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Abstract

We study the combinatorial pure exploration problem BEST-SET in a stochastic multi-armed bandit

game. In an BEST-SET instance, we are given n stochastic arms with unknown reward distribu-

tions, as well as a family F of feasible subsets over the arms. Let the weight of an arm be the

mean of its reward distribution. Our goal is to identify the feasible subset in F with the maxi-

mum total weight, using as few samples as possible. The problem generalizes the classical best

arm identification problem and the top-k arm identification problem, both of which have attracted

significant attention in recent years. We provide a novel instance-wise lower bound for the sample

complexity of the problem, as well as a nontrivial sampling algorithm, matching the lower bound

up to a factor of ln |F|. For an important class of combinatorial families (including spanning trees,

matchings, and path constraints), we also provide polynomial time implementation of the sampling

algorithm, using the equivalence of separation and optimization for convex program, and the notion

of approximate Pareto curves in multi-objective optimization (note that |F| can be exponential in

n). We also show that the ln |F| factor is inevitable in general, through a nontrivial lower bound

construction utilizing a combinatorial structure resembling the Nisan-Wigderson design. Our re-

sults significantly improve several previous results for several important combinatorial constraints,

and provide a tighter understanding of the general BEST-SET problem.

We further introduce an even more general problem, formulated in geometric terms. We are

given n Gaussian arms with unknown means and unit variance. Consider the n-dimensional Eu-

clidean space R
n, and a collection O of disjoint subsets. Our goal is to determine the subset in

O that contains the mean profile (which is the n-dimensional vector of the means), using as few

samples as possible. The problem generalizes most pure exploration bandit problems studied in the

literature. We provide the first nearly optimal sample complexity upper and lower bounds for the

problem.

1. Introduction

The stochastic multi-armed bandit model is a classical model for characterizing the exploration-

exploitation tradeoff in a variety of application fields with stochastic environments. In this model,

we are given a set of n stochastic arms, each associated with an unknown reward distribution. Upon
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each play of an arm, we can get a reward sampled from the corresponding distribution. The most

well studied objectives include maximizing the cumulative sum of rewards, or minimizing the cu-

mulative regret (see e.g., Cesa-Bianchi and Lugosi (2006); Bubeck et al. (2012)). Another popular

objective is to identify the optimal solution (which can either be a single arm, or a set of arms,

depending on the problem) with high confidence, using as few samples as possible. This problem

is called the pure exploration version of the multi-armed bandit problem, and has attracted signif-

icant attention due to applications in domains like medical trials, crowdsourcing, communication

network, databases and online advertising Chen et al. (2014); Zhou et al. (2014); Cao et al. (2015).

The problems of identifying the best arm (i.e., the arm with maximum expected reward) and the

top-k arms have been studied extensively (see e.g., Mannor and Tsitsiklis (2004); Even-Dar et al.

(2006); Audibert and Bubeck (2010); Kalyanakrishnan and Stone (2010); Gabillon et al. (2012);

Kalyanakrishnan et al. (2012); Karnin et al. (2013); Jamieson et al. (2014); Zhou et al. (2014); Chen

and Li (2015); Cao et al. (2015); Carpentier and Locatelli (2016); Garivier and Kaufmann (2016);

Chen et al. (2016b, 2017)). Chen et al. (2014) proposed the following significant generalization, in

which the cardinality constraint is replaced by a general combinatorial constraint and the goal is to

identify the best subset (in terms of the total mean) satisfying the constraint.

Definition 1.1 (BEST-SET) In a BEST-SET instance C = (S,F), we are given a set S of n arms.

Each arm a ∈ S is associated with a Gaussian reward distribution with unit variance and an

unknown mean µa. We are also given a family of subsets F with ground set identified with the set

S of arms. Our goal is to find with probability at least 1− δ, a subset in F with the maximum total

mean using as few samples as possible. We assume that there is a unique subset with the maximum

total mean.

