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Abstract
We prove that a known general approach to improve Shamir’s celebrated secret sharing
scheme; i.e., adding an information-theoretic authentication tag to the secret, can make it
robust for n parties against any collusion of size δn, for any constant δ ∈ (0, 1/2). Shamir’s
original scheme is robust for all δ ∈ (0, 1/3). Beyond that, we employ the best known list
decoding algorithms for Reed-Solomon codes and show that, with high probability, only the
correct secret maintains the correct information-theoretic tag if an algebraic manipulation
detection (AMD) code is used to tag secrets. This result holds in the so-called “non-rushing”
model in which the n shares are submitted simultaneously for reconstruction. We thus obtain
a fully explicit and robust secret sharing scheme in this model that is essentially optimal in
all parameters including the share size which is k(1 + o(1)) + O(κ), where k is the secret
length and κ is the security parameter. Like Shamir’s scheme, in this modified scheme any set
of more than δn honest parties can efficiently recover the secret. Using algebraic geometry
codes instead of Reed-Solomon codes, the share length can be decreased to a constant (only
depending on δ) while the number of shares n can grow independently. In this case, when n is
large enough, the scheme satisfies the “threshold” requirement in an approximate sense; i.e.,
any set of δn(1 + ρ) honest parties, for arbitrarily small ρ > 0, can efficiently reconstruct
the secret. From a practical perspective, the main importance of our result is in showing that
existing systems employing Shamir-type secret sharing schemes can be made much more
robust than previously thought with minimal change, essentially only involving the addition
of a short and simple checksum to the original data.
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1 Introduction

Secret sharing, introduced by the seminal works of Shamir [23] and Blakley [1], is the
following problem (in its most basic formulation): suppose we wish to encode and distribute
a secret s ∈ Fk

2 among n parties in such a way that (i) the n parties can reconstruct the
original secret s by revealing their respective shares; and, (ii) for some integer parameter
t > 0 (called the privacy parameter), any group of t parties cannot infer any information
about the secret from their collection of shares. In coding-theoretic terms, the goal is to
encode s (using randomness) into a sequence Y1, . . . , Yn over some alphabet of size Q, in a
way that s can be reconstructed from the encoding and moreover, for any i1, . . . , it ∈ [n],
the sequence Yi1 , . . . , Yit has the same distribution regardless of the message s.

Shamir proposed a beautiful scheme that provides an optimal solution to the problem.
The scheme regards the secret as an element of the finite field FQ , for some prime power
Q ≥ n, and then samples a uniformly random univariate polynomial of degree at most t over
FQ with the constant term set to be s. The coding-theoretic interpretation of this solution is
that s is amended with t uniformly random and independent elements of FQ and the result
is encoded using a Reed-Solomon code of length n and dimension t + 1. Shamir’s solution
works even if the adversary uses an adaptive strategy; i.e., when each of the query positions
i1, . . . , it depends on the observation outcomes at the previous locations. Adaptive security
is a property that is generally sought after for secret sharing schemes.

Due to its coding-theoretic nature, Shamir’s scheme provides at least two additional bene-
fits. First, any group of parties is able to recover s as long as the size of the group is larger than
t . This so-called “threshold property” is due to the fact that theReed-Solomon code is anMDS
code. Second, any Reed-Solomon code of rate R is able to tolerate any fraction of errors up to
(1− R)/2 and this can be achieved by an efficient decoder (such as the Berlekamp–Massey
decoding algorithm, cf. [22, Chap. 6]). As a result, a straightforward calculation shows that
Shamir’s secret sharing scheme is robust, in the sense that it can tolerate malicious parties
that submit incorrect shares. In particular, the correct secret s can be always reconstructed
even if up to a third of the parties reveal their shares incorrectly. In fact, this holds true even
if the malicious parties are able to arbitrarily communicate with each other and choose the
incorrect shares adversarially.

More strongly, Shamir’s scheme is secure against the so-called “rushing” adversaries. In
the rushing setting (also known as “secret sharing with reconstructor”), reconstruction is
done by each party broadcasting their (possibly corrupted) shares in an order determined by
the protocol. This means that the adversary may attempt to, adaptively, manipulate shares
at any point in the reconstruction phase (up to its allotted budget) based on its (adaptive)
observation of up to t shares as well as all the shares (including those of the honest parties)
that are revealed so far. Naturally, the requirement is then that each party should be able
to correctly reconstruct the secret in isolation, with high probability, from the information
received from the n parties. The error resilience of Shamir’s scheme is based on the minimum
distance of Reed-Solomon code, and thus the power of the adversary is irrelevant for this
scheme as long as the number of manipulations is less than the minimum distance of the
code. In fact in the reconstruction phase the adversary may observe everyone’s shares and
then decide which ones to corrupt, and the set of corrupted shares may or may not overlap
with the set of t shares observed by the adversary before reconstruction (an interesting
property that is not in general required in robust secret sharing, but is nevertheless satisfied
by some known constructions that rely on error-correcting codes to provide robustness;
e.g., [24]).
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Nearly optimal robust secret sharing 1779

Table 1 Summary of results in robust secret sharing scheme, and their key features and limitations

Ref. Share length Efficient? Remarks

[23] k Yes Only robust against collusions of size t < n/3

[8] k + O(log(1/η)) Yes Only robust in the sense of error detection

[2] k + O(log(1/η)) Yes Only secure against local adversaries

[12] k + O(n + log(1/η)) No

[10] k + Õ(n + log(1/η)) Yes Secure against rushing adversaries

[21] k + O(n log(1/η)) Yes Secure against rushing adversaries

[24] k + Õ(n2 + n log(1/η)) Yes For n = 2t + 1

[6] O(1) Yes Monte-Carlo, reconstruction from t + �(n) of the
shares, for large n, and η = exp(−�(n)).

[3] k + O(log(1/η)(log4 n +
(log3 n) log k))

Yes For n = 2t + 1

This work k(1 + o(1)) + O(log(1/η)) Yes Corollary 14

This work O(1) Yes Corollary 18

Reconstruction from any t + ρn shares, for any
constant ρ > 0, assuming t

n ≤ 1
2 − ρ, large n and

η = exp(−�(n)) (Corollary 18).

Theparameter t is the privacyparameter,n is the number of shares andη is the error probability of reconstruction

1.1 Previous work

The robust notion of secret sharing has been studied in the literature, and some of the key
results in the area are summarized in Table 1. It is known that robust secret sharing is
impossible when the fraction of dishonest parties is at least 1/2; i.e., when n ≤ 2t [19]. It is
also impossible to always reconstruct the secret correctly (i.e., with probability 1) when the
fraction of dishonest parties may be 1/3 or larger, in which case a small probability of error η
is unavoidable. Therefore, Shamir’s scheme provides optimal robustness for a scheme with
zero probability of error.

When an honest majority exists, Rabin and Ben-Or [21] provide a secret sharing scheme
based on Shamir’s scheme combined with message authentication codes. The share length
q := log Q in this scheme is, ignoring small terms, k + �(n log(1/η)), where η > 0 is the
probability of incorrect reconstruction. In contrast, an appealing feature of Shamir’s scheme
is that the shares are compact; namely, the bit length of each share is equal to the bit length
of the secret (under the natural assumption that n ≤ 2k). This turns out to be optimal for
schemes with perfect privacy satisfying the threshold property [25].

