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Abstract. In a recent companion paper, we proposed two methods, GD+k and JDQMR, as
nearly optimal methods for finding one eigenpair of a real symmetric matrix. In this paper, we
seek nearly optimal methods for a large number, nev, of eigenpairs that work with a search space
whose size is O(1), independent from nev. The motivation is twofold: avoid the additional O(nevN)
storage and the O(nev2N) iteration costs. First, we provide an analysis of the oblique projectors
required in the Jacobi-Davidson method and identify ways to avoid them during the inner iterations,
either completely or partially. Second, we develop a comprehensive set of performance models for
GD+k, Jacobi-Davidson type methods, and ARPACK. Based both on theoretical arguments and
on our models we argue that any eigenmethod with O(1) basis size, preconditioned or not, will be
superseded asymptotically by Lanczos type methods that use O(nev) vectors in the basis. However,
this may not happen until nev > O(1000). Third, we perform an extensive set of experiments with
our methods and against other state-of-the-art software that validate our models and confirm our
GD+k and JDQMR methods as nearly optimal within the class of O(1) basis size methods.

1. Introduction. The numerical solution of large, sparse, Hermitian or real
symmetric eigenvalue problems is one of the most computationally intensive tasks
in a variety of applications. The challenge is twofold; First, the matrix size, N , is
routinely more than a million, while an order of a billion has also been tried [43].
Second, many applications, including electronic structure calculations, require the
computation of hundreds or even thousands of extreme eigenpairs. Often the number
of required eigenpairs, nev, is described as a small percentage of the problem size.
In such cases, orthogonalization of nev vectors, an O(nev2N) task, becomes O(N3),
making the scaling to larger problem sizes practically infeasible.

Iterative methods are the only means of addressing these large problems. Yet,
iterative methods may converge slowly, especially as the problem size grows, and must
store the iteration vectors for computing eigenvector approximations. Beyond chal-
lenges in execution time, the storage demands of these applications can be staggering.
Over the last decade, iterative methods have been developed [14, 51, 54, 30, 29, 49,
41, 57] that can use effectively the large arsenal of preconditioners for linear systems
and converge nearly optimally to an eigenpair under limited memory requirements.

The quest for optimality under limited memory is a natural one. On symmetric
linear systems, Krylov methods such as Conjugate Gradient (CG) achieve optimal
convergence through a three term recurrence. For eigenvalue problems, the Lanczos
method can produce the optimal space through a three term recurrence, but the
vectors must be stored or recomputed. With preconditioning, traditional Lanczos does
not apply directly. Restarting techniques can be employed so that approximations are
obtained from a search space of limited size, but at the expense of convergence.

When seeking one eigenpair, a useful way to approach the problem is by consider-
ing it as a nonlinear problem, where both the eigenvalue and eigenvector are unknown.
In [57], we studied the problem from two nonlinear viewpoints: the inexact Newton,
and the limited memory quasi-Newton [40]. The two methods we have developed, the
JDQMR and the GD+k, can be related to the above respective viewpoints, which al-
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lowed us to argue for their near-optimal convergence. The former is a Jacobi-Davidson
(JD) method where the inexact inner iteration is stopped dynamically and optimally.
The latter is a Generalized Davidson method with a recurrence based restarting that
delivers convergence extremely close to, and sometimes indistinguishable from the
optimal method (i.e., without restarting).

When seeking many eigenpairs, it is an open question whether optimality can be
achieved under limited memory. If one eigenvalue is known exactly, the corresponding
eigenvector can be obtained optimally through a CG iteration [30, 57]. If nev eigen-
values are known, one may think that the analogue optimality is to run nev separate
CG iterations. This is the approach taken by most limited memory, preconditioned
eigensolvers for small nev values. Yet, it is clearly suboptimal because a method
that stores the CG iterates from each run would converge in much fewer iterations.
For example, when the number of CG iterations is O(N), the former approach takes
O(nev N), while an unrestarted Lanczos would take no more than N .

In this paper, we focus on methods that do not allow their memory requirements
to grow unbounded. We further distinguish between two “classes” of these methods:
The first, allows the size of the search space to be a small multiple of nev, typically
2nev or 1.5nev. This class concedes the O(nev2) factor in the hope of much fewer
iterations. The second class restricts the search space to a constant size (e.g., 20
vectors) and uses locking to obtain all nev eigenvectors. Although the number of
iterations increases, orthogonalization and iteration costs decrease dramatically. This
memory-based classification is slightly different from the one in [5] but it captures
better the performance characteristics of solvers for large nev. The holy grail in this
area has been to obtain nev eigenpairs in linear to nev scaling.

We make three contributions in this paper. First, after discussing the merits
of current state-of-the-art methods for finding many eigenvalues, we analyze the ef-
fects of projecting against converged eigenvectors in the correction equation of the
JD method, and propose variants that avoid both the extra storage and the second
orthogonalization. In particular, the unpreconditioned JDQMR-000 variant requires
no orthogonalization during inner iterations and thus has the potential of overcoming
the O(nev2) scaling barrier.

Second, we perform a detailed complexity analysis of the two classes of methods
and, based also on experimental observations, we develop a complete set of models
that describe the relative performance between JD variants, GD+k, and implicitly
restarted Lanczos as implemented in ARPACK. The analysis not only reveals the
relative asymptotic behavior, but also provides performance crossover points between
methods that can be used for dynamic method selection within a multimethod soft-
ware, such as PRIMME that we have recently developed [34].

Third, we conduct an extensive set of experiments, with and without precondition-
ing, which complement the ones in [5] by comparing our GD+k and JDQMR variants
against software that implements current state-of-the-art methods such as JDBSYM,
BLOPEX, and ARPACK. The experiments show that our proposed JDQMR vari-
ants and GD+k are clearly the best methods in their class, and confirm the crossover
points and the asymptotic behaviors from our models. They also demonstrate the al-
most linear scaling of the JDQMR-000 variant without preconditioning up to several
hundreds of eigenvalues.

2. State-of-the-art eigenmethods for many eigenvalues. Throughout this
paper we assume we seek the nev algebraically smallest eigenvalues λi and their
corresponding eigenvectors xi, i = 1, . . . , nev, of a symmetric matrix A of size N .
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2.1. Lanczos based methods. It should be no surprise that unrestarted Lanc-
zos is still considered a state-of-the-art method without preconditioning. It is the
optimal method in terms of number of iterations, for one or more eigenvalues, it is
theoretically well understood, and it has several efficient, highly robust implementa-
tions [58, 45, 21, 9]. For finding one eigenvalue Jacobi-Davidson methods are now
preferred to Lanczos, not only because of preconditioning, but also because of nearly
optimal convergence that does not require unlimited storage [57]. For many eigenval-
ues, however, the ability of unrestarted Krylov spaces to capture large parts of the
extremes of the spectrum of A remains unparalleled. This optimal convergence comes
with several drawbacks. Frequent selective and/or partial orthogonalizations are re-
quired to avoid dealing with ghost eigenvalues. Also, besides storing or recomputing
the vector iterates, the method needs to store a tridiagonal matrix of size equal to the
number of iterations, which can be tens of thousands, and solve for nev of its eigen-
pairs. Finally, Lanczos has difficulty obtaining multiple eigenvalues. Block versions
of Lanczos have been proposed as a robust and cache efficient alternative [8, 19] but
usually increase the total execution time (see [22] for a recent survey).

In the rest of the paper, we do not consider unrestarted Lanczos methods, because
they do not satisfy our limited memory criterion and cannot use preconditioning
without some form of inner-outer iteration [57, 38]. In doing so, we realize that there
could be cases where the unrestarted methods are faster than the alternatives we
present. In addition, we do not discuss the powerful shift-and-invert Lanczos [45],
because it requires the exact inversion of the matrix.

To reduce storage and iteration costs, the Lanczos method can be restarted
through the implicit restarting [53] or the equivalent thick restarting [36, 56, 59]
techniques. When the maximum size mmax for the search space is reached, the nev
required Ritz vectors are computed and replace the search space. The ARPACK soft-
ware is a high quality, efficient implementation of the implicitly restarted Arnoldi and
Lanczos methods [33], and it has become the default eigensolver in many applications.