In the above definition, the set family F may be given explicitly (i.e., the list of all subsets

in F is given as input), or implicitly in the form of some combinatorial constraint (e.g., matroids,

matchings, paths). Note that in the latter case, |F| may be exponential in the input size; we would

additionally like to design sampling algorithms that run in polynomial time. Some common combi-

natorial constraints are the following:

1. (MATROIDS) (S,F) is a matroid, where S is the ground set and F is the family of indepen-

dent set of the matroid. The problem already captures a number of interesting applications.

See Chen et al. (2016a) for more details and the state-of-the-art sample complexity bounds.

2. (PATHS) Consider a network G, in which the latency of each edge is stochastic. However, the

distributions of the latencies are unknown and we can only take samples. We would like to

choose a path from node s to node t such that the expected latency is minimized. Here S is

the set of edges of a given undirected graph G, and F the set of s-t paths in G.

3. (MATCHINGS) There are n workers and n types of jobs. Each job type must be assigned to

exactly one worker, and each worker can only handle one type of job. Jobs of the same type

may not be exactly the same, hence may have different profit. For simplicity, we assume that

for worker i, the profit of finishing a random job in type j follows an unknown distribution

Dij . Our goal is to find an assignment of types to workers, such that the expected total reward

is maximized (assuming each worker gets a random job from the type assigned to them).

This problem has potential applications to crowdsourcing. Here, S is the set of edges in the

worker-job-type bipartite graph G, and F the set of perfect matchings in G.
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4. (TREE-PLANNING) We are given a tree, where each arm i corresponds to an edge of the tree.

The family F is the set of paths from the root to the leaves. The goal is to find the root-leaf

path with the maximum weight. This setting corresponds to the open-loop planning problem

of maximizing the expected sum of rewards over consecutive actions from a starting state (i.e.,

the root) when the state dynamics is deterministic and the reward distributions are unknown

(see e.g., Munos et al. (2014); Gabillon et al. (2016)).

While these examples show that the BEST-SET problem is quite general, there are other inter-

esting pure exploration bandit problems that cannot be captured by such combinatorial constraints

over the arm set. For example, suppose there are n Gaussian arms with unknown means and unit

variance. We know there is exactly one special arm with mean in the interval (0.4, 0.6); all other

arms have means either strictly larger than 0.6, or strictly less than 0.4. We would like to identify

this special arm. To this end, we define a general sampling problem, which captures such problems,

as follows.

Definition 1.2 (GENERAL-SAMP) An instance of the general sampling problem is a pair I =
(S,O), where S = (A1, A2, . . . , An) is a sequence of n Gaussian arms each with unit variance,

and O is a collection of answer sets, each of which is a subset of Rn. Let µi denote the mean of

arm Ai. The vector µ is called the mean profile of the instance. In each round, we choose one of the

arms and obtain an independent sample drawn from its reward distribution. The goal is to identify

with probability 1 − δ the unique set in O that contains µ, while using as few samples as possible.

It is guaranteed that µ ∈ ⋃O∈O O, and for each O ∈ O, the closure of
⋃

O′∈O\{O}O
′ is disjoint

from O.

This definition of the general sampling problem captures well-studied bandit problems (with

unique solutions) in the pure-exploration setting:

1. In the best arm identification problem, O contains exactly n answer sets, where the i-th an-

swer set is given by {µ ∈ R
n : µi > maxj 6=i µj}.

2. In the BEST-SET problem (Definition 1.1), O contains exactly |F| answer sets, where each

answer set corresponds to a set S ∈ F , and is given by {µ ∈ R
n :
∑

i∈S µi >
∑

i∈T µi, ∀T ∈
F , T 6= S}.

3. There are n Gaussian arms with unknown means and unit variance. We would like to find

how many arms have mean larger than a given threshold θ. This is a variant of the threshold

bandit problem (see e.g., Locatelli et al. (2016)). O contains exactly n answer sets, where the

j-th answer set is given by {µ ∈ R
n :
∑

i∈[n] I{µi > θ} = j}. We assume that no arm has

mean exactly θ (to guarantee disjointness).