Another scheme, due to Cramer et al. [7] (and based on [12] and also using Shamir’s
scheme) improves the share length to max{k, O(n + log(1/η))}. However, the reconstruction
time for this scheme is in general exponential in n (more precisely, at least

(n
t

)
), and the scheme

is insecure against rushing adversaries (cf. [10]).
Cevallos et al. [10] propose a scheme similar to [21] that achieves more compact shares,

namely of length k + O(log(1/η) + n(log n + log k)). This scheme provides efficient share
and reconstruction procedures and is also secure against rushing adversaries.

Cramer et al. [8] introduce the notion of algebraic manipulation detection (AMD) codes,
which is a natural variant of error-detection codes in situations where the adversary’s pertur-
bations on a codeword are chosen independently of the codeword. By using this primitive
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1780 M. Cheraghchi

as a pre-code in Shamir’s secret sharing scheme (or any secret sharing scheme with linear
decoder), they are able to make the scheme robust against adversarial manipulations. The
key difference in their model is the notion of robustness; i.e., the requirement is that if the
adversary corrupts any of the shares, the reconstruction should detect the adversary and fail
(rather than output the correct share) with high probability.

More recently, Lewko and Pastro [2] defined a variation of robust secret sharing in which
the robustness requirement is against local adversaries. That is, the error in each share cor-
rupted by the adversary can only depend on the particular share being corrupted. Intuitively,
this corresponds to the case where a number of adversaries take control of different shares and
have to decide on submitting an incorrect share only based on the local information that they
possess (the adversaries may agree on a strategy beforehand but cannot communicate after
observing their respective shares). They show that even in this restricted model, the minimum
required share length is k + log(1/η) − O(1) (under the standard threshold assumption that
any set of t + 1 must reconstruct the secret with probability at least 1 − η). Furthermore,
they construct efficient schemes in the local model that attains a nearly optimal share length
of k + O(log(1/η)).

In another recent work, Cramer et al. [6] combine AMD codes with universal hash func-
tions and (folded) list decodable codes to construct a secret sharing scheme with potentially
constant share length (more precisely, share length �(1 + log(1/η)/n)). Their construction
is with respect to a randomly chosen hash function from a universal family and is thus a
Monte-Carlo construction. That is, the code construction relies on the probabilistic method
(and thus may not result in the desired secret sharing scheme with unfortunate choices of
the randomness), however the encoder and decoders are efficient once the randomness of the
code construction is set to an appropriate choice. Moreover, this construction considers the
“ramp model” in which it is not necessary to be able to reconstruct the secret from any t + 1
of the shares. This relaxation is in fact necessary for any secret sharing scheme with share
length smaller than the secret length k.

Finally, Safavi-Naini and Wang [24] construct secret sharing schemes based on codes for
the wiretap channel problem for the case n = 2t + 1. This construction is based on wiretap
codes that are in turn based on list decodable Reed-Solomon codes, subspace-evasive sets
and AMD codes, and attains a share length of k + O(n2(log n)(log log n) + n log(1/η)).

Subsequent to a preliminary draft of the present work, Bishop et al. [3] construct an effi-
cient and nearly optimal robust secret sharing scheme for n = 2t + 1 that achieves share
length k + O(log(1/η)(log4 n + (log3 n) log k)). In general, this is incomparable with the
bound we achieve (while both being very close to the optimal k + O(log(1/η)). This work
follows the authentication graph idea of Rabin and Ben-Or [21] (in which a MAC signature
is used for every party in each share to authenticate the shares for every other party) and its
improvement by Cevallos et al. [10]. In particular, [3] considers a subsampled authentication
graph, leading to nearly optimal share lengths, which is then shown to provide robustness via
a delicate analysis based on the approximation algorithms for the minimum graph bisection
problem. It is, however, not shown whether this improvement maintains robustness against
rushing adversaries.

1.2 Our contributions

In thiswork,we construct an essentially optimal robust secret sharing scheme against possibly
adaptive, but non-rushing, adversaries. Somewhat surprisingly, our construction turns out to
be strikingly similar to some of the known constructions mentioned in Sect. 1.1 and involves
a simple modification of Shamir’s original secret sharing scheme.
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Nearly optimal robust secret sharing 1781

More precisely, the construction first amends the secret with a tag using an AMD code
(such as the one in [8]). Then, it uses Shamir’s scheme to encode the result into mn shares,
for a carefully chosen integer parameter m > 1. Finally, the resulting shares are bundled
into n groups of size m each which are distributed among the n parties. In other words,
we use a variant of Shamir’s scheme based on folded Reed-Solomon codes (instead of plain
Reed-Solomon codes) combined with an AMD pre-code. This is very similar to what used
in [8] to provide robustness in the sense of error-detection, as well as the coding-theoretic
construction of Safavi-Naini andWang [24] (the latter additionally uses subspace-evasive sets
that we do not need). Combining Shamir’s scheme with some type of information-theoretic
pre-code (such as a message authentication code) can also be seen as the underlying idea of
other existing constructions such as [7].

The techniques that we use are remarkably simple to describe as well. To prove robustness,
we first use an efficient list decoding algorithm of folded Reed-Solomon codes [15] to show
that the reconstruction procedure always outputs a short list containing an AMD encoding
of the correct secret. Second, we use an elegant observation by Guruswami and Smith [16]
that was used by them to construct “stochastic” error-correcting codes. The observation is
that, for any list decodable code that is linear over some base field, the list of potential
messages corresponding to any given received word is the translation of the original message
by elements of a set that only depends on the noise vector. In particular, the list of potential
messages, shifted by the correct message, is only determined by the code and the error
vector chosen by the adversary. For our application in secret sharing, privacy of Shamir’s
scheme implies that the perturbations of the adversary, and thus the set of error vectors in the
message domain, must be independent of the original message and the internal randomness
of the AMD code. As a result, the error detection guarantee of the AMD code ensures that,
with high probability, all the incorrect potential messages are correctly identified by the
reconstruction procedure so that only the correct secret remains at the end.

Our construction and underlying ideas share an overlap with the above-mentioned recent
result of Cramer et al. [6] in which the authors construct a Monte-Carlo secret sharing
scheme with small share length in the ramp model (where obtaining a sharp threshold; i.e.,
reconstructability from any t + 1 shares, is not a requirement1). The construction in that
work can be described as follows: First, the secret s is encoded with an AMD code, and then
the result x is mapped to a random element in h−1(x), where h is a fixed and appropriately
chosen linear hash function. The resulting sequence is finally encoded using a list decodable
code. Unfortunately, this result does not determine an explicit suitable choice for h. However
it shows, using the probabilistic method, that most functions in a universal family of hash
functions are suitable choices for the hash function h. In other words, if h is randomly2

picked from a universal family of hash functions, with high probability over the choice of
h the resulting scheme is robust with the desired parameters. Therefore, the hash function h
is determined by the code construction once and for all, and the probabilistic method shows
that most choices of h would result in equally good secret sharing schemes. It is not clear,
however, whether one can efficiently and deterministically find a suitable choice for the hash
function h without running an exponential-time computation (as is usual in random coding
arguments). Compared with this result, our work completely eliminates the need for the hash

1 It should however be noted that any (robust) ramp secret sharing scheme can be modified to also satisfy a
sharp thereshold by simply adding Shamir shares to each existing share, at cost of increasing the share lengths
by the length of the secret.
2 It is important to not confuse the randomness of the choice of h with the internal randomness of the encoder;
the randomness of h comes from the code construction, and once a good choice of h is fixed once and for all,
the encoder and decoder are properly defined and provide the expected guarantees.
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1782 M. Cheraghchi

function, and thus we finally obtain a fully explicit construction of efficient secret sharing
schemes with nearly optimal parameters in all aspects. Namely, our main result in this work
can be stated as follows.