Restarting impairs the optimality of Lanczos. Implicit (or thick) restarting with
nev (or more) vectors improves convergence but may not be sufficient with small
basis sizes. Indeed, it is known that implicitly restarted Lanczos (IRL) is a polynomi-
ally accelerated simultaneous iteration with a polynomial of degree mmax − nev [32].
Hence, inner-outer methods can be more effective for small nev. On the other hand,
ARPACK requires that mmax > nev (and typically mmax = 2nev), which implies
that for really large nev the algorithm approaches again an unrestarted Lanczos with
full orthogonalization; with its convergence benefits but high iteration costs.

2.2. Newton approaches. We can view the eigenvalue problem as a constrained
minimization problem for minimizing the Rayleigh quotient xT Ax on the unit sphere
or equivalently minimizing xT Ax/xT x [14]. For many eigenpairs, the same formu-
lation applies for minimizing the trace of a block of vectors [48], working with nev-
dimensional spaces [2]. As we discussed in [57], most eigenmethods can be interpreted
through the inexact Newton viewpoint or the quasi-Newton viewpoint.

2.2.1. The inexact Newton approach. The exact Newton method for eigen-
problems, applied on the Grassmann manifold to enforce normalization of the eigen-
vectors, is equivalent to Rayleigh Quotient Iteration (RQI) [14]. It is well known that
solving the Hessian equation to full accuracy is not needed at every Newton step.
Inexact Newton methods attempt to balance good convergence of the outer Newton
method with an inexact solution of the Hessian equation. Extending inexact Newton
methods to RQI has attracted a lot of attention in the literature [46, 31, 52, 20, 49].
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In [57] we argued that a more appropriate representative of the inexact Newton
minimization for eigenvalue problems is the Jacobi-Davidson method [51]. See also
[1] for a theoretical discussion on Newton variants. Given an approximate eigenvec-
tor u(m) and its Ritz value θ(m), the JD method obtains an approximation to the
eigenvector error by solving approximately the correction equation:

(I − u(m)u(m)T )(A − ηI)(I − u(m)u(m)T )t(m) = −r(m) = θ(m)u(m) − Au(m),(2.1)

where η is a shift close to the wanted eigenvalue. The next (inexact) Newton iterate is
then u(m+1) = u(m)+t(m). The pseudoinverse of the Hessian is considered to avoid the
singularity when η ≈ λ, and also to avoid yielding back t(m) = u(m) when the equation
is solved accurately with η = θ(m). The latter problem could cause stagnation in the
classical or the Generalized Davidson (GD) methods [10, 37, 55, 42, 61]. The GD
method obtains the next iterate as t(m) = K−1r(m), where the preconditioner K
approximates (A − ηI) directly, not as an iterative solver.

JD and GD are typically used with subspace acceleration, where the iterates
t(m) are accumulated in a search space from which eigenvector approximations are
extracted through Rayleigh-Ritz or some other projection technique [44, 35, 25]. This
is particularly beneficial, especially when looking for more than one eigenpair.

The challenge in JD is to identify the optimal accuracy to solve each correction
iteration. In [41] Notay proposed a dynamic stopping criterion based on monitoring
the growing disparity in convergence rates between the eigenvalue residual and linear
system residual of CG. The norm of the eigenvalue residual was monitored inexpen-
sively through a scalar recurrence (see [24] for recent extensions). In [57] we proposed
JDQMR that extends JDCG by using symmetric QMR [16] as the inner method. The
advantages are: (a) The smooth convergence of sQMR allows for robust and efficient
stopping criteria. (b) It can handle indefinite correction equations, which is impor-
tant also for large nev. (c) sQMR, unlike MINRES, can use indefinite preconditioners,
which are often needed for interior eigenproblems. We also argued that JDQMR type
methods cannot converge more than three times slower than the optimal method, and
usually are significantly less than two times slower. Coupled with the very low sQMR
costs, JDQMR has proven one the fastest and most robust methods for nev = 1.

When seeking many eigenvalues, the Newton method can be applied on the nev
dimensional Grassmann manifold to compute directly the invariant subspace (see [48]
and [2] for a more recent review). Practically, however, the Grassmann RQI approach
proposed in [2] is simply a block JD method. To see this, note first that the JD
search space is kept orthonormal; second, a Rayleigh-Ritz is performed at every outer
step, and therefore the Sylvester equations stemming from the Newton approach are
decoupled as nev independent correction equations for each vector in the block. The
open computational question is how to solve these nev linear systems most efficiently,
and whether to use a block method at all.

The problem is highly related to ongoing linear systems research for multiple right
hand sides [50, 7, 26, 23]. It could be argued that seed methods that build one, large
Krylov space, and reuse it to solve all the nev equations are the best choice. In our
case, the disadvantage of seed methods is that they need to store this large space;
exactly what we try to avoid by restarting the outer JD iteration, and by using short
term recurrence methods for the correction equation. Moreover, the multiple right
hand sides are not related in any way, so it is unclear how much one system can
benefit from the Krylov space of another.

Block methods that solve all the correction equations simultaneously do not con-
sistently improve the overall runtime. In some occasions, however, when the eigen-
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values are multiple or highly clustered, certain JD implementations may benefit from
a small block size, because the fast, targeted convergence of Newton could cause
eigenvalues to converge out of order, and thus the required ones to be missed.

With large nev, however, the near optimal convergence of the JDQMR has to
be repeated nev times; much like the nev independent CGs we mentioned in the
introduction. In this case, and assuming a very small block size, the role of a larger
subspace acceleration is to obtain better approximations for nearby eigenpairs while
JD converges to the targeted eigenpair. Although the convergence rate of QMR cannot
improve further, increasing the basis size gives increasingly better initial guesses for
the eigenpairs to be targeted next. In this paper, we avoid this continuum of choices
and focus only on constant, limited memory basis sizes.

2.2.2. The quasi-Newton approach. An alternative to Newton is the use
of the nonlinear Conjugate Gradient (NLCG) method for eigenproblems [14]. It is
natural to consider a method that minimizes the Rayleigh quotient on the whole space
L =

{

u(m−1),u(m), r(m)
}

, instead of only along one search direction. The method:

u(m+1) = RayleighRitz
(

{u(m−1),u(m), r(m)}
)

, m > 1,(2.2)

is often called locally optimal Conjugate Gradient (LOCG) [13, 28], and seems to
consistently outperform other NLCG type methods. For numerical stability, u(m) −
τ (m)u(m−1), for some weight τ (m), can be used instead of u(m−1). When used with
multivectors u(m), r(m) this is the well known LOBPCG method [30].

LOCG can be accelerated by minimizing over the subspace of more iterates u(m).
When the subspace reaches its maximum size we must restart. If we restart through
IRL, however, we lose the single important direction (u(m−1)) that offers the excel-
lent convergence to LOCG. This was first observed in [39] for the Davidson method,
although under a different viewpoint. In [54] we offered a theoretical justification
and an efficient implementation that combined this technique with thick restarting
for the GD. In [57], we noted the connection of our method, which we call GD+k, to
quasi-Newton and in particular to the limited memory BFGS method [18, 40].

GD(mmin,mmax)+k uses a basis of maximum size mmax. When mmax is reached,

we compute the mmin smallest Ritz vectors, u
(m)
i , and also k of the corresponding

Ritz vectors u
(m−1)
i from step m − 1. An orthonormal basis for this set of mmin+k

vectors becomes the restarted basis. If the block size in GD/JD is b, it is advisable
to keep k ≥ b to maintain good convergence for all block vectors. The special case
of block GD(b, 3b)+b is equivalent mathematically to LOBPCG with the same block
size. In [57], we showed that convergence of the GD+k for one eigenvalue is often
indistinguishable from the optimal method. Yet, higher iteration costs than JDQMR
make it less competitive for very sparse operators.

When seeking many eigenvalues, we have never found the use of a block size
b > 1 beneficial, even with a small subspace acceleration. Then, as with JDQMR,
each eigenpair has to be targeted and converged independently. The role of subspace
acceleration is perhaps more important for GD+k than for JDQMR, as it provides
both its local optimal convergence and the initial guesses for nearby eigenvalues.