4. There are n Gaussian arms with unknown means and unit variance. Given a threshold θ,

we want to determine whether the span (i.e., the difference between the largest and smallest

means) is greater than θ. We assume that no difference of two arms is exactly θ (to guarantee

disjointness).

5. Consider a zero-sum game in which each player has K available actions. If the two players

choose actions i ∈ [K] and j ∈ [K], they receive rewards ai,j and −ai,j , respectively. We

want to find the maximin action of the first player, i.e., argmaxi∈[K]minj∈[K] ai,j , using

noisy queries on the rewards (ai,j’s). This is similar to the Maximin Action Identification
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problem Garivier et al. (2016). Here there are n = K2 arms with means µ(i−1)n+j = ai,j .
The answer sets are given by O = {O1, . . . , OK}, where

Oi =

{
µ ∈ R

n : min
j∈[K]

µ(n−1)i+j > max
k∈[K]\{i}

min
j∈[K]

µ(n−1)k+j

}
.

Remark 1.3 The disjointness requirement, that the closure of
⋃

O′∈O O′ is disjoint from O for any

O ∈ O, is crucial to the solvability of the instance. For example, no δ-correct algorithm (for some

δ < 0.5) can solve the instance with a single arm with zero mean and O = {(−∞, 0), [0,+∞)}
within a finite number of samples in expectation. Furthermore, the disjointness condition guarantees

that the correct solution is unique. Hence, our problem cannot capture some PAC problems in which

there may be many approximate solutions.

Remark 1.4 Our problem is closely related to the active multiple hypothesis testing problem. See

the related work section for more discussions.

1.1. Our Results

In order to formally state our results, we first define the notion of δ-correct algorithms.

Definition 1.5 (δ-correct algorithms) We say Algorithm A is a δ-correct algorithm for BEST-SET

if on every instance C = (S,F), algorithm A identifies the set in F with the largest total mean with

probability at least 1− δ.

Similarly, we say Algorithm A is a δ-correct algorithm for GENERAL-SAMP if on every instance

I = (S,O), algorithm A identifies the set inO which contains the mean profile of the instance with

probability at least 1− δ.

1.1.1. INSTANCE LOWER BOUND VIA CONVEX PROGRAM

Garivier and Kaufmann (2016) obtained a strong lower bound for the sample complexity of

BEST-1-ARM based on the change of distribution. Their lower bound is in fact the solution of a

mathematical program. They show that for BEST-1-ARM, one can derive the explicit solution for

several distributions.

Garivier and Kaufmann’s approach is general and can be applied to BEST-SET and GENERAL-SAMP

as well. However, the resulting mathematical program is not easy to work with. Unlike BEST-1-ARM,

we cannot hope for an explicit solution for the general BEST-SET problem: the program has an infi-

nite number of constraints, and it is unclear how to solve it computationally. Instead, we adopt their

framework and derive an equivalent convex program for BEST-SET (in Section 3.1). Using this, we

obtain the following result.

Theorem 1.6 Let C = (S,F) be an instance of BEST-SET. Let Low(C) be the optimal value of

the convex program (1) (see Section 3.1). Then for any δ ∈ (0, 0.1) and δ-correct algorithm A for

BEST-SET, A takes Ω(Low(C) ln δ−1) samples in expectation on C.