Theorem 1 (Corollary 14, rephrased) Let δ < 1/2 be any fixed constant. For any η > 0, there
is an efficient, robust and perfectly private secret sharing scheme with n shares, secret length
k, and share length q ≤ k(1 + o(1)) + O(log(1/η)) that is secure with privacy parameter
t = δn, attaining a reconstruction error of at most η. ��

Another feature of ourwork is its completemodularity and simplicitywhich can help retain
the practicality of Shamir’s scheme. Our main result (Theorem 8) can be applied to any linear
secret sharing scheme based on linear error-correcting codes that provides privacy via a dual
distance argument (Shamir’s original scheme being a special case). As a result, we are able
to instantiate the result with virtually any algebraic family of linear list decodable codes, and
particularly do so for the cases of (folded) Reed-Solomon and algebraic geometry codes. In
contrast, the result of Cramer et al. [6] is only presented and proven when the underlying
code is an algebraic geometry code, as the main goal of [6] is to obtain constant share lengths.
Furthermore, as discussed above, [6] only provides a Monte-Carlo construction, since the
choice of the hash function that pre-processes the secret is random which, in addition to
adding to the description complexity of the final scheme, may cause the entire scheme to fail
with an unfortunate choice of the (unverifiable) random hash function.

Same as Shamir’s scheme and [24], our result does not necessarily require the observations
of the adversary to coincide or overlap with the set of manipulated shares. In fact, the number
of adaptive observations by the adversary may in general be different from the number of
incorrect shares, and this is allowed as long as the total fraction of observations and incorrect
shares add up to a quantity sufficiently smaller than 1.

Although a share length of at least k bits is necessary for any robust secret sharing scheme
[25] (even against local, or oblivious, adversaries [2]), it is possible to obtain smaller shares
at cost of slightly relaxing the threshold property. That is, instead of requiring the secret to
be reconstructible (either with probability 1 or close to 1) from any set of more than t shares,
we may require reconstructability from any set of more than t + g shares, for a small “gap”
parameter g. A desirable level for the gap parameter is when g is a small fraction of the
number of shares, and it is reasonable to argue that a secret sharing scheme that attains such
a relaxed threshold property may be of interest to most applications.

We adapt our secret sharing scheme to nonzero gap parameters and, moreover, show that
when g is a small fraction of n, the alphabet size may be reduced to an absolute constant
(depending on the fraction g/n and assuming that t/n is smaller than 1/2 by some constant).
This is achieved by using folded algebraic geometry codes instead of folded Reed-Solomon
codes and their corresponding list decoding algorithms (namely, the state-of-the-art algo-
rithm due to Guruswami and Xing [18]). Using algebraic geometry codes, we can prove the
following.

Theorem 2 (Corollary 18, rephrased) For any constant ρ > 0, and any δ ≤ 1/2−ρ, there is
a constant q = Oρ(1) such that the following holds. There is a robust and perfectly private
secret sharing scheme with n shares, secret length k, and share length O(q), attaining a
reconstruction error of η = exp(−�(ρnq)), provided that n ≥ k/(ρq). The scheme satisfies
the threshold property in an approximate sense; namely, that the secret can be reconstructed
(with probability 1) given any set of t + ρn shares. The scheme is efficient given polynomial
(in n) amount of pre-processed information about the scheme. ��

123



Nearly optimal robust secret sharing 1783

Previously, the best known construction achieving small share length was due to Cramer
et al. [6] in which the share length is �(1 + log(1/η)/n) and thus grows with the secu-
rity parameter (see Table 1). Moreover, as mentioned above, this construction is not
fully explicit and requires a randomly chosen hash function that is fixed once and for
all and there is no clear efficient way of explicitly finding an appropriate hash func-
tion.

The efficiency of the scheme in Theorem 2 is dictated by the efficiency of the underly-
ing list decoding algorithm for algebraic geometry codes. The encoding and list decoding
algorithms in [18] that we use run in polynomial time provided that a polynomial amount
of pre-processed information about the code is available to the algorithms. Naturally, any
subsequent improvements in list decoding algorithms of folded algebraic geometry (and for
that matter, folded Reed-Solomon) codes would automatically improve the performance of
the above secret sharing schemes.

We remark that the natural idea of reducing share length by using algebraic geometry
codes rather than Reed-Solomon codes in secret sharing schemes dates back to a result of
Chen and Cramer [5] and has been extensively studied since (cf. [9]), especially in the context
of arithmetic secure multiparty computation.

It should be pointed out that, as discussedbefore, the focus of the presentwork is in showing
that a simple modification of the existing Shamir’s secret sharing scheme (i.e., the idea of
amending the secret with an AMD tag that was actually proposed in [8] and shown to provide
robustness in the sense of error-detection) essentially makes it optimally robust. This means
that existing systems employing Shamir’s scheme can be easily modified to provide stronger
robustness against tampering adversaries, and this can be a very appealing improvement for
practitioners that use Shamir’s or related coding-theoretic schemes. In contrast, graph-based
constructions such as [3,10,21] pursue a very different approach.Another appealing feature of
coding-theoretic constructions such as our construction and Shamir’s original scheme is that
they allow an imbalance between the adversarial leakages and corruptions. In particular, for
our constructions the adversary can read any τ fraction of the shares and use this information
to corrupt any δ (whether including the shares previously read or not) fraction of the shares,
and both privacy and robustness can be guaranteed as long as τ + δ is nontrivially bounded
away from 1.

Organization. The rest of the article is organized as follows. We explain the notation in
Sect. 1.3. Preliminaries, including the exact notion of secret sharing schemes that we use in
this work, are discussed in Sect. 2. Our general construction is presented and analyzed in
Sect. 3. We then instantiate the construction using folded Reed-Solomon codes in Sect. 4.1
and folded algebraic geometry codes in Sect. 4.2. Finally, Sect. 4.3 proves optimality of the
obtained bounds using a reduction from the wiretap channel problem.

1.3 Notation

We use dH (x, y) to denote the Hamming distance between two vectors x and y. For a vector
Y = (Y1, . . . , Yn), and i ∈ [n], we use the notation Y (i) to denote Yi . Moreover, for a
sequence W = (W1, . . . , Wt ) ∈ [n]t , we use the notation Y |W := (Y (W1), . . . , Y (Wt )). All
logarithms are to base two. For a function f and a subset S of the domain of f , we use the
notation f (S) to denote the set { f (s) : s ∈ S}. Moreover for two sets A, B over a group
(G,+), we use A + B to denote {a + b : a ∈ A, b ∈ B}, and A + b (for b ∈ G) to denote
A + {b}.
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1784 M. Cheraghchi

2 Preliminaries

In this section, we describe the basic notions that are used throughout the paper, including the
exact definition of robust secret sharing schemes that we use. The general notion of coding
schemes is defined as follows.

