noise densities wiR 

be assumed here to be zero mean and unit variance. 

Gaussian Noise Model 

A Gaiissian noise background is the classical assumption in the 

design and analysis of detection systems.   Here, the univariate noise 
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density is the well known expression ' 

which leads to the LO nonlinearity ; 

9Lo{^)=x (2.14) 

For convenience, (2.14) will be referred to as the linear detector, Id. 

The Gaussian ass-umption has attractive features in that it is 

mathematically tractable and the optimal detector structure is a linear 

processor. Strong justification for this noise model is available due to 

Central Limit Theorem (CLT) argimients, for at least two reasons: first, 

the noise source often may be considered as a shot noise process 

comprising a very large number of small effects "with additive cumulative 

effect; e.g., thermal noise. Second, the finite bandwidth of many chan- 

nels "averages" together the noise process, tending to make the noise at 

the channel output Gaussian. In the limit, as the channel bandwidth 

approaches zero, it may be shown [18 Thm. 2.4] that the noise output 

process of a narrowband channel converges in distribution to a Gaussian 

process. ; 

Rebuttal of the Gaussian Model 

Despite these arguments, measurements of different noise environ- 

ments have led to the conclusion that the true noise distribution often is 

described better by a heavier tailed pdf; e.g. [19-22, 25-28,30,35,36,48]. 

Also, see the discussion and bibhographies of [17,23,32,33]. This type of 

noise may be ascribed to a nominal Gaussian environment with a heavy 
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tailed impulsive noise contaminant. Another consideration is that a real 

noise comprises a finite sum of random events; in a shot process there 

can only be a finite number of contributors, and any real channel has 

nonzero bandwidth. The result is that CLT convergence to the Gaussian 

pdf is not complete. Instead, the observed noise pdf is most nearly Gaus- 

sian near the mean, with the tails converging to the Gaussian pdf only in 

the limiting case. 

For example [24 p. 1031, if A'^ = "T^S ^z- and the 7, are iid random 

variables with continuous distribution function, E7=0, Ey^=l, and 

Er^=0, then ^{xjj^)^ Fx^{xm) for ix^ | <v^Tirm where * is the Gaussian 

distribution function. Convergence of the sum distribution to the Gaus- 

sian is from the mean outwards, and the size of the Gaussian-like region 

is proportional to V InTn . '    • 

Contained in this discussion is a partially constructive, but loose, 

characterization of non-GaussiaTi noise densities. Obviously, ail families 

of densities save for one are non-Gaussian. However, in this thesis only 

particular types of deviations from the nominal Gaussian family are of 

concern. The term non-Gaussian noise density wiU refer to unimodal, 

symmetric densities which have a Gaussian-like shape in a region cen- 

tered about the mode. These densities also possess tails that are heavier 

than the Gaussian, for they converge to zero asymptotically at a rate less 

than an equal variance Gaussian density. This type of density is often 

referred to as being heavy-tailed or Long-tailed. 
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Middleton's Class A and B Density Models 

Noise density models may be classified into one of two categories: 

physically motivated models and empirical models. The first group of 

models take Into consideration physical aspects of the noise situation and 

attempt to describe the density from this physical accounting. The 

second group of models use convenient distributions which seem to agree 

well with observed characteristics of the noise. 

Middleton's Class A and Class B models fall into the category of physi- 

cally motivated models. Without exposition of the details foimd in 

[20,25-28], both models intend to characterize situations where the noise 

is nominally Gaussian with an additive impulsive noise component. The 

Class A model assumes that these spikes are of lesser bandwidth than the 

receiver, and as such, do not generate a transient response of significant 

duration relative to the spike duration. The Class B model assumes the 

reverse, and the spikes produce relatively long transients. 

The Class B model comprises an mfinite series of confluent hyper- 

geometric functions, each of which is generally defined by an infinite 

series [29 p. 504]. Because of its imwieldiness, we wlU not consider it 

further. 

The Class A Model comprises an infinite series of Gaussian density- 

like terms, and may be written as 

fAi^)=   S^-^S^l  (2.15) 
m=0 '"■• 

The parameter A is called the overlap index and is the product of the 

duration of individual events in the impulsive component and the mean 
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rate of the shot process generating the impulsive component events. The 

other parameter is defined as 

2 _ m/A+r 
^m = i+r 

where F is a measure of the ratio of the power in the impulsive com- 

ponent compared to the power in the Gaussian background. Both param- 

eters are directly related to physical measurements of the noise environ- 

ment [30]. 

Figures 2.2 - 2.5 compare some representative unit variance Class A 

densities and the Gaussian density. The Class A densities have Gaussian- 

like behavior near x=0, as evidenced by their parabolic shape on the log- 

scaled plots. For large i, however, they have a much heavier tail 

behavior than the Gaussian density. 

The LO nonhnearity associated with /^ may be written as 

9Ai^) = X 

oa 

771=0 

^77.,-xV2a^    ' 

a^m^. 

aa 

s 
771=0 

> 

^-,-^/2a|. 

ml 

(2.16) 

Figures 2.6 and 2.7 compare the LO nonlinearities for a Gaussian density 

and the Class A densities of the previous figures. While g^ has nearly 

linear behavior for small \x\, the effect of large observations is greatly 

reduced with respect to a linear processor. 

The Gaussian-Gaussian c-mixture Family 

Another   useful   interesting   class   of   noise   distributions   is   the 

Gaussian-Gaussian e-mixture family. It may be. written as 
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1.5 

fAi^)      1 

0 

Gaussian 

-4 

r' = .04 

Fig. 2.2.  Representative Middleton Class A densities /^ with 
i4 = .05 compared to Gaussian density. 

logio/^(^) 

Fig. 2.3.   Logarithm of Middleton Class A densities f j^ with 
>1 = .05 compared to log of Gaussian density. 
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fAi^) 

.8 

0 
-4 

Gaussian 

Rg. 2.4.  Representative Middleton Class A densities /^ with 
P = .4 compared to Gaussian density. 

^ = .25 

logio/^(^) 

Fig. 2.5.   Logarithm of Middleton Class A densities /^ with 
P = .4 compared to log of Gaussian density. 
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\     /-r = .04  j'^'^ 

'^^                                                                                    \ 1 

1 -4 -2 0 2 4 6 

X 

Fig. 2.6. Locally optimal nonlinearity g^ for Middleton Class 
A densities with ^ = .05 compared to unity slope linear 
detector Id. 

9A(^) 

Fig. 2.7. Locally optimal nonlinearity gr^ for Middleton Class 
A densities with F' = .4 compared to unity slope linear detec- 
tor Ld. 
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f,{x) = {!-€)/oix)+cfy{x) (2.17) 

where /Q and / j are both zero mean Gaussian densities, with 0< e < 1 typ- 

ically assuming a small value and af > OQ. 

The LO nonlinearity associated with this density is 

g^{x) = X 
^M-/o(x) + -V/i(^) 

^0^ <yx 
(l-e)/o(x)+e/i(x) 

(2.18) 

Figures. 2.8 - 2.11 compare some representative Gaussian-Gaussian t- 

mixture densities and the Gaussian density. Figures 2.12 and 2.13 com- 

pare the LO nonlinearities g^. to a linear processor. 

The density /^ is attractive in that it is a relatively simple empirical 

model, and has been proposed for describing heavy tailed non-Gaussian 

noise [31,32]. Recently [27,33], it was shown that it also may be con- 

sidered as a tractable simplification of Middleton's Class A Model arising 

by truncating all terms of f^ for m > 1. The parameters of /^ have a sim- 

ple relationship to the parameters of /^, given here as 

e = 
1+4 

(2.19) 

^ = 1 + ^ (2.20) 

Therefore, f ^ may be considered a quasi-physically based model. Figure 

2.14 compares the LO nonlinearity for /^ and the corresponding LO non- 

linearity for the approximating density/g. 

In addition to a Gaussian-Gaussian mixture, others have considered 
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1.5 ■ 

/e(^) 1 

.5 - 

0 
-6 

]^^af/a§ = 500 

/ 
/ 

Gaussian   yy   - 1w   , 
-4 0 

X 

Fig. 2.8.  Representative Gaussian-Gaussian c-mixture densi- 
ties/j. with £= .05 comipared to Gaussian density. 

logio/J^) 

a^/ a^ = 500 

Fig. 2.9. Logarithm of Gaussian-Gaussian e-mixture densities 
with c = .05 compared to log of Gaussian density. 
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fcM 

0 

Gaussian 

Pig. 2.10.   Representative Gaussian-Gaussian c-mixture den- 
sities with erf/ aQ = 100 compared to Gaussian density. 

Ogl0/e(^)   

Fig. 2.11.   Logarithm of Gaussian-Gaussian c-mixture densi- 
ties with erf/ OQ = 100 compared to log of Gaussian density. 
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9c{x)       0 

Fig. 2.12. Locally optimal nonlinearily y^ for Gaussian- 
Gaussian c-mixture densities with £ = .05 compared to unity 
slope linear detector Id. 

9ei^) 

Fig. 2.13. Locally optimal nonlinearity g^ for Gaussian- 
Gaussian c-mixtiire densities with af/ UQ = 100 compared to 
unity slope linear detector Ld. 
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9{x)     0 — 

Rg. 2.14. Locally optimal nonlinearity gr^ for Mid die ton Class 
A density with ^4 = .1111 and r= .0909 compared to locally 
optimal nonlinearity g^ for Gaussian-Gaussian ^-mixture den- 
sity with af/ CQ = 100 and c = . 10. These values satisfy Eqns. 
(2.19) and (2.20). 
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difTerent contaminants of a nominal Gaussian background, including 

Laplace contamination [23]. This mixture density also figures impor- 

tantly in Huber's theory of robustness [34], where the contaminant den- 

sity is merely assumed Lo have log-convex shape. I 

Laplace Density 

This density is also knovm as the double sided exponential density, 

and may be written as 

/,(x)=:^e-^l-i (2.20) 

The LO detector associated with the Laplace density is 

gi{x) = sgn(i) "      (2.22) 

We will refer to (2.22) as the sign detector, sd The Laplace density is a 

convenient model, for it has simple form. Measurements on ocean acous- 

tic data suggest that the Laplace density may be a good model for certain 

underwater environments [35,36]. While the density clearly has tails 

heavier than the Gaussian, it also has a non-Gaussian-Uke mode. Instead 

of the smooth, infinitely differentiable mode of the Gaussian density, the 

Laplace density has a cusp. Figure 2.15 compares the two densities for 

equal variances. . I 

Generalized Gaussian Density 

This family of densities is a generalization of the Gaussian density 

and may be written as 

-^'^^    2r(i/c) ^ ^^-^^ 
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f{x) 

Rg. 2.15.  The Laplace density fi and Gaussian density 
compared with zero means and ;init variances. 
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where the parameter 7 is defined as 

7 = 
r(3/c) 
[r(i/c) 

and r is the gamma function, given by 

r(x) = fr'-h-^dr :i 

The LO noniinearity associated with/c is 

^c = C7^1ij = -'sgn(i) -(2.24) 

This family of densities includes the Gaussian density for c =2 and the 

Laplace density for c = 1. It has received attention in previous work, both 

as a convenient heavy-tailed density for theoretical analyses [17,37-39], 

as well as a reasonable model for observed noise densities [21]. This fam- 

ily has also been used to describe lighter tailed densities than the Gaus- 

sian [36], with values of c w3. As c -*°o, the density tends toward a uni- 

form distribution. 

Figure 2.16 compares some members of the generalized Gaussian 

density family on a linear scale, and in Fig. 2.17 they are compared on a 

logarithmic scede. Some samples of the LO noniinearity may be found in 

Fig. 2.18. 

Johnson Su Family — Transformed Gaussian Density 

Another family of heavy tailed pdf's is the Johnson 5^ family. It has 

been proposed [40] that certain heavy tailed non-Gaussian densities may 

be thought of as arising from nonlinear distortions of the Gaussian den- 

sity.   For example, if 7 is distributed as a zero mean, unit variance 
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fcM 

Fig. 2.16.  Representative generalized Gaussian densities /^ 
for varioiis values of parameter c . 

0 

iogio/c(^)     -2 

Fig. 2.17. Logarithm of generalized Gaussian densities f^ 
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fl'c(^)       0 

Fig. 2.18.   Locally optimum nonlinearity g^. for generalized 
Gaussian densities. . 
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Gaussian random variable, and a new random variable is defined as 

X = usmh{Y/6) (2.25) 

then the density of X has unit variance, and belongs to the Johnson S^^ 

family, given by 

2       1-J^ 
/6(x) = 

UVSTT 
+ 1 

u" 
g-(<5/2)sinh-i(x/u)2 

(2.26) 

with 

u — f      2a2       ]^ 
(2.27) 

The parameter 8 controls the tail heaviness. As (5^°°, the pdf tails 

become progressively lighter, and approach Gaussian tails in the limit. 

Like the generahzed Gaussian family, a single parameter indexes the 

range of taU behaviors. 

The LO nonllnearity associated with /^ may be written as 

-1 

36{=^) - 
u- 

1+- 
u' 

1+' 
\^^z 

u" 
—sinh ^ — (2.28) 

Some representative members of the Johnson S^ family are shown in 

Fig. 2.19 on a linear scale, and in Fig. 2.20 on a logarithmic scale. The 

corresponding LO nonlinearities g^ are given in Figure 2.21. 

3. Detectors and the Non-Gaiissiam. Noise Environineiit 

Up to this point, basic detector structures have been reviewed, and 

some simple noise density models have been presented. We now consider 

some effects of a non-Gaussian noise environment upon the detection 
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fsi^) 

Pig. 2.19. Representative Johnson S^ densities f ^ compared 
to the Gaussian density. 

0 

logio/a(^)   -2 

-4 

Pig. 2.20 Logarithm of Johnson S^ densities f $ compared to 
log of Gaussian density. 
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9sM 

Fig. 2.21.  Locally optimum nonlinearity g^ for Johsnson S^ 
densities compared to unity slope linear detector Ld. 
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problem. 

If two noise processes with equal variances are compared, one Gaus- 

sian and the other non-Gaussian in the sense previoiosly discussed, it will 

become apparent that the non-Gaussian noise has many more large 

valued observations, or a larger degree of scatter. In the estimation or 

regression contexts, one might say that the non-Gaussian noise process 

observations contain a larger number of oxdLiers. 

Relation between Non-Gaussian Estimation and Detection 

Work in robust estimation has long suggested that, in heavy tailed 

noise, a robust estimator of the mean should reduce the influence of 

very large data observations while leaving observations near the mean 

relatively unchanged [41]. Any estimator uses a finite number of obser- 

vations, and an excessive number of outliers unduly affects the estimate, 

generally increasing its variance with respect to a robust estimator. Note 

that "excessive", as used here, is a quahtative term, with a meaning 

dependent upon the particular estimator. Estimators based upon Gaus- 

sian noise statistics typically have little protection against outliers, for 

the simple reason that the effect of large observations is undiminished in 

any way; even the addition of a single observation with very large magni- 

tude relative to the rest of the observations may significantly distort the 

outcome. 

The effect of an outUer on an estimator can be measured through the 

calculation of a sensitivity curve. Andrews, et al. [31], present 

numerous examples of the sensitivity curves for some common estima- 

tors.  In estimation of the mean, it turns out that the optimal estimator 
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has a sensitivity curve given by gosix) = - j-ln/ (x).  This expression is 

identical to (2.7), the formula for gio- Considering the duality between 

estimation and detection, this is not a surprising result. Further, the 

Cramer-Rao inequahty [l p. 127] evaluates the efficiency of an estimator 

g via an expression identical to the efficacy of detector nonlinearity g. 

Since the test statistic in a detector also uses only a finite number of 

observations, the detector nonlinearity must reduce the impact of 

outliers. NP and LO detector nonlinearities related to non-Gaussian 

heavy tailed densities are typically composed of a linear region sur- 

rounded by tails which compress, limit, or even blank large data observa- 

tions. The previous examples of LO nonlinearities for some common 

heavy-tailed noise models exhibit this type of behavior. 

Non-Gaussian Density Characterization 

Given previously, and repeated here, is the loose definition of the 

non-Gaussian noise densities which will be of interest in the following 

chapters: the noise pdf is unimodal, symmetric about its mean placed at 

the origin, and has nonzero support over the entire real line. Near the 

mean, the density has a Gaussian-Uke shape, and the tails asymptotically 

decrease to zero, but at a slower rate than the Gaussian; i.e., 

lim e"'^/(z)=<» where  a^ is  the  noise variance.   Note that both 

Middleton's Class A density and the Gaussian-Gaussian e-mixture satisfy 

this definition, despite being the sums of various Gaussian densities. 

The following characteristics loosely specify the LO detector non- 

linearities related to the desired types of non-Gaussian densities: 
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(a) continuous, with continuous low-order derivatives 

(6) approximately linear at the origin 

(c) odd sjTnmetric about the origin 

(d) strictly positive to the right of the origin 

(e) monotone in the tail regions 

Note that, in light of (2.7), specification of the LO nonlinearity behavior is 

equivalent to specifying the form of the associated density. 

Hotivatioii for Nearly Optimad Detection 

ImpliciL in both the NP and LO detection methods is a requirement 

that the noise pdf must be known exactly. This knowledge is needed in 

order to construct g^p or QIQ. In general, the noise statistics are not 

known with precision and the design of the LO or NP detector is not 

straightforward. An additional consideration is that often the noise 

environment is nonstationary, sind an adaptive structure is necessary. 

Alternative detection strategies are available, and among these are 

(1) detectors which are robust with respect to deviations from a nominal 

noise environment [34,37,42,43]; (2) nonparametric detectors which use 

only very general information about the underlying noise distribution 

[44,45]; and (3) fixed suboptimal detectors with acceptable performance 

[27,46-48]. There are some problems with each of the three strategies: 

first, it is not clear in the design of minimax robust detectors what den- 

sity should be chosen as the nominal environment and what class of den- 

sities should be chosen as unfavorable alternatives. Also, solution of the 

problem may be quite difficult.   Second, while nonparametric methods 
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are usually simple and afford some degree of protection against heavy 

tailed noises, they may not be as efficient as possible. Third, a fixed 

suboptimal detector may be simple to implement, but may suffer severe 

performance degradation should the noise environment change from 

nominal conditions. 

With these ideas about the non-Gaussian noise environment in mind, 

the following chapters explore methods related to nearly optimal, yet 

simple, detector nonlinearities. The previous disciission should make 

clear the necessity for simple methods which can adapt the detector 

structure to unknown, and possibly changing, noise environments. 
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Appendix 2.1 

Throughout the thesis, reference will be made to some Arctic under- 

ice noise data. This data is the digitized output of a hydrophone 

suspended beneath an ocean ice surface. Details of the data collection 

and analysis of the data is provided by Dwyer [22]. ' 

The data, covering a time span of approximately 10 minutes, consists 

of 6006 records of 1024 data points, sampled at a 10 kHz rate. As Dwyer 

points out, the data taken as a whole appears to be nonstationary and 

non-Gaussian: upon further examination, however, it appears that only 

certain of the noise records deviate significantly from a nominal Gaussian 

distribution.   The following argument is raised: 

Define the estimated mean of data record -fc as 

1024 

,:, 1024 ifi""'' 

where rtj. ^ is the i^ sample of record h.  The r^'^ central moment of data 

record k may be computed for r > 1 as 

I       1024 

^^^^ ~ T024~? ^"''^''"^^^^'^^      ' 

Using the second, third and fourth central moments, the ske^u^^ess /Sj and 
t, 

the kurtosis /Sg of a sample distribution may be computed as 

a   -    ^ 
PI- ~z7T 

M2 

^2=  — 

Then for each record fc, the sample mean yUj,  sample variance a^, sample 
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skewness /?j, and sample kurtosis /Sg may be plotted as a function of k. 

Examination of the plots, and of the kurtosis plot in particular, reveals 

that a proportion of the sample records deviate from nominal values. The 

nominal kurtosis is approximately 3, the exact value of kurtosis for the 

Gaussian density. Occasionally, values /S2»3 are observed. It is these 

records which are of interest in the thesis, for a high kurtosis value for a 

unimodal density indicates a heavy-tailed density. For example, the kiu"- 

tosis of the Laplace density is 6. The sample cdf of the data indicates 

that the density is unimodal; therefore the conclusion is that the records 

with a high seimple kurtosis have a heavy tailed non-Gaussian density. 