Our new lower bound has the following computational advantage. First, it is a solution of a

convex program with a finite number of constraints. Hence, one can solve it in time polynomial

in n and the number of constraints (note that there may be exponential many of them, if |F| is

exponentially large). Moreover, for some important classes of F , we can approximate the optimal

value of the convex program within constant factors in polynomial time (see Section 5.4 for more

details).
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Comparison with the Lower Bound in Chen et al. (2014). Let C = (S,F) be an instance of

BEST-SET with the optimal set O ∈ F . Assume that all arms are Gaussian with unit variance. It

was proved in Chen et al. (2014) that for any δ ∈ (0, e−16/4) and any δ-correct algorithm A, A

takes Ω
(
HC(C) ln δ−1

)
samples in expectation. Here HC(C) =

∑
i∈S ∆−2

i is the hardness of the

instance C, where ∆i, the gap of arm i ∈ S, is defined as

∆i =

{
µ(O)−maxO′∈F ,i/∈O′ µ(O′), i ∈ O,

µ(O)−maxO′∈F ,i∈O′ µ(O′), i /∈ O.

We can show that our lower bound is no weaker than the lower bound in Chen et al. (2014).

Theorem 1.7 Let C = (S,F) be an instance of BEST-SET,

Low(C) ≥ HC(C).

The proof of Theorem 1.7 can be found in Section 3.2.

Furthermore, we note that for certain instances of MATCHINGS and PATHS, our lower bound

can be stronger than the HC(C) ln δ−1 bound by an Θ(n) factor. We consider the following simple

instance Cdisj-sets of BEST-SET that consist of n = 2k arms numbered 1 through n. The only two

feasible sets are A = {1, 2, . . . , k} and B = {k + 1, k + 2, . . . , 2k} (i.e., F = {A,B}). The

mean of each arm in A is ǫ > 0, while each arm in B has a mean of 0. A simple calculation shows

that Low(Cdisj-sets) = Θ(ǫ−2), while HC(Cdisj-sets) = O
(
ǫ−2/n

)
. This establishes an Ω(n) factor

separation.

Indeed, Cdisj-sets is a special case of many BEST-SET instances, including MATCHINGS (consider

a cycle with length 2k; there are two disjoint perfect matchings) and PATHS (consider a graph with

only two disjoint s-t paths of length k). Thus, understanding the complexity of Cdisj-sets is crucial

for understanding more complicated instances.

1.1.2. POSITIVE RESULT I: A NEARLY OPTIMAL ALGORITHM FOR BEST-SET

Our first positive result is a nearly optimal algorithm for BEST-SET.

Theorem 1.8 There is a δ-correct algorithm for BEST-SET that takes

O
(
Low(C) ln δ−1 + Low(C) ln∆−1

(
ln ln∆−1 + ln |F|

))

samples on an instance C = (S,F) in expectation, where ∆ denote the gap between the set with the

second largest total mean in F and the optimal set O.

Comparison with Previous Algorithms. Again, consider the instance Cdisj-sets, which consists

of k arms with mean ǫ > 0 and another k arms with mean zero. A straightforward strategy to

determine whether A or B has a larger total mean is to sample each arm τ = 8/(kǫ2) ln(2/δ)
times, and determine the answer based on the sign of µ̂(A) − µ̂(B). Lemma 2.1 implies that with

probability at least 1 − δ, µ̂(A) − µ̂(B) lies within an additive error kǫ/2 to µ(A) − µ(B) = kǫ.
Hence, we can identify A as the correct answer using nτ = O(ǫ−2 ln δ−1) samples.

Chen et al. (2014) developed a δ-correct algorithm CLUCB for BEST-SET with sample com-

plexity

O
(
width(C)2HC(C) ln(nHC(C)/δ)

)
,
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where width(C) is the width of the underlying combinatorial structure F as defined in Chen et al.

(2014). Hence, roughly speaking, ignoring logarithmic factors, their upper bound is a width(C)2-

factor (which is at most n2 factor) away from the complexity term HC(C) they define,1 while our

upper bound is at most ln |F| (which is at most n) factor away from our lower bound. Theorem 1.9

shows that the ln |F| term is also inevitable in the worst case.