Definition 3 (coding scheme). A pair of functions (Enc,Dec) where Enc : Fk
2 ×F	

2 → Fn
2q ,

and Dec : (F2q ∪ {⊥})n → Fk
2 ∪ {⊥} is called a coding scheme if for all s ∈ Fk

2 and all
z ∈ F	

2, we have Dec(Enc(s, z)) = s. The function Enc and Dec are respectively called the
encoder and the decoder, and parameters k and q are respectively called the message length
and the symbol length. We use the notation Enc(s) to denote the random variable Enc(s, Z)

when Z is sampled uniformly at random from F	
2. The coding scheme is called efficient if

Enc,Dec can be computed in polynomial time in nq . The rate of the coding scheme is the
quantity k/(nq). The coding scheme is binary if q = 1.

Using the above definition, we may now define robust secret sharing schemes as a coding
scheme satisfying the privacy and robustness requirements.

Definition 4 (robust secret sharing scheme). A robust secret sharing scheme with secret
length k, share length q , and number of shares n is a coding scheme (Share, Rec) with
message length k, symbol length q and block length n satisfying the following.

1. Adaptive privacy: For a parameter t (known as the privacy parameter), and for any
“secret” s ∈ Fk

2, an adversary who (possibly adaptively) observes any up to t of the
shares gains (almost or absolutely) no information about the secret s. More formally, for
aY ∈ Fn

2q , and a parameter t , we define an observation strategy as follows. The strategy is
specified by anobservation sequence W = (W1, . . . , Wt ), where eachWi ∈ [n] is distinct
and determined as a function of Y (W1), . . . , Y (Wi−1). The observation outcome with
respect to Y is then the string Y |W . The privacy requirement is that for every observation
strategy as above, there is a distribution D over Ft

2q such that, for every s ∈ Fk
2, letting

Y := Share(s), the distribution of the observation outcome Y |W is ε-close in statistical
distance3 to D. The scheme satisfies perfect privacy if ε = 0.

2. Robustness: For a parameter d (known as the robustness parameter), an adversary who
arbitrarily corrupts up to any d of the shares (possibly after adaptively observing any t
of the shares) cannot make Rec output an incorrect secret with probability more than η.
More formally, consider any observation strategy resulting in an observation sequence
W . Then, for any s ∈ Fk

2 the following must hold. Let Y := Share(s), and suppose
an adversary is given (W , Y |W ) and accordingly chooses an error vector � ∈ Fn

2q of
Hamming weight at most d . Then it must be that, for some robustness error parameter
η ≥ 0,

Pr(Rec(Y + �) 
= s) ≤ η,

where the probability is taken over the internal randomness of Share. The scheme satisfies
perfect robustness if η = 0.

The quantity log(1/max{η, ε}) is called the security parameter of the scheme. We say
the scheme satisfies the threshold property with gap g if the following holds for all s ∈ Fk

2

3 The statistical distance between two distributions D and D′ over a finite support � is defined as
dist(D,D′) := 1

2
∑

x∈� |D(x)−D′(x)| and the two distributions are said to be ε-close (denoted byD ≈ε D′)
if dist(D,D′) ≤ ε. In this work, we focus on perfect privacy; i.e., ε = 0.
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Nearly optimal robust secret sharing 1785

and all sets S ⊆ [n] of size at least t + g + 1. Let Y := Share(s) and Y ′ ∈ (F2q ∪ {⊥})n be
so that Y ′|S = Y |S and Y ′(i) =⊥ for all i ∈ [n] \ S. Then, it must be that

Pr(Rec(Y ′) 
= s) ≤ η,

where the probability is taken over the internal randomness of Share. That is, the correct
secret can be reconstructed correctly from any set of t + g + 1 shares. If g = 0, we say that
the scheme satisfies a sharp threshold. ��

Secret sharing schemes that do not have a sharp threshold are known in the literature as
ramp schemes, and the parameter t + g +1 is sometimes called reconstructability parameter
(cf. [6]).

An important notion that we use in our constructions is the notion of algebraic manipu-
lation detection (AMD) codes, defined as follows.

Definition 5 (AMD code). [8] A binary coding scheme (Enc,Dec)with message length k and
block length n is an AMD code with error η if for every message s ∈ Fk

2 and every � ∈ Fn
2,

we have

Pr(Dec(Enc(s) + �) /∈ {s,⊥}) ≤ η,

where the probability is taken over the internal randomness of Enc.

The following result is shown in [8], which we shall use in our constructions. Although,
as stated in [8], the coding scheme is only defined for infinitely many values of the message
length k, it can be extended to all integers k > 0 by trivial padding techniques without any
loss in the asymptotic guarantees.

Theorem 6 [8, Corollary 1] For every k and parameter η > 0, there is an efficient AMD code
with message length k and encoder of the form

Enc(s, z) = (s, z, f (s, z))

for some f : Fk
2 × F

q
2 → F

q
2 such that q = log(1/η) + log(3 + k/ log(1/η)) + 1 =

O(log(k/η)).

We note that explicit constructions of AMD codes are known that are better than the above
for certain ranges of the parameters (e.g., [13]). However, the tag length of the construction
in Theorem 6 is optimal within a constant factor of two, which suffices for our purposes.
Furthermore, this construction is essentially based on Reed-Solomon codes (namely, the tag
simply consists of a random point and evaluation of a polynomial defined by the message at
that point), which fits nicely for use alongside a Shamir-type secret sharing scheme.

The notion of folded codes, following a line of work in algebraic list decoding (originally
defined in [15]) is the following. Intuitively, a folded code is obtained from an error-correcting
code by bundling groups of codeword symbols into “packets” of a certain size, thereby
increasing the effective alphabet size in favor of better error resilience guarantees.

Definition 7 Let C ⊆ Fnm
Q be a code with message length km. The folded C at level m is the

code C′ ⊆ Fn
Qm (with alphabet size Qm) defined as

(c1, . . . , cn) ∈ C′ if and only if ((c1(1), . . . , c1(m)), . . . , (cn(1), . . . , cn(m)) ∈ C,

where ci ∈ FQm and (ci (1), . . . , ci (m)) is a natural embedding of ci ∈ FQm into Fm
Q .

Intuitively, the code C is obtained by writing each symbol in C′ as a length m vector overFQ .
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3 The construction

The following is the main technical tool used by our constructions, in which we prove that a
combination of AMD codes with (folded) linear list decodable codes can be used to construct
robust secret sharing schemes.

Theorem 8 There is a constant c0 > 0 such that the following holds for any integer k > 0
and parameter η > 0. For some Q = 2q and m | q, let C ⊆ Fn

Q be an explicit FQ1/m -
linear code with rate R that is efficiently list decodable from any δ fraction of errors with list
size bounded by L and has minimum distance d > δn. Moreover, suppose C has a sub-code
C′ ⊆ Fn

Q that, over FQ1/m , is linear with dual distance at least tm +1 and rate R′ ≤ R −1/n
satisfying

(R − R′)nq ≥ k + c0 log(kL/η). (1)

Then, there is an efficient and perfectly private robust secret sharing scheme (Share, Rec)
with secret length k and n shares, share length q, privacy parameter t , robustness δn, and
robustness error η. Moreover, the scheme satisfies the threshold property with gap g =
n − t − d.