2.3. The GD+k and the JDQMR algorithms. The GD algorithm can serve
as the basic framework for implementing both JDQMR and GD+k. Algorithm 2.1
depicts a version of the basic GD+k algorithm for finding nev smallest eigenpairs. It
implements Rayleigh-Ritz and locking and is the basis for the performance models
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Algorithm 2.1. The Generalized Davidson(mmin,mmax)+k algorithm
(1) start with v0 starting vector
(2) t(0) = v0, l = m = nmv = 0, X = [ ]
(3) while l < nev and nmv < max num matvecs
(5) Orthonormalize t(m) against vi, i = 1, . . . ,m and xi, i = 1, . . . , l
(6) m = m + 1 , nmv = nmv + 1 , vm = t(m−1) , wm = Avm

(7) Hi,m = vT
i wm for i = 1, . . . ,m

(7.0) sold
i = si, i = 1, . . . ,m

(8) compute eigendecomposition H = SΘST with θ1 ≤ θ2 ≤ . . . ≤ θm

(9) u(m) = V s1 , θ(m) = θ1 , w(m) = Ws1

(10) r(m) = w(m) − θ(m)u(m)

(11) while ‖r(m)‖ ≤ tol
(12) λl+1 = θ(m) , X = [X,u(m)] , l = l + 1
(13) if (l = nev) stop

(14) m = m − 1 , H = 0
(15) for i = 1, . . . ,m
(16) vi = V si+1 , wi = Wsi+1

(17) Hii = θi+1 , si = ei , θi = θi+1

(18) end for

(19) u(m) = v1 , θ(m) = θ1 , r(m) = w1 − θ(m)u(m)

(20) end while

(21) if m ≥ mmax then
(21.0) Orthogonalize sold

i , i = 1, . . . , k among themselves
and against si, i = 1, . . . ,mmin

(21.1) Compute Hsub = soldT Hsold

(21.2) Set s = [s1, . . . , smmin
, sold

1 , . . . , sold
k ]

(22) H = 0
(23) for i = 2, . . . ,mmin + k
(24) vi = V si , wi = Wsi , Hii = θi

(25) end for

(26) v1 = u(m) , w1 = w(m) , H11 = θ(m) , m = mmin

(26.0) H(mmin + 1 : mmin + k,mmin + 1 : mmin + k) = Hsub

(26.1) m = mmin + k
(27) end if

(28) Precondition the residual t(m) = Prec(r(m))
(29) end while

in Section 4. The implementation of +k restarting is shown at steps numbered with
decimal points. Both steps (21.0) and (21.1) apply on vectors of size mmax, and
therefore the cost of the GD(mmin,mmax)+k implementation is the same as that of
GD(mmin+k, mmax). In our experience, k=1 or 2 is always sufficient, obviating the
use of larger mmin, hence being less expensive. Although not explored here, Algo-
rithm 2.1 can be viewed as a block method by implementing vectors as multivectors.

Step (28) differentiates between eigenmethods. By returning t(m) = r(m) or the
preconditioned residual, t(m) = K−1r(m), we have the GD+k method. Step (28) can
also return a JD correction vector. Without inner iterations, a preconditioner K can
be inverted orthogonally to the space Q = [X,u(m)] and applied to r(m). Assuming
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(QT K−1Q) is invertible, the pseudoinverse of this preconditioner can be written as:

(

(I − QQT )K(I − QQT )
)+

= (I − K−1Q(QT K−1Q)−1QT )K−1(I − QQT )(2.3)

= K−1(I − Q(QT K−1Q)−1QT K−1)(I − QQT ).(2.4)

When this preconditioner is used in an iterative method on eq. (2.1), a significant
extra storage for K−1Q is required to avoid doubling the number of preconditioning
operations. In [15, 51, 6] it is shown that the JD method can be implemented with one
projection with Q per iteration. In the following section we show that this may not
be sufficient with right preconditioning and high convergence tolerance. Our JDQMR
algorithm uses the GD+k as the underlying outer method and, at step (28), calls the
symmetric, right preconditioned QMR as described in detail in [57].

3. Avoiding the JD oblique projectors. When eigenvectors converge in the
Jacobi-Davidson method, they are locked in the array X, and the algorithm targets
the next higher eigenpair. As the shift in the correction equation moves inside the
spectrum the equation becomes increasingly indefinite. Although this is not pro-
hibitive for the QMR solver, it usually is unnecessarily expensive, as QMR has to
rebuilt the lower eigendirections in X sufficiently so that it can converge to the cor-
rection which should be orthogonal to X. The JD authors have observed that it is
always beneficial to project X from the correction equation. They also mention that
the preconditioner needs also to be projected in the same way, so that the image of its
operation matches the domain of the projected matrix A. This reasoning, however, is
not of practical use because the vectors can be considered embedded in <N . A better
approach would be to consider the effect of these projectors on the conditioning of the
correction equation, and whether it justifies the significant additional expense; either
a second preconditioning operation per iteration, or an array that stores K−1X.

There is little doubt that the skew projection of eq. (2.3) should be used for the
Ritz vector u(m). First, there is a constant additional cost to QMR, which is indepen-
dent from nev. More importantly, an extremely accurate preconditioner may cause
the problems seen in Davidson. A recent analysis by Notay [42] shows that, although
such problems are rare, they could arise. The Davidson problem is specific to the
vector u(m) and cannot occur if orthogonality to the converged eigenvectors X is not
enforced in the correction equation. However, the effectiveness of the preconditioner
may change. To simplify notation in this section, we assume that the matrix A and
the preconditioner K encapsulate both the shifting with η and the projection (2.3)
for u(m), and focus on Q = X. Define also the projector for any matrix B for which
QT BQ is not singular:

PB = (I − BQ(QT BQ)−1QT ),(3.1)

and note that if P = (I − QQT ), in addition to eqs. (2.3, 2.4) it holds:

PPBBP = PBB = BPT
B = PBPT

B P.(3.2)

Based on the above, the appropriate formulation for right preconditioning of the JD
projected operator in the correction equation is:

PAP (PKP )+ = PAPK−1K−1(3.3)

= PAK−1PT
K−1 .(3.4)
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Table 3.1

Projection alternatives to the classical Jacobi-Davidson correction equation (with right precon-
ditioning). The 0/1 string characterizes whether there is a projection on the left of A, on the right
of A, and whether the right projection is skew projection or not. Theoretically Jacobi-Davidson
corresponds to (111) although it is typically implemented as (011).

(Left Skew Right) Operator (Left Skew Right) Operator
111 PAPK−1K−1 011 APK−1K−1

101 PAPK−1 001 APK−1

100 PAK−1 000 AK−1

Computationally the above formulation is expensive because at every QMR step it
requires two orthogonalizations with Q, from both left and right of A, and a backsolve
with the factors of the small matrix (QT K−1Q)−1. Moreover, to avoid an extra
preconditioning operation per iteration, the vectors K−1Q must be stored, a very
unreasonable storage requirement for large number of eigenvalues. Naturally, the
question is whether some projectors can be avoided, in their skew form or altogether.

Eq. (3.3) suggests several variants of a projected operator based on whether we
operate with a projector on the left and/or on the right of A, and whether we relax
the requirement for a right skew projector, replacing it with P . Table 3.1 summarizes
the variants. Note that the cases PAK−1PT

K−1 and AK−1PT
K−1 (from eq. (3.4)) are

equivalent to (111) and (011) respectively, so they are not included. Additionally,
when the QMR iterates are orthogonal to Q, a P projection on the right of the
preconditioner is unnecessary, hence we have not included the case PAK−1P . Finally,
we do not include the variant AK−1P because it maintains no orthogonality of the
QMR iterates. We discuss each column of the table separately.

3.1. No P projection on the left of A. Case (000) does not work orthogonally
to Q, and it is expected to require a sharply increasing number of inner iterations
as more eigenvalues are locked, especially with less effective preconditioners. There
is a notable exception. When K has the same eigenvectors as A (e.g., if K is a
polynomial of A or simply K = I), QMR starts with the residual r(m) ⊥ Q and thus
all its iterates will stay in Q⊥. This property is sometimes exploited in methods with
polynomial acceleration [60] (see also [4] in the context of an a priori known null space
in Maxwell’s equations). Floating point arithmetic and the fact that the eigenvectors
in Q are converged to tol, not to machine precision, will eventually introduce Q
components that QMR will have to remove by additional iterations. However, a few
additional iterations is a small price to pay for removing the limiting scalability factor
O(nev2N) of orthogonalization. In all our experiments, unpreconditioned JDQMR-
000 (no projections) achieves an almost linear scaling with nev, both in convergence
and in time.