In fact, consider the simple instance Cdisj-sets we defined earlier. A simple calculation shows

that width(Cdisj-sets) = Θ(n) and HC(Cdisj-sets) = Θ(ǫ−2/n), so CLUCB requires Ω(nǫ−2 ln δ−1)
samples in total on the simple instance Cdisj-sets we defined earlier. Moreover, a recent algorithm

proposed in Gabillon et al. (2016) also takes Ω(nǫ−2 ln δ−1) samples. In comparison, our algorithm

achieves a sample complexity of O(ǫ−2(ln δ−1 + ln ǫ−1 ln ln ǫ−1)) on Cdisj-sets, which is nearly

optimal. Therefore, our algorithm obtain a significant speed up of order Ω(n) on certain cases

comparing to all previous algorithms.

In fact, both these previous algorithms for BEST-SET are UCB-based, i.e., they maintain a con-

fidence bound for each individual arm. We observe that such UCB-based algorithms are inherently

inadequate to achieve the optimal sample complexity, even for the simple instance Cdisj-sets. Note

that in order for a UCB-based algorithm to identify A as the correct answer for Cdisj-sets, it requires

an O(ǫ) estimation of the mean of each arm in S, which requires Ω(nǫ−2 ln δ−1) samples in total.

Thus, the sample complexity of previous algorithms based on maintaining confidence bounds for

individual arms is at least a factor of n away from the optimal sample complexity, even for very

simple instances such as Cdisj-sets.

The ln |F| term is necessary in the worst case: Note that the sample complexity of our algorithm

involves a ln |F| term, which could be large when F is exponential in n. Hence, it is natural to ask

whether one can get rid of it. We show that this is impossible by proving a worst-case lower bound

for BEST-SET in which the factor ln |F| is necessary.

Theorem 1.9 (i) For δ ∈ (0, 0.1), two positive integers n and m ≤ 2cn where c is a universal

constant,, and every δ-correct algorithm A for BEST-SET, there exists an infinite sequence of n-

arm instances C1 = (S1,F1), C2 = (S2,F2), . . . , such that A takes at least

Ω(Low(Ck) · (ln δ−1 + ln |Fk|))

samples in expectation on each Ck, |Fk| = m for all k, and Low(Ck) approaches to infinity as

k → +∞ .

(ii) Moreover, for each Ck defined above, there exists a δ-correct algorithm Ak for BEST-SET such

that Ak takes

O(Low(Ck) · poly(lnn, ln δ−1))

samples in expectation on it. (The constants in Ω and O do not depend on n,m, δ and k.)

The second part of the above theorem implies that Low(Ck) · ln δ−1 is achievable by some

specific δ-correct algorithms for BEST-SET (up to polylog factors). However, the first part states

that no matter what algorithm to use, one has to pay such a ln |F| factor, which can be as large as n,

for infinitely many instances. Therefore, Theorem 1.9 indeed captures a huge separation between

the instance-wise lower bound and the worst-case lower bound: they may differ by a large factor of

ln |F|.
1. In view of Theorems 1.6 and 1.7, HC(C) ln(1/δ) is indeed a lower bound.

6



NEARLY OPTIMAL SAMPLING ALGORITHMS FOR COMBINATORIAL PURE EXPLORATION

Remark 1.10 Such a separation is a delicate issue in pure exploration multi-armed bandit prob-

lems. Even in the BEST-1-ARM problem with only two arms, such a separation of ln ln∆−1 (∆ is

the gap of the two arms) factor is known (see Chen and Li (2015) for more details).