Proof Let η′ := η/L . We first instantiate the AMD code of Theorem 6 for message length k
and block length

n0 = k + O(log(k/η′)) ≤ k + c0(log(kL/η))

for some constant c0 > 0. Let (Enc0,Dec0) be the resulting AMD coding scheme.
We can write the code C as a direct sum C = C′ + C′′ of complementary codes, where

C′′ ⊆ Fn
Q is an FQ1/m -linear sub-code of C of rate R − R′ > 0. For the sake of clarity in

the sequel we use C0, C′
0 ⊆ (FQ1/m )nm to be the codes C, C′, respectively, when regarded as

subspaces of (FQ1/m )nm (in other words, C0, C′
0 are the unfolded representations of C, C′).

Recall that C0, C′
0 are linear codes over FQ1/m .

Let f : Fn0
2 → C′′ be any efficient andF2-linear invertible function. Such a function exists

since log2 |C′′| = (R − R′)nq ≥ n0 by (1). Note that there is also an efficiently computable
F2-linear projection f ′ : Fn

Q → F
n0
2 such that for any w ∈ C′, and any x ∈ F

n0
2 , we have

f ′(w + f (x)) = x .
We define the secret sharing scheme (Share, Rec) as follows:

• Share: Given s ∈ Fk
2, Share(s) first computes S′ := Enc0(s). Then, it samples a Z ∈ Fn

Q
according to the uniform distribution on C′ and outputs Y := f (S′) + Z .

• Rec: Given Y ′ ∈ Fn
Q , the procedure Rec(Y

′) first uses the list decoding algorithm of C
to compute a list M ⊆ Fn

Q of size at most L consisting of all codewords of C that agree
with Y ′ in at least 1− δ fraction of the positions. Let M ′ ⊆ F

n0
2 be the set M ′ := f ′(M).

If the set Dec0(M ′) \ {⊥} contains only one element, the algorithm outputs the unique
element. Otherwise, the algorithm returns ⊥.

Let Y = Share(s) denote the correct shares and Y ′ ∈ Fn
Q be the perturbation of Y

according to the strategy of the adversary.Note thatY is always a codeword of C. Furthermore,
we are guaranteed that Y ′ differs from Y in at most δn positions (chosen arbitrarily according
to the observation of the adversary). Since the minimum distance of C is larger than δn and
since C is a linear code, given Y ′ the decoder can efficiently check whether Y = Y ′ (i.e.,
invoke error detection) and make sure that |M | = 1 if this is the case, so that there are no
ambiguities when no perturbations occur (e.g., using the parity check matrix of C). Since
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Dec0(Enc0(s)) = s with probability 1, it follows that Rec(Share(s)) = s with probability 1
as well. Therefore, it follows that (Share, Rec) is indeed a valid coding scheme.

In order to see the privacy requirement, we observe that since C′
0 has dual distance greater

than tm and Z ∈ Fn
Q is a uniformly random codeword of C′ (and thus, of C′

0 when unfolded),
the vector Z is (tm)-wise independent over (FQ1/m )nm (and t-wise independent over Fn

Q).
That is, restriction of Z ∈ Fn

Q to any t coordinate positions (that may be chosen adaptively)
is uniformly distributed on Ft

Q . Therefore, since Z is independent of the randomness of the
AMD code, we see that regardless of the message s (and even more generally, conditioned
on any particular outcome of S′), the encoding Y = f (S′) + Z is t-wise independent. This
guarantees that the adversary gains no information about s (and in fact S′) by observing any
up to t of the shares (note that this is true even if the adversary’s strategy may depend on s,
see Remark 10 below).

In order to verify the threshold property, we first verify that n − t − d ≥ 0. In order to
see this, note that by the Singleton bound [22, Sect. 4.1], and since dim C′

0 < dim C0, we
have tm + 1 ≤ nm − dim C′⊥

0 + 1 = dim C′
0 + 1 = R′nm + 1 ≤ Rnm − m + 1. Again by

the Singleton bound, we have Rn ≤ n − d + 1, which combined with the previous bound
gives t ≤ n − d . Now, since the minimum distance of C is d , the vector Y can be uniquely
recovered (in fact, with probability 1) from any set of n − d + 1 shares. Therefore, since the
privacy parameter is t , we obtain a gap of g = (n − d + 1) − t − 1 = n − d − t .

Finally, we verify the robustness property. Let the random variable V denote the view of
the adversary after (possibly adaptively) observing up to t shares. That is, V specifies the
sequence of coordinate positions observed by the adversary (possibly adaptively and even
given the knowledge of s) and the value of shares at each one of those positions. In the
sequel, we consider the conditional probability space in which V attains a specific value
v; i.e., we condition all random variables on V = v. Our goal is to show that under any
such conditioning, the robustness guarantee is satisfied. Observe that because of the privacy
argument, the two random variables V and S′ (where we recall that S′ = Enc0(s) via the
AMD code) are independent. Therefore, the distribution of S′ remains unchanged under the
conditioning V = v.

Now suppose given the observation V = v (and possibly the secret s), the adversary picks
a fixed error vector � ∈ Fn

Q of Hamming weight at most δn and perturbs Y to Y ′ = Y + �

(if the adversary picks � according to a randomized function of v, we may use the following
argument for any fixing of the internal randomness of the adversary; i.e., we may add the
adversary’s randomness to the conditioning).

We now follow an argument similar to Guruswami and Smith [16] to complete the robust-
ness analysis. Let MY ,� denote the set of all codewords of C that differ from Y ′ in at at most
δn coordinate positions. That is,

MY ,� := {c ∈ C : dH (c, Y + �) ≤ δn}
= {c ∈ C : dH (Y + c,�) ≤ δn}
= Y + {c ∈ C : dH (c,�) ≤ δn}, (2)

where the last equality is due to the linearity of the code C. Recall that S′ = f ′(Y ) where f ′
is an F2-linear projection function. Now, we apply f ′ on every element of MY ,� to obtain
the set M ′ ⊆ F

n0
2 that using (2) can be written as follows.

M ′ := f ′(MY ,�)

= f ′(Y ) + { f ′(c) : c ∈ C ∧ dH (c,�) ≤ δn}
= S′ + { f ′(c) : c ∈ C ∧ dH (c,�) ≤ δn}.
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Observe that, by the above derivation, the set S′ + M ′ is completely determined by the code C
and the fixed shift vector � and is otherwise independent of Y and, importantly, the internal
randomness of the AMD encoder Enc0.

Recall that the reconstruction function Rec appliesDec0 on all elements of M ′ and outputs
a unique valid decoding if it exists (and otherwise, outputs⊥). In other words, reconstruction
is successful if and only if |Dec0(M ′) \ {⊥}| = 1 (observe that it is already guaranteed that
S′ ∈ M ′ according to list deocdability of C which ensures that the correct codeword is always
on the list).

Let �′ ∈ S′ + M ′ be any shift vector according to M ′. Observe that

Pr(Dec0(S′ + �′) /∈ {S′,⊥}) ≤ η′ (3)

from the definition of AMD codes. Here, the probability is taken under the conditioning
V = v, which we have shown to not affect the internal randomness of the AMD encoder
(i.e., the distribution of S′ remains unchanged under the conditioning V = v). Therefore, by
a union bound,

Pr(|Dec0(M ′) \ {⊥}| 
= 1) ≤ |M ′|η′ ≤ Lη′ = η,

which concludes the robustness analysis. ��
Remark 9 The minimum distance bound d > δn in Theorem 8 is only used to make sure
that the scheme (Share, Rec) is a valid coding scheme; i.e., that Pr(Rec(Share(s)) = s) = 1.
If instead one wishes to have Pr(Rec(Share(s)) = s) ≥ 1 − η (or if C has a decoder that
produces a list of size 1 given a correct codeword), this requirement can be eliminated.