Case (011) is the recommended way to implement right preconditioning in JD. For
any vector v, we have PK−1K−1v ∈ Q⊥, and thus APK−1K−1v ∈ Q⊥, requiring no
additional left orthogonalization. This formulation, however, may have disadvantages
when the required relative convergence tolerance is much larger than machine precision
(e.g., tol ≥ ‖A‖√εmachine). In such cases, large Q components may appear early in
the QMR iterations, delaying its convergence. Finally, we note that the same concern
holds for the (001) case, which we do not examine further because even if we fixed
this concern, for example by using case (101), it would still not be competitive for the
reason described in Section 3.2.2.
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3.2. P projection on the left of A. Cases that project with P on the left of
A guarantee that all QMR iterates will be exactly in Q⊥, regardless of how close Q
is to an A-invariant subspace. Case (111) implements accurately the JD projection,
but it is very expensive and storage demanding. Cases (101) and (100) approximate
equations (3.3) and (3.4) respectively by replacing the skew projectors with P , thus
avoiding the additional storage. In addition, (100) does not require the right projector,
so it is the least expensive method that can maintain the QMR iterates in Q⊥. If
conditioning of the matrix in (100) does not differ much from the matrix in (111),
case (100) should be preferred.

To examine the condition numbers of the projected matrices, we note first that
when B has a non trivial null space, its condition number is defined in its range as
κ(B) = ‖B‖‖B+‖. We also need the following elementary property for pseudoinverses.

Proposition 3.1. If symmetric matrices A, B have the same null space, then:

(AB)+ = B+A+.

Proof. The pseudoinverse of a matrix A is defined as A+ = V Σ−1UT , where
A = UΣV T is the economy size SVD of A which consists only of the non zero singular
values and vectors. Similarly, the pseudoinverse for B = Y MZT is B = ZM−1Y T .
Let X ∈ <N,k, k < N , be an orthonormal basis for the range of A and B. Because A,B
are symmetric, their SVD can be described as A = UΣ(XQA)T and B = XQBMZT ,
for some orthogonal matrices QA, QB ∈ <k,k. By substituting Y = XQB and V =
XQA and using a known property of pseudoinverses, we have:

(AB)+ = (UΣV T Y MZT )+ = Z(ΣV T Y M)−1UT

= ZM−1Y T Y (V T Y )−1Σ−1UT = B+Y (V T Y )−1Σ−1UT

= B+XQB(QT
AQB)−1Σ−1UT = B+XQAΣ−1UT = B+A+.

Using Proposition 3.1 with a two norm and eqs. (3.3, 3.4), we can derive the
condition numbers for cases (111), (101), and (100):

κ111 = ‖PAP (PKP )+‖‖PKP (PAP )+‖ = ‖PAK−1PT
K−1‖‖PKA−1PT

A−1‖
κ101 = ‖PAPK−1P‖‖(PK−1P )+(PAP )+‖ = ‖PAPK−1P‖‖PKKPA−1PT

A−1‖
κ100 = ‖PAK−1P‖‖(PAK−1P )+‖ = ‖PAK−1P‖‖PKA−1KA−1‖.

There are obvious similarities between the condition numbers, but no one emerges as
the default winner. The effect of the projectors PT

K−1 , PT
A−1 and PKA−1 depends on

how close A,K,K−1,KA−1 are to Q-invariant. We therefore examine the following
two special, extreme cases.

3.2.1. Special case: Q are exact eigenvectors of A. This assumption leads
to PA = AP , PKA−1 = PK , PT

A−1 = P , and, by considering eq. (3.2), to the following
simplifications:

κ111 = ‖PAK−1PT
K−1‖‖PKA−1P‖,

κ100 = κ101 = ‖PAK−1P‖‖PKKA−1P‖.

The differences between κ111 and κ100 may be better understood if we consider how
close Q is to an invariant subspace of K. If we denote as RK = KQ−Q(QT KQ) the
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residual of Q in K, we have PK = P − RK(QT KQ)−1QT , and κ100 becomes:

κ100 = ‖PAK−1P‖‖PKA−1P − RK(QT KQ)−1QT KPA−1‖
= ‖PAK−1P‖‖PKA−1P − RK(QT KQ)−1RT

KA−1‖.(3.5)

Similarly, with RK−1 = K−1Q−Q(QT K−1Q) and PT
K−1 = P −Q(QT K−1Q)−1RK−1 ,

κ111 = ‖PAK−1P − ARK−1(QT K−1Q)−1RT
K−1‖‖PKA−1P‖.(3.6)

Moreover, let δ0 = ‖RK(QT KQ)−1RT
KA−1‖ and δ1 = ‖ARK−1(QT K−1Q)−1RT

K−1‖.
Then, δ0 = O(‖RK‖2) and δ1 = O(‖RK−1‖2), and through some basic algebra we can
derive:

|κ111 − κ000| ≤ δ0‖PKKA−1P‖ + δ1‖PAK−1PT
K−1‖ = O(‖RK‖2 + ‖RK−1‖2).(3.7)

Eq. (3.7) implies that the differences between the two methods disappear with better
preconditioners, when Q becomes close to K-invariant (depending on the squares
of the residuals). When Q is far from K-invariant the two condition numbers may
not be close. However, there is no reason why κ111 should be smaller than κ100. If
we assume, according to eqs. (3.5, 3.6), that smaller residuals may lead to smaller
condition numbers, then obtaining ‖RK‖ � ‖RK−1‖ would depend on the norms of
‖K‖ and ‖K−1‖ and on what part of the K spectrum is approximated by Q and how
well. In extensive experiments on practical cases we have noticed negligible differences
between cases (111) and (100).

3.2.2. Special case: Q inexact eigenvectors but K = A. In this extreme
case, κ111 = κ100 = 1, but κ101 can be much worse. To see why, let the residuals
RA = AQ−Q(QT AQ) and RT

A−1 = QT A−1 − (QT A−1Q)QT , and consider the norms
for κ101:

‖PAPK−1P‖ = ‖P (A − AQQT )A−1P‖ = ‖P (I − (R + QM)QT A−1P‖
= ‖P − P (RA + Q(QT AQ))(RT

A−1 + (QT A−1Q)QT )P‖
= ‖P − RART

A−1‖,
‖PKKPA−1PT

A−1‖ = ‖P + RA(QT AQ)−1(QT A−1Q)−1RT
A−1‖.

Obviously, interleaving an inaccurate eigenprojector between A and K can cause κ101

to be far from 1, despite the double orthogonalization expense. The same effects
remain, only exaggerated, if the left projection is avoided as in the (001) case.

3.2.3. General case. When both Q and K are not accurate, it is hard to quan-
tify the relative merits of κ111 and κ100. However, the Q are not random vectors but
approximate eigenvectors to a certain threshold (typically at least as good as single
precision). Therefore, we expect our results of Section 3.2.1 to apply in general. In
particular, eqs. (3.5, 3.6) suggest that method (100) should be preferred over the ex-
pensive (111) with good preconditioners. This is in contrast to the situation for the
Ritz vector u(m), where skew projectors are especially needed when K ≈ A.