We note that Garivier and Kaufmann (2016) obtained an algorithm for BEST-1-ARM that matches

the instance lower bound as δ approaches zero. Such algorithms are called asymptotically optimal

in the sequential hypothesis testing literature. Their algorithm can potentially be adapted to obtain

asymptotically optimal algorithms for BEST-SET (and even GENERAL-SAMP) as well. From both

Theorem 1.8 and 1.9, we can see the sample complexity typically consists of two terms, one de-

pending on ln 1/δ and one independent of δ (this is true for many other pure exploration bandit

problems). In Garivier and Kaufmann (2016), the authors did not investigate the the second term in

the sample complexity (which does not depend on δ), since it is treated as a “constant” (only δ is

treated as a variable and approaches to 0). However, as Theorem 1.9 indicates, the “constant” term

can be quite large (comparing with the first term for moderate δ values, say δ = 0.01) and cannot be

ignored, especially in our general BEST-SET problem. Hence, in this paper, we explictly pin down

the “constant” terms for our algorithms, and make progress towards tighter bounds on these terms

(Theorems 1.9 and 1.14).

1.1.3. POSITIVE RESULT II: AN EFFICIENT IMPLEMENTATION FOR IMPLICIT F

One drawback for our first algorithm is that it needs to take full description of F . So it would

become computationally intractable if F is given implicitly, and of exponential size. Our second

algorithm addresses this computational problem in several important special cases, assuming that

the underlying combinatorial structure, F , admits an efficient maximization oracle and a pseudo-

polynomial algorithm for the exact version, which we explain next.

We say that a family of BEST-SET instances {Ck} = {(Sk,Fk)} has an efficient maximization

oracle, if there is an algorithm that, given a weight function w defined on Sk, identifies the maximum

weight set in Fk (i.e., argmaxA∈Fk

∑
i∈Awi), and runs in polynomial time (with respect to |Sk|).

Moreover, a family of BEST-SET instances {Ck} admits a pseudo-polynomial algorithm for the

exact version, if an algorithm, given an integer weight function w on Sk together with a target value

V , decides whether Fk contains a set with total weight exactly V , and runs in pseudo-polynomial

time (i.e., polynomial with respect to |Sk| and V ).

Remark 1.11 The following problems admit efficient maximization oracles and pseudo-polynomial

algorithms for the exact version:

1. Maximum weight spanning tree.

2. Maximum weight bipartite matching.

3. Shortest s-t path with non-negative weights. 2

Theorem 1.12 For any family of BEST-SET instances that admits efficient maximization oracles

and pseudo-polynomial algorithms, there is a δ-correct algorithm for this instance family that takes

O
(
Low(C) ln δ−1 + Low(C) ln2∆−1

(
ln ln∆−1 + ln |F|

))

samples on an instance C = (S,F) in expectation, where ∆ denote the gap between the set with the

second largest total mean in F and the optimal set O. Moreover, the algorithm runs in polynomial

time with respect to the expected sample complexity.

2. For the shortest path problem, we need an efficient minimization oracle, which is equivalent.

7
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1.1.4. POSITIVE RESULT III: NEARLY OPTIMAL ALGORITHM FOR GENERAL-SAMP

Last but not the least, we present an nearly optimal algorithm for GENERAL-SAMP.

Theorem 1.13 There is a δ-correct algorithm for GENERAL-SAMP that takes

O(Low(I) (ln δ−1 + n3 + n ln∆−1))

samples on any instance I = (S,O) in expectation, where

∆ = inf
ν∈Alt(O)

‖µ− ν‖2

is defined as the minimum Euclidean distance between the mean profile µ and an alternative mean

profile ν ∈ Alt(O) with an answer other than O.

Another worst-case lower bound with a factor of n. Note that the sample complexity of our al-

gorithm above involves a term depending on n. Note that BEST-SET is a special case of GENERAL-

SAMP, and setting m = 2Ω(n) in Theorem 1.9, we obtain an O(Low(I) · (n+ ln δ−1)) worst-case

lower bound for GENERAL-SAMP. 3 Therefore, at least we cannot get rid of the dependence on n.

Moreover, the instance behind the lower bound in Theorem 1.9 has an exponentially large |O|. So

one may wonder if it is possible to reduce the factor n to ln |O|. 4 We present another lower bound

showing it is also impossible, by constructing hard instances with |O| = O(1). Our lower bound

instances reveal another source of hardness, different from the combinatorics used in Theorem 1.9.