The data from records with kurtosis exceeding 4 was collected for 

use in simulation in the following chapters. Of the 6006 records, 58 met 

the selection criterion. Figure A2.1 presents a list, indexed by BLOCK, of 

their record numbers (RECORD), sample means (MEAN), variances (VARI- 

ANCE), skewness (BETAl) and kurtosis (BETA2). Figs. A2.2 - A2.5 present 

this data in graphical form. Data samples from a "typical" high kurtosis 

block is presented in Fig. A2.6. Note that the deviation from a nominal 

Gaussian density is apparently confined to two regions where the data has 

a much greater spread than the majority of data in the block. 
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dLOCK BACCED ilkU VARIANCE BETA1 33TA2 

1 41 
2 48 

3 57 
k 68 
5 69 
6 f•^<^ 

7 708 

8 72«l 
9 726 

10 73 0 
11 732 
12 79 1 
13 86 7 
14 1261 
15 1349 

16 1362 
17 1363 
18 1377 

19 1380 
JJ 1384 

21 1388 

22 1474 
23 1U64 

2tt 1437 
25 1E44 

26 1678 
27 1888 
28 1 916 
29 1918 
30 1924 
31 1938 

32 1943 
33 1946 
3u 1962 
35 2 041 
36 2042 
37 2066 
38 2107 
39 2114 
40 2132 
41 2177 
42 2220 
43 2226 
44 222S 
45 2230 
U6 2233 
U7 2236 
48 2238 
49 2239 
50 22U0 
51 2242 
52 2246 
53 2247 
54 2248 
55 2249 
56 2250 
57 2254 
58 2261 

0.1630 
0.1553 
0.1629 
0. 1698 
0.1566 
0. 1ef4 
0.1657 
C.1649 

0. 1630 
0.1536 
0. 1641 
0. 1684 
0.1708 
C.1678 
0.1622 
0. 1549 
0 .16 94 
0.1606 
0. 1703 
0.1048 

0. 1692 
0.1701 
C.1664 

0. 1583 
0.1648 
0. 16-'6 
0.1671 
0. 1695 
0.1730 
0.1644 
0.1554 

0. 1532 
C.1698 
C. 1600 
0.1596 
0.1717 

0.1709 
0.1671 
0.1636 
0.1697 
0.1659 

0. 1422 
0.1672 
0.1603 
0. 1737 
0.1643 

0.1592 
0. 1672 
0.1651 
0.1640 
0.17 28 
0.1645 
0.1672 
0.1133 
0.1690 
0. 1690 
0.1642 
0. 1713 

0, 
0. 
0. 
0. 

0.2243 
0.1235 
0.1742 
0.1955 
0.2046 
0.2026 
0. 19 37 
0.2673 

0.2570 
0.3806 
0.3958 
0. 1871 

0.2621 
0.2210 
0,1303 

0.0918 
0.0629 
0.1097 

0.0980 

0.0968 

0.0656 
0.0929 
0.064 7 

0.1700 
,109b 
.nai 
1056 

.0594 
0.0842 
0.0675 
0.0962 

0.0565 
0.0630 
0.0656 
0. 1984 

0.2063 
0.1523 
0.1113 
0.0939 

0.1412 
0.1000 
0.2481 
0.1857 
0.1425 
0.1489 
0. 1043 
0.1363 
0.1460 
0.1770 
0.1321 
0.1401 
0.2141 
0.1828 
0.3774 
0.1 3 84 
0.1677 
0.1657 

0.0788 

-0.6789 
0.0230 

-0.28 64 
0.0075 
0.2204 

-0.18 19 
-0.2308 
-0.33 40 

-0.3672 
-0.8361 
-0.6372 
-0.3765 
-0.4333 
-0.6956 

0.2202 
-3.1228 
0. 1948 

-0.0032 
0.0397 

-0.2784 

-0.1791 
0.2068 
0.2371 

0.5149 
0.0005 

-0.0360 
0.20 52 

-0.1035 
-0.C928 
-0. 26 26 
-0.55 38 
0.5076 

-0.6095 
0.1034 

-0.8858 
0.6166 

-1.56% 
0.0973 
0.3051 
0.2270 

-1.0546 
-2.723 0 
-0.2045 
0.1391 

0.2172 
0. 1070 

-1.3927 
0. 3935 
0. 30 23 

-0.1224 
0.2159 

1.0191 
0.02 07 

■2.9252 
0.1168 

0. 1859 
0. 1431 

-0.2939 

17.6774 
5.7163 
5.5454 
4.2291 
4.2246 
4.3639 
4.1753 
4. 1981 
4.1651 
4.0926 
4.1245 
4.0627 
4. 1756 

12.4215 
4.0059 

28.1921 
5.0415 
9.8037 

4.2458 
4.7318 

5.6106 

4.1320 
4.0226 

24.1614 

5.8730 
5.6124 
7. 7451 
4.3778 
4.3102 
4.1132 

7.1052 

5.5115 

5.1463 
5.1285 

,2526 
,4304 

.5222 
2482 

4.1472 
5.0950 

13.4157 

22.9806 
7.0628 

12.5198 
6.1677 
4. 1405 

14.5487 
5.73 68 

11. 6600 
6.1600 
5.0946 

10.2487 
11.3074 
18. 50 53 
^.0615 
4. 8567 
e. 1808 
4.0476 

11. 

29. 
5. 

Fig. A2.1. Table of data record sample moments for records 
with kurtosls exceeding 4. BLOCK is the index of the selected 
records. RECORD indexes the 6006 data records of 1024 sam- 
ples. 
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Sample 
mean 

10 20 30 40 

Block    no. 
50 60 

Fig. A2.2.  Sample mean /j.^ for the data records with kurtosis 
exceeding 4. Data records indexed by BLOCK. 

.3 - 

Sample 
variance -2 

10 20 30 40 

Block    no. 
50 60 

Fig. A2.3.  Sample variance o^ for the data records with kur- 
tosis exceeding 4. Data records indexed by BLOCK. 
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/?1 

Sample 

skewness 

0 10 20 30 40 

Block    no. 

50 60 

Fig. A2.4 Sample skewness ^^ for the data records with kur- 
tosis exceeding 4. Data records indexed by BLOCK. 

30 

^2 20 

Sample 
kurtosis 

10 

0 10 20 30 40 

Block    no. 
50 60 

Pig. A2.5.  Sample Icurtosis /S2 for ^he data records with kur- 
tosis exceeding 4. Data records indexed by BLOCK. 
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S ample 
value 

256 512 

Sample no. 

768 1024 

Fig. A2.6. Sample data from data record 2220. The sample 
moments are fj,^ = .1422; CT2 = .2481; /SI =-2.723; and 
j82 = 22.98. REC0RD=2220. and BL0CK=42. 
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Adaptive Optimization of 
Sub optimal Nonline arities 

This chapter investigates the feasibility of two simple alternatives to 

locally optimal detector nonlinearities. Provided some simple measure- 

ments on the noise density are available, it is demonstrated that it is pos- 

sible to construct nonlinearities which produce near-optimal levels of 

performance in several specific noise environments. Section 1 presents 

an overview of some practical issues which motivate the necessity for 

near-optimal, yet uncomplicated, detector nonlinearities. 

The basic philosophy forwarded is that nonlinearities designed for 

practical detectors should have an uncomphcated structure that may be 

easily adapted to changing noise situations. Two main issues are 

addressed: the first is development of algorithms to determine the gross 

shape (input-output relationship) of the nonlinearity. Of primary impor- 

tance is the tail behavior of the nonlinearity, for it will determine the 

degree to which impulsively contaminated observations can influence the 

-51- ' 
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detector test statistic. Sections 2 and 3 discuss two alternatives to 

optimal nonlinearities. The second issue resolved is the matter of scaling 

the input to the nonlinearity. This problem is essentially equivalent to 

determining the noise variance and scaling the input. However, the usual 

estimators of variance depending upon the squares of the noise observa- 

tions are inefficient when the noise has a heavy tailed density. An alter- 

native scahng niethod is developed near the ends of Sections 2 and 3. 

Sections 4 and 5 provide a numerical comparison of the suboptimal 

nonlinearities for cases where the true noise density is known. Also, the 

algorithms are simulated using observed noise data. Sectioa 6 provides a 

review of the techniques and results presented in this chapter. 

1. Introduction 

In principle, the design of a Neyman-Pearson (NP) or locally optimal 

(LO) detector nonlinearity for a signal in additive white noise is a simple 

matter when the noise statistics are known exactly. There are, unfor- 

tunately, some practical problems related to the implementation of a 

nonhnearity. The most significant problem is simply that the true noise 

statistics are usually unknown, or changing in time. While well known 

techniques exist for obtaining the noise density [1-3], they often require a 

fairly large observation period to achieve an acceptably smooth estimate. 

For example, Wilson and Powell [4] present kernel function type density 

estimates of several observed noises, The estimates are noisy and rough 

looking when the logarithm of the densities are plotted. A LO nonlinearity 

could be estimated from the derivative of the log of the densities, but 

this would further emphasize the roughness. Additional smoothing of the 
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density would be required if an acceptable nonlinearity is to be obtained, 

and even then the nonlinearity may be still somewhat noisy or rough 

looking {e.g. [5]), 

Another problem is that, even when the density is known or can be 

estimated smoothly, the related memoryless nonljjiearity (ZNL) itself is 

sometimes complicated enough to make implementation or adaptation 

relatively difficult. For example, the Middleton Class A and Class B noise 

models have been proposed as physically based canonical representations 

for non-Gaussian noise, with parameters that may be calculated directly 

from physical considerations. Both models are infinite series [6,7]; the 

Class A series comprises weighted Gaussian density terms, while the Class 

B series comprises' confluent hypergeometric functions, which them- 

selves are defined generally via an infinite series [8, p.504]. The detector 

nonlinearities associated with these models may be calculated directly, 

but at the expense of a high computational burden. Adaptation of the 

nonlinearities incurs a similar computational cost. 

One approach toward overcoming these difficulties with the optimal 

nonlinearity is to use a suboptimal ZNL that has nearly optimal perfor- 

mance, but has a structure that is simple to implement and easily adapt- 

able. Some recent examples of this approach include the work by Miller 

and Thomas [9], Modestino [10], Ingram and Houle [11], Ziemer and Flu- 

chel [12], and Vastola [18,19]. 

This chapter presents an approach to the design of a noise-adaptive 

suboptimal detectors with these ideas in mind, focusing on the locally 

optimal detection problem and noise environment of Chapter 2. 
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2. Approximation via Noise Tail Matching 

The previous chapter presented a discussion of a particular type of 

non-Gaussian noise environment where the mode of the noise pdf 

appeared as Gaussian-like, but the density tails were much heavier than 

the Gaussian. As noted, the LO nonlinearities associated with these types 

of densities have a nearly linear processing characteristic for input 

values near the pdf mode. On the other hand, the tail behavior of the LO 

nonlinearities ranges from linear for a noise pdf with Gaussian tails, to a 

Umiter for exponentially decreasing pdf tails, to a blanker for algebrai- 

cally decreasing pdf tails. In general, the heavier-tailed the noise density 

is relative to the Gaussian pdf, the more severely curtailed is the effect of 

large data observations. 

One objective of a noise adaptive nonlinearity, then, should be to 

relate the ZNL tail behavior to the actually observed noise pdf tail 

behavior. The main idea of the algorithm in this section is to establish a 

relation between a measure of tail heaviness and a member of a con- 

venient class of heavy tailed densities. Rather than performing a 

parametric fitting within the density class, the algorithm chooses a den- 

sity whose tail'characteristics have the same tail heaviness measure as 

the actual noise density. The nonlinearity tails are thus determined by 

the member of the density class chosen. The central region of the non- 

linearity joins the two tails with some function which gives a desirable 

near-linear processing. ^fe 
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Tail Selection Procedure i 

This idea is clarified and illustrated by proposing the following: It has 

been reported by Watt and Maxwell [21] that the generalized Gaussian 

density 

^'^^     2r(l/c) ^ ^^-^^ 

in certain instances Ccin describe the pdf tails of physical noise soiirces. 

For a noise variance of a^, the parameter 7 is defined by 

7 = 
r(3/c) 

a^(l/c) 

The corresponding LO nonhnearities, shown earlier in Fig. 2.18, may be 

written as . " 

9Loi^) =c7^|x!'^-isgn(x) (3.2) 

with c conveniently parameterizing ZNL tail behavior. Therefore, we 

model the observed noise pdf tails via the generalized Gaussian family. If 

these density tails are used to generate a suboptimal LO nonlinearity, it 

will have power law tails described by 

ytm(a:) = £/|x |^"^sgn(x)      for|i|>Xo (3.3) 

It is necessary to find a value c such that /g is a good approximation to 

the tail behavior of the true, but unknown, underlying noise density. A 

simple way to do this is to equate the tail probability of /g with the 

observed tail mass 

^r=4rf Ar,-)(S'^il) (3-4) 
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Here, / is the indicator function and r^ are the noise observations 

presumed available from a noise reference channel. The exponent c may 

be estimated as the value giving 

2//£(i)dx = Pj, (3.5) 

where, for convenience, it is assumed that the noise has zero mean and 

unity variance. The estimate c is defined implicitly by the integral in 

(3,5); therefore it is desirable to derive a simpler exphcit relationship 

c = hriPf) " (3.6) 

One obvious method for obtaining (3.6) is to first calculate Py- as a func- 

tion of c, and then use interpolation to find the inverse relation /ij-. This 

tabulated version of /ly is shown in Fig. 3.1. 

With a^ fixed and c small, the value of 7, a scale factor, becomes 

large. Even though /c(x) approaches zero asymptotically at a much 

slower rate than the Gaussian pdf as |x | becomes large, the total proba- 

bility mass in the tails is quite small. As a result, h.-p is multiple valued, 

the density is extremely peaked, and the LO noniinearity has a discon- 

tinuity at the origin. For c < 1, the requirement that the suboptimal ZNL 

be nearly linear at the origin clearly is not met by (3.2). 

The objective in using the generahzed Gaussian pdf is to relate the 

tail heaviness of an observed noise to a parameter governing the shape of 

the ZNL tail. Therefore we replace the anomalous behavior of the true 

function h with a simple hnear relation 

hj^iPr) -k^Pj+kz (3.7) 
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Pig. 3.1. The exact and approximate relationships between 
exponent c and tail probabihty Pf for unit variance general- 
ized gaussian density for various thresholds T. The exact 
relations hf are the solid curved lines, and the linear 
approximations hf are the broken straight lines. 
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where fcj and kz are chosen to approximate (3.6) for a particular value of 

T. Several sample approximations are plotted as the broken lines on Fig. 

3.1. The values for Aij and fcg ^^^ chosen so that when Pf corresponds to 

Gaussian or exponential noise tails, (3.7) gives c = 2 and 5 = 1, respec- 

tively. Note that the linear relation allows the value of c to be negative 

for large tail probabilities. 

The tail measurement threshold T must be chosen prior to estimat- 

ing parameters k^ and kz-  One way to pick T is to choose a value solving 

nnnE,|varci = nun ^EAPT{\-PT)\ (3.8) 

for some prior density on the parameter c, where TV is the number of 

noise observations. For c uniformly distributed on the interval [1,2], the 

value r = 3a approximately minimizes (3.8), In practice, some better 

knowledge of the distribution of c should develop, and T may be adjusted 

to minimize (3.8). 

Central Region Selection 

The LO nonlinearities of the generalized Gaussian family have desir- 

able tail behavior, but for small values of c the behavior does not meet 

the constraint of linearity near the origin. To eliminate this behavior, the 

ZNL needs modification in the region near the origin, A way in which to 

do this is to replace Qtmi^)' for ^ near zero, with a function that will 

smoothly connect the two tails and have linear-like behavior near the ori- 

gin. A suitable family of functions are polynomials p (i) with the following 

characteristics: 
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p(x) = a^x^+a^^+a^x+aQ      for   0<x<io 

p(o) = o 

p(|±iol)sgn(±Zo) = S'tm(±a:o) 

p"(|±Xol)sgn(±Zo) =y"f^(±io) 

Also, because p(x) is a third order polynomial, p'{x) f^ a^ for |x | very 

near zero. This implies that p will be nearly linear in a neighborhood 

about the origin, for there its slope is approximately independent of x. 

Scaling 

The choice of tail behavior via c and the point XQ completely specify 

p{x). The method for choosing c has already been specified, leaving XQ as 

the sole free parameter. A method equivalent to choosing the proper XQ 

is to choose an arbitrary XQ and scale the input to the ZNL with a factor v. 

It is reasonable to choose u to maximize the efficacy of the ZNL. For an 

arbitrary nonhnearity g, efficacy as a function of u may be rewritten as 

- t^E_^[y'(i/j)] 

"^'^""^^ E,[9^ux)]-Eng{ux)] .    ^^-^^ 

In principle, (3.9) can be solved exactly. Unfortunately, a closed form 

solution for u cannot be found in general, and the density / is generally 

unknown. These problems may be circumvented by approximating the 

expectations with integrations over the noise empirical distribution, and 

solving (3.9) via stochastic approximation methods. 

At this point, specification of the suboptimal nonlinearity g^^ is com- 

plete, and may be written as 

f  piluxDsgiiiux)     if   ki I ^ XQ 

[   c\ux\'^ ^sgn{ux)   II   I i^x I > Zo 
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Figures 3.2 to 3.4 give some examples of the types of nonlinearities avail- 

able using this approximation method. 

3. Optimization via Efficacy Maximization 

The previous section developed a method for choosing suboptimal 

nonlinearities in what is primarily an "open-loop" fashion: A relation was 

estabhshed a priori between observed tail heaviness and tail heaviness of 

known noise densities. The tails of the known densities were then used to 

generate tails for the suboptimal ZNL. It is not obvious that this method 

is optimal in any sense, save for its sheer simplicity. 

Another approach is to choose a class of nonlinearities of desirable 

shape and convenient parameterization, and then find the member of the 

class which maximizes performance. This type of approach may be con- 

sidered to be a "closed-loop" technique, for measurements on the 

observed noise density lead to selection of the optimal member of the 

nonlinearity class; the performance measure provides "feedback" to the 

selection algorithm, ... 

Again, under the detection situation and noise environment 

described in Chapter 2, the following suboptimal ZNL is proposed, 

comprising a central linear region and two linear tail regions: 

IX I for   I X i < a 
ff2i(2;) = (sgnx) 

where 

6|x|+a(l-6)  for  a<   |x|<Zj. ^^'^^^ Cyr 

^^^-=i^   for 6<0 
6 
oo for  6 2? 0 (3-12) 
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c =.5-1 

^^      / 
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X 

Fig. 3.2.   Representative nonlinearities g^j^ for XQ^^- '^-l- 
amd various c. 

9tm{^^) 

C 1/ .c-1 

Pig. 3.3.  Representative nonlinearities ^^^ for XQ = 3, various 
V, and c =.5. 
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Pl^. 3.4.  Representative nonlinearities g^^ for Xo = 3, various 
u, and c = 1. 
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The parameter a governs the breakpoint between the central and tail 

regions, and 6 governs the slope of the tail region segments. A pair of 

representative examples of g'gz (^) are given in Figs. 3.5 and 3.6, 

Procediire for Estimating Tail Slope 

Initially, we will assume a is fixed and turn attention to the problem 

of estimating b . Some comments will be made in Lhe following subsection 

on the issue of finding the breakpoint. 

The usual performance measure for a LO detector g is efficacy, dis- 

cussed in Chapter 2 and recalled here as 

fg'{x)f{x)dx 

Vfig) = - 

fg^{x)f{x)dx 

(3.13) 

where the underlying noise density is / and g has zero mean under / . 

Figs. 3.5 and 3.6 highlight the fact that there are two distinct possi- 

bilities for the shape of gzi- In Fig. 3.5, the slope parameter 6 is greater 

than zero, and ^21:6+ i^ nonzero over the entire tail region. In Fig. 3.6, the 

parameter 5 is less than zero, and g^x-t- is nonzero only over a finite 

interval. 

Using (3.13), the efficacy of ^21:6+may be written as 

Vi9zi:t*) = 

ff + 6// 

Zfx^f +2/(fai+a(l-6))2/ 

(3.14) 
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Fig. 3.5.   A representative example of ^2^.6+ for a = 2 and 
6 =.25. 
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Fig. 3.6.   A representative example of Qzib- for a = 2 and 
6 =-.5. 
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Here, viyzi-t^) i^ ^m explicit function of 6, so it may be maximized by 

finding 6* such that  —^ = 0.   In Appendix 3.1, an expUcit solution 
^° \b=b' 

(A3.6) for 6* is found to be a rational function of the partial moments of 

/, which depend implicitly on the choice of a. It was not possible to find 

an expression which yields explicitly a value a* that maximizes (3.14) as 

a function of a. 

The explicit solution (A3.6) was derived to find the 6* that maximizes 

7j(y2i-6+)- ^hen the solution 6* is non-negative, the tails of the nonlinear- 

ity diverge from the i-axis, and ^gz has support over the entire real line. 

Thus, the formtdation for efficacy, given in (3.14) is correct, and the solu- 

tion (A3 6) is correct. 

What if (A3.6) yields a result 6 * < O'i' The result 6 * is still valid, but 

the nonlinearity for which efficacy is maximized is not g^n,-- Certain 

integrals in (3.5) have range of integration (a,oo), whereas the correct 

expression for the efficacy of gaz.b- i^^^Y be written as 

vi9zL,b-) = 

ff + 6// 

Xf 
(3.15) 

Zfxy +2f{bx+a{l-b)ff 

with Xf given by (3.12). Note that if 6*<0 and the value xj'^oo is used, 

then what is actually maximized is the efficacy of a nonlinearity gv with 

virtual tails such as those shown in Fig, 3.7. 

It is desirable to find an explicit solution for b * which takes into 

accoiint the fact that if  6*<0,  then the  solution should have  been 
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Fig. 3.7. The nonlinearity gj is the incorrectly optimized 
9zL,b— I''- is a truncated version of gy, whose virtual tails are 
artifacts of the optimization procedure. 
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generaled by maximizing (3.15) instead of maximizing (3.14). However, 

the value Xf depends on 6 *, and a closed-form expression for b * could 

not be developed, as was done for (3.14) where the limits of integration do 

not depend on 6 *. i. 