In our extensive experiments, we never found it necessary to use method (111)
when the eigenvectors were computed relatively accurately. In fact, method (100)
consistently gave lower iteration numbers. Despite the lack of theoretical assurance,
we have observed similar behavior even with smaller eigenvector accuracy (10−7 rel-
ative tolerance in the next Section). Situations can arise, however, where (111) could
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Fig. 3.1. We look for 20 lowest eigenpairs of the matrix PLAT362 from Harwell Boeing. We
show the ratios of the number of matrix-vector products (including the preconditioner application)
of method (100) over (111) (black bars), and (101) over (111) (yellow bars). The three boxes depict
results from preconditioning with the Matlab cholinc, with thresholds 1e-7, 1e-6, 1e-5 respectively.
In each box, the x-axis varies the relative tolerance for computed eigenvectors, i.e., the residual of
Q is less than ‖A‖F tol. The example was picked because it shows two possible anomalies. First,
decreasing both eigenvector accuracy (around

√
εmachine) and the quality of the preconditioner could

necessitate the use of (111). Second, case (101) shows a much higher sensitivity than (100) to the
accuracy of the eigenvalues. Even in this “anomaly” case, with very good or very bad eigenvector
accuracy, method (100) takes less iterations than (111).

be beneficial. We have been able to identify only one such case. Figure 3.1 shows
the results from this “anomaly” case. Even so, method (100) is still competitive and
often better than (111) except for a small range of carefully picked parameters. The
figure also demonstrates the disadvantages of method (101).

4. Modeling the relative asymptotic behavior between methods. The
challenge in relative modeling is that practical models must include information about
time complexity, type of operations and their performance on certain hardware, cost
of the operators (matvec and preconditioner), but most importantly they must cap-
ture the relative convergence behavior of the methods. Insight on the latter arises
from lengthy experimentation with the methods on a variety of problems. In the fol-
lowing, we do not separate the experimentation from the modeling process as the two
are complementary. Instead, for each pair of methods, we first model their observed
relative convergence behavior. Then, we couple it with time complexity models to
predict their relative asymptotic behavior for large nev. Because the meaning of iter-
ation differs among methods, we normalize all models as cost per operator application
(that includes matvec and preconditioner, if available).

4.1. Experimentation environment. In our experiments we use actual pro-
duction codes, not prototypes, that implement state-of-the-art methods. Our GD+k
and JDQMR methods are implemented in C, in the package PRIMME: PRecondi-
tioned Iterative MultiMethod Eigensolver [34]. From various methods available in
PRIMME, we compare only GD+k and the following JDQMR variants (following no-
tation from the previous section): JDQMR-000, JDQMR-100, JDQMR-011, JDQMR-
111. With the exception of forcing these projector configurations, the default param-
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Table 4.1

The matrices used in the experiments, their size, nonzero elements per row, and their source.

Matrix N nz/row Source
torsion1 40000 4.94 UF
Andrews 60000 12.67 UF
cfd1 70656 25.84 UF
finan512 74752 7.99 UF

Matrix N nz/row Source
Cone A 22032 65.04 FEAP
Plate33K A0 39366 23.22 FEAP
Lap7pt15K 12167 6.74 SKIT
Lap7pt125K 110592 6.88 SKIT

eters provided by PRIMME are used in all the experiments. These defaults include
the use of locking, block size of 1, mmin = 6, mmax = 18, k=1 with preconditioning
and k=2 without it. The methods converge when the residual norm of each of the
nev required eigenpairs is less than ‖A‖F tol, where ‖A‖F is the Frobenius norm of A.

The only other symmetric Jacobi-Davidson implementation available is JDBSYM
[17]. It is also written in C, it is a block method, but it stops the inner iteration using
the scheme proposed in [51, 12]. JDBSYM provides several choices of inner iterative
methods. We opt for the symmetric QMR to facilitate a comparison with JDQMR.
We use the same mmin,mmax for the JD basis, block size of 1, a maximum number
of 200 inner iterations, TOLDECAY = 1.5, symmetric preconditioning OPTYPE,
and strategy = 0. In certain cases strategy = 1 was necessary to achieve conver-
gence. JDBSYM finds only eigenvalues closest to a shift τ , not extreme ones. In all
our tests, we provide τ as a small, left perturbation of the precomputed λ1 and let
JDBSYM switch to using the Ritz values as shifts when EPS TR = 10−3‖A‖F /

√
N .

Convergence is declared when all residual norms fall below ‖A‖F tol.
From the class of Lanczos methods we use the ARPACK software [33]. The basis

size for ARPACK is chosen as max(40, 2nev) for nev < 400 and 1.5nev for nev ≥ 400.
The tolerance tol is provided directly to ARPACK.

Finally, we compare against BLOPEX, a C implementation of LOBPCG [27]. We
chose to implement a wrapper around BLOPEX(b) that uses locking to compute nev
eigenvalues a block, b, at a time. After some experimentation, we found b = 10 to be
the best choice for most problems. For large nev, BLOPEX(nev) was several times
slower than BLOPEX(10). We ask for convergence tolerance of ‖A‖F tol.

All methods start with the same random initial guess. We have run experiments
for two different tolerances: tol = 1e-15 and tol = 1e-7. For BLOPEX we only report
results for tol = 1e-7, as it could not produce results with the lower tolerance. We
run experiments on an Apple G5 with 1 GB of memory and two 2GHz processors,
each with 512 MB L2 cache. The C codes are compiled using the gcc-4.0.0 compiler
with -O3 flag, and the ARPACK is compiled with the g77 compiler. We link with the
Apple vecLib library that includes optimized versions of BLAS/LAPACK libraries.

We use eight matrix problems, six from the University of Florida [11] and the
FEAP [3] collections, and two standard 7-point 3D Laplacian matrices generated by
SPARSKIT [47] with zero Dirichlet boundary conditions. The matrix sizes are far
beyond toy problems, yet they make finding 100s or 1000s eigenvalues tractable on
a workstation. They also represent different applications, operators, and sparsities.
The smallest side of the spectrum is hard to obtain for all matrices, while the largest
side is easier for several of them. Finally, Table 4.2 provides a look-up reference for
the parameters used in our modeling, their meaning, and their typical range of values.

4.2. JDQMR-000 vs ARPACK. Because the size of the ARPACK basis in-
creases with nev so does its effectiveness. Thus, the number of matrix vector opera-
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Table 4.2

The parameters used to model the various methods, their meaning, and range of values.

Name Description Value
OP (OPp) Cost of the matvec (matvec+preconditioner)

ca Arpack iteration cost per eigenvalue 14N
cg Cost of reorthogonalizing locked vectors in GD 4N
cp Cost of projecting the locked vectors in QMR 2N
cq Symmetric QMR cost per step 21N

cqr, cgr Outer iteration costs for JDQMR/GD+1 (see Section 4.5)
C MVjdqmr000/(MVarpnev) [0.1, 0.25]
f f = cg/ca 4/14
fp fp = MVjdqmr100/MVjdqmr000

kxyz
inn Number of inner iterations in JDQMR-xyz > 1
γ γ = MVjdqmr100/MVGD+1 [1.1, 2.4]

tions per eigenvalue found by ARPACK is expected to decrease rapidly with nev. In
contrast, the number of matvecs per eigenvalue found for JDQMR-000 is expected to
be at least constant or increase slightly for highly interior eigenpairs because of the
loss of implicit orthogonality during inner iterations. Although it is difficult to model
this decrease/increase of matvecs for the two methods, surprisingly, we can relate em-
pirically the ratio of their number of matvecs. The left graph in Figure 4.1 shows that
for sufficiently large nev, the matvec ratio between ARPACK and JDQMR follows a
power law. Interestingly, fitting the ratios to a power law curve results in the model:

MVjdqmr000 = C nev MVarp,(4.1)

with 0.1 < C < 0.25. The same observations hold for the experiments in Figure 4.2.
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Fig. 4.1. Relative performance of ARPACK over JDQMR-000 for finding nev smallest eigen-
values of 8 matrices. The left graph shows the matvec ratios. The right graph shows time ratios.

ARPACK obtains this excellent asymptotic convergence with nev, at the expense
of increasing orthogonalization and restarting costs. Based solely on flop counts as a
measure of performance and considering only higher order terms and their constants,
we have that between restarts ARPACK requires

∑2nev
k=nev 8kN = 3/2nev28N flops for

(re-)orthogonalization and 2nev2N flops for restarting. Averaging over the nev steps
between restarts, we obtain 14nevN flops per matrix-vector operation. Let ca = 14N
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be the constant capturing these costs independently from nev. This facilitates a
more general model, as the constants in the flop counts may change depending on
implementation and hardware platform. Letting OP denote the cost of the matrix
vector operator, the approximate cost function per step for ARPACK is:

ArpPerMV = ca nev + OP.