Remark 10 Asmentioned in the proof of Theorem8, the theoremholds even if the adversary’s
observation and perturbation strategies depend on the secret s. This is a property that also
holds true for the original Shamir’s scheme.

4 Instantiations

4.1 Construction based on Reed-Solomon codes

In this section, we instantiate Theorem 8 using folded Reed-Solomon codes. When folding
(Definition 7) is instantiated to the special case ofReed-Solomon codes,we have the following
definition of folded Reed-Solomon codes.

Definition 11 Let q be a prime power. A folded Reed-Solomon code with block length
n, alphabet size Qm and message length k can be specified as the image of an encoder
Enc : (Fm

Q)k → (Fm
Q)n where Enc( f ) interprets the input f as a polynomial of degree

mk − 1 over FQ and outputs a vector (F1, . . . , Fn) (where Fi ∈ Fm
Q) such that Fi =

( f (αi,1), . . . , f (αi,m)) and the sequence (αi, j : i ∈ [n], j ∈ [m]) is a sequence of dis-
tinct evaluation points over FQ explicitly specified by the code design. Rate of the folded
Reed-Solomon code is k/n, and the code is linear over FQ .

As shown in [15], folded Reed-Solomon codes attain an optimal trade-off between rate
and list decoding radius. Specifically, the following is the main result proven4 in [15].

4 As stated in [15], the result is not shown for all choices of the block length n. However, trivially one can
obtain a family of codes for all block lengths by adding additional evaluation points that are not used by the
decoder, without incurring an adverse effect in the asymptotic bounds.
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Theorem 12 [15, follows from5 Theorem 4.4] For any constant parameter ρ ∈ (0, 1), c ≥ 1,
and integers n > k > 0, there is a p0 = O(nc/ρ2) such that for any prime power p ≥ p0,
there is an Fp-linear folded Reed-Solomon code with message length k and block length n
such that for some δ ≥ 1− k/n − ρ, the following hold: (1) The code is list decodable from
any δ fraction of errors with list size at most L, for some L = p�(log(1/ρ)/ρ); (2) The alphabet
size of the code is Lc/ρ; (3) The code is linear over Fp.

We now apply the above result in Theorem 8 to obtain the main result of this section, as
follows.

Theorem 13 For every integers n > t ≥ 1, g ≥ 0 and real parameters δ, ν, η > 0 such that

ρ := 1 − δ − t + g + 1

n
> 0

there is a k0 = O(
log(1/ρ)

νρ
log( n

νρ
)) such that for any integer k ≥ k0 the following holds.

There is an efficient and perfectly private secret sharing scheme (Share, Rec) with n shares,
secret length k, privacy parameter t , threshold property with gap g, and share length q
satisfying (1 + g − ν)q ≤ k + O(log(k/η)). Moreover, the scheme achieves a robustness
parameter of δn and robustness error η.

Proof Let c0 be the constant from Theorem 8 and define c := �2c0ρ/ν�. Let C ⊆ Fn
Q be

an Fp-linear folded Reed-Solomon code, where p = �(nc/ρ2) is a power of two to be
determined later, as obtained by Theorem 12, of length n, message length k′ := t + g + 1,
rate R := k′/n, and alphabet size that is list decodable from any 1 − R − ρ = δ fraction of
errors with list size bounded by L = p�(log(1/ρ)/ρ). Moreover, we set the alphabet size of
the code is to be Q = Lc/ρ .

We instantiate Theorem 8 with the code C to obtain a secret sharing scheme (Share, Rec)
with share length q = log Q = c log L/ρ. We now verify that the requirements of Theorem 8
are satisfied for any suitable choice of the secret length k.

First, note that since any foldedReed-Solomon code is on the Singleton bound, the distance
d of C satisfies d = n − k′ + 1 = (1 − R)n + 1 > (δ + ρ)n > δn.

Let EncC : Fk′
Q → Fn

Q be the natural encoder for the code C. That is, EncC interprets the

input as a univariate polynomial f of degree k′m − 1 over a subfield ofFQ of size Q1/m , for
some integer m > 0, and evaluates f at nm points, interpreting the result as n points over
FQ , each consisting of a bundle of m evaluations (cf. Definition 11). We set the sub-code C′
needed by Theorem 8 to be the code obtained by setting the last k′ − t (among the total of k′)
of the inputs of EncC to be zeros (in algebraic terms, we take the subcode C′ to be the folded
Reed-Solomon code formed by the space of univariate polynomials, over FQ1/m , of degree
at most tm − 1). Thus, the subcode C′ (as a code over FQ1/m ) is a Reed-Solomon code of
dimension tm and dual distance nm − (nm − tm) + 1 = tm + 1. Moreover, the rate R′ of
C′ is equal to t/n = (k′ − g − 1)/n ≤ R − 1/n, and we have

(R − R′)nq = (k′ − t)q = (g + 1)q.

5 The construction and analysis for this result is precisely as in [15] with the following additional consid-
erations: The construction of [15] considers an m-level folding of the Reed-Solomon code with the smallest
possible unfolded alphabet size (which is nm) and m = O(1/ρ2). Here, we consider an additional parameter
c ≥ 1 and allow a larger folding of m = O(c/ρ2), to have additional control over the alphabet size of the
folded code compared with its list size.We furthermore allow the unfolded alphabet size p to be possibly larger
than the minimum required size of nm. Finally, we upper bound the term 1/R in [15] by O(1/ρ), noticing
that when R is small, it is always possible to design a code at a slightly higher rate first and then truncate the
message space to the desired length k.
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By (1) in the statement of Theorem 8, and the above result, we wish to choose the share
length q so as to satisfy the requirement

(g + 1)q ≥ k + c0 log(kL/η), (4)

which can be rewritten, using the expression for q , as

(g + 1)(c/ρ − c0) log L ≥ k + c0 log(k/η).

Since c/ρ ≥ 2c0 = �(1) and the bound on the list size L satisfies log L =
�(log(1/ρ) log p/ρ), we may pick a large enough p so that the above inequality is sat-
isfied, given the secret length k and the parameter η. In particular, we will choose p to be
the smallest power of two that satisfies the above. From (4), we see that the share length q is
upper bounded as follows

(g + 1)q = k + O(log(k/η)) + c0 log L.

Now we recall that, from the choice of c,

c0 log L = ρc0q/c < νq,

and thus

(g + 1 − ν)q = k + O(log(k/η)),

as desired. We note that the minimum possible alphabet size Q is, according to Theorem 12,
(nc/ρ2)�(c log(1/ρ)/ρ2). The logarithm of this quantity determines the minimum possible
share length, and consequently the minimum allowed secret length k0 in the statement of
the theorem. Finally, to verify the threshold property, by Theorem 8 we have that the gap
achieved by the code is upper bounded by n − t − d = n − t − (n − k′ + 1) = g. This
concludes the proof. ��

We remark that for any (not necessarily robust) secret sharing scheme with threshold
property and gap g, it is known that the share length q must satisfy q ≥ k/(1 + g) (cf. [6]).
Therefore, the share length achieved by Theorem 13 is essentially optimal.

For the important special case of δ = t/n and g = 0 we derive the following immediate
corollary from Theorem 13.