It is possible to salvage the solution (A3.6). First, note that when 

(A3.6) is applied without modification and gives 6* <0, the value |6*| will 

actually have been underestimated, for this win reduce the mean square 

error between the virtual tails of gv and the i-axis, at the expense of 

increasing the mean square error between the tails dictated by the 

incorrect 6* and the tails of the properly optimized ^2:6- ^^ ^^^ interval 

[a.xx]. Overall, this has the effect of minimizing the performance degra- 

dation due to the virtual tails [15]. A further discussion of the mean 

square error issue in ZNL approximation may be found in Chapter 5. 

Two options are available: one is to apply (A3.6), obtain b*, and if it 

is less than zero, calculate xj using (3.12), and merely truncate the non- 

linearity at ±xj^. Appendix 3.2 demonstrates that truncating at txy- 

yields better performance than if the virtual tails were ignored and 

allowed to remain. The other option is to apply (A3.6) iteratively. For 

startup, (A3.6) is applied directly, giving 6*o- Eqn. (3.12) may be used to 

give an initial value for zy, and the integrals in (A3.6) may be modified to 

have range of integration (a,!^) instead of {a,°o). The appropriately 

modified (A3,6) gives 6*1, and the process may continue in this fashion 

imtil ] 6 *n+i~^ *n I is less than a predetermined accuracy. 
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Scaling 

The issue of choosing a* may be approached by first considering Fig. 

3.8. In this example, the value of rjigzi) reaches a maximum at a«2.5, 

with the performance being fairly insensitive to the exact value of a. In 

fact, a 50% change from a =2.5 yields less than a 9% change in efficacy. 

This suggests that a simple method may be used to find a nearly optimal 

estimate of a*: First, arbitrarily choose three difTerent breakpoints a^ 

for i = 1,2,3 and find the associated optimal tail slope b*i. Then evaluate 

Vi = vidzi) o^.j,,^ for i = 1,2,3 and fit a parabola through the three pairs of 

points (oi.TjJ. Finally, choose 2* as that point which maximizes the value 

of the fitted parabola. 

Obviously, the initial choice of the three breakpoints cannot be com- 

pletely arbitrary. The algorithm will perform best when the true value of 

a* is bracketed by the values 0^, and 77(^21) as a function of the break- 

point is approximately quadratic for ai<a<a3. The use of this scahng 

procedure is demonstrated in Section 5. 

4. Examples - Tail Hatching Algoritlim 

We will now present examples of the use of g^^ in approximating 

some known optimal LO nonhnearities. 

"■■' ■' 'V ■ 

Generalized Gaussisin Noise 

The first comparison is between the approximate and exact versions 

of LO nonlinearities for the generalized Gaussian family. The exponent c 

is given by (3.7) after using the exact value c in (3.5) to obtain P^. Since 
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% 

a 

Tig. 3.8. Performance of g^i for various breakpoints a with 
optimal tail slope 6*. A Gaussian-Gaussian e-mixture density 
for the noise is assumed with c = . 1 and af/ ao = 750. 
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this is an analytical example, and the true noise density is known, numer- 

ical methods can be used to obtain v*, the value of v which maximizes 

Vigtm)- The performance of the suboptimal ZNL relative to the LO non- 

linearity may be measured by asymptotic relative efTiciency, given in 

terms of efTicacy as 

'AKE,.,.. = ^ ■ (3-16) 

/ 
Figure 3.9 compares the performance of y^^, the LO detector and a linear 

detector (id), in terms of ARE^^^^^^^ and ARE^^^^^^^. The suboptimal non- 

linearity performs quite well for the range l<c <2, but for c < 1, perfor- 

mance deteriorates. This is easily explained, since for small c, the LO 

nonlinearity output approaches ±°o for inputs near zero, while the 

approximation method requires y^^ to pass through the origin 

Johnson S^ Noise 

Another family of heavy tailed densities introduced in the last 

chapter is the Johnson S^ family. The parameter 6 controls tail heavi- 

ness, and the density has a Gaussian-hke shape near the mode. For the 

purpose of example, it is a convenient density family to be used in study- 

ing the properties of the tail matching method. Since f ^ is given and 

known, P-p may be calculated from (3.5), and (3.7) gives c. Again, numeri- 

cal methods can be used to find the v* that maximizes efTicacy. Some 

representative LO nonlinearities and suboptimal approximations are 

given for various values of t5 in Fig. 3.10, and Figure 3.11 presents the per- 

formance comparison of gij^, g^o, and Ld. For this family of densities, the 
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ARE    .75 

ARE 
9tm >9LO 

Fig. 3.9. Performance of gt^ and g^o relative to the linear 
detector Id for various exponents c in the generalized Gaus- 
sian density. 
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gi^)  0 

Fig. 3.10. The locally optimal nonlinearities gio and subop- 
timal nonlinearities for two members of the Johnson S^ fam- 
ily. The nonlinearity outputs are- scaled for comparison pur- 
poses. For the case c5= 1, the parameters of y^^ are c = .752, 
i'* = 3.26. anda;o = 3.  For c5 = 2, 5 = 1.46, u*= 1.88, andio = 3. 

1 

0 
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4XARE 
9im >9LO 

^ARE Vtm'ld 

Fig. 3.11. Performance of nonlinearities g^^ and gio relative 
to the hnear detector id, for noise densities parameterized 
by 6 of the Johnson S^ family. The optimal parameters c and 
u* are also given as a function of 6. 
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approximation method works quite well. Over the range .B< 6< °°, the 

minimum of ARE^^^^^^^ is .989, (occurring for 6 = .8). This means that 

only a small performance penedty would be incurred if 5^^^ were to 

replace the LO detector. As a final comment, it should be observed that, 

unlike the generalized Gaussian family, the Johnson 5„ family fulfills the 

characteristics of a nearly Gaussian pdf given m Chapter 2, since /^ is 

sharply peaked, while /5 has a Gaussian-hke mode. 

Gaussian-Gaussiaii c-mixtiire Noise 

The performance of g^^ in a third family of heavy tailed densities was 

also mvestigated. Here, the noise is assumed to be modeled by the e- 

contaminated Gaussian-Gaussian mixture density, written as 

/.(a:) = (l-e)/o(i) + c/i(x) (3.17) 

where /Q represents the pdf of a zero mean Gaussian random variable, 

and /1 represents the pdf of another Gaussian random variable, with the 

variance ratio af/ CT| large. The parameter e controls the degree to which 

/i contaminates the nominal density /Q, and is typically taken to be 

small. Figure 3.12 shows a comparison between two LO nonhnearities and 

their corresponding approximations. The approximate nonlinearities g^^ 

do not appear as close to g^o in this example as for the Johnson S^ family 

for two reasons: first, the tails of giQ for the Gaussian-Gaussian e-mixture 

increase almost linearly, while y^^ is constrained to have power law tails. 

Second, gi,o has a total of four local extrema, while gtm is designed to 

have a maximum of two. On the other hand, g^o for fg has two local 

extrema, and the tails asymptotically approach the x-axis. 
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gi^)  0 

Rg. 3.12. The locally optimal iionlinearities gio and subop- 
timal nonlinearities y^^ for two members of the Gaussian- 
Gaussian E-mixture family, (a) £ = .05, o^/OQ=^, 5 = 1.54, 
i/* = .957, io = 3. (fc) c = .20, crf/cT| = 20, £ = -.196, y* = .821, 

3^0 = 3- 
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The performance of gt^ was computed for a range of values of e and 

af/a^ suggested by Vastola [18,19] as being representative of physical 

noise situations. Figures 3.13 and 3.14 present the performance of the 

tail matching method. The sets of curves indicate that the tail matching 

algorithm generates nonlinearities which work quite well relative to the 

optimal detector in Gaussian-Gaussian e-mixture noise. 

The results show that it is often possible to achieve nearly optimal 

performance using this simple approximation method. The salient 

feature of the noise tail matching method is its ability to adjust tail 

behavior in accordance with simple observations of the noise tail heavi- 

ness. 

Simulation i 

To see how well this system might work in practice, some actual phy- 

sical noise was used to drive the system. The noise was collected under- 

neath the Arctic ice pack, and details may be found in [22]. A summary 

of the data selected for simulation purposes is given in Appendix 2.1 of 

this thesis. The noise data is highly nonstationary; a background Gaus- 

sian noise is abruptly interrupted with segments of a high variance noise 

generated during cracking of the ice pack. :. 

To get a more nearly stationary noise for driving the system, the data 

in each block was adjusted to zero mean and randomly permuted, 

thereby simulating the output of a stationary noise source. This adjust- 

ment was necessary solely to improve the rate of convergence of the sto- 

chastic approximation algorithm for obtaining v*.  Figures 3.15 and 3.16 
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Pig. 3.13. Performance of g^ relative to the linear detector 
Ld in Gaussian-Gaussian c-mixture noise for various values of 
e and a range of variance ratios af/ QQ. 
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Fig. 3.14. Performance of gt^ relative to QIQ in Gaussian- 
Gaussian e-mixture noise for various values of c and range of 
variance ratios af/cQ. Curves are approximate due to 
numerical roundoff errors. 
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Fig. 3.15. Sample Arctic under-ice noise data, record 2220, 
adjusted to zero mean. Vertical scale is in standard devia- 
tions from the mean. 

sample 
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Sample no. 
1024 

Fig. 3.16. Sample Arctic under-ice noise data, record 2220, 
adjusted to zero mean, and randomly permuted. Vertical 
scale is in standard deviations from the mean. 
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present a sample block of data, before and after random permutation, 

respectively. 

This noise was used as the input for the tail matching algorithm. A 

threshold T = 3a was chosen for estimating the tail probability of the 

noise, where a is the standard deviation of noise data block. As more 

noise data is observed, the cumulative tail probability estimate converges 

to the true tail probability. The exponent c was estimated from this 

cumulative estimate of P^- The simulated system had no knowledge of 

the true density generating the noise observations; therefore, the Kiefer- 

Wolfowitz stochastic approximation method was used to find the value of 

u* which maximized 'qigtm) ^or Xo=3- The convergence rate towards v* 

is fixed by the particulars of the stochastic approximation algorithm, emd 

no formal attempts were made to optimize its performance. 

Figure 3.17 shows the rurming estimate of c and i/ as a function of 

sample number, and Fig. 3.18 shows the estimated value of ARE_     i^ for 
Htm. •'■^ 

each block of 1024 samples. Since the true distribution of the noise is 

unknown, r){g^j^) was calculated by evaluating (3.9) using the empirical 

distribution of the data block under consideration and the current esti- 

mate of g^j^. The estimate of ARE results when "qig^j^) is multiplied by 

the variance of the noise data block. 

At the end of the simulation, it was assumed that the parameters of 

gtm were as near optimal as possible. These final values are given in Fig. 

3.19. It was desired to compare the performance of y^^ to the perfor- 

mance of the linear detector. To do this, (3.9) was evaluated using the 

final estimate of g^j^ and the empirical distribution of the 58 blocks of 
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Fig.  3.17.   Pareimeters  c  and  u* for each selected Arctic 
under-ice noise block of 1024 samples. 
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fig. 3.18. The estimated performance of gim relative to the 
linear detector for each selected Arctic under-ice noise data 
block. The parameters of g^^ are those given in Fig. 3.17. 
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Fig. 3.19. The final estimated nonlinearity gtm at end of Arc- 
tic imder-ice noise data simulation. The final parameters are 
c=1.13. i>*=1.35, io = 3. 
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1024 noise samples, and the result was multiplied by the variance of the 

entire data set, yielding ARE      ^ = 1.39 as a performance estimate. 

Because the true distribution is unknown, g^Q cannot be found, and it 

is not possible to calculate the performance of the LO detector. However, 

it is possible to conclude that the tail matching procedure was able to 

adapt the suboptimal ZNL in a constructive way, for gtm shows improved 

performance over the linear detector. , 

5. Elxamples - Efficacy MaxiniizatioD Algorithm 

Laplace Noise 

Figure 3,20 provides a representative example of g2i when its param- 

eters are estimated assuming a Laplace density for the noise. The LO 

detector in this case is a sign detector, sd. Intuition might sioggest that 

the best approximation employing two hnear regions and fixed nonzero 

breakpoint is the amplifier-limiter aL{x;a>0) = g2iix;a>0,b=0)/a, but 

this turns out not to be the case. The best performance is obtained when 

gzi has tails that return to meet the x-axis. Fig. 3.21 compares the per- 

formance oi gzi, sd, and oL in terms of their ARE relative to the hnear 

detector id. Note that g^i has improved performance over both the 

linear detector and the amplifier-hmiter detector for any choice of a^^O. 

Also, when a-»0, both at and gzi/a approach the form of sd, and their 

performances converge towards the optimal performance of sd. 

For each particular value of a, the optimal tail slope 6 * was found by 

iterative application of (A3.6) and (3.2). Convergence was typically rapid, 

often requiring 3 iterations for a change of less than .001 in 6 *. 



-82- 

9{^)     0 

-1 

■2L 
-8 

V 

V 

/\. 

\ 

\92l 
\ 

0 

X 

sd 

6 

Fig. 3.20. Compeirison of t.he nonlinearity g^ and the sign 
detector sd for a = l and 6* = -.211. The output of g2i is 
scale for comparison with sd. 

ARE 

a 

Fig. 3.21. Performance of the nonlinearity g^i, the amplifier 
limitier oL, and the sign detector sd relative to the linear 
detector id for Laplace noise and various breakpoints a. Tail 
slope 6 * is optimal for each choice of a. 
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Gaussian-Gaussian e-mixture Noise 

Here we consider the performance of g^ in the presence of 

Gaussian-Gaussian e-mixture noise. A representative example of g^o ^sid 

g2i is given in Fig. 3.22 for f ^ with parameters chosen in the middle of 

the range suggested by Vastola [18,19] as being reasonable for observed 

cases of Middleton's Class A noise density. 

At the end of Section 3 a technique was described for finding the 

estimated optimal breakpoint a*. It was employed for this example by 

choosing the 3 points a^ = .Sg^; 02 = g.g; and a^ = 2g 9; with 7,9 mean- 

ing the .9 quantile of the distribution. In practice, these quantities are 

easily measured characteristics of a noise distribution. For the particu- 

lar example of Gaussian-Gaussian er-mixture noise, it was found that a* 

was typically within 5% of the true value of a*, and the efficacy of ggj 

using a* was within 1% of the maximum possible efficacy of g^i- Further, 

the estimate a* was stable for different choices of {a-^,a2,cL2l. Note that 

for this example the true vedues of a* were available only through compu- 

tationally burdensome numerical methods. 

Given the estimated optimal breakpoint a*, the slope 6* was found 

iteratively, as before. Convergence of 6* to within a .001 change 

occurred typically within 6 iterations.   Figure 3.23 shows ARE     i^ for 

various combinations of € and af. Figure 3.24 compares the performance 

of 3^21 and g^o, where it may be seen that the performance of 321 is within 

a few percent of the optimal, and at worst, within 4%.   The relatively 
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Fig. 3.22. Representative nonlinearities gzi and g^o for 
Gaussian-Gaussian c-mixture noise with e = .l, of/ Oo = 750, 
a = 2.5 and 6*=-.524. The output of ggi is scaled for com- 
parison. 
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Fig. 3.23. Performance of the nonlinearity ygj relative to the 
linear detector Id in Gaussian-Gaussian c-mixture noise for 
various values of t and ran^e of variance ratios o\/ a^. 
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Fig. 3.24. Performance on the nonlineairity gzi relative to the 
locally optimal nonlinearity gio for Gaussian-Gaussian e- 
mixture noise, for various values of c and range of variance 
ratios af/GQ. 
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poorer performance occurs for the larger values of c which assign more 

probability mass to a region away from the origin. There the tails of the 

LO nonhnearity diverge from the x-axis, while the approximate nonlinear- 

ity g2i has truncated tails in this region. As a result, its performance 

suffers slightly. 

Sunulation , 

As was done for the tail matching algorithm, the Arctic imder-ice 

noise data was used to examine the performance of the eflicacy maximiz- 

ing procedure. The same 58 high-kurtosis data blocks used previously 

and described in Appendix 2.1 were used to drive the algorithm, after 

each data block was adjusted to zero mean. Unlike the simulation in Sec- 

tion 4, no further manipulation was necessary to prepare the data. 

Here the .9 quantile of the noise distribution was estimated for each 

data block as 

9.9= ^y-^ (3.18) 

to minimize the effects of the high skew occasionally observed. The 3- 

point paraboUc fittrag method was used to estimate a*, with ai = .5qg; 

g.9 = a2; and 2g 9 = 03 serving as the three arbitrary breakpoints. A minor 

modification to the algorithm was made, requiring that a]<a*<a3. Any 

a* outside this range was replaced by a^ or a^, as appropriate. The 

modification ensures that the algorithm does not produce highly inaccu- 

rate values of a* when the interval [aj.ag] does not bracket the true 

value a*. The estimated values a*, and ultimately, the performance of 

gzi were insensitive to using g ^^ or g.gs instead of g^g. 
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Once a* was found for each block, 6* was found using the previously 

discussed iterative procedure. Figure 3.25 shows the estimated values a* 

and 6 * for each of the data blocks in the simulation. Note that both of 

the parameters appear to have fairly steady nominal values. For each 

data block, riigzi) was estimated by taking the current value of a * and 6 * 

and evaluating (3.14) or (3.15), as appropriate, with respect to the noise 

data block empirical distribution. Multiplying this result by the 

estimated variance of the data block yields an estimate of ARE„    ,j, 

shown in Fig. 3.26. , '    ' 

At the end of the simulation, the average values taken by a* and b* 

were computed, and are given in Fig. 3.27 along with a depiction of ygt 

using the average values. Again, if these "final" parameter values are 

used in (3.15) for the entire 58 blocks of 1024 noise samples, and the 

result is  multiplied by the  overall noise variance,   ARE„    ,^ = 1.39 is 

obtained as an estimate of performance.  Surprisingly, this is exactly the 

same result as the tail matching algorithm overall performance. 

6. Conclusion 

The conclusion to be drawn from this study is that it is possible to 

implement adaptive detector nonlinearities using fairly simple tech- 

niques. 

Tail Matching 

Of the two methods suggested, the first, utilizing an estimate of tail 

behavior, is qmte simple: let the tails of the suboptimal ZNL be the tails 

of the  locally optimal nonlinearity for a  density with the same  tail 
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Tig. 3.25. Estimated parameters a* and 6* of the nonlinear- 
i^y 9zi f°i" each of the selected Arctic xmder-ice noise data 
blocks.. 
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Pig. 3.26. The estimated performance of g2i relative to the 
linear detector Id for each of the selected Arctic under-ice 
noise data blocks. The parameters of y2i sire those given in 
Fig. 3.25. 
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Fig. 3.27. The nonlinearity ygi ^oi" ^^^ average parameters 
a* = .610 and 6* =-.372. These values are the average of the 
values given in Fig, 3.25. 



-90- 

probability mass as the observed noise distribution. Apparently Pf con- 

veys enough information about tail behavior of the noise density and 

fairly good performance results using even a crude approximation to the 

true ZNL tails. A more sophisticated estimate of c might improve the 

performance 5^^^, as might a different choice altogether for the class of 

density tails used for gtjn It would be interesting to discover how much 

additional complexity any resulting performance gain could justify. 

Other related approaches were recently explored by Modugno [17]. 

Some work done by Miller and Thomas [9] in approximation of LO non- 

linearities suggests that even very simple approximants of the optimal 

nonlinearity have the potential to achieve performance which is accept- 

ably near the optimal. •    . 

Efficacy Maximization 

The second method suggests maximizing the performance of a simple 

generic nonlinearity. The approximate detector ZNL consists of a central 

linear region of unity slope surrounded by linear tail regions, generally of 

different slope. A closed form expression (A3.6) for the tail slope is given, 

and a method is suggested for determining approximately the appropri- 

ate breakpoint between central and tail regions in the ZNL. The tail slope 

is either known exactly aifter a single application of (A3.6), or after a few 

iterations using (A3.6). 

Some examples show that the performance of the suboptimal ZNL 

compares well with the LO detector performance, at leeist when the par- 

tial moments of the noise density are known exactly.   In the examples, 
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the performance is very good, usually within a few percent of the optimal 

performance. In practice, the performance of ygj niay not be quite so 

good, since at best only estimates of the partial moments would be avail- 

able. However, these partial moments are easily estimated, since the 

highest order is second degree. Also, each' integration t3rpically spans a 

region containing a nontrivial amoxmt of probability mass; therefore it 

should be fairly easy to converge quickly to low variance estimates of the 

partial moments. The issue of sensitivity of r]{g2i) as a function of errors 

in the partial moments has not been examined at this time. 

The advantage of this method is that implementation of the proposed 

nonlinearity is quite simple: all that is required is the ability to apply 

different linear gains (plus constant offsets) to inputs occurring along 

different regions of the x-axis. As a result, adaptation of ^21 can be 

accomplished with little overhead, once a* and 6 * are known. 

The chief disadvantage of this method is the fact that negative values 

of b* must be found iteratively. However, intermediate values of 6* are 

useful; the performance of ygj is not maximal, but it is nearly so, and the 

performance improves monotonically with each iteration. 

Another comphcation is the fact that an explicit solution for a* is not 

available. The parabolic fitting method mentioned may be used to esti- 

mate a*, or other methods may be used to converge to the best vedue. 

On the other hand, it appears that precise placing of the breakpoint is 

not a critical matter. 