For JDQMR-000 the cost of the inner iteration is that of the QMR method,

InnerPerMV = cq + OP.

If flop count is used as a performance measure, cq = 21N . The outer JD step, which
includes orthogonalization against all l = 1, . . . , nev converged eigenvalues, occurs
only every kinn inner iterations. To avoid counting the matvec of the outer step
twice, we include it in the cost of the inner method. Then, we have the following
approximate cost model per operator application:

OuterPerMV = cg nev/kinn.

To provide insight on the size of the constant cg we can use an accounting method to
analyze the average cost per step over all l = 1, . . . , nev. Because the outer iteration is
an inexact Newton method, each eigenvalue is obtained with roughly the same num-
ber of outer iterations. Then, If mop is the total number of matvecs, one eigenvalue
is found every mop/(kinnnev) outer iterations. Therefore, the total orthogonaliza-

tion cost throughout the execution of the method is mop/(kinnnev)
∑nev−1

l=0 8lN =
mop4(nev − 1)N/kinn. Averaging over all mop matvecs, we obtain: cg = 4N .

The outer JD step incurs also costs for orthogonalization of the basis, restarting,
and residual computation. These can be twice as expensive as the ARPACK costs,
if the basis sizes were the same. But with locking, these outer JD costs do not scale
with nev so they are not included in cg. Thus, asymptotically, f = cg/ca = 4/14 < 1,
but f increases for small nev.

Considering the ratio of the overall JDQMR-000 and ARPACK costs and substi-
tuting the matvec model from eq. (4.1), we have:

rj000
arp =

MVjdqmr000(cq + OP + cg nev/kinn)

MVarp (canev + OP )
=

C(cq + OP )

ca + OP/nev
+

Cnev cg/kinn

ca + OP/nev
.(4.2)

Asymptotically, for large nev and not too dense operators, we have OP/nev � ca,
and the ratio can be approximated as:

rj000
arp ≈ C

cq + OP

ca

+
f C nev

kinn

.(4.3)

The first summand in eq. (4.3) determines when JDQMR-000 cannot be faster
than ARPACK, regardless of kinn, because of too expensive an operator. The first
summand, and thus the ratio, is always greater than 1, if OP > ca/C − cq. In
our experiments C ∈ [0.1, 0.25], so JDQMR-000 can be faster than ARPACK only if
OP < 119N or OP < 35N (for C = 0.1 or C = 0.25 respectively). Yet, for many
important problems stemming from finite difference or finite element discretizations
of PDEs the matrices are sufficiently sparse to favor JDQMR-000.

Eq. (4.3) states that even for those sufficiently sparse matrices, ARPACK will
eventually outperform JDQMR-000 for large enough nev. Initially, when only some
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Fig. 4.2. Relative performance of ARPACK over JDQMR-000 for finding nev largest eigen-
values for tol =1e-15. The left graph shows the matvec ratios. The right graph shows time ratios.

of the eigenvectors have converged, JDQMR-000 spends most of its time in the inner
iteration. As more eigenvectors converge, the orthogonalization of the outer step
becomes increasingly expensive and will eventually dominate.

Some intuition can be gained by two extreme examples. First, consider a hypo-
thetical case with the least competitive choice of parameters for JDQMR, C = 0.25
and kinn = 10. The second summand of eq. (4.3) remains less than 0.8 for nev < 112.
Second, consider an actual experiment with the Lap7pt15K matrix, as shown in Fig-
ure 4.3. This case is favorable for JDQMR-000, but it also demonstrates how well the
model captures the relative behavior of the two methods. For this case, we empiri-
cally measure C = 0.1, kinn = 50. Also, because of the 7 point, 3-D Laplacian, the
operator cost is 14N . With these values, the model becomes r = 0.25 + 0.00057 nev,
dictating that JDQMR-000 is faster than ARPACK for nev < 1313, which is close
to the crossover point in the experiment. Moreover, for smaller nev values, the first
summand dominates, and this is the reason why in Figures 4.1 and 4.2 the time ratio
of the two methods for this matrix looks constant for 40 < nev < 500.
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Fig. 4.3. Time for finding nev smallest eigenvalues for ARPACK and JDQMR-000. Although
much faster initially, JDQMR-000 succumbs to orthogonalization costs of the outer step at 1100.

When seeking only a few eigenvalues, JDQMR-000 is always faster than ARPACK,
not so much because it avoids the projectors, but because of the nearly optimal conver-
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gence for one eigenpair and the cheaper QMR iteration (21N vs 14N nev). In eq. (4.2)
the second summand is negligible if nev � kinn, and so rj000

arp < 1 for nev = 1, and

rj000
arp increases monotonically with nev. Then, rj000

arp → Cnev as OP → ∞ so, assum-
ing a worst case C = .25, JDQMR-000 should always be faster for nev < 4, regardless
of operator cost. In practice, this model is not meant to be accurate for small nev, but
the intuition it provides agrees with all the experiments we have performed. Moreover,
for very high cost operators, GD+k provides a more efficient choice than JDQMR.

In summary, JDQMR-000 is faster than ARPACK for sufficiently sparse matrices
and up to a certain nev, which can be O(100s). Beyond that nev, using a larger basis
with ARPACK is preferable. For very small nev, JDQMR-000 is always preferable.

4.3. Preconditioned JDQMR-100 vs unpreconditioned JDQMR-000.

With a “good” preconditioner, JDQMR-000 can converge fast on the indefinite cor-
rection equation, similarly to an exact shift and invert, obviating the projection with
locked eigenvectors. With less accurate preconditioners, our results have been incon-
clusive. JDQMR-000 would sometimes converge fast to many extreme eigenvalues,
only to slow down appreciably, and unpredictably, on the next unconverged one. For
this reason, we do not consider the preconditioned JDQMR-000 further.

Depending on the preconditioner, JDQMR-100 reduces the number of matvecs
over unpreconditioned JDQMR-000 by a factor fp < 1: MVjdqmr100 = fpMVjdqmr000.
The number of matvecs per eigenvalue found by JDQMR-100 may increase with nev
because as the shift in the correction equation moves inside the spectrum, the pre-
conditioner, which usually does not change, may not be equally effective. A commen-
surate increase in matvecs of the unpreconditioned JDQMR-000, however, keeps the
fp roughly constant for different nev. This is depicted for a sample matrix in Fig-
ure 4.4, where JDQMR-100 requires 12 times less matvecs than the unpreconditioned
JDQMR-000 for any nev. Moreover, since the number of outer iterations does not
vary substantially, we assume that k100

inn = fpk
000
inn.
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Fig. 4.4. Matvec ratio of ARPACK over five methods (left graph) and time (right graph)
for finding nev smallest eigenvalues. All methods use ILUT(40,1e-3) preconditioning, except for
ARPACK and JDQMR-000. Methods that avoid projections are better, even unpreconditioned.

In addition to the cq QMR cost, each JDQMR-100 inner iteration involves a
projection with locked eigenvectors (cp nev) and an operator OPp which includes
matvec and preconditioning. In our flop count model, cp = 2N , which is half of cg,
because we do not re-orthogonalize when applying the projector. Re-orthogonalization
against locked eigenvectors occurs at every outer step for a total of cgnev cost. Hence,



NEARLY OPTIMAL EIGENMETHODS II 17

we arrive at the model for the time ratio of the two methods:

rj100
j000 =

MVjdqmr100 (cq + OPp + cpnev + cg nev/k100
inn)

MVjdqmr000 (cq + OP + cg nev/k000
inn)

=
fp(cq + OPp + cpnev) + cg nev/k000

inn

cq + OP + cg nev/k000
inn

(4.4)

For small nev and for preconditioners that are not disproportionally expensive, the
ratio is close to fp, and JDQMR-100 delivers the benefits of preconditioning. For

large nev, orthogonalization becomes dominant: rj100
j000 → fp +fpk

000
inn/2 = fp +k100

inn/2,

so since k100
inn > 1, JDQMR-000 is always better asymptotically than JDQMR-100.

Intuitively, the more effective and relatively cheaper the preconditioner, the more
eigenvalues JDQMR-100 finds faster before JDQMR-000 becomes beneficial. Figure
4.4 shows an example of this behavior for the torsion1 matrix.