Corollary 14 Let δ < 1/2 be any fixed constant. For every integer n > 1/(1 − 2δ) and
parameters η > 0 and ν > 0, there is a k0 = Oν(log n) such that for any integer k ≥ k0,
there is an efficient and perfectly private secret sharing scheme (Share, Rec) with n shares,
secret length k and share length q, where q(1− ν) ≤ k + O(log(k/η)). The scheme attains
a sharp threshold, privacy and robustness δn, and robustness error η. ��

4.2 Reducing the share length using algebraic geometry codes

A slight drawback of the result in Corollary 14 is that the share length grows with the number
of shares (i.e., q → ∞ as n → ∞). This is a direct consequence of the fact that the alphabet
size of a Reed-Solomon must grow with its block length. In order to resolve this issue, we
instantiate Theorem 8 with a family of folded algebraic geometry (AG) codes as described in
[18]. As we see in this section, for any fixed δ < 1/2, this results in a secret sharing scheme
with privacy and robustness δn and constant alphabet size (depending on 1 − 2δ).
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Theorem 15 [18, Theoren 4.3] For any ρ > 0 and a real R ∈ (0, 1), one can construct a
folded algebraic geometry code over alphabet size Q = (1/ρ)O(1/ρ2) with rate at least R
and decoding radius δ = 1 − R − ρ such that the length n of the code tends to infinity and
is independent of ρ. Moreover, the code is deterministically list decodable with a list size
O(n1/ρ2

). Given a polynomial (in n) amount of pre-processed information about the code,
the algorithm runs in deterministic polynomial time.

We now instantiate the general construction of Theorem 8 using the above result.

Theorem 16 Let c0 be the constant from Theorem 8. For any constants ρ, δ > 0, there is an
integer q = �(log(1/ρ)/ρ2) and n0 = (1/ρ)O(1) such that for all integers t, k and n ≥ n0

and real parameter η > 0 that satisfy

k + c0 log k

nq
+ t

n
+ δ ≤ 1 − ρ − c0

log(1/η)

nq
(5)

the following holds. There is an efficient and perfectly private secret sharing scheme
(Share, Rec) with n shares, share length q, privacy parameter t and secret length k. Moreover,
the scheme achieves a robustness parameter of δn and error η, and satisfies the threshold
property with gap at most n(1 − t

n − δ). The scheme is efficient given polynomial (in n)
amount of pre-processed information about the scheme.

Proof The proof is similar to that of Theorem 13, but uses the folded algebraic geometry
codes of Theorem 15 instead of folded Reed-Solomon codes.

Let ρ′ = �(ρ) to be a parameter to be determined later. Let C be a folded algebraic
geometry code of length6 n and rate R = 1 − δ − ρ′ over alphabet size Q = (1/ρ)�(1/ρ2)

that is list decodable from any δ fraction of errors with list size L = O(n1/ρ′2
). Let k′ := Rn

be the message length of C. We apply Theorem 8 on this code to obtain a secret sharing
scheme (Share, Rec) with n shares of length q = log Q = �(log(1/ρ)/ρ2). Now we set up
the parameters so as to satisfy the requirements of Theorem 8.

We observe that the construction of Theorem 15 uses function fields over Garcia-
Stichtenoth towers, and the setup of the parameters is so that the genus G of the function field
can be made to be at most ρ′nm, where m is the depth of folding, or in other words, nm is
the block length of the code before folding. Therefore, by the Riemann-Roch Theorem ([26,
Theorem 1.5.15 combined with Corollary 2.2.3]), the minimum distance of C is greater than
n − k′ − G/m ≥ n − k′ − ρ′n = n(1 − R − ρ′) = δn.

Let C0 ⊆ (FQ1/m )nm to be the unfolded representation of C (thus C0 is the original,
unfolded, algebraic geometry code). As is the case with Reed-Solomon codes, one can iden-
tify a subcodeC′ � C0, over the same functionfield asC0, of dimension t ′ := tm+�2ρ′nm�+4
overFQ1/m . Let R′ be the rate of C′.Wewill have R′ ≤ R−1/n assuming that t ′ ≤ (k′−1)m.
The dual of C′ has dimension nm − dim(C′) = nm − t ′ and, by [26, Theorem 2.2.7 com-
bined with Corollary 2.2.3 and Proposition 2.1.8], minimum distance at least

dim(C′) − 2G − 3 = t ′ − 2G − 3 ≥ t ′ − 2ρnm − 3 > tm.

In order to satisfy (1), noting that

6 Even though Theorem 15 constructs codes for infinitely many choices of n, without loss of generality one
can assume that there is a code for every n. Since the set of block lengths for which the family contains a code
is sufficiently dense, this can be ensured by trivial padding without any loss in the asymptotic parameters.
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(R − R′)nq ≥ (1 − δ − ρ)nq − t ′q/m ≥ nq

(
1 − δ − ρ′ − tm + 2ρ′nm + 5

mn

)

≥ nq

(
1 − δ − t + 5

n
− 3ρ′

)
,

it suffices to ensure that

k

nq
+ t

n
+ δ + c0 log(k/η)

nq
≤ 1 − 3ρ′ − c0 log L

nq
− 5

n
. (6)

Recall that log L ≤ (1/ρ′2) log n + O(1). Thus by choosing an appropriate n0 = (1/ρ)O(1)

and ensuring that n ≥ n0, and ρ′ ≤ ρ/4 we can make the right hand side of (6) at least 1−ρ.
Consequently, assuming (5), i.e.,

k + c0 log(k/η)

nq
+ t

n
+ δ ≤ 1 − ρ,

we have (6) and, in turn, (1).
Finally, byTheorem8, the scheme satisfies the threshold propertywith gap g = n−t−d ≤

n(1 − t
n − δ), as desired. ��

From this result, we obtain the following corollary.

Corollary 17 Let c0 be the constant from Theorem 8. For any constants δ, γ, ρ > 0, there is
a q0 = O(log(1/ρ)/ρ2) and n0 = O(1/ρ) such that for all integers c ≥ 1, the following
holds. Let q := cq0. For any integers k > 0, n ≥ n0, and parameter η > 0 such that

k + c0 log k

nq
+ γ + δ ≤ 1 − ρ, (7)

There is a perfectly private secret sharing scheme (Share, Rec) with n shares, secret length
k, share length q, privacy parameter at least γ n, and threshold property with gap at most
n(1 − δ − γ ). Moreover, the scheme achieves a robustness parameter of δn and error η =
exp(−�(ρnq)). The scheme is efficient given polynomial (in n) amount of pre-processed
information about the scheme.

Proof We simply apply Theorem 16 with constant ρ′ := ρ/2 (for the parameter ρ required
by Theorem 16) to obtain a secret sharing scheme (Share, Rec) with cn shares, secret length
k, share length q0 = O(log(1/ρ)/ρ2), robustness δcn, and privacy parameter t := �γ cn�.

Let c0 be the constant fromTheorem8.Wechoose the error parameterη = exp(−�(ρnq))

so that c0 log(1/η) ≤ ρnq/2 − 1, and thus

k + c0 log k

nq
+ t

cn
+ δ + c0

log(1/η)

nq
≤ 1 − ρ′

as needed by Theorem 16. Next, we bundle disjoint groups of c shares into shares of length
cq0 = q , thus obtaining a scheme with n shares of length q and the desired parameters. ��

Corollary 17, in turn, immediately implies the following result on robust secret sharing
with privacy and robustness parameter δn for any δ < 1/2.