The parabolic fitting procedure for finding the breakpoint is also 

applicable to finding the appropriate scale factor to the input of a ZNL. 
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Instead of performing a Kiefer-Wolfowitz stochastic approximation to find 

the optimal scale factor, the parabolic fitting method could be adapted 

for solving the scaling problem. The quantities involved in the parabolic 

fitting method are expectations of the noise observations transformed by 

the square or first derivative of the ZNL. For heavy-tailed noises, the non- 

linearity tails allow the very large noise observations to have much less 

influence than if they were untransformed or linearly processed; there- 

fore, the large observations contribute very little to the computed expec- 

tation of the square and first derivative of the nonlinearity. Intuition sug- 

gests that this inherently might be a more robust procedure than com- 

puting variance through expectation of the squared noise observations. 

Comparison of Algorithms 

The performance of y^^  and gzi m.ay be compared by computing 

ARE-    _     xinder identical noise situations.  Because of the appeal of /. 

as a reasonable model for certain observed noise densities, it will be used 

as the standard for comparison.   Figure 3.28 presents ARE , where 

it may be seen that there is some advantage to the efficacy maximizing 

algorithm giving g2i- This should not be surprising, since the algorithm 

for gtm is an "open loop" procedure which does not optimize the ZNL 

shape. (Both algorithms optimize scale with respect to efficacy.) 

Further, y^ ni^Y ^^ regarded as having simpler shape than gf^^, for it is 

piecewise linear, while gt^ has power law tails and a polynomial central 

region. 

As was noted at the end of the simulations, the estimated perfor- 
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Fig. 3.28. Performance of the nonlinearity ffs: relative to the 
nonlinearity y^^ in Gaussian-Gaussian £-mixture noise for 
various e and .range of variance ratios a^/ OQ. 
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1f\g. 3.29. The estimated performance of the nonlinearities 
gzi (solid line) and g^m (broken line) relative to the linear 
detector Ld for each of the selected Arctic under-ice noise 
data blocks. The parameters of the nonlinearities are the 
values current for each noise block. 
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mance improvement was 1.39 for either detector relative to a linear 

detector. However, the value of ARE^^^^^^ was obtained for a single fixed 

pair of parameters (a*,b *). If a * and 6 * are allowed to vary as the noise 

statistics change from block to block, Fig. 3.29 illustrates that gzi may 

have a slight advantage over j^m ■ T^e reason for this is that, while the 

adaptation algorithm for gtm forces the parameters to converge, the 

algorithm for gzi does not include any memory of the parameters from 

the previous noise data block. Thus, the adaptation of ^gi may be con- 

sidered as more agile. 

Both algorithms, to some extent, are ad hnc. The purpose in explor- 

ing these methods was not to find a definitive algorithm for designing 

nearly optimal, but simple, detector nonlinearities. Instead, the objec- 

tive was to gain insight into this problem. The conclusion is that even 

relatively imsophisticated ZNL design techniques have potential for highly 

successful application, provided the design algorithm has available some 

knowledge of the noise density tail shape. ",        ,' 
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Appendix 3.1 

We seek to maximize (3.14) with respect to fa, and begin with some 

notational preliminaries. The first step is to expand the denominator to 

obtain 

V = 

12 

ff + ^ff 

fx^f +b^fx^f +2ab{l-b)fxf +a^{l-b)^ff 
0 o o a 

For convenience, we rewrite (A3.1) as 

(A3.1) 

V = 
2[/i+6/2]2 

/g+fa 2/4+2a6 (1-6 )/5+a2( 1-6)2/2 

Taking the partial derivative of (A3.2) with respect'to 6, we obtain 

(A3.2) 

db 

4(/i+6/2) 6 {alzh-a^li -/i/4+2a/i/5-a2/i/2) 

+(/2/3+a2/| -a/j/s+a^/j/g) (A3.3) 

with d representing the denominator of (A3.2).   The notation is fiirther 

simplified by rewriting (A3.3) as 

977  _ 

36 

4(/j+6/2) 
bC+D (A3.4) 

A necessary condition for (A3.1) to have a maximum is that ■^= 0 has a 
96 

solution for some 6 . A solution always exists, since the roots of (A3.4) are 

the pair K-/i//a).(--0/C)i = ^60,61 i. 

A  sufTicient condition for a maximum to  occur at 6*e{6o,6il  is 

db^ b* 
< 0.   It is not necessary to evaluate the second derivative; all 
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Lhat is reqmred is to note that the numerator of the first derivative is 

quadratic in 6, and the denominator is positive for all 6. Although -^^is 

not parabolic, —5-has the same sign at 6* as the slope of the quadratic 

numerator evaluated at 6 *, one of its roots. Therefore, the root of (A3.3) 

giving maximum efTicacy will be located on the negative sloping branch of 

the numerator parabola. Taking this into account, and the fact that, if 

C > 0, the smaller root is on the negative sloping branch, and if C < 0, the 

larger root is on the negative sloping branch, the solution of (A3.4) which 

maximizes (A3.1) is 1 

max\hQ,b^]    forC<0 
6*= ' 

min^to.^ii     for 00 (A3.6) 

where 

bo=-Ii/l2 

6, =- 
Va+a^/f -a/i/5+a2/j/2 

^ alzh-a^li -/i/4+2a/i/5-a2/j/2 

and 

h = ff Iz= ff        h = fx^ 
0 a 0 
ten OB 

h = Jxy h= fxf 
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Appeiidix3.2 

Assume for the moment that the truncated range of integration is 

ignored and (A3.6) is used directly to maximize (3.14) resulting in 6*<0. 

The effect of ignoring the tail truncation at ±Xf is equivalent to allowing 

the nonhnearity gv to have virtual tails like those illustrated in Fig. 3.7. 

Additional nonzero taUs in gv are an artifact of the improper range of 

integration, and as a result, (A3.6) optimizes gv instead of g^i- This 

affects the final result b *, since the detector using gv would not perform 

as well as one using g^, the truncated version. A simple argument 

explains why: Due to the additional tail area. Eg-V -^Eg'zL. and Eg^ > Ec?^. 

Combining these two facts, we find 

fgyf fy^f 

-Vi 

f9zif fgiif 

-"k 

{kz.i) 

For fixed and equal false alarm rates, gv will have lower power of detec- 

tion than g-zx asymptotically as the number of samples grows large [14, p. 

228].  A weak siofficient condition for the inequality (A3.7) to hold under 

squaring is ' , ■ 

t^-ff/ff (A3.8) 

This lower bound on 6 is 6o from Appendix I. Since b*e\bQ,b^\ and 

6i>6o. the condition (A3.8) is satisfied for C<0 and r]{gf)-^T){gv). For 

C>0 it shoiild be possible to prove the observation that fao^^i. making 

the squared inequality true for this case also. 
- 

A rigorous proof of the inequality (A3.8) under squaring may be found 
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by considering the effect of the virtual tails in the denominator terms of 

(A3.7) in addition to their effect in the numerator terms only, as was done 

here. 
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Signal Detection 
in Bursts of Impulsive Noise 

The previous chapter was concerned with the development of a fixed 

detector nonhnearity which could adapt to the noise statistics of the par- 

ticular environment. There it was assumed that, over short periods of 

time, the statistics were nearly stationary. Another approach to the 

detection problem is given in this chapter, where it is assumed that the 

noise statistics can change abruptly. 

The fundamental idea explored is that, if the abrupt changes in the 

noise can be recognized, a detector may use this knowledge to achieve 

improved performance with respect to a detector whose structure is 

based upon an assumption of nearly stationary noise statistics. Section 1 

provides the background and motivation of the problem. Section 2 

develops a model for noise with abruptly changing statistics; specifically, 

the case of a Gaussian background noise interrupted by bursts of an 

-101- 
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impulsive contaminant noise is considered. A detector structure is pro- 

posed, and its performance is analyzed. Section 3 examines the problem 

of distinguishing between impulsive bursts and the background noise. 

The proposed detector and impulsive burst recognition algorithm are 

simulated in Section 4, and a few concluding comments are given in Sec- 

tion 5. 

1. Introduction 

Considerable attention has been paid to the problem of recognizing 

sudden changes in the stochastic environment of a system. BasseviUe [l] 

and Willsky [2] summarize some of the techniques which have been 

developed. One approach in treating this problem involves the use of 

characterizations that allow for abrupt changes in the noise statistics. In 

some simple cases, the noise model consists of two distinct density func- 

tions, each describing a unique mode of noise generation. During nono- 

verlapping time intervals, one of the pair is considered to be the particu- 

lar valid description of the noise density. 

Fig. 4.1 illustrates a conceptual representation of this situation. Only 

the sequence [rijl may be observed. The sequence [ejj chooses between 

riQ-^ and n^^ on a sample-by-sample basis. While \e^] cannot be observed 

directly, it may be possible to construct an estimate of it by observing 

the behavior of [n^]. A usual assumption is thate^ does not switch "too 

rapidly"; loosely speaking, after switching into a new state, e^ tends to 

stay there for a while It is this property that allows an observer to dis- 

tinguish between the two noise modes. This assumption is clarified 

fiorther in Section 3. 
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Fig. 4.1. A representation of the dual mode noise generation 
jnechanism. 
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For a physical example of a noise with abruptly changing statistics, 

consider the case of the noise environment under the Arctic ice pack [3]: 

For most of the time, the noise appears to be Gaussian. Occasionally, 

though, ice cracking occurs, and a short burst of a relatively high vari- 

ance noise is observed. After the cracking event is complete, the noise 

returns to a nominal low variance Gaussian mode. Fig. 4.2 reveals the 

distinctive difTerence in the behaviors of the two noise modes. This type 

of noise may be described as an impulsively contaminated Gaussian 

noise. 

Various statistical models have been proposed for describing a noise 

environment that is nominally Gaussian with an additive impulsive noise 

component. As was discussed in Chapter 2, these models often take the 

form of univariate pdf's that are heavy-tailed relative to the Gaussian pdf 

[e.g., 10,11,16,17]. Implicit with the use of a imivariate noise model, how- 

ever, is the assumption that the noise statistics are stationary at least 

over the interval of interest. The Arctic under-ice noise is a counterex- 

ample to this assiomption, since over the short term the noise statistics 

appear to be nonstationary. The impulsive noise occurs in bursts, and a 

nonstationary model for the noise seems more appropriate than some 

fixed model. 

It may be possible to find a multivariate noise distribution which ade- 

quately describes a background Gaussian noise with bursts of an impul- 

sive contaminant. Unfortunately, finding multivariate non-Gaussian noise 

models is in general a complicated problem, even in fairly straightfor- 

ward situations.   See, for example, [12-15].   Furthermore, compUcated 
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Fig. 4.2. Time domain plot of sample Arctic under-ice noise 
data record 2220. Vertical scale is in standard deviations 
from the mean. 



-206- 

miiltivariate noise distributions may lead to unacceptably complicated 

optimal detector structures. 

When a heavy tailed noise has a burst-like structure as in Fig. 4.2, it 

is reasonable to develop a detector that recognizes the dual-mode nature 

of the noise and adapts rapidly to the particular operative mode. The 

purpose of this chapter is to illustrate the potential advantage of such a 

STmiched burst (SB) daieclor. 

2.  Switched Burst Detector 

We shall restrict attention to the discrete time locally optimal (LO) 

detection of a known constant signal in a Gaussian background noise con- 

taminated by bursts of impulsive noise. AH the noise samples are 

assumed independent, but not necessarily identically distributed. In 

more precise form, the problem is to observe x=Xi, i = \,2, . . . , M and 

decide between 

HQ: X = n 

Hi: x= a+es 

where n = 7ii, i = 1,2, . . . , M and s is a known constant signal s of length 

n and nonzero amplitude parameter G. As is well known [5], the LO 

detector test statistic in the case of white noise is any monotone function 

of 

where /^ is the imivariate density of n^.   The term being summed is a 

memoryless nonlinearity y^ (x^) = — 
fii^i) 
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Stationary Impiilsive Model 

One common empirical model of impulsively contaminated Gaussian 

noise is the Gaussian-Gaussian e-mixture density, which may be written 

as 

/^(x) = (l-e)/o(x)+£/i(i) (4.1) 

Here /o represents a background low variance Gaussian noise, and /i 

represents a high variance (impulsive) Gaussian component. Any particu- 

lar observation i is generated by the impulsive component with probabil- 

ity r. Vastola [4] recently suggested that (4.1) is also a useful 

simplification of Middleton's Class A model [10,11] for impulsive noise 

environments. j 

Using (4.1) as the univariate density of the noise, and assuming that 

the noise samples are identically distributed, the LO detector nonlinear- 

ity is fixed for all samples as i 

gjx) -X 
^^/o(x)+-V/i(^) 

a§ erf 

(l-e)/o(x)+e/i(x) 

For convenience, the overedl noise variance is assumed to be unity. 

(4.2) 

Switched Burst Nonstationary Model 

Consider the nonstationary noise density 

/5s(xi;eO = (l-eO/o(a:i) + e^/i(ii) (4.3) 

for i = 1,2,   Here, e^ takes on the value 0 or 1, and /Q and /j are two 

arbitrary densities, which are not necessarily Gaussian.  When e^ is zero, 
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Ihe noise is in the bax:kground mode, and the observed noise has density 

/o- When e^ is unity, the noise is in the impulsive mode and the observed 

noise density becomes /j. The sequence [e^l is defined to have the pro- 

perty 

£=nm—X]ei (4.4) 
n-*" 71 ^"j ' 

The impUcation of (4.4) is that, over a long observation period, e propor- 

tion of the samples come from the impulsive noise mode, and (l-c) pro- 

portion of the samples come from the background mode. Noise samples 

described by /SB may be thought of as being generated by the mechan- 

ism of Fig. 4,1. In many cases of interest, the background mode is dom- 

inant, and therefore, e is often estimated or assumed to be small [4,8,17]. 

Note that unlike f ^, the density fse is nonstationary. However, the noise 

in each individual mode may be considered stationary, with the sequence 

(EJI controlling which mode is observed. 

For the purpose of comparison with the Gaussian-Gaussian e-mixture 

density, /Q and f ^ shall be the same densities as those composing / . 

One rationale for picking /o and /j to be Gaussian is that they are the 

two leading and most significant terms in Middleton's Class A density 

model [4,24]. Equivalently, this assumption imphes that the impulsive 

contaminant is itself a Gaussian noise source, The case of /o and /i both 

Gaussian shall be designated as Gaussian-GaiLssian switched burst noise. 

The observations i^ will continue to be assumed independent for any 

arbitrary switching sequence [e^ \. The noise density on a sample by sam- 

ple basis is either /o or / j, which requires that the nonlinearity used at a 
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parlicular sample time is ^o or 9\< respectively. Ideally, g^ and g-^ are 

the locally optimal noniinearities associated with the two densities. The 

test statistic becomes 

Tn = 2l9s3{x^:e^) (4.5) 
i=l 

where 

9SB  - 

go    for Gj=0 

^1    fore,=:l (4-6) 

In practice, ^e^^ would not be known; instead, some additional structiire 

is required to generate a sequence Ip^l as an estimate of jejj. This prob- 

lem receives attention in Section 3. 

Ideal Detector Performance 

In this subsection, expressions are given for the performance of the 

switched burst detector with the assumption that the switching sequence 

may be reconstructed without error. Performance will be analyzed for 

arbitrary densities /Q and /i with arbitrary noniinearities g^ and g^. 

Specific results for Gaussian-Gaussian switched burst noise with linear 

detectors will also be developed. The next subsection explores detector 

performance without this ideal knowledge. i 

A definition for the efficacy of an arbitrary stationary detector g with 

zero mean under the noise / given in [5,6], and discussed in Chapter 2 is 

Vfi9) = ^ , (4.7) 

The case of interest is nonstationary, as the noniinearities composing gsB 
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switch in accordance with the switching of the underlying noise densities. 

Appendix 6.1 demonstrates that, for the switching detector in the pres- 

ence switched burst noise, (4.7) may be rewritten as 

TjSB{gSB) =   ■= ' 

>2 

The formulation (4.8) is general, and does not depend on the fact that /Q 

and /1 were previously defined to be Gaussian densities. For the particu- 

lar case of the Gaussian densities used in (4.1) and (4.3). the LO detector 

is linear with slope CQ^ for /o and with slope af^ for /j. Applying this 

fact to (4.8), the expression for TJSB reduces to 

7]SB  = 
l—cc 
^l       cjf J 

(4.9) 

^m Note that (4.8) may also be used to evaluate the performance of g 

the presence of fss. In this case, the detector nonlinearity is the same 

whether the background or impulsive noise is observed; therefore we can 

iet^o = ^i=^ein(4.8). 

A convenient measure for comparing the performance of two LO 

detectors dj and dg is asymptotic relative efficiency, defined in Chapter 2 

as 

ARErf,.d2 = ^d/^d, (4.10) 

The two nonlinearities g^ and gsB may be compared by computing their 

efficacies and evaluating (4.10). 

Fig. 4.3 presents a plot of ARE^^^^^   for combinations of e and erf, 
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Fig. 4.3. Performance comparison of fixed nonlinearity g^ 
and switched nonlinearity gsB in Gaussian-Gaussian switched 
burst noise for various vedues of t and range of af/ OQ. 
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from which it is clear that there is an advantage to the switched detector 

method over the fixed detector. An intuitive explanation for this is that 

in switched burst noise, the noise is always Gaussian (though with nonsta- 

tionary variance), and the LO detector is always linear (with nonstation- 

ary slope). Thus, the switched detector maximizes efficacy for it is 

always locally optimal at any given sample time. On the other hand, g^ 

has two nearly linear regions, but it is not the locally optimal detector for 

Gaussian noise If the stationary density f ^ is thought of as a time aver- 

aged version of fsB, then in some sense the nonlinearity g^ may be inter- 

preted as an optimal stationary approximation of gsB- The three non- 

linearities 5-0, y 1, and g^ are plotted in Fig. 4.4. 

Another point not made obvious by Fig. 4.3 is that the switched 

detector is capable of large performance improvements over a fixed 

linear detector, id.  A plot of ARE      ^^ is presented in Fig. 4.5.  For very 

large values of erf/ af, the switched detector has a processing gain rela- 

tive to Ld of approximately caf/OQ. 

Non-Ideal Detector Performance 

The previous subsection discussed the performance of the switched 

detector under the ideal assumption of perfect knowledge of [e^\, and 

that ^0 9^nd g j were LO for /Q ^^^ / j, respectively. In any practical situa- 

tion, these assumptions would almost certainly be violated. As a result, 

we now direct attention towards the performance of gsa when only an 

estimate [p^^ of [e^f is available. Also, the effects of incorrectly estimat- 

ing the variEince ratio in the Gaussian-Gaussian switched burst noise is 
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Fig. 4.5. Comparison of the switched detector gsB and the 
linear detector id in Gaussian-Gaussian switched burst noise 
for various values of c and range of of/ UQ. 
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assessed. - 

Appendix 6.1 gives a detailed development of rjsB assuming [e^l is 

known. Appendix 6.2 notes the changes in the development arising when 

the estimated sequence Ip^ I is used, and obtains the result 

j(l-e)Ey'j, l-piio)po'+Piioy]'  + cE/jLoo|i^o'+(l-piio)yi' 
VSB = 7 —^. S ^- (4.11) 

(l-e)E/g[(l-pi|o)sro^+pi!oyfJ + eE/j|ooiiffo^+(l-po|i)gf 

where puo is the probability of using nonlinearity g-j when the true noise 

density is /Q, and pou is the probability of using nonlinearity go when the 

true noise density is /j. When both error probabilities are identically 

zero, then (4.11) reduces to the special case (4.8) of operation without 

switching error. , ;< 

Paralleling the discussion of the previous subsection, we shall con- 

tinue to use the Gaussian-Gaussian switched burst model. Then /Q and 

/i are Gaussian densities, and go and g^ again are linear detectors with 

slopes UQ^ and o^^, respectively. The situation may be generalized 

slightly by assuming that ^j has slope af not necessarily equal to erf. No 

additional generality in the efficacy calculation results by allowing the 

slope of go to vary from OQ^, as only the ratio of slopes affects perfor- 

mance.    Under these assumptions, (4.9) generalizes to 

12 

T}SB   — 

(1-e) 
l~Pi|o   I   Puo 

" 'of OQ 

+ c 
OQ -^ 

Oil 

(1-e) ^~P^i°   I PnoCTo 

oE ■xi 
+c 

poiiaf _^ (l-poii)af 

o^ ot 

(4.12) 

For the purposes of comparison, SB^ will denote the the switched burst 
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detector with error, and SB^ will denote the ideal error-free switched 

burst detector. The noise environment will be the Gaussian-Gaussian 

switched burst environment, with e = 0.1 chosen as a value giving 

representative numerical results. ^ 

To begin, the effect of the errors pou andpno will be examined. Fig. 

4.6 presents a plot of AREsB^^g, for a range of values of pou, withpno fixed 

at zero, and a^ = af. Here, the effect of incorrectly choosing to use non- 

linearity ^0 during the impulsive mode is isolated. Two conclusions are 

obvious: first, performance deteriorates monotonically with increasing 

error probability po|i. Second, the effect of not recognizing an impulsive 

noise observation is much worse as the variance ratio increases. How- 

ever, it is reasonable to assume that as the variance ratio increases, it is 

easier for an algorithm to recognize noise bursts, and therefore pou will 

be small. 

Figure 4.7 demonstrates the effects of deciding mcorrectly that a 

noise burst is present. Here, pno is allowed to vary while poii = 0, and 

of = af. Clearly, making this type of error is far less damaging to perfor- 

mance than deciding incorrectly that the noise is in background mode. 