4.4. Preconditioned JDQMR-100 vs ARPACK. Multiplying eq. (4.2) with
eq. (4.4) we obtain a time ratio for JDQMR-100 over ARPACK as follows:

rj100
arp = Cfp

cq + OPp

ca

+ Cfnev(
fp

2
+

1

k000
inn

),(4.5)

where f = cg/ca as previously, and OP/nev is negligible. In the example in Figure 4.4,
the preconditioned JDQMR-100 has not crossed the ARPACK curve for nev = 400,
but at that value their growth rates have become similar. For this example, we
empirically obtained fp = 1/12, k000

inn = 45, and C = 0.1. Then, according to the
model the curves will cross at nev = 511, although it is the approximate asymptotic
behavior which is of interest here and not the exact crossover point. The curve for
the two-projection JDQMR-111 already crosses the ARPACK curve at nev = 400.

The last two models suggest that the benefits of preconditioned Jacobi-Davidson
methods do not extend to large numbers of eigenvalues, for which it may be preferable
to switch to unpreconditioned JDQMR-000 (if the matrix operator is inexpensive),
or ARPACK (if the matrix operator is expensive). The crossover for that switch,
however, depends on the preconditioner and may be a very large nev number.

4.5. JDQMR-100 vs GD+1. We conclude this section with a discussion on the
relative performance behavior of GD+1 and JDQMR-100. As we observed in all our
experiments and conjectured in [57], the ratio of matvecs γ = MVjdqmr1000/MVGD+1

is typically γ ∈ [1, 2.4] and usually closer to 1.5. Because of similar costs, to compare
the two methods for small nev, we must complement the asymptotic model with the
outer JD costs that do not depend on nev (residual computation and restarting).

We use the accounting method of Section 4.2 to extend the flop-count cost model
in [57] to nev > 1. The remaining costs that do not depend on nev are given for
GD+1 by cgr = (11.4mmax + 18)N , and for the outer iteration of JDQMR-100 by
cqr = (11.4mmax − 3)N . Hence, the time ratio can be modeled as:

rj100
GD+1 = γ

(cq + OPp + cpnev + (cqr + cg nev)/kinn)

(cgr + cg nev + OPp)
−→ γ

(

1

2
+

1

kinn

)

.

JDQMR-100 is faster than GD+1 asymptotically if γ ∈ [1, 2) and kinn > 2γ/(2 − γ),
which is the most typical case. For example, for γ = 1.5 and kinn = 10, JDQMR-100
is 10% faster than GD+1 while with kinn = ∞ it can be up to 25% faster. If γ > 2,
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Table 4.3

JDQMR-100 vs GD+1: The crossover cost in flops of the combined matrix and preconditioner
(OPp). JDQMR-100 is faster for OPp costs less than the given values. GD+1 is faster otherwise.
For a certain γ and kinn we also provide the crossover as a function of nev.

kinn : 10 30 ∞
γ = 1.5 OPP < (323 + 0.8nev)N (363 + 1.6nev)N (383 + 2nev)N

nev = 10 331N 379N 403N
nev = 100 403N 523N 583N

γ = 2 OPP < (141 − 0.8nev)N (168 − 0.3nev)N (181 − 8 nev
kinn

)N

nev = 10 133N 165N 181N
nev = 100 61N 141N 181N

then GD+1 is always faster. It is important to note that in either case, the methods
are away from each other by at most a factor of two.

This asymptotic performance comparison is only valid for nev that are signifi-
cantly larger than OPp/N , which includes the cost of both the matrix and the pre-
conditioning operators and thus can be very expensive. Moreover, in the realm of such
large nev, JDQMR-000 is always better than JDQMR-100, and ARPACK is eventu-
ally faster than JDQMR-000, so the asymptotic comparison is less relevant. In Figure
4.4, using an expensive preconditioner, the two methods are very close, with GD+1
winning slightly for nev < 150, and JDQMR-100 winning slightly for nev > 200.

For small nev, the winner is determined by the cost of the operator and the
number of inner iterations that JDQMR-100 performs. Considering our flop model
for the above constants, including the cgr and cqr, and a typical basis size mmax = 18,
we can obtain the condition under which JDQMR-100 is faster than GD+1:

OPp <
1

γ − 1
(223.2 − γ(21 + 202.2/kinn) + (4 − 2γ − 4γ/kinn)nev) N.

Table 4.3 shows the cost for OPp beyond which GD+1 becomes faster than JDQMR-
100. Despite the asymptotic behavior, with expensive preconditioners the case for
GD+1 is compelling even for 100 eigenvalues. Our experiments in the next section
use an ILUT preconditioner with a rather large fill-in, and as expected the GD+1 is
the fastest method.

We emphasize that we do not advocate the use of flop-counts in the models. They
serve only to obtain qualitative information on the trade-offs between methods. Yet,
our models are built on top of much more general cost variables (such as cg or cq) and
operator costs (OP,OPp) that depend on the implementation and hardware platform.
More importantly, they can be measured not only a priori but also at run-time, thus
enabling a dynamic and possibly autonomic method selection that depends on the
problem at hand. This is a direction of future research.

5. Comparisons with other methods. In this section we provide further ex-
periments with and without preconditioning, for high and low tolerances, and for
both sides of the spectrum. We have already demonstrated the relative asymptotic
strengths between GD+k, JDQMR-100 and JDQMR-000. The goals of the following
experiments are: (a) to show that by avoiding the oblique projector in JDQMR-
100, convergence is almost identical to (and sometimes better than) JDQMR-011 and
JDQMR-111, but in significant less time and/or storage, (b) to compare with JDB-
SYM and BLOPEX, and (c) to confirm some modeling predictions in various cases.
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5.1. Without preconditioning. We look for the smallest 100 eigenvalues, and
ask for tol=1e-15. In Figure 5.1 the left graph shows the linear scaling of matvecs
with the number of eigenvalues found for all JDQMR and GD+k methods, except for
a slight increase in JDQMR-000. JDBSYM has problems scaling to many eigenvalues
for this matrix. The right graph, shows the quadratic O(nev2) behavior in methods
with projections, while JDQMR-000 achieves (at least up to 100 eigenvalues) what was
designed for: almost linear scaling with nev. The matrix, however, has 65 elements per
row, yielding an expensive 130N operator. Thus, the significant reduction in matvecs
from the large ARPACK basis is hard to match. Notice also that JDQMR-100 and
JDQMR-011 converge identically.
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Fig. 5.1. Matvecs (left graph) and time (right graph) of six methods for nev smallest eigenvalues.

In Figure 5.2, all JD/GD methods converge very similarly, which means that the
stopping criteria of JDBSYM work well in this case. Most methods, and particularly
JDQMR-000, are better than ARPACK up to 50 eigenvalues, but for nev = 100 the
much larger ARPACK basis captures some part of the spectrum that smaller bases
could not. ARPACK takes fewer matvecs to find 100 eigenpairs than 50, matching the
time of JDQMR-000. This spectrum dependent behavior is hard to model in general.
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Fig. 5.2. Matvecs (left graph) and time (right graph) of six methods for nev smallest eigenvalues.

In Figure 5.3, a sparser matrix, finan512, is considered so JDQMR-000 is several
times faster than any other JD/GD method and better than ARPACK, exactly as
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predicted by our model. Again JDBSYM is only slightly slower than JDQMR-100
and JDQMR-011. The last two are again identical.
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Fig. 5.3. Matvecs (left graph) and time (right graph) of six methods for nev smallest eigenvalues.

In Figure 5.4, we consider the largest matrix in the group, whose eigenvalues are
all of multiplicity 3 or 6. JDBSYM cannot converge in tractable time for this matrix
with strategy = 1, and strategy = 0 performed worse. The sparsity of this Laplacian
makes JDQMR-000 significantly faster than all other methods. In all four examples,
GD+2 offers the fastest convergence among JD methods in terms of matvecs but
not execution time because of its more expensive iteration. Results for 100 smallest
eigenvalues from all matrices were summarized in Figure 4.1.
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Fig. 5.4. Matvecs (left graph) and time (right graph) of six methods for nev smallest eigenvalues.