Corollary 18 For any constant ρ > 0, and any δ ≤ 1/2−ρ, There is a q0 = O(log(1/ρ)/ρ2)

such that for any q ≥ q0 and integers k > 0 and n ≥ k/(ρq), the following holds. There
is a perfectly private secret sharing scheme (Share, Rec) with n shares, secret length k, and
share length at most 2q. The scheme attains privacy and robustness parameters equal to δn

123



Nearly optimal robust secret sharing 1793

and error η = exp(−�(ρnq)), and satisfies the threshold property with gap at most 2ρn.
The scheme is efficient given polynomial (in n) amount of pre-processed information about
the scheme. ��

Compared with the result of Corollary 14 obtained fromReed-Solomon codes, we see that
the share length q can be chosen to be a constant (depending on the difference 1/2− δ), and
at the same time the number of shares can be made arbitrarily large as well. However, for this
to be possible when the designed share length is small, the number of shares n needs to be
large enough7 so that n ≥ k/(ρq) . In Sect. 4.3 we show that this is necessary for any robust
secret sharing scheme with share length q that attains privacy and robustness parameters
close to n/2.

Limitations of the method. As we have shown in this section, our framework can lead
to robust secret sharing schemes against any fixed τ fraction of leaked shares (privacy)
and any fixed δ fraction of corruptions (robustness) as long as τ + δ < 1, and we obtain
a nearly optimal guarantee in terms of the share length in all cases. It is natural to ask
whether ρ := 1− δ − τ can be made sub-constant. For example, in the maximum corruption
scenario, where t shares are observed and corrupted for n = 2t + 1, we have ρ = 1/n, and
more generally for n = 2t + c we have ρ = c/n. To provide such guarantees, MDS-type
list decodable codes of rate R and robust against any 1 − R − ρ fraction of errors with
small list sizes will be required. Currently, the state of the art in explicit constructions of
linear list decodable codes does not obtain sharp guarantees in the sub-constant ρ regime.
Furthermore, general combinatorial negative bounds are known for any (even nonlinear)
list decodable code. A simple probabilistic argument shows that, for any ρ, there are list
decodable codes that achieve a list size of at most 1/ρ and alphabet size exp(O(1/ρ)) [14].
Furthermore, an alphabet size of exp(�(1/ρ)) is necessary even for nonlinear codes [17,
Chap. 3].

Currently, it is not known whether there are linear MDS-type codes matching the list
decoding guarantees of fully random codes for the range of parameters discussed above.
However, even if this turns out to be the case, the above-mentioned combinatorial lower
bound on the alphabet size limits the allowed share lengths for the resulting secret sharing
scheme. For Shamir’s original scheme (as well as our scheme based on Reed-Solomon
codes), the number of shares n for share length k can be at most exp(O(k)), which is a
reasonable restriction for cryptographic purposes (in other words, the minimum allowed
share length for a give number of shares n while preserving the zero overhead in the share
length is�(log n)). If we instantiate our result with an optimal list decodable code achieving
ρ = c/n, the share length becomes �(1/ρ) = �(n/c), which means that the minimum
allowed secret length k becomes �(n/c). In other words, for constant c (i.e., the maximum
robustness regime of n = 2t + c) our share length must be �(n), whereas for the non-
robust Shamir’s scheme, the share length (which is equal to the secret length) can be as small
as log n. Note that, for this regime, the linear dependence of the share length on n is not
due to the overhead being sub-optimal (the overhead always remains nearly optimal since
it depends on the list size and not the alphabet size of the code). The dependence is simply
due to the restriction on the allowed secret length k (which must be at least k0 for some
k0 = �(n/c)).

7 Note such a requirement is not a barrier for the Reed-Solomon based constructions such as Shamir’s scheme
and the result of Theorem 13, since we have q ≥ k in those schemes.
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4.3 Optimality

In this section we briefly demonstrate that, for a general share length q , a robust secret sharing
scheme satisfying (7) for arbitrarily small ρ > 0 is essentially optimal (even if the threshold
property is not a concern). This can be shown by a straightforward reduction from thewiretap
channel problem.

In the wiretap channel problem [11,27], the goal is to construct a coding scheme to encode
a secret S ∈ Fk

2 to an encoding Y ∈ Fn
Q that is transmitted over a main channel to a recipient.

The encoding is additionally sent to an adversary over a wiretap channel that has a smaller
channel capacity compared to the main channel. The secrecy requirement of the problem
is that the adversary should not learn any information about the secret from the wiretap
channel’s observation, whereas the recipient observing the main channel should be able to
reconstruct the correct secret (with probability at least 1 − η for arbitrarily small η > 0).
There are various formulations of the problem that differ in the following aspects:

1. Whether the reconstruction and secrecy requirements are defined with respect to a uni-
formly random secret S or, more stringently, the worst case secret,

2. The choice of the main and wiretap channels, and
3. The notion of secrecy. Inweak secrecy, the requirement is themutual information security

(cf. [4]) of the form

I (S; Y ′) ≤ εk,

where Y ′ is the wiretap channel’s output, for arbitrarily small ε > 0. A much stronger
notion is semantic security (formalized in [4]) which requires that there must be a distri-
bution D, determined by the coding scheme, such that for every fixed secret s ∈ Fk

2, the
wiretap channel’s output is statistically ε-close to D.

An important parameter to characterize is the secrecy capacity in this model, which is the
highest achievable rate R := k/(qn) by a coding scheme satisfying the above-mentioned
reconstruction and secrecy requirements. For our reduction, the main channel is the Q-ary
erasure channel, where Q := 2q , with erasure probability p and, moreover, the wiretap
channel is the Q-ary symmetric channel with error probability p′, for given parameters p
and p′. In this case, it is known that the secrecy capacity even with respect to a random
secret and weak secrecy requirement is the difference between capacities of the two channels
[11,20], which is equal to (1− hQ(p′)) − (1− p) = p − hQ(p′) ≤ p − p′, where hQ(·) is
the Q-ary entropy function.

It is immediate that a robust secret sharing scheme (as formulated in Definition 4) sat-
isfies the requirements of the wiretap channel problem formulated above, provided that the
robustness parameters is set to be δn := (p′ + ρ′)n, for an arbitrarily small ρ′ > 0, and the
privacy parameter is set to be t := �(1 − p + ρ′)n�.

In fact a secret sharing scheme is a stronger object than needed since it allows for the
erasure positions and also perturbations to be adaptively chosen by the adversary. Moreover,
it provides secrecy for worst-case secrets as well as semantic security (in fact, recall that our
constructions achieve perfect secrecy; i.e., semantic security with ε = 0).

By Chernoff bounds, the probability η′ that the fraction of erasures for the adversary is
less than p − ρ′ or the fraction of perturbations in the direct channel is more than p′ + ρ′
is exponentially small (i.e., at most η′ = exp(−�(n)) for any ρ′ > 0 that is a constant). It
follows that the correctness requirement of the wiretap channel problem can be satisfied with
error at most η + η′ = o(1) (provided that η = o(1)) and, moreover, semantic secrecy is
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also satisfied with a statistical error of ε ≤ η′ (where the choice of D would be the uniform
distribution over Ft

Q).
Since the secrecy capacity of the above wiretap channel problem is at most p − p′, it must

be that, defining γ := t/n,

k

qn
≤ p − p′ ≤ 1 − γ − δ + (2ρ′ + o(1)).

Thus the bound obtained in (7) is the best to hope for.
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