The combined effects of the two errors may be seen in Fig. 4.8. Here, 

pou = 0.02, and pno varies. The results are consistent with the results of 

Figs. 4.6 and 4.7: the performance deterioration is due mainly to pou, with 

a Pno providing a lesser deterioration. The conclusion which may be 

drawn from these three figures is that correctly recognizing the presence 

of an impulsive burst is of critical importance to the success of the 

switched burst detector.   Note that this conclusion gives support to the 
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Pig. 4.7. Performance of switched detector with errors SB^ 

relative to ideal switched detector SB^ for various probabili- 
ties pno of incorrectly classifying a backgroiind noise sample 
as impulsive. 
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Fig. 4.8.   Performance of switched detector with errors SB 
relative to ideal switched detector SB^ for various probabili- 
ties poll of incorrectly classifying a background noise sample 
as impulsive with fixed probability poii=.02 of classifying an 
impulsive noise sample as background noise. 
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intuiUve nolion that even a few impiilsive noise samples can seriously dis- 

tiirb detector performance. 

The effect of incorrectly choosing the slope of g^ will now be exam- 

ined. Here, poii=pi|o = 0, and of/af is allowed to vary. Fig. 4.9 gives 

^^sBg.sB^ for small values of the variance ratio, and Fig. 4.10 presents the 

case of large variance ratios. As illustrated, of/of may deviate 

significantly from unity, with only moderate effects on performance, 

especially for instances where df»of. Note that, when the ratio 

approaches infinity, gsB essentially "turns of!" during impulsive bursts. 

Further, as af/aQ grows large, the effect of incorrect of diminishes. 

Surprisingly, estimating of inaccurately does not critically affect perfor- 

mance. An imphcation of Fig. 4.9 and 4.10 is that, when of must be 

estimated from the noise data, good asymptotic detector performance 

may be maintained simply by biasing the estimate towards large values. 

3,  Discriiniiiation between Noise Modes 

In this section, an algorithm will be developed to regenerate the 

switching sequence |ei(. It was previously assumed that the sequence 

{e^l did not switch "too rapidly". The assumption may be interpreted 

here as meaning that the probability of a very short run of ones in ^e^ I is 

negligible. 

Parametric Modeling 

There are a number of ways to model the statistics of sequence [Sil. 

Gilbert [19] proposes a Markov chain taking on one of the two state values 

[Background, Impidsive I, corresponding to the proposed states zero and 
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Fig. 4.9. Performance of switched detector with errors SB^ 
relative to ideal switched detector SB^ for various errors 
af/af<l   of   impulsive   variance   estimate. 
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Fig. 4.10. Performance of switched detector with errors SB^ 
relative to ideal switched detector SB^ for various errors 
5f/af>l   of   impulsive   variance   estimate. 
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one, respectively. This model was used with success by Ehrman [20] in 

simulating an impulsively contaminated Gaussian channel. During a run 

of a particular state in fej, each observation e^ may be considered as the 

outcome of a Bernoulli trial, with probability of success equal to one of 

the two state transition probabilities JDJ..^ or po-i- As is well knoYm [21], 

under this condition it follows that the run length, or residence time, of 

each state has a geometric probability density. The geometric density 

itself is a particular case of the negative binomial density. If the transi- 

tion probabilities JDJ^Q and ^o-i are different, the residence time density 

for each state has a different negative binomial density. 

Another natiiral model for the run length statistics of [e^ I is the Pois- 

son density, where the rate parameter of the density is the mean state 

residence time. The rate parameters of the two states need not be ident- 

ical. If the rate parameter of a Poisson density is not known exactly, and 

instead is distributed as a gamma density, then the compound density is 

the negative binomial density [21, pp. 122-3]; if the rate parameter is 

exponentially distributed (a special case of the gamma density), then the 

compound density is the geometric density. As a result, the negative 

binomial density is sometimes referred to as a gamma-mixture Poisson 

density. 

For equal means, the variance of the geometric density is greater 

than the variance of the Poisson, This is to be expected, as use of the 

Poisson density model implies perfect knowledge of the state mean run 

length, while the geometric model imphes that only a statistical descrip- 

tion of the state mean run length is available. 
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Using parametric statistical models for [e^], tests may be devised 

which observe a noise sequence [TT^I, and generate [p^l, an estimate of 

the switching sequence. Various approaches include sample-by-sample 

tests, pattern recognition approaches, and maximum likelihood sequence 

reconstruction. With an accurate model, these approaches may quite 

accurately reconstruct [ei]. The difficulty, however, is that fairly 

detcdled information about the statistics of ^e^} may be needed, and often 

this information may be unavailable. 

,.  ■ '■ i 
.    ■ '. 

Nonparametric Approach 

The advantage to a nonparametric approach is that detailed statisti- 

cal information is not necessary to construct a test, and that non- 

parametric tests are usually fairly robust: they work reasonably well over 

a broad range of situations. Furthermore, they often have simple struc- 

tures. On the. other hand, they are generally less efficient than optimal 

decision structures; i.e. given the same amount of data, there is a higher 

probability of error. 

The following two-step algorithm is proposed to generate [_p^j, a 

reconstruction of ^ejj: 

(i)   On a sample-by-sample basis, decide between i 

rij ~/o      sayjB^ = 0 (4,13) 

Tii ~/i     saypi = 1 j 

(a) Filter   the   sequence   \pil   to  obtain   [pil    Here, filter      ! 

means to smooth in a manner which tends to reduce the 
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number of incorrect state transitions. 

If /o and f I are known, then (4.13) may be carried out by a likelihood 

ratio test. In the case where /o and /1 are both Gaussian, and tjQ^af, the 

test becomes 

-     \ni\     I     T (4.14) 

To filter {p^l, perform the test 

771 ^ 

E Pi+k      i      rn (4.15) 

for some integer 7n>0. If TTI = 0, no smoothing occurs, and Pi=Pi for 

every i. If TTI > 0, the test (4.14) is a voting algorithm, where the outcome 

is the majority state in a window of length 2m+ 1, centered about Pi. 

Since JD^ G [0,1^, the smoothing algorithm is a special case of the medicaz 

fiLteriTig algorithm; properties of median filtering have been studied 

recently by Gallagher and Wise [23]. It will tend to preserve transitions 

into a new state with run length greater than m + 1 (edge-preserving pro- 

perty), while tending to suppress rims with length less than m (impulse 

filtering property). 

Nonparametric Algorithin Analysis 

To calculate the error statistics of the smoothed sequence {pil, it is 

first necessary to calcxilate the performance of the sample-by-sample 

test (4.14). As it is a binary hypothesis test on individual observations 

elements of [n,|, two errors are possible: 
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Pno = Prob( say Pi = I ] e^ = 0) = 2[l-Fo(7')] (4.16) 

poll = Prob( say Pi = 0 | e^ = 1) = 2Fi(r)-l (4.17) 

where F is the cumulative distribution, and the densities are symmetric 

about zero.  The correct decision probabilities are given by ' 

piii = 1-poii (4.18) 

po|o = 1—pi|o 

Note that the error probabiUties are a function only of the value of e^. 

Calculating the performance of the filtered sequence is more com- 

plex.  For convenience, we first define the vectors 
■   '<. !■■■. 

' '■■  ■ "'  '1 

and ■; 

Pi  = (Pi-m.  • •  • >Pi+m) :      f 

and the length 277X +1 vectors .     [ 

0= (0 0) S,^ 

^     1=(1 1) ' 

If Ci = 0, each outcome in Pj is the result of a Bernoulli trial with a con- 

stant probability of success on each trial. A particular element in the 

filtered outcome \pil will be in error only if at least m + 1 elements in p^ 

are unity. The error probability is given by the cumulative binomial dis- 

tribution with constant probabilities in each trial. i 

2m+ 1 

pi|o(i) =    2 
k=m + l 

2m+ 1 
(pi|o)*=(paio)2—*+i (4.19) 
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Similarly, for e^ = 1, 

2m+1 

po|i(i) =    Y, 
k=m + l 

2m+ 1 

k (pc,iO*(pi|,)2'"-*^' (4.20) 

The two remaining cases are for nonhomogeneous Cj. This situation 

occurs when the 2m+ 1 filter window contains a state transition of [e^\; 

for example, e^ = (0, .... 0,1 1). 

For the first remaining case, suppose e^ = 1, and let mo+mj = 2m, + l, 

where mo is the number of zeroes in e^, and mj the number of ones. 

Assuming that the state run lengths are greater than 2m+ 1, a state tran- 

sition in Cj means there are TTIQ zeroes followed by TTIJ ones, or vice versa. 

The noise observations [n^l are independent and each p^ is an indepen- 

dent Bernoulli trial outcome. However, e^ is not homogeneous, and the 

probabilities of the outcomes of Pi vary; therefore, p^ is distributed as 

the outcome of a binomial experiment of 27n + l Bernoulli trials with vari- 

able probabilities of success [22, p. 282].   The statistic    ^ Pi+k in the 
/fc=—m 

test (4.15) may be thought of as being the sum Po+Pi, where po is the 

binomially distributed outcome of mp Bernoulli trials with constant pro- 

babilities, and pi the outcome of mj trials. The probability of making an 

error, given that Bi = 1, is 

2m 

po|i(i) =     YJ TI 
j=m + ]   Jfco+fci=i 

(      \ t      \ 
rriQ 

[hoi 
(po,o)'»(p.,a)'"°-'=' 

m j 

(poiO*=Kpm)'"^"*^ (4.21) 

where 0<fco^m,o and 0<ki<Tni. The summation indices fco and fej may 

be interpreted as the number of times in p^ thai p^+i^ =0 given e^^^. =0, 

and  the   number   of  times ^1+^ = 1   given  2^^.^ = ].,   respectively,  with 
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-m<k^7n.  If 7no=0, then (4.21) specializes to (4.20), the probability of 

deciding Pi = 0 when e^ = 1, 
I 
I 

Treatment of the second remaining case of nonhomogeneous e^ is 

similar.  Given e^ = 0, the probability of deciding ;3i = 1 is given by        i 

2m+1 

j=m4-i   fcj+fcj=ji   0 

m 

k. 
•:;     >^0/'-i     \^nn~k 

(pi!o)  °(po|o) Q—ICQ 

m 

l^IJ 
N^l/-i      \''ll~fc 

OMO^HPOIO"'"*' (4.22) 

where the indices fco and fcj may be interpreted here as the number of 

times in p^ that Pi+j^ = 1 given 6^+^ = 0, and the number of times jB^+j. = 0 

given e^+A: = l. respectively, for -m<fc<m. If poii=pi|o, then (4.21) and 

(4.22) are symmetric in mo and TTij. 

While the error probability p for elements of the unsmoothed 

sequence \pil is a function only of e,, after smoothing the sequence the 

error probability p(i) is a function of the subsequence e^. The perfor- 

mance analysis of Appendix 4.2 requires time invariant error probabih- 

ties. If the statistics of the state run lengths of [e,j are known, then the 

expectation of POII('L) and pi\o(i) may be taken and used in evaluating 

(4.12). 

The choice of filter length 27n + l affects the error performance. 

There are two competing considerations: on the one hand, it is desirable 

to make 277x + l as large as possible, for the error probabilities decrease 

with increasing filter length, provided a state transition does not occur 

within e^. On the other hand, making 2m+ 1 small reduces the probabil- 

ity of making errors in the vicinity of a state transition. 

The following argument will assist in choosing 2m+ 1:    For the test 
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(4.15) to recognize a state transition, at least m + 1 elements of p^ must 

take on the value of the new state. If the last m+2 elements of Cj belong 

to the new state, on the average the last (m+2)pj|i elements of p^ vnll 

take on the new state value, and conversely if the first m +2 elements of 

Ci take the value of the old state. It is reasonable to choose m so that 

(m+2)iOi|s>m + l, ensuring that p^^g contains on the average at least 

771 + 1 correct state decisions, given that a state transition occurs between 

e^ and e^^j. 

A simple manipulation shows this condition is equivalent to 

2m + l< mln   ^^'''"^ (4.23) 
*£fo,ii    l-jo,|. 

The minimum nontrivial filter length is 2m + l=3, which leads to the 

2 
requirement that  min Px\x^^^- 

xeio.ij     '       3 

Performance of the Nonparametric Algorithm 

As was shown in the last subsection, three parameters determine the 

error performance of the sequence estimation algorithm: the sample-by- 

sample decision errors pou and pno, and the filter length 2r7T + l. The 

effect of these parameters is examined in the following set of figures. 

The performance of the threshold test (4.14) is a function of the 

threshold T, and the densities /Q and /j. In particular, when the two 

densities are zero mean Gaussian densities with variance ratio af/ UQ, the 

decision probabilities become 

pi|t, = 2$(-r/ao) (4.24) 
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'     ■' ■ '       ■ 

and 

piii = 24'(-r/ai) (4.25) 

where $ is the cumulative distribution function of the unit variance Gaus- 

sian density. It is natural to present the performance of the test (4.14) 

via a set of receiver operating curves, shown in Fig. 4.11. As is intuitively 

obvious, and clear from the figure, the probability of recognizing an 

impulsive sample increases as the distinction between background and 

impulsive variances increases. 

The next three figures consider the effects of pou and pno upon the 

performance of the filtered sequence [pi]. Here, the median filter has a 

fixed window length Zm + l, and the values of pou =pi|o are allowed to vary 

The left side of the plot represents situations where Cj = 1, and the major- 

ity of the states in the observation window e^ are ones. Thus, 

m + l<Tni<27n + l. The right side of the plot represents situations where 

Ej = 0, and the majority of states in the observation window are zeroes. 

Thus, m + l<mo^2m + l. The impUcit assumption in the performance 

plots is that the state run lengths are always greater than 2m+ 1. If a 

state run length were less than m + 1, the impulse filtering property of 

the median filter would tend to suppress recognition of such a short state 

run. As a result, when the state rvm. lengths grow small relative to m + 1, 

the error probabilities asymptotically approach unity. 

Fig, 4.12 examines the effect of various values pou = pno with the filter 

length fixed at 2m+ 1 = 9. Error probabihties of the smoothed sequence 

increase monotdnically with increasing probability that Pi is in error. 
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Pl|l 

Fig. 4.11. Operating characteristic for the threshold test giv- 
ing Pi for Gaussian-Gaussian switched burst noise. Note that 
perfornnance is not a function of e. 
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Fig. 4,12. Error performance of smoothed sequence [pj 
evaluated for various threshold test error probabilities and 
poii = pi|o when Bi contains a state transition. Filter length is 
2m + l = 9. 

771 771f 1 IILQ 

Fig. 4.13. Error performeLnce of smoothed sequence [p^l 
evaluated for various threshold error probabilities when e^ 
contains a state transition. Here, the effect pon^puo may be 
seen. Filter length is 2m + 1 = 9. 
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Notice that when gj is near a state transition, mo.miRsm + l, and correct 

reconstruction of a state value becomes orders of magnitudes more 

difficult than when e^ is not near a transition and mo.rrii w2m + l. When 

no state transitions occur within the filter window, e^ is either 0 or 1. 

This condition will be denoted as steady state, and the probability that j3i 

is incorrectly classified is at a minimum. The steady state error probabil- 

ities are the quantities " 

and 

poll 

mQ=2m + l (4.26) 

77li=2r7l + l (4.27) 

The effect of varying pou while keeping pno fixed is examined in Fig. 

4.13. By symmetry, conclusions from this case may be applied to the 

complementary situation. Unexpectedly, increasing po|i decreases pno. 

This effect is operative only when e^ is near a state transition, and the 

effect diminishes as e^ moves away from the state transition. For exam- 

ple, assume £^=0. Then errors in jOj after the 0-»l or prior to the l-»0 

transition in e^ contribute favorably to the filter test statistic when e^ = 0. 

As the state transition propagates through e^, there are fewer opportuni- 

ties for jB^ to incorrectly take on state value zero within the filter window. 

Thus, larger values of pou tend to diminish the probabihty of failing to 

recognize that e^ =0. 

The effect of changing the filter window length is examined in Fig. 

4.14. Here, poii=pi|o = .90, and 2m+ 1 is allowed to vary.   As the filter 
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m-^—TTiQ 

FI5. 4.14. Error performance of smoothed sequence [pi] 
evaluated for different filter lengths 2m+ 1 with poii=piio = .90 
when Ci contains a state transition. 
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length grows, it becomes relatively more difficult near a state transition 

in [eil to properly classify_Pi. However, this is compensated by the fact 

that the steady state error probabilities diminish rapidly with increasing 

filter length. Note that, when e^ is in steady state, the error probabilities 

of Pj again are functions only of BJ. 

4. Simulation 

The algorithm developed in this chapter was applied using the 

selected high kurtosis Arctic under-ice noise data to simulate a noise 

source. This data was described in Appendix 2.1 of Chapter 2, and used in 

the simulations of the previous chapter. As before, the mean of each of 

the 58 selected blocks was adjusted to zero. 

To carry out the test (4.14) and form the sequence ^^l, the test 

threshold was chosen as 1.282 a, where 5^ is the variance of each block, 

calculated as 

1024   ;k^j   ^ 

The value T= 1.2825- corresponds to an error rate of pi|o= .20 if the noise 

distribution is indeed Gaussian. If the noise is a background Gaussian 

noise with a high variance Gaussian impulsive contaminant, then o^ 

overestimates the background variance, and pi|o<.2. Similarly, o^ 

underestimates the variance of the impulsive component. In tj^aical 

situations, the impulsive component is present for only a small propor- 

tion of the time, and the variance ratio erf/erf »1. Therefore, while a 

threshold of 1.282a would correspond to an error rate of pou = .80 if the 
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noise samples belonged exclusively to the impulsive mode, it is far more 

likely that .80 »poll under the stated conditions. 

With the threshold set at T = 1.2B2a the sequence {pl was formed. 

Various window lengths were used to smooth ipil and the best overall 

estimated value of ARESSM (described later) was obtained with a window 

length 2m+ 1 =7.   Fig. 4.15 presents a representative block of noise data 
■ 

and the corresponding subsequence oi {p^l. 

The non-Gaussian natiire of the noise distribution is demonstrated in 

Fig. 4.16, a Q-Q plot of the empirical distribution of a sample noise data 

block versus the unit variance Gaussian distribution. In this plot, a Gaus- 

sian sample distribution would appear as a straight line. For noise sam- 

ples near the mean, the plot is approximately linear. For large samples, 

the empirical noise distribution has a spread greater than that of the 

Gaussian distribution. Thus, it may be concluded that the noise sample is 

heavier-tailed than a Gaussian density. 

Since the smoothed switching sequence [p^] estimates ^ej and 

classifies each noise sample as either a background or impulsive noise 

process observation, the noise samples may be segregated, and the vari- 

ances o-Q and of may be estimated. Using these estimates and the 

sequence ^J, each noise sample in the observation block may be nor- 

malized to unit variance. Fig. 4.17 presents the data of Fig. 4.15 after 

this adjustment. Distinct spikes no longer appear in the plot, save for a 

single spike near sample 800, where {pi I may be in error. The Q-Q plot of 

the normahzed data is shown in Fig. 4.18. The resiilting plot is more 

nearly  a  straight  line,   indicating  that  the  normalized   data  is  now 
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Fig. 4.15. Comparison of sample Arctic under-ice data 
record 2220 oiid coxresponding subsequence of {p^l. Vertical 
scale of the noise is in standard deviations from the mean. A 
threshold ol T = 1.2825 and filter length 2m + l = 7 were used. 
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sample 
quantiles 
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Gaussian quantiles 

Fig. 4.16. Q-Q plot showing sample quantiles of sample Arctic 
under-ice data record 2220 prior to processing versus the 
quantiles of a zero mean unit variance Gaussian distribution. 
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Fig. 4.17. Normeilized sample Arctic under-ice noise data 
record 2220 after \p^l and CT^/OQ are used to adjust the data. 
Vertical scale is in standard deviations from the mean. 
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Yig. 4.18. Q-Q plot showing sample quantiles of normalized 
Arctic imder-ice noise data record 2220 after \pi\ and of/oo 
are used to adjust the data versus the quantiles of a zero 
mean unit variance Gaussian distribution. 
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Gaussian. Therefore, we may conclude that the algorithm provided an 

effective means of distinguishing between the background and impulsive 

noise samples. 

For the particular data block of Figs 4.15 - 4.17, approximately 5.6% 

of the seimples are classified as impulsive noise, and the variance ratio is 

estimated as af/5o = 31-'3- These estimates may be used in (4.9) to esti- 

mate 775s by simply setting CTQ = 1, and letting af = af/5o. In this case, 

ARE5fl,jd =2.55 is the estimated performance improvement. 

Using the switched burst detector algorithm, all 58 of the high kur- 

tosis data blocks may be analyzed, allowing c, and of/of to be estimated 

for each data block. Fig. 4.19 gives the estimate of e, and the estimate 

of the variance ratio is given in Fig. 4.20; Fig. 4.21 presents the values of 

AREj^jd for each data block derived by substituting these estimates into 

(4.9).    • 

Over the 58 data blocks the cumulative average parameters were 

computed, giving e = .089, and of/OQ = 9.03. These parameter values lead 

to AREsg^id = 1.58 as an estimate of the processing gain. 