In the previous examples BLOPEX could not reach the required tol. Figure
5.5 shows results from the Cone A matrix, but with tol=1e-7. As with tol =1e-15,
JDBSYM does not converge well for this matrix. BLOPEX with block size of 10
not only is slower than GD+2/JDQMR methods, but its convergence does not scale
linearly with nev. For this matrix, the relative behavior of the rest of the methods is
similar to tol =1e-15 (Figure 5.1).

In Figure 5.6 we observe a significant deterioration of the performance of ARPACK
over the tol =1e-15 case in Figure 5.2. Closer scrutiny of the iterations between the two
figures reveals they are about the same. ARPACK does not benefit from the higher
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Fig. 5.5. Matvecs (left) and time (right) of six methods with tol=1e-7, for smallest eigenvalues.

threshold, still computing almost all 100 eigenpairs to full accuracy. We observed
this behavior of ARPACK with high tolerances in the majority of our experiments.
Surprisingly, JDBSYM is much slower for tol=1e-7 than with full accuracy (compare
with Figure 5.2). BLOPEX now scales linearly with nev, but it is significantly worse
than any GD+k/JDQMR method, even for the smallest 10 eigenpairs.
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Fig. 5.6. Matvecs (left) and time (right) of six methods with tol=1e-7, for smallest eigenvalues.

Figure 5.7 reports similar results in execution time for the finan512 and Lap7pt125K
matrices. For the finan512, BLOPEX fails to converge to more than 10 eigenpairs,
and JDBSYM is again far slower than the tol =1e-15 case. The JDQMR and GD+k
methods are consistent both in robustness and their relative behavior.

To see whether BLOPEX would perform better on easier spectra, we run exper-
iments with tol=1e-7, seeking 500 largest eigenvalues of the matrices. In Figure 5.8
we give sample results from two matrices. For Plate33K A0, the largest side of the
spectrum is slightly easier to compute, but BLOPEX is still not competitive. For
Cone A, the largest side is much easier. In terms of matvecs (not shown in the figure)
BLOPEX is competitive with JDQMR-000 up to 100 eigenvalues, then convergence
deteriorates slowly, and the method fails for the 350-th eigenvalue. In terms of time,
the orthogonalization penalty is apparent on the BLOPEX method.
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Fig. 5.7. Execution times of six methods on two matrices with tol=1e-7, for smallest eigenvalues.
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Fig. 5.8. Times for three methods on two matrices, tol=1e-7, for nev largest eigenvalues.

5.2. With preconditioning. For our preconditioning experiments, we use the
the ILUT preconditioner from the SPARSKIT library [47]. We have observed that
although matvecs always decreased with ILUT, for some matrices execution time did
not. Next, we report results from the three matrices on which unpreconditioned
JDQMR/GD+k methods were slower than the ARPACK method. For these three
cases, ILUT resulted in gains. Also, for the ILUT factorization to complete success-
fully, we had to shift the matrices slightly away from singularity.

In Figure 5.9, the ILUT(80,1e-4) of the shifted cfd1 matrix A+0.01I is computed.
All preconditioned methods improve and become much better than ARPACK. All
JDQMR-100/111/011 variants converge identically, but the 111 takes more time for
large nev. JDBSYM also improves but less than JDQMR-100. Because of large fill-in,
the ILUT preconditioner is expensive and therefore the method with smallest matvecs
wins, i.e., GD+1. The number of matvecs for ARPACK is large and out of scale.

In Figure 5.10, the ILUT(40,1e-6) of the shifted Cone A matrix A + 3e6I is com-
puted. Although preconditioning reduces matvecs appreciably for JD methods, they
still grow linearly with nev. As a consequence, the time graph for this experiment
shows that ARPACK is faster than any other method beyond nev = 10. Observations
about the relative behavior of the other methods hold in this example too. Exper-
iments with the Plate33K A0 matrix have shown similar convergence behaviors and
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Fig. 5.9. Matvecs (left) and time (right) with ILUT(80,1e-4) preconditioner. Smallest nev.

crossover points, so they are not reported.
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Fig. 5.10. Matvecs (left) and time (right) with ILUT(40,1e-6) preconditioner. Smallest nev.

Despite the use of preconditioning, BLOPEX was not able to reach convergence
to tol =1e-15 in any of the previous cases. Therefore, we conclude this section with
three experiments that include preconditioning but use a higher tolerance, 1e-7.

In Figure 5.11, with an ILUT(20,1e-6) of the unshifted Laplacian, neither JDB-
SYM nor BLOPEX were competitive. The graphs also include the unpreconditioned
JDQMR-000, the time of which is identical to preconditioned JDQMR-100.

Figure 5.12 shows timing results from Cone A with the same preconditioner as
before and from the matrix Andrews shifted as (A−1e-6I). For Cone A, BLOPEX
is marginally faster than JDQMR-100 for 10 eigenvalues, but its convergence dete-
riorates slowly beyond that and more rapidly after nev = 40. JDBSYM converged
very slowly for this example. For the Andrews matrix, BLOPEX and JDBSYM are
competitive with JDQMR-100 for 10 eigenvalues, but they grow appreciably slower
with nev, following the curve of the unpreconditioned JDQMR-000. In all our pre-
conditioning experiments, the heavier operators made GD+1 the fastest method.

6. Conclusions. In our research we seek nearly optimal methods for obtaining
one or many eigenpairs of Hermitian or real symmetric matrices under limited memory.
In an earlier, companion paper we have identified GD+k and JDQMR as two nearly



24 A. STATHOPOULOS and J.R. MCCOMBS

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

Matrix: Lap7pt125K     tol = 1E−7

Number of smallest eigenvalues found

M
at

ve
cs

 

 

GD+1
nop jdqmr000
jdqmr100
jdqmr011
jdbsym
blopex

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Matrix: Lap7pt125K     tol = 1E−7

Number of smallest eigenvalues found

T
im

e 
in

 s
ec

on
ds

 

 

GD+1
nop jdqmr000
jdqmr100
jdqmr011
jdbsym
blopex

Fig. 5.11. Matvecs (left) and time (right) with ILUT(20,1e-6). Smallest nev and tol=1e-7.
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Fig. 5.12. Times for two matrices, smallest nev, and tol=1e-7. ILUT(40, 1e-6) for both matrices.

optimal methods with complementary strengths for obtaining one eigenvalue. In this
paper, we offer arguments why the same near optimality is not achievable when looking
for many eigenpairs.

We have also offered ways to alleviate the quadratic scaling bottleneck stemming
from the orthogonalization against converged eigenvectors. Specifically, without pre-
conditioning, our JDQMR-000 method performs no projections during the inner JD
iteration, and thus achieves nearly linear scaling with nev up to the point where nev
becomes much larger than the number of inner iterations performed, shifting the bot-
tleneck to the outer step. JDQMR-000 outperforms all other JD/GD variants, and
for sparse enough matrices even outperforms ARPACK up to 1000s of eigenvalues.
With preconditioning, our analysis suggests that the oblique projection in the JD
correction equation is unnecessary for converged eigenvectors. The resulting method,
JDQMR-100, is faster and requires half the storage of other JD variants.

Based on a detailed complexity analysis and extensive experimental observations,
we have developed a comprehensive set of models that describe the relative perfor-
mance between JD variants, GD+k, and ARPACK. The asymptotic analysis has pro-
vided the following valuable insight: Methods that use O(1) basis size become slower
asymptotically than methods that use O(nev) basis size, regardless of preconditioning.
In practice, O(1) basis sizes with or without preconditioning can be used extremely
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effectively up to 100s or 1000s of eigenvalues (as our JDQMR-000 shows). Our mod-
els provide also performance crossover points between methods that can be used for
dynamic, and possibly autonomic method selection within a multimethod software,
such as PRIMME.

Finally, we have provided a large set of experiments on a variety of problems
and conditions, and compared against state-of-the-art methods and software, such as
JDBSYM and BLOPEX. Invariably, our GD+k and JDQMR methods are far more
efficient and robust, and seem to be nearly optimal within the class of O(1) basis size.
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and more concise presentation. We thank M. Hochstenbach for pointing out some con-
nections with a method in [4].
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