The switched burst detector may be compared to the adaptive detec- 

tors of the previous chapter. Fig. 4.22 shows ARE55 j^ plotted with 

ARE-    ;j and ARE_   ;j.   Here, it is clear that the switched detector out- 

performs the non-switching adaptive detectors. This result is not unex- 

pected, for the results of this chapter indicate that gsB outperforms g^in 

Gaussian-Gaussian switched burst noise, and the last chapter indicates 

that g^ slightly outperforms both gtm and gtm in Gaussian-Gaussian c- 
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Fig. 4.19. Estimated c for each sample noise data block. 
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Fig. 4.20.   Estimate of of/5^ for each sample noise data 
block. 
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Fig. 4.21. Estimated performance of switched burst detector 
SB relative to a linear detector id for each sample noise data 
block. 
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Fig. 4.22. Estimated performance of the switched burst 
detector SB relative to a linear detector Id (broken line) with 
the estimated performance of nonlinearities g^j^ and g2i rela- 
tive to Id (sohd lines) for each sample noise data block. 
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mixture noise. As noted earlier, the expression for the efficacy of a fixed 

detector in Gaussian-Gaussian e-nuxture noise is identiced to the expres- 

sion for efficacy in Gaussian-Gaussian switched b\jrst noise when 

9o-9i-9' ■where g is some fixed arbitrary detector. It follows then, that 

gsB will outperform any fixed detector nonlinearity if the Arctic under-ice 

noise is indeed a Gaussian-Gaussian switched burst noise. i 

■     '   ■;■, ■ ■ ■      ■  i 

5. Conclusion 

We have presented an argument in favor of a Lime-varying nonlinear- 

ity for use in a LO detector structure when the signal is embedded in a 

type of impulsive noise that classified here as a switched burst noise. The 

nonstationarity part of the structure is easy to implement; it merely 

requires switching the observations between two fixed nonlinearities. 

Analysis of the algorithm indicates that this detector is capable of 

improved performance over a fixed structure. A simple technique for 

determining the presence of noise bursts has also been proposed, and its 

performance was examined. 

It may be argued that the additional complexity of two nonlinearities 

and a structure to estimate the switching sequence [e^] is not warranted 

by the relatively modest improvement over the fixed nonlinearity g^. 

Several points are in order: First, a complex nonlinearity is replaced by 

two linear amplifiers and a switch. Second, the exact shape of g^ is a 

function of the impulsive proportion r and the variance ratio af/oQ. In 

the proposed algorithm, {e^\ would be determined by observation of the 

noise behavior,  and the exact value of e is of no importance to the 
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switched detector. The ratio of impulsive to background variance is 

important, however, since it will determine the gain ratio of the two 

Linear amplifiers. This is easy to calculate, since [e^j separates the noise 

observations into a stream of observations from the impulsive noise pro- 

cess and a stream of observations from the background noise process. As 

a result, the two variances may be calcalated in a straigtforward and 

appealingly natural manner. 

An assumption made in the example was that the impulsive com- 

ponent could be adequately modeled by a high variance Gaussian density. 

It might be desirable to use some other heavy tailed noise to model the 

impulsive component, for instance, a Laplace density. This has some 

intuitive appeal: It may be assumed that the impulsive component itself 

may be modeled with an additive mixture density in a fashion similar to 

Huber [18]. Then, as the contamination parameter approaches unity, the 

mixture density approaches the Laplace density, whose LO nonlinearity is 

the sign detector. Thus, gg would be a linear detector, and g^ a sign 

detector. Alternatively, gi might be chosen to be an amphfier-limiter, a 

noise blanker, or some other nonlinearity that gives the test statistic a 

degree of robustness against Impulsive noise bursts. 

One interpretation of the proposed structure is that switching 

between two linear detectors is not necessary. Instead, the proposed 

structure could be regarded as a hnear processor with some sort of 

automatic gain control, which can quickly and accurately adjust an 

amplifier gain and hold the noise variance constant. A linear detector 

with continuously adjustable gain is equivalent to the limiting case  M-*°° 
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of a switched burst detector where the detector switches between M 

liriear amphfiers. ■ ■- 
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i^peiidix4.1 

In this appendix, an expression is developed for the efficacy of a 

detector that switches between two nonlinearities g^ and g^ in accor- 

deince with a control sequence e^.   For the sake of compactness, E^^ 

71 

denotes the n-fold expectation with respect to the density Yif^(^i)' ^^'^ 

Ef^ denotes univariate expectation with respect to /o- 

The efficacy of a detector using test statistic T^ is defined by [5,6,9] 

as 

12     ■ 

rirp   = lim -^^ — 
■'n     n—»        nvaru r, 

s=0. 
(A4.1) 

A regularity condition causes the signal s to vanish asymptotically, ensur- 

ing that the probability of detection does not converge to unity as n 

grows without bound [5,9]. Another interpretation is that (A4,l) is an 

incremental signal-to-noise ratio [6,7], and the regularity conditions 

guarantee that as n-*°o, the incremental SNR remains finite. 

The test statistic for the switched burst detector can be written as 

Tn = Sy^Cxi) (A4.2) 
1=1 

i ' " 

since e^ taices on only the values of zero or unity. Then 

E///n = I]/[(l-ez)^o(xi+s) + eig,{x,+s)] (A4.3) 
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j ■ 

We use the fact that (l-ei)^= (l-ej and e^^=ei and that e^(l-ej) = 0 to 

obtain ■ ■ "      ! 

^njn  =S(l-e^)E/^o(^.+s) (A4.4) 

+ S^iE/igiCiz+s) 

Finally, making the usual assumption that the order of expectation and 

differentiation may be interchanged, we have 

"^ i = l i = l 
(A4.5) 

Without loss of generality, we wiU assume g'o has zero mean under f Q, 

and g j has zero mean under / j. Then var^/gT^ = E// T^. Here, 

'^HQTTL - E//g 2[(l-ez)yo+ e^yi] 
1=1 

The summands in (A4.6) may be rearranged to obtain 

(A4.6) 

(A4.7) 

+ ^HXT,[ii-ei)9Q{xi) + e,g,ix,)] 
i#j ^ 

>« [(l-ej)5o(a:j) +ejyi(xj)] 

The sequence [i^^ is independent, and gQ and y^ are memoryless 

transformations; therefore the second expectation on the right side of 

(A4.7) equals zero.  Thus, 
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^HJS = E/^lSd-^i) + E/.^fE«i 

Substituting (A4.5) and (A4.7) into (A4.1). we find 

Tif - lim 

E(l-ei)E/^o' + i;exE^,yi' 
^2 

71 

i i 

After multiplying through by n"^ and taking the limit, we have 

_ ((l-c)E_^^o' + '^E^i^if 

''^"       (l-£)E/^o' +eEj-^yf 

(A4.8) 

(A4.9) 

(A4.10) 
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y^pendix 4.2 

The previous appendix formulated the efficacy for the switched burst 

detector assumiiig perfect knowledge of the switching sequence [e^^l.   In 

f 

this appendix the result (A4.10) is extended to account for errors. 

Suppose Si is the true sequence, but errors are made randomly in 

choosing between detectors ^Q ^^^.d g^. Let^Ji e [0,1^ represent the deci- 

sion at observation time i to choose gQ or ^i, respectively. In the ideal 

case, Pi = Bi for —°° <i <°°. To model the effect of errors, let 

Prob(pi = 1 I 6^ = 0) =pi|o (A4.11) 

Prob(pi = 0| e, = 1) =po|i (A4.12) 

be the posterior probabilities of determining p^ incorrectly, where the 

posterior probabilities of correct detection are given by 

poio = l-pi|o (A4.13) 
■   ■ ■ t 

Pm = l-poii (A4.14) 

Clearly, it is desirable to have pi|o and po|i as near zero as possible. From 

the point of view of the detection system, [e^] is a deterministic 

sequence, and [p^| is a noisy estimate of [ej. It is assumed that (A4.11- 

A4.14) are time invariant. 

Rather than repeat the derivation of Appendix 4.1, only the 

significant modifications in the derivation wUl be noted. The correct deci- 

sion sequence [e^l in (A4.2) and its sequels may be replace by the cor- 

rupted decision sequence ^^5. Thus, the test statistic r„ becomes 

Tn=T.\(^-Ti)9oM+Pz9ii^z)] (A4.15) 
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The expectation of JD^ may be taken with respect to its posterior distribu- 

tion: 

if Bi = 1,   thenEp^ie^ = J]k Proh(pi =fc | et = l) = p, 
k=0 

if ej = 0,   thenEp.|e< = J^k: ProbQD^ =k | e^ = 0) = po|o 
*:=0 

Therefore 

*;      Ep.|e.7Ji = e^pi!i + (l-e^)pi|o (A4.17) 

Ej.t|ei(l-Pi) = etPo|i+(l-eJpo|o (A4.18) 

Applying these resxilts, the expectation of Tn with respect to the poste- 

rior distribution of JD^ may be written as 

Ep^lei^n = I](l-ei)[ooioSfo(2:T)+PoiiS'i(2t)] (A4.16) 

+T,^ifo\igo(^)+pi\i9i(x^) 

Following the same arguments as in Appendix 4.1, 

as E//,Ep^|,^ 7; = EfLiogo'+PongAti^-^i) (A4.19) 

+E/jk)o|iS'o'+Piitfl'i' Ti^i 

To compute varz/gT^, the arguments in Appendix 4.1 are paralleled, 

giving 

Eftl^t 7-^ - SEp,|e, (^-Pr)9oM+Pi9fi^i) 
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+SSEft.p^ 1 e^..^ (1 -Pi)yo(a^) +Piy 1 (iz)] (1 -Pj)go(2j) +Pj9\iXj) 
l^J 

The single summation becomes ( 

J^(l-ei)]po\ogi{xi)+piiogf{xi)Hght)+ei]^oiig^{xi)+piiigf{x^) \ 

Depending on the reconstruction algorithm, [pil may or may not be an 

independent sequence, so the double summation term cannot be dropped 

after expectation with respect to Pi le^. However, every term contains a 

cross product g (x^ )g (x^) with i J^ j. Thus, the expectation with respect to 

HQ of each term in the double summation is zero, for [x^ I is an indepen- 

dent sequence, and go and ^i are memoryless.  Therefore, f 

'    EHo^,\^Jn = '^fJ^oiogE+P^\ogf]j]{l-e,) (A4.20) 

^f^fong^+pingf XI 

Following a similar computation as (A4.9), it may be concluded that 

|(l-£r)Eyr^[ooiqgo'+PiiaS'i'|+eE/j[po|iyo'+Piiiyi 

(l-e)E/o^o|oyo+Pi|offf +c^f Jf 01190+pi\:gf 
(A4.21) 

Equivalently, noting (A4.13) and (A4.14), the expression for efficacy may 

be rewritten to depend only on the error probabilities 

\i.     s^    L. X     .. .1     „    f  ^12 

'7r„ = 
](.l-e)Ef^\{l-piio)gQ'+Pi\og{j+cEfJ^o\igo'+{l-pi\o)gi'] 

(l-e)Eyj,[(l-pi|o)y|+Ptio£?fJ + eEj^j^oiig^+(l-po|i)gf 
(A4.22) 
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5 

Approximation of 
Locally Optimum 

Detector Nonlinearities'\ 

An interesting problem arising in detection is the following: given 

that the true noise density / and the true detector nonlinearity g^pt are 

known, what is the best way to approximate g„j,i within some specified 

constraints? This chapter provides one possible solution to this broadly 

posed question. 

Section 1 reviews the theoretical background of the problem, and 

states the objective more precisely. Section 2 presents a theorem and 

proof showing the equivalence of a minimum mean square error 

(minimum MSE) approximation approach and an efficacy maximizing 

approach.  Section 3 provides some numerical examples as illustration of 

t This chapter is based on work done in collaboration with KS. Vastola of Prince- 
ton University; a different version of this chapter appeared as a coauthored paper 
[15]. 
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the theorem. A summary of the chapter is presented in Section 4.        ' 

1. Introduction and Problem Statement 

As discussed in Chapter 2, the locally optimal (LO) detector structure 

is useful for the detection of a signal which is known, but very small rela- 

tive to the noise environment. For detecting a (constant) weak discrete- 

time signal in the presence of white non-Gaussian noise with first-order 

density /, it is well known that the LO detector consists of a memoryless 
I ■ 

nonlinearity (ZNL) of the form 

followed by summation and comparison with a threshold. - 

Obviously, when the functional form of / is known explicitly, it is pos- 

sible to calculate the exact form of g^o- However, it may not be appropri- 

ate to implement the exact fimction gio; instead, it may be desirable to 

implement some suboptimal nonlinearity g. Possible reasons for this 

may be that g is in some sense easier to implement or more easily adapt- 

able to changing noise environments. For instance, g may be a ZNL with 

a simple parameterization. Other considerations may be that the best 

estimate of gi^o (e-^-, via density estimates) is too rough or has no closed 

form representation. 

When dealing with weak signal detectors, the usual measure of per- 

formance is efTicacy [1-4], which can be defined by the following equation 
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where Ej is the expectation with respect to /. Without loss of generality, 

we assume E/(g) = 0. The efficacy (5.2) can also be thoiight of as an 

incremental signal-to-noise ratio or as the processing gain achievable 

using detector nonlinearity g when the noise has density /. In principle, 

the problem discussed above may be solved by maximizing (5.2) over the 

family of possible ZNL's which we choose to admit. Unfortunately, in 

practice this is not often a simple thing to do, and an alternative 

approach is sought. 

2. Theorem and Discussion 

The theorem presented belov/ yields a method for finding the best 

nonlinearity over a class of suboptimum nonlinearities. Basically the 

theorem states that this problem is equivalent to that of finding the non- 

hnearity which is closest to g^o in the mean square sense. Several 

related results have been obtained in recent years. For the specific prob- 

lem of designing detector quantizers, Kassam [5] and Poor and Alexan- 

drou [6] have shown that a close relationship exists between maximum- 

efficacy quantization and quantization minimizing the mean square dis- 

tortion relative to gi^o- Also, in the more general setting of strong mixing 

(dependent) noise, Halverson and Wise [7] have shown that if a sequence 

of nonlinearities [g^ I converges in mean square to g^o, then the efficacies 

['nfi9n)l converge to the optimal efficacy 77/(^^0). Note that "mean 

square", as used in this context, is with respect to the measure defined 

by the noise distribution. 

Within the problem setting of Section 1, the following theorem is a 

generalization of the results in [5] and [6] discussed above. 
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Theorem. Given a noise density / , its LO nonlinearity gio> and 

a family G of candidate suboptimum nonlinearities, the solu- 

tion ^ * e G to 

Tjfig*) = ma.\'nfig) 
§ e. G 

is the same as the solution ^* e G to 

E/ id *-9LO)^ - min Ej {g-gio)^. 

subject to a simple normalization of the elements in G, 

(5.3) 

(5.4) 

Proof.    Under   the   mild  conditions  of  the  Pitman-Noether 

Theorem [1,3] .    t; 

T2 
^'     ^       [fgix)f'{x)dx 

■n/ig) = -^ • 
fg\x)f{x)dj: 

(5.5) 

Our problem is; Given a class G of nonlinearities and a density 

/, find y * € G solving 

maxr?/(^) (5.6) 

Since the efficacy of a nonlinearity g is invariant under a scale 

change (i.e., Tif{cg) -Tif{g) for every c ?5 0). we can multiply 

each nonlinearity g by the constant 

'=!7=- 

f9Loix)fix)dx 

fg\x)f{x)dx 
sgn[fg{x)f{x)dx\ (5.7) 

This allows us to assxime, without loss of generality, that for 

every ^ £ G 
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fg^{x)f{x)dx = fgSo{x)f{x)dj: (5.8) 

and 

fg{x)f'{x)dx^Q (5.9) 

Now consider the MSE problem 

mmfig{x)-gi^o(x)ffix)dx (5.10) 

We have straightforwardly that 

fig{x)-gLoix))^fi^)dx 

= fg\x)f{x)dx (5.11) 

-2fg{x)gj^oi^)f{x)dx+fg^oix)f{x)dx 

From (5.8) and (5.1) the MSE becomes 

= ^[f9L0i=^)f (a:)ctx + fg (x)/ '(x)dx 

Because   of   (5.9),   we   see   that  minimizing   this  over  G is 

\ r F equivalent to maximizing u g{x)f'{x)dx . By (5.8) the quan- 

tity Jg^{x)J(x)dx is constant over G; thus we have the con- 

clusion that minimizing the MSE (5.10) is equivalent to maxim- 

izing the efTicacy functional given in (5.5). ■ 

Discussion 

Thus, given / and giQ, as well as G, a family of approximations, the 

nonlinearity g * which maximizes efficacy over the family G is simply the 

minimum mean square error  approximation to giQ over G.   Solving the 
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minimum MSE problem (5.4) is often easier than solving (5.3) directly, 

especially when G is a parameterized family. 

For the purposes of the proof, each element in G was multiplied by 

the constant Cg, but in practice it is not always necessary to precondition 

each member of G. If one were trying to solve the MSE problem over a 

parameterized family of nonlinearities, say, G=[y(i;a)i, with a an m- 

vector of parameters, the simplest approach is to merely treat c^ as an 

additional parameter controlling the scaling of g. The new problem then 

would be to find the minimum MSE estimate of gio in G= [cy^(x;a)j where 

the new parameterization is the (m + l)-vector (c^,a). If an explicit ampli- 

tude parameter is already an element of a, then this modification is 

unnecessary and (5.4). may be solved directly. .J 

The theorem provides support for certain intuitive ideas about 

suboptimal detection. Previous work with suboptimal structures [8-14] 

suggests that near optimal efficacy is possible if the suboptimal structure 

g appears "close to" gio- Further refinements making g "closer" to gio 

yield only minor improvements in performance. Since efficacy is directly 

related to the mean square error between y and gio^ it is easy to see that 

small errors in g (relative to g^o) tend to be deemphasized, at the 

expense of emphasizing the gross errors. Furthermore, the square 

errors are weighted by the noise density; for unimodal densities, points 

in the tail region are weighted much less heavily than those near the 

mode. I 

These points illustrate why a great deal of latitude is available to the 

designer in choosing the tail behavior of g, while the shape of the central 
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region must be chosen much more care^iilly. In particular, for heavy- 

tailed noises, reasonable performance levels may be attained by carefully 

matching the shapes of g and g^Q near the noise mean, and choosing 

more roioghly the limiting or blanking behavior of the tail regions [8-14] 

Also, note that the adaptive nonlinearities of Chapter 2 typically were 

good matches to g^o near the noise mean, but only loosely approximated 

the tails of gi,o- In the examples given, these suboptimal adaptive non- 

linearities achieved high levels of performance with respect to the 

optimal nonlinearity. Additionally, in Chapter 3, the only nonlinearities 

that were substantially suboptimal were cases in which there was a poor 

fit near the origin. v.- 

3. Examples 

Known Density 

Since maximizing efficacy is the same as solving the M3E problem, 

the best approximation in G is the projection of gio onto G. As an illus- 

tration of this point, suppose G is the span of a finite set of basis func- 

tions (pi, with i = i, . . . ,N, where the tp^ are orthonormal with respect to 

/ . An approximation g will take the form 

N 

9='Z°^Vi (5.12) 

where the a^ are not all zero. Solving (5.3) directly requires simultaneous 

solution for [cuil in an iV-dimensional quadratic form. Solving (5.4) leads 

to the solution a^ =Ef {gio9i) for i = 1 N. 

This approach is probably most useful in an analytical context, for 
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detailed knowledge of / is necessary to generate the orthonormal basis 

set. If / is not available, a set of N basis functions may still be generated 

provided 27V^ moments of / are known [17]. 

Unknown Density 

In this example, the theorem is applied to smooth an estimate of giQ. 

Using a finite nimiber of noise observations, [X^llL'^, the kernel density 

estimation procedure of Parzen and Rosenblatt [16,18,19] is used to give 

/ and /', estimates of the density and its first derivative. The LO non- 

linearity may then be estimated as gioi^) = ~f'i^)/ f i^)- Unless N is 

very large, g^o will be rough, and it will be desirable to find giQ, a 

smoothed version of the estimated nonlinearity. By the theorem, a 

smoothing technique based on a minimum MSE criterion would yield the 

best performing S'io- 1 

Consider the following numerical example, where the \Xi\ are 100 iid 

observations of a zero mean, unit variance noise process with Gaussian- 

Gaussian e-mixture density, e = 0.1. and (TiVa|=100. Using the finite 

width polynomial kernel and window sizing procedure discussed by Silver- 

man [16], both / and /' were estimated, and gio was computed. Figures 

5.1 and 5.2 compare/ to the true density. i 

To smooth gio, it was projected onto G= —j=^x{\,x,x^,x^).  In a 

practical problem, / is unknown, so the expectations are computed with 

respect to the empirical cdf. Solving the MSE problem (5.4) requires the 

simultaneous solution of four linear equations. The result is a smoothed 

estimate 
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fix) 

Fig 5.1.   Estimated density /   (broken line)  and the true 
Gaussian-Gaussian e-mixture density/ (solid'line). 

logio/(^) 

Pig. 5.2. Comparison of / (broken line) and / (solid line) on 
a logarithmic scale. 
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fifio(i) = (/33X^+/52X^+/3iX+/3) 
e 

VSTT i 

Figure 5.3 compares §10 and y^, and Figure 5.4 compares g^o and the 

true   LO   nonlinearity   g^o-    For   this   example,   ARE-    ,^ = 8.58   and 

f- 
ARE3 = .951, where ARE is as defined in Chapter 2.   • 

In this example, G is not orthonormal with respect to the noise den- 

sity. It was chosen for convenience and "nice" smoothness properties. 

This example, and work by Modestino [20], suggest that elements of G 

could be various generic detector nonlinearities, where the coefficients /S^ 

would weight the contribution of each nonlinearity. Some adaptive pro- 

cedure could observe the noise and update the coefficients /S^. 

4.  Conclusion 

When replacing a known locally optimal nonlinearity with some 

suboptimal nonlinearity, it is desirable to have a method which is simple 

and generates a nonlinearity which preserves a high performance level. 

We have presented a proof of the equivalence of efficacy maximization 

and mean square error approximation. MSE minimizing procedures have 

many appealing properties, and they have a rich history in both theory 

and application. Often relatively simple algorithms may be found for car- 

rying out the calculations, and it is possible that these methods may now 

be apphed fruitfully to the problem of designing maximum efficacy 

suboptimal detector nonlinearities. , 

There are several other useful interpretations of the theorem. The 

first is that, since the MSE performance measure involves only a single 
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gix)   0 

¥\g. 5.3.  Comparison of the estimated nonlinearity gio (bro- 
ken line) and the smoothed estimate gio (solid line). 

g{x)   0 — 

Pig. 5.4.  Comparison of the smoothed nonlinearity QIQ (bro- 
ken line) and the true nonlinearity g^o (s.olid line). 
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integral, we can study the contribution of an isolated region of the non- 

linearity to overall mean square error, and therefore, its relative contri- 

bution to performance degradation. As an example, this allows us to 

examine the sensitivity of performance with respect to changes in the 

nonlinearity over certain regions of the input axis. Often, the behavior of 

a nonlinearity's tail region is of particular interest, and the simple rank- 

ing of performance sensitivities afforded by the use of (5.10) would allow 

the relative merits of various tail configurations to be studied indepen- 

dently of the shape of the rest of the nonlinearity. Zero mean square 

error in the tail region would indicate that the tail is "locally optimum in 

that region", and therefore provides the best possible contribution to 

overall performance. ■   !; 

One area of interest still open is the question of approximating the 

small sample (Neyman-Pearson) detector. It would be worthwhile investi- 

gating the properties of minimum MSE approximations to the NP detec- 

tor nonlinearity, .     -      '     "   \ 
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6 

Detection 
and Smatl Sample 

Performance Measurement 

Previous chapters have been concerned mainly with locally optimum 

(LO) detection. As pointed out, LO detection may be regeirded as a limit- 

ing worst case, optimal only in an asymptotic sense. For finite sample 

sizes and nonzero signal-to-noise ratios, Neyman-Pearson detection is 

optimal in a particular sense. Efficacy is a useful asymptotic perfor- 

mance measure, but it does not give much information about the small 

sample size performance of a detector. 

This chapter will be concerned with developing a performance meas- 

ure useful for comparing finite sample detectors which approximate the 

NP optimal detector. Section 1 reviews the theoretical background of 

this problem, and develops the properties of the proposed performance 

measure, and Section 2 presents some examples applying the result. 

-264- 
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'   ■■   ■   ■„. ■ - ■ I      - 

Section 3 provides a brief conclusion to the chapter. '   . 

1. Analysis of the Performance Index Properties 

■ 

Introduction and Theoretical Preliminaries 
■ ■, , i       ■ 

Consider the binary hypothesis testing problem: i 

HQ:  X~/O(X) 

x=(zi x^)eX^ (6.1) 
H,: x~/i(x) 

A straightforward apphcation of the Neyman-Pearson Lemma [l, p. 193] 

leads to a threshold test of the form 

^1 

■"0 

T (6.2) 

This test is optimal in the sense that for any probability of false alarm 

a < ao of incorrectly deciding H-^ when HQ is true, the probability /3 of 

correctly deciding H^ when //j is true is greater than any other test with 

level a < QQ. Often, /S is called the power of the test. Alternatively, the 

measure 1-/S is sometimes of interest, and is designated as the probabil- 

ity of/aZse disTnissal. 

As noted in Chapter 2, the statistics QQ and /S are difficult to com- 

pute. However, one approach to describing the performance of the test 

(6.2) is to find boimds on a^ and 1—/S based upon measures of distance 

between /o and / j, such as the ChernofT distance [2]. Kailath [3] provides 

a summary of classical approaches, and Blahut [4] explores distance 

measures and some connections between hypothesis testing and coding. 
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An extensive example of ChernofT bounding is available in Van Trees [7, pp 

116-133]. 

These techniques are useful when /Q and /i are known exactly, but 

unfortunately, this is not often the case. Furthermore, by force or 

choice, the likelihood ratio test (6.2) may be altered by replacing /Q and 

/j with incorrect densities JDQ and JDJ. Kazakos [5,6] considers the use of 

distance-measure-like bounding techniques for hypothesis tests based on 

inaccurate versions of the true densities. 

The contribution of this chapter is to extend some results on dis- 

tance bounding and bounding for detection under mismatch to the more 

general situation where the likelihood ratio is replaced by a general 

transformation not necessarily defined by the ratio of two unique densi- 

ties.  It will be useful to make the transformations 

X;vp(x) = lnA/^p(x) (6.3) 

t =lnT (6.4) 

and consider the Neyman-Pearson test   „   , 

Hi 

X^p(x)   It (6.5) 

' Ho 

The log-likelihood ratio X^p(x) will be replaced by a general detection 

processor gix).   The following regTjlarity conditions are assumed with 

respect to both the measures induced by density functions /o and / j: 

(a)     -oo<g{x)<°° a.e. inX^ 
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I 

(6)     /o(x)5^/i(x) for some subset of X" with nonzero measure.   ' 
- 

Thus, distinctness of the hypotheses is assured. Additionally, 

it is required that the measures induced by /o ^.nd /j both 

be absolutely continuous with respect to each other.   This 

implies that /Q and /j have common support, and that the 

detection problem is not singular. 
■ i' 

(c)      -«'< Eo^ < Elsr <«>.       Therefore.      distinctness      of     the 

hypotheses after processing by the detector is assured. This 

mild condition merely restricts the processor g to be "rea- 

sonable": observations under FIj tend to generate a larger 

valued test statistic than observations under HQ- I   • 

The regularity conditions ensure thaty(x) exists w.p.l under either HQ or 

Hj. It zuiU be assumed that these regzdarity conditions are satisfied by 

all detectors and densities considered in the remainder of this chapter. 

Using the generalized detection processor g, the likelihood ratio test 

(6.2) becomes 

S(x) ^t (6.6) 

Ho 

As an aside, note that g{x) has several common realizations.   For 

instance, it may be the output of a matched filter, or its approximation. 

n 

In other cases, g(x) = 2gi(ii), where gi is a memoryless nonlinear 

transformation. When the observations [x^ J^Lj are independent 

AAfp(x)=  U^NPiii^i) (6.7) 
i =1 
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f ■■{^) 
where A/i/p;i(zi)= -—-—r-is the likelihood ratio of the univariate densi- 

ties of observation x^. It follows from the monotonicity of the logarithm 

function that (6.6) is an NP optimal test when gi{xi) = '^NpA^i)> the log- 

likelihood ratio. Memoryless transformations other than the log- 

likelihood ratio may be used as g^, and they may be generated by 

methods similar to those proposed in the previous chapters, particularly 

when the noise density is assumed to be stationary. 

Exposition of tlie Perf ormzmce Index 

For the remainder of this chapter, we consider the the binary 

hypothesis test of (6.1), assume a decision will be made according to a 

test (6.6), where the regularity conditions are satisfied and s'(x) is not 

necessarily equal to X^p(x). As a first step in developing a performance 

index for the test (6.6), consider the functionals given by 

Definition 1. 

A/o(^;g) = ln/e'*!'W/o(x)dx (6.8) 

+» 

i/i(u;^) =ln/e-"9W/i(x)dx (6.9) 

Notice that both MQ and M^ are cumulant generating functions, since 

they are the natural logarithms of the moment generating function (mgf) 

for the random variables produced by the transformation sf(x) or -g(x), 

respectively. Thus, necessary and sufficient conditions for M to exist and 
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.   ■ 

be finite is that, for u in some neighborhood about the origin, the mgf of 

g exists.  A necessary condition for finite M to exist is simply that g (x) 

has finite moments of all order. 

'   ■ I' ■  . 

The following theorem provides bounds on the error probabihties. 

Theorem 1. Let a test of the form (6.6) be used to distin- 

guish between two hypotheses of the form (6.1), and assume 

MQ and Ml are defined as above. If MQ and M^ exist and are 

finite, then 

ao< e (-ui+i/o) (6.10) 

Proof, (after [5]) 

l-jS<e (ut+y^) 

ao = Prob G(x) > T \ HQ 

= Prob[e!'W> e^  | H^ 

= Probfe!'(*)-* > i I He 

(6.11) 

by the Markov inequality. The proof for the inequality on 1-/S 

follows in similar manner. ■ 

The two functionals may be combined to provide a useful perfor- 

mance measure for comparing false dismissal error probabilities of two 

competing detector structures operating with equal false alarm rates. 

Before this is illustrated, it is first necessary to develop 
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ii) 

lamina   1.     If   MQ   and   M^   exist,    define   the   function 

r(u;g)-MQiu;g)+M^iu;g). Then 

^*(ff) =r{u*,g) = Mo{u*;g)+M^(u*;g)\ (6.12) 

min 
u 

Mo{u;g) + Mi{u;g) • 

exists for some finite u*. 

(a)    The minimum value satisfies r{u*;g) < 0. 

(Hi)    For any g , the value of u* is unique. 

Proof, t 

(i)      Since MQ and Mi are cumulant generating functions, they are 

convex in u, [8, p. 121]; therefore r is also convex.   Observe 

that r(0;g) = 0; it may be shown that ]im r{u;g)=-°o. 

First, we rewrite the definition of r{u;g) as 

r(Tx;flr) = Ine-«^/e«(!'+^)/o + lne'*^/e-'^(5+^)/i 

where C is some constant.  The region of integration may be 

partitioned, giving 

r{u;g) - —liC+uC+ki 
(ff + C)>0 (y+C)sO 

t In this proof, we employ a.e. as the abbreviation of oXmost everywhere, f «g 
means that the measure induced by ^ is absolutely contvrvwous with respect to 
the measure induced by g. U f «g and g «f , then the induced measures 
are equivalent, and the condition is denoted as / = y. For convenience, the 
phrase vMh respect to the measxire induced by will be suppressed in the text. 
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+ ln 

We now consider separately the case u > 0.  It follows that 

r(u;^) > In 
(» + C)>0 

+ In 
(ff+C)<0 

as each partitioned integral is nonnegative. Regularity con- 

dition (c) implies that g cannot be a constant a.e. with 

respect to /o or /i. Therefore, for some C, the regularity 

condition that /o = /i ensures that there exists £>0 such 

that 

0^    /  /o 
S+C>c 

and 

0^     /   /i 
S+C<-c 

Because £>0 exists, 

r (u ;y) > In 
J!7 + C>e 

+ In 
g + C<-E 

> 2u£+ln + In f / f \(gi-C)<-c 

The latter function grows without bound as u  approaches 

infinity. 

For the case u <0, similar arguments show that r{u;g) 

grows without bound as u approaches negative infinity also; 

therefore, since riu;g) is convex, some finite u* exists that 
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minimizes r (u ;g'). 

[a)     Since r is convex in u, to show u*>0 and r{u*\g) <0, it will 

be sufficient to demonstrate that -^— 
ou 

< 0. Here, 
u=0 

^= ^*„(";s).|^#,(u;s) 

_   Tn,o'(li)        T71i'(u) 

mo(it)      77ii(u) 

where the m(u) are moment generating functions.   Thus, 

m(0) = 1, and m'(0) =E(y), which gives 

dr 
du 

= Eo(y) + Ei(-^) 
u=0 

Regularity condition (c) ensures that this quantity is nega- 

tive. Therefore, the minimum value of T{u;g) exists for some 

u*> 0, and this minimum value T*{g) is less than zero. 

{Hi) To demonstrate that u* is unique, it will be sufficient to show 

that the second partial derivative of T{u\g) with respect to u 

is strictly positive for all u and arbitrary g. The second par- 

tial derivative may be written as 

aV _ /e"/o/g^e"°/o-[/gB'«/„]^ 

2 

12 

Notice that the fxmctions 
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/o« - 

and 

/i. = 

are density functions also. The expectations with respect to 

these two new densities will be denoted by Eog and Eje, 

respectively. The second derivative may be expressed in 

terms of these expectations as 

du^ 
Eoe^'^-EoVy  + "Ei^g^-Elg 

which is the sum of the variance of g under /oe and /jg, 

respectively. The regularity conditions ensure that g is finite 

a.e. and not a.e. a constant; therefore/o« =/o. and f \t=f\. 

Then g is not a.e. a constant with respect to / oe and / jg, and 

its  respective variances  are nonzero.   Thus,  when r{u;g) 

exists, —sr is strictly positive. ■ 
■~ 

The previous lemma demonstrates that for a given y, it is possible to 

find the minimum value r*{g), which shall be designated as a perfor- 

mance index of g. The reason for this will be clear from 

Theorem 2.   If MQ and M^ exist, then 1-/S< -L.e^"°*"'^ for 
0(0 

u >0, and there exists a tightest bound ' ! 

1_^< J_e^'(<7) (6.13)       I 
0(0 
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Proof. 

OQ ^ exp(-ttf +MQ) 

In OQ^ -^UI+MQ 

MQ-IU ao 
t < 

u 

We substitute this result into the bound on false dismissal 

probability: • ^; 

!-/?< exp(ui+Afi) 

< exp(j¥o—In ao+i/i) 

Lemma 1 guarantees that T*{g)  exists for a unique vedue 

u*>0.  Thus, it follows that a tightest bound —e^'^^ exists. 
ao 

■ ■        ■ 

If T*{g) is to be a useful performance index for comparing detectors, 

it must give the best index for the optimed detector structure. Demons- 

tration of this fact will require 

Lemma 2. Suppose G is a convex set of functions on X^ satis- 

fying regularity conditions (a) and (c). Suppose MQ and M]^ 

exist for aU g* e G. Then MQ and M^ are convex on G. 

Proof. To demonstrate convexity of the two functionals it will 

be sufTicient to show that 

Mo{u;6g+{l-6]h) < dM^ixL^g) + [\-6]Mo{u-h) 
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forOS(5:Sl andflr,/ieG. 

We begin by recalling Holder's Inequality: 

if  —+—= 1. then ElJO'l < [EIXP 
i/p 

J \ 
Ely 

11/? 

The inequality is applied to the definition of MQ, with p = 

and q 

_ 1 

1-6 

MQiu;6g+[l-6]h) = In/e*'^We(i-<5)^''W/o(x)dx 

<ln / 

Sug{xj-T- 
/o(x)dx / 

(l-5)7iA(x)-4- 
e '-Vo(x)dx 

1-6] 

= <51n/e'«W/o(x)dx +  (l-c5)ln/e^W/o(x)d3 

The proof for A/, is identical in form. ■ 

Theorem 3. Let G be the set of all functions on X^ satisfying 

(a) and (c). Then the function T{u;g) achieves a globally 

minimum value for g (x) = Xt/p{x) and u =■% 

Proof. First, note that if ^ (x) e G, then Cg (x) e G for any con- 

stant OO. Therefore, minimizing r{u;g) over R+xG is 

equivalent to minimizing r{}^\g) over G. To prove the 

theorem, it will be sufficient to fix u = J^ and attend to the 

minimization problem in G. 

To prove existence of a stationary point at j(x) = X//p(x), 

a calculus of variations argument will be used. 
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Lel (5(x) be any arbitrary variation which is not a.e. a con- 

stant, and let e be a real number; further, let (5(x) be subject 

to the restriction that the perturbed nonlinearity 

g(x) = X/^p(x)+e(5(x) 

remains an element of G.   If (5(x) is a.e. a constant, then 

The functional r(u;X^p+c(5) may be written , 

r(u;g)=ln/e"t^''-^^^"=*^^)Vo(x)dx 

+ ln/e-"t^^«^^''«Vi(x)dx 

For the remainder of the proof, the dependence on x will be 

suppressed in the notation. Taking the first derivative with 

respect to epsilon yields 

Qr ^u f6e"t^^^^^^V,      u f6e -^^^^^^^^^ , 

A necessary condition for a stationary point in r to exist at 

= 0 for all possible variations c5.   There- XMO is that -— 
oc e=0 

fore, the condition for a minimum is 

But A//p = ln-;—,  and u = }^  and the necessary condition 
/o 

becomes 
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which is fulfilled for any arbitrary variation 6.  Therefore, the 

conclusion is that 

J^r{}^-\^p+e6) = 0 
E=0 

It is easy to show that G is convex; hence, Lemma 2 

implies that this stationary point is a global minimum [13, p. 

191]. 
.■■■,. " ., 

As an aside, note that the global minimum value is 

achieved for any pair of u and y such that ug =}^Xj^p + C 

almost everywhere for any constant C.   Thus, the globally 

minimum value r(}^;AArp) is not unique. ■ I 

In a binary hypothesis test, the performance of the test is unaffected 

by a monotone transformation of the test statistic. Here, the weaker pro- 

perty of the invariance of T*{g) to linear transformations of the test is 

demonstrated. ' 

Propositioii 1.   r*{g) =r*{a+bg), where the variables a and 

6 are real numbers, and 6 ?^ 0. 

Proof. 

riu;g) = MQ{u;a + bg)-\-M^(u;a+bg) (6.14) 

= In /e-(»^''»W)/o(x)dx + hi /e-^f-^'-i/W)/j(x)dx 
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= In e '^/e ""s'«/ o(x) dx + In e "«« fe -"«'!' («)/ j (x) dx 

= txa-^ixa+ln /e'^W/o(x)dx + In fe-^'^^f i(x)dx 

= ^o(iy;5)+^i(^y;^) (6.15) 

Finally, minimization of (6.14) with respect to u obviously 

yields the same result as minimization of (6.15) with respect 

to w. Therefore r*{g) is invariant under linear transforma- 

tions on g. ■ 

2. .^plication of the Perf ormance Index 

The previous section proposed the performance index r*{g) and 

developed some of its properties under very loose regularity conditions 

on the two hypothetical densities /Q and /j, as well as on the detection 

processor g. The index is usable for dependent as well as independent 

noise, and for linear or nonlinear processors, with or without memory. 

The iid Noise Case 

The properties of the index will be explored here for the case of 

independent and identically distributed observations where g is the sum- 

mation of outputs of a memoryless nonlineair transformation. 

Proposition 2. Let the noise densities of hypothesis test (6.1) 

n 
be /(.)(x)= n/();i(^-i)' ^^'^ ^^^ ^^s detection processor g{x) 

i=l 

n 
be of the formg(x) = 2^i(3:i)-  Then 

i = l 

Afo(^■.9)=t in/e"''^^^V0;ti^)d^i (6.16) 
1=1 
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M:iu-g)=t^nfe-^'^^''^f,.^,{x,)dx, (6.17) 
i = l 

Proof.   The proof is a straightforward computation, outlined 

here for MQ as : 

^/■■■/expkSgiCxi) 
n-fold 1 = 1 

n/o;i(xt)«icr-tir^ 
1=1 

= lnn/e^*(^Vo;i(xi)'ix, 
1=1 

= 2ln/e"'^^(^Vo;z(xi)dx, 
i = l 

The proof for Afj follows similarly. ■       • ! 

71 

When the noise observations are iid, then / (x) = fj/ (ij.   Here, the dis- 
i"=l 

tinction between the  multivariate  and univariate  densities should be 

clear from the arguments of the densities. 

Corollary 1. When the noise is independent and identically 

n j 
distributed, and g(x)= 2 ^i(xi), then ' 

i=l 

Mo = nMoiu-g,) = n ln/e"^'^'Vo(a:)dx 

The performance index becomes r*{g)=nT*{g-^) where 

r*(flfi) = min   MQ{u;g-^)+M^{u;g^) (6.18) 
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After inserting this result into (6.13), the bound on false dismissal proba- 

bility becomes 

1_^< J_e--(^i) (6.19) 
OtQ 

Thus, the bound on this error decreases exponentially with the number of 

data observations. 

Two detectors, g and h., may be compared by computing their rela- 

tive  efficiency, where   RE_ ^ =   ^,  °' .  ,  the ratio of the number of 
ff'^     Tij,(ao,/3) 

observations in the respective detectors operating with false alarm rate 

no greater than UQ and probability of correct detection at least /S.  While 

r*{g) does not allow computation of the exact value of /S, it does allow 

computation of a bound on 1-/3. 

Proposition 3.  Suppose two memoryless detector nonlineari- 

ties g and h operating on lid distributed observations each 

use    Ug    and   n/^    data    observations,    respectively,    and 

"•/I   _ 7-*(gi)     ^, 
  . Then 
rig       r*(/ii) 

CXQ ao 

Proof. The proof follows from direct computation." 

r*(g^) 
The quantity may be designated as the Teiative bound efficiency 

of detector y relative to detector h. Thus 

RBEj,A=^ (6.20) 
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is a measure of the relative rates of convergence in the false dismissal 

probability of two detectors operating with equal false alarm rates. Alter- 

natively, it may be considered as a measure of the ratio of the number of 

samples needed in each detector to obtain equal bounds on the false 

dismissal probability for equal false alarm rates. Note that (6.20) extends 

easily by replacing r*{g^) with r*{g). Thus, the RBE of two detectors may 

be compared for non-iid noises, and detectors with memory. 

A related measure of efTiciency is the Chernof! asymptotic relative 

efTiciency [2,11], or ARE| ;^, defined as ' . 

min miiiMo{u;g),minMi{u;g) 
AREl . =  \^ "t L ! 

^'        min rrn.nMQ{u\h),TnmM-^{u\h)] 
u 

The proposed measure RBE differs from ARE'' in that RBE measures the 

relative rates of convergence of 1-/S under equal false alarm rates for the 

two detectors. 

Detection of a Known Constant SSignal 
I 

An often discussed special case is the problem of detecting the pres- 

ence or absence of a known constant signal in the presence of an additive 

iid noise. When the signal is positive, this problem is sometimes is known 

as the shift-to-the-^ght problem. The univariate noise densities under 

the respective hj^jotheses become 

/o(^)=/(x) , 

/i(x)=/(x-es) 

where 6 is the known constant signal amplitude, and / is the univariate 

density of the  additive noise.   For convenience,  and without loss  of 
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generality, we shall hereafter assume s =1.   A common situation is for 

the noise to have zero mean, and for the density to be symmetric about 

the mean.   The optimal detector will then be odd-symmetric about the 

point 9/2.  Under these conditions, we have 

Propositioii 4. If 

/i(a:) =/o(x-e) 

/o(a:) =/o(-a:) 

9 -TT 

then. Mi{u\g) = MQ{-u.\g). 

< 

e e  . 
■7:.—2; - -9 ^+x 
2 2 

Proof. The proof begins with the definition 

^i(u;g) = ln/e-«ff(^)/i(z)da: 
—QO 

Applying (6.21) yields 

M^iu;g) - In fe-^'^^-^^fQ{x)dx 
— DO 

as 

= In/e-'^^^/s+Cx+e/z^y^^j.)^ 

£aid applying (6.23) gives 

—00 

^i(u;5)=ln-/e^(^)/o(-z)dx 

(6.21) 

(6.22) 

(6.23) 

Finally application of (6.22) yields the desired result 

Miiu.g) = Mo{u;g) 
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It is possible to show in the shift-to-the-right problem that, as the 

signal vanishes, the quantity RBE^^^ for two detectors approaches 

asymptotically the value of ARE_ ^. 

Theorem 4. In the shifL-to-the-right problem, with iid noise 

and detectors ^(x) = f^gix^-.e) and/i(x)= f;/i(i^;e) that are 

odd-symmetric about 6/2, with test structure (6.6), and with 

test thresholds Eog<^j,<Ei^ and Eoh.<tf,<Eih, respec- 

tively, let the false alarm rate be equal in both tests. Then       1 

lim RBE 'g .h - ARE^ ,/i 

Proof. The power of the test using g is 

Pg =Prob[y(x)>nij,  i Hi 

= Prob[/i(x)<7iig I Ho 

and similarly for /5/i.  By appUcation of Chernoff's theorem [8, 

11] it may be shown after some simple algebra that 

lim—lnProb[g(x)>n^„ | HJ 

—TJ-tg +Mi(u;-g) = mm 

and that 

(6.24) 

lim —lnProb|g'(x)<nif„ I Hn 

= nun 
u 

ut   +MQ{u-g] 

(6.25) 

independently   of   the   value    of    6.     By   Proposition   4, 

Moi'>^-g) = Mi{u;-g).  Therefore 
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min[-uiy+jl/i(u;-g)] (6.26) 

= J^min MQiu;-g-tg)+Mi{u;-g+tg) 

eind 

min 
u      I 

utg +MQiu;-g) (6.27) 

= J^min Moiu;-g+tg) + Mi{u;-g-tg) 

However, (6.24) and (6.25) imply that (6.26) and (6.27) must 

be equal. As a consequence of Proposition 1, they are equal 

io'^r*ig). 

Following Capon [9],  let [Ojd  be a sequence of signals 

such that lim0i: =0, and let the sequences [rigicl and {rlf^.kl 

be two increasing sequences of integers such that 

0 9^ lim/Sy(efc,nj,.ifc)= Um/3^(ei,n^;;fe) 9^ 1 (6.28) 

Since the nonlinearities g and h are functions of ©, we will 

denote the sequences of nonlinearities dependent on {6kl as 

gk and/ijt, respectively. Then 

\im hi^g(9k.Ugk) = limlnProb[g'fc(x)>n^g | Hj] 

and similarly for detector \.   The ratio of false dismissal 

probabilities for the two detectors may be written as 

n^,k lnP,iek,Tig,k) _ n^;fclnProb[g(x)>n^;,^, j H^ 

Tig-k In^hi^k.-n-hik)      ng,k InProbfg (x)>n;,;fc^^ | Hi 
(6.29) 

By previous arguments, it follows that in the limit the right 
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side of (6.29) becomes the ratio ' 

which by the definition (6,20) of RBE is the quantity 

UmRBE^^/^^.   Condition (6.28) assures that in the hmit the 

powers of detectors gt. and fi^ are equal, which reduces the 

left side of (6.29) to the definition of asymptotic relative 

efficiency i 

lim^^^:^^^=ARE,^ i 

i 

The   conclusion  then  is   that   as   e-*0,   the   quantities 

^^^g.h ^^'^ ^^^g,h ^^^ asymptotically equivalent. Note that 

in the limit, nonlinearilies g^ and h^ are odd-symmetric 

about the origin. ■ 

Numerical Examples 

In this section, the performance index is calculated and compared 

for three different detector structures in two different noise environ- 

ments for the shift-to-the-right problem. The objective is to decide 

between 

Ho: X,  ~ fix,) 

for   i = 1, ... ,71  and e>0 
Hi:  Xi  ~ fixi-e) 

using a test 

Hi 

Hn 
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The three detector nonlinearities which will be examined are the Linear 

detector 

guiix) = 9{x-0/2) (6,31) 

the sign detector 

g^{x) =sgn(i-9/2) (6.32) 

and the amplifier Limiter 

s 

-0V2 for-«'<x<0 

^ai(aj) = I 2V2(x-©/2) for 0<i< 0 (6.33) 
eV2 for e<i <°o 

The two densities which will be used are the Gaussian density 

and the Laplace density 

/L(x)=^e-^l-l (6.35) 

The three detectors are illustrated in Figures 6.1 - 6.3. Note that gjd(^) is 

the Neyman-Pearson optimal nonlinearity for / =fG. and g^^ is the NP 

optimal nonlinearity for / =/i. 

The methods of this chapter may be applied to calculate r*{g), and 

the RBE of various pairs of detectors under the two noise environments. 

Appendix 6.1 gives the formulation of r{u;g;f) for all six combinations of 

detector nonlinearities and densities. Here, / appears as an argument of 

r to emphasize the dependence of r*{gj) on a single univariate density. 

For some combinations of nonlinearities and densities, r* or u* is given. 
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Pig. 6.1.  The linear detection processor gi^ ior G-l. 
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Fig. 6.2.   The amplifier limiter detector nonlinearity g^i for 
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Fig. 6.3. The sign detector nonlinearity gg^ for 0 = 1. 
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Rg. 6.4. Performance comparison of the amplifier limiter 
and the sign detector relative to the linear detector in Gaus- 
sian noise. 
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but for others this value must be found through numerical methods. 

Figures 6.4 and 6.5 present the RBE of the detector pairs under Gaus- 

sian and Laplace noise assumptions, respectively. Since both densities 

were defined with unit variance, the horizontal axis of the plots is also a 

measure of the signaL-to^noise^atio (SNR). The nordinearities are 

parameterized as a function of 9; thus as 9 becomes small the shape of 

Qai and gsd become nearly identical relative to a fixed observation scale. 

As predicted in Theorem 4, RBE^^ i^ and RBE^gj i^ asymptotically 

approach ARE^^^ ^^ for small 9. When the SNR, (equivalently, 9), becomes 

large, RBE^^^ j^^ approaches unity for both densities, implying that under 

this condition the amplifier limiter and the linear detector have the same 

efficiency. Also, RBE^^^ ^^^ converges to }^, as shown in Appendix 6.2. 

For comparison, the ARE of various detector pairs may also be calcu- 

lated as a function of the parameter 9. For the purpose of calculating 

efficacy, it is assumed that the nonlinearities are symmetric about zero 

instead of 9/2. Therefore, in Appendix 6.1 the efficacy is given for the 

shifted nonlinearities g{x + 9/2). Figures 6.6 - 6.11 compare RBE and 

ARE for pairs of detectors imder the different noise assumptions. 

■   . I 

All six of the figures further emphasize the convergence of ARE^^ i^, 

RBEjj^ l^, and RBE^^^ ^^ for small 9. The performance of the amplifier 

limiter and the linear detector are approximately equivalent for high 

SNR, as shown by both ARE and RBE. Notice that, while ARE predicts a 

constant performance level for the sign detector. Figures 6.8 -6.11 

emphasize that the linear detector or amplifier limiter may well outper- 
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SOlogio^ 

20 30 

Pig. 6.5. Performance comparison of the amplifier limiter 
and the sign detector relative to the linear detector in 
Laplace noise. 
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Rg. 6.6.  Comparison of ARE and RBE of the amplifier limiter 
relative to the linear detector in Gaussian noise. 
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Fig. 6.7.  Comparison of ARE and RBE of the amplifier limiter 
relative to the linear detector in Laplace noise. 
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Fig. 6.8.   Comparison of ARE and RBE of the sign detector 
relative to the linear detector in Gaussian noise. 
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2Ologio0 

Fig. 6.9.   Comparison of ARE and RBE of the sign detector 
relative to the linear detector in Laplace noise. 
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Fig. 6.10.  Comparison of ARE and RBE of the amplifier lim- 
iter relative to the sign detector in Gaussian noise. 
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aoiogio^ 
Rg. 6.11.   Comparison of ARE and RBE of the amplifier lim- 
iter relative to the sign detector in Laplace noise. 
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form the sign detector for moderate to high SNR. Michalsky, Wise and 

Poor [12] studied the convergence of relative efficiency to asymptotic 

relative efficiency in the finite sample size detector and observed similar 

difficulties with ARE. They also found that m certain cases relative 

efficiency may produce a different ranking of detector performance than 

would asymptotic relative efficiency 

3. Conclusion 

Some properties of a functional r ♦(g-) were developed in this chapter, 

and it was shown that T*{g) is a performance measure which may be 

potentially usefiil for studying the performance of finite sample size 

detectors. In this regard, it may be considered as a figure of merit, or a 

performance index for a detector. As was demonstrated, r*{g) is a quan- 

tity which may be used Lo form an exponential bound on 1-/S. Thus, the 

smaller the value T*{g), the smaller the bound on false dismissal proba- 

bility. Given a pair of hypotheses, r*{g) may be used to rank competing 

alternative structures. 

A disadvantage of bounding methods is that it is not clear that com- 

paring and ordering systems by a performance bound corresponds 

exactly to an ordering of the systems by their error probabilities. 

Indeed, we resort to a bounding method precisely because we are unable 

to calculate, (and hence, order by) the error probabilities of the alterna- 

tive systems. A bound is useful for comparing the relative merits of sys- 

tems, though, for a boimd guarantees a certain minimum performance 

level. As a result, it is reasonable to say that the tightest bound 

corresponds in some sense to the "best" system. 
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Of particiilar utility is the ratio of respective r*{g) indices for two 

competing detectors. This ratio was denoted as relative bound efficiency, 

or RBE, as was shown to be asymptotically equivalent to ARE as the signal 

to noise ratio vanishes. For finite SNR, however, the behavior of RBE 

diverges from ARE and follows more closely intuition about the relative 

efficiency of several common finite sample size detectors. 
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Appcndix 6.1 

In the previously stated conditions of the shift-to-the-right problem 

'''i'^'.g) - 2i/o- Therefore, for the six combinations of nonlinearities and 

noise densities, an expression for MQ will be given, and when a simple 

form can be found, an expression for T*{u;g). For comparison, the 

expression for efficacy of the shifted (zero-centered) nonlinearities are 

also given. The cumulative distribution of the Gaussian density is written 

here as $(x). 

1. Gaussian density, linear detector 

riu-.gii-.fc) =uiu-i)e^ (A6.1) 

r*{9ui:fG) = -^ (A6.2) 

VGi9idi^+e/2:e)) = i (A6.3) 

2. Gaussian density, sign detector 

riy'-.gsdJG) = 2hi e-"$(e/2)+e"$(-e/2) 

r*{9sdJG) - 21n2+ln$(e/2)+ln#(-e/2) 

(A6.4) 

(A6,5) 

r7c(ysd(x + e/2;e)) = ^ (A6.6) 

3. Gaussian density, amplifier limiter 

r{-u.\g^JG)= (A6.7) 
f 1       f 1 

2 <I>(0-2V2TX)-$(-2V2U1  exp -{^uO-Au^) 
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^G(^ai(^ + 0/2);e)) = 
].-^{-e/z) 

^2 

v^ 
■r ei  3_ 

4    ' 2 
+ -|^'l'(-^/2) 

(A6.8) 

Here, F is the incomplete gamma fxinction 

T{x,y) = fe-^ry-^dr 

4. Laplace density, linear detector 

riu-gi^Ji^) = 21n2-ue2 -21n(2-u2e2) (A6.9) 

e2 
u* = 2- (A6.10) 

5. Laplace density, sign detector 

„-0y/z/2 
'"(T^iysdi/i) = 21n e   " + ■(e"-G-^) 

(A6.11) 

(A6.12) 

^*(fl'.d;/L)=ln2-^+ln 1-- 
,-V2e/2 

(A6.13) 

VLi9sdi^ + 9/2.S)) = 2 

6. Laplace density, amplifier iimiter 

(A6.14) 

T^{^:9alJL) = 

21n 
itsVa 

V2(l-2u)  ^ ^ 

(A6.15) 

-ln2 
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r*i9aiJL) = 2lne-^^^{2+e) -2 In 2 (A6.16) 

VLi9aLix + e/Z;e)) = 
l-.g-^9Z/2 

,->/2e/3 

■(9^+9^+2) 
(A6.20) 
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Appendix 6.2 

Here it is demonstrated that RBE^^ ^^ approaches asymptotically the 

value J^ for the shift-to-the-right problem and lid observations. To begin, 

let p =F{e/2), where F is the cumulative distribution function of the 

noise density.  Then 

Mo{u;g,^)=la[e-^p+e''{l-p)\ (A6.18) 

and it is easy to show that ti* = ^ln-2—. Using this value of tx* 
1-p 

ri*{u*,gsd) = In73+ln(l-p)+21n2 (A6.19) 

for, as a consequence of Proposition 4, rj = 2MQ. 

It may be shown [lOj through a saddlepoint expansion approach that 

ln{l-p) = Mo{u*,9ui) + £ilne^) (A6.20) 

where  S  represents  the  approximation  error,   of  order  In©"^.    Using 

(A6.19) and (A6.20) the ratio RBE^^^^^ may be written as 

ri*iu*,g,^J)   _ inp+in(i-pH21n2 ,,_„.. 

rx*{u*,g,^J)        21n(l-j3) + 2£(e-Ji) ^        ^ 

Finally,   after  noting   that   limp = 1   and   applying  L'Hopital's   Rule  to 

(A6.21), we conclude that 

^^^^^sdM=^ .  (A6.22) 
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Conclusion 

In this chapter, the main contributions of the dissertation are 

reviewed, and some suggestions for extending this research are made. 

1. Revierw amd Suggestions 

Chapter 2 I 

Detection procedures and noise models were highlighted in Chapter 

2, and the failings of the classical Gaussian noise assumption were noted. 

As an alternative model, a definition of non-Gaussian noise density was 

given, and several commonly used non-Gaussian noise models were exhi- 

bited. ^ • I       ' 

The critical feature of non-Gaussian noise as defined here is the fact 

that the density is much heavier tailed than the Gaussian density. In this 

type of detection environment it is important to reduce the influence of 

the very large observations; even just a few impulses, or outliers, can 
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seriously disturb detector performance. 

Finally, in light of the work in robust statistics, and the work in 

optimal detection in non-Gaussian noise, it was proposed to examine sim- 

ple adaptive detectors which are useful when only a very loose character- 

ization of the noise statistics is available. 

At the end of the chapter, some Arctic under-ice noise data was dis- 

cussed. It would be interesting to study its characteristics further, par- 

ticiilarly examining its distribution and dependency structure. Does the 

data fit any commonly used models? 

Chapter 3 

The following conjecture was proposed and exploited successfully: 

Suppose some generic detector nonlinearity with a roughly linear region 

near the origin is chosen that allows freedom in selection of the non- 

linearity tail behavior. Then, it should be possible to make measure- 

ments on the observed noise and adjust the nonlinearity tails appropri- 

ately. - , 

Two alternatives techniques were proposed and studied: the tail 

matching method, giving s^im- and the efficacy maximizing procedure, 

leading to the piecewise linear processor ygi- In the examples, both 

methods were able to achieve high levels of performance relative to the 

optimal structure, even though both nonlinearities were cud fwc proposals 

and only very simple measurements of the noise density were used to 

drive adaptation. When simulated with the physical noise data, both 

detectors appeared to have Improved performance relative to the linear 
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detector. 

The conclusion to be drawn from the chapter is that, when choosing 

the form for a nonhnearity, it is not critical to find the exactly optimal 

structiire. Rather, it is possible to achieve nearly optimal results using 

quite simple structures, provided that there is enough freedom to adapt 

the structure to the particular noise density of Interest. As noted in 

Chapter 2, the specification of a particular class of non-Gaussian densi- 

ties leads to generic specification of the class of suitable approximate 

nonhnearities. 

It would be worthwhile to investigate further certain properties of 

suboptimal detectors. For instance, the performance of a suboptimal 

nonhnearity is sometimes less sensitive to changes in the noise environ- 

ment than the optimal nonhnearity. What causes this property, and how 

may it best be employed'' Can other methods besides Huber's min-max 

approach produce robust detector nonhnearities? 

Chapter 4 

When a nominal background noise is contaminated by bursts of 

impulsive noise, it was shown that it is possible to design a structiire 

which recognizes the bursts, and then uses this information to adapt the 

detector rapidly. The structure was developed in two parts: one part was 

a time varying detector which switched between two nonhnearities, and 

the other part was a nonparametric noise burst detector utilizing a 

median filter. * 

Under one reasonable and realistic set of assumptions, it was demon- 
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strated that the switched burst detector can outperform any fixed detec- 

tor structure. 

One problem mentioned in the chapter and worthy of further atten- 

tion is analysis of the switched burst detector algorithm when a statisti- 

cal model for the noise burst lengths is available. Also, given a statistical 

description of the burst run lengths, how may the nonparametric burst 

detector be improved? Probably, this knowledge would lead to a thres- 

hold test where the threshold varied as a function of the number of 

observations since the last state transition was encountered. 

Another important area to be investigated is the use of alternatives 

to linear detectors during the impulsive noise modes. Would any perfor- 

mance advantage due to the use of robust nonlmearities outweigh the 

loss of simphcity when the low gain linear alternative is replaced'^ 

Chapter 5 

In Chapter 5 the equivalence between efTicacy maximizing pro- 

cedures and minimum mean square approximation of the true locally 

optimum nonlinearity is demonstrated. In particular, the results lend 

substance to some loose ideas about what constitutes a "good" approxi- 

mation: it is important to match the optimal nonlinearity closely in the 

regions where an observation is highly probable, while a rough approxi- 

maUon is sufficient in low probabihty regions such as the density tails. 

Moreover, once an approximation is fairly "close" to the true nonlinearity, 

further refinements lead to little performance improvement. This is not 

to say that any nonlinearity tail behavior will sufTice; the mean square 

error between a linear processor and blanking nonhnearity tails can be 
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greaL, despite weighting by a relatively small probability mass, and it is 

known that the linear processor performs poorly in heavy-tailed noises. 

This chapter provides a distance measure between nonlinearities. Is 

it possible to find a min-max robust suboptimal nonllnearity using this 

tool? Another useful extension of this work might include examination of 

uonlinearity approximation procedures in the dependent noise case. 

Chapter 6 

A performance index r*, useful for comparing detectors operating 

with equal false alarm rates, was developed in Chapter 6. It was shown 

that the ratio of performance indices for two detectors is a useful indica- 

tor of their relative performance under non-zero signal to noise ratios. 

Further, this ratio, the proposed measure of relative bound efficiency, 

approaches the measure of asymptotic relative efficiency as the signal 

vanishes. 
.      ■ ; ■ - ■■■   1, 

It woiild be worthwhile to examine r* and relative bound efficiency 

further. For instance, it would be interesting to examine their use in 

dependent noise. There are other open points: how does relative bound 

efficiency compare to relative efficiency? How Light is the bound on per- 

formance using r*? Is it possible to find r* directly and circumvent the 

proposed minimization procedure'^ 

2. Conclusion 

I 

The underlying goal of this study was to consider the signal detection 

problem in the case of incomplete knowledge of the non-Gaussian noise 

environment.   In striving towards this goal, work was presented ranging 
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from simulations using physical noise data to theoretical analysis. 

The theoretical results of this thesis may be useful tools in the con- 

tinued study of nearly optimal detectors. The proposals for detector 

structures presented here are not definitive; however, they do confirm 

some ideas about useful approaches to this problem, and point out possi- 

ble directions for further research. 
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