Theorem 1.14 For δ ∈ (0, 0.1), a positive integer n and every δ-correct algorithm A for the

general sampling problem, there exists an infinite sequence of n-arm instances I1 = (S1,O1), I2 =
(S2,O2), . . . , such that A takes at least

Ω(Low(Ik) · (ln δ−1 + n))

samples in expectation on each Ik, |Ok| = O(1) for all k, and Low(Ik) goes to infinity. Moreover,

for each Ik, there exists a δ-correct algorithm Ak for GENERAL-SAMP such that Ak takes

O(Low(Ik) · ln δ−1)

samples in expectation on it. (The constants in Ω and O do not depend on n,m, δ and k.)

1.2. Our Techniques

1.2.1. OVERVIEW OF OUR BEST-SET ALGORITHM

Our algorithm is based on a process of successive elimination. However, unlike previous ap-

proaches Karnin et al. (2013); Chen and Li (2015); Chen et al. (2016a,b); Gabillon et al. (2016)

which maintained a set of arms, our algorithm maintains a collection of candidate sets and performs

the eliminations on them. The goal of the r-th round is to eliminate those sets with a optimality

gap5 of at least Θ(2−r).

3. We observe that Low(I) is essentially equivalent to Low(C) when I is identical to a BEST-SET instance C.

4. This is possible for BEST-SET, because of Theorem 1.8.

5. The optimality gap for a set A ∈ F is simply µ(O)− µ(A) where O is the optimal set.
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In order to implement the above elimination, we adopt a mathematical program, which is a

nontrivial modification of the one in Theorem 1.6 and sample the arms accordingly to obtain an 2−r

approximation of the gap between every pair of sets that are still under consideration. If there is a

set pair (A,B) such that the empirical mean of B exceeds that of A by 2−r, we are certain that A is

not the optimal set, and thus we stop considering A as a candidate answer. This process is repeated

until only one set remains.

1.2.2. OVERVIEW OF OUR BEST-SET ALGORITHM WITH EFFICIENT COMPUTATION

The previous algorithm maintains the sets still under consideration at the beginning of each

round r. As the number of feasible sets is typically exponential in the number of arms, it may be

computationally expensive to maintain these sets explicitly. The key to computational efficiency is

to find a compact representation of the sets still under consideration. Here, we represent these sets

by using the empirical means and some carefully chosen threshold.

To efficiently solve the mathematical program (which is actually a convex program) mentioned

above, we apply the Ellipsoid method and use the ε-approximate Pareto curve framework of Pa-

padimitriou and Yannakakis (2000) to design an efficient separation oracle. This technique allows

us to approximately solve the convex program in polynomial-time with respect to the input size and

the sample complexity of our algorithm.

1.2.3. OVERVIEW OF OUR GENERAL-SAMP ALGORITHM

Our GENERAL-SAMP algorithm follows a “explore-verify” approach. In the first stage of al-

gorithm (exploration stage), we sample each arm repeatedly in round-robin fashion, until the con-

fidence region of the mean profile µ intersects exactly one answer set, which we identify as the

candidate answer. The second stage (verification stage) is devoted to verifying the candidate an-

swer. To this end, we formulate the optimal sampling profile as a linear program. Then, we verify

the candidate answer by sampling the arms according to the sampling profile.

Note that in the exploration stage, the arms are sampled in an inefficient round-robin fashion,

while the candidate answer is verifed using the optimal sampling profile in the second stage. Hence,

we use a less stringent confidence in Stage 1, and then adopts the required confidence level δ in the

second stage.

1.2.4. OTHER TECHNICAL HIGHLIGHTS

The factor ln |F| is necessary for BEST-SET. In order to establish the worst-case Low(Ck)·ln |F|
lower bound (the first part of Theorem 1.9), we construct a family F of subsets of [n] satisfying the

following two important properties 6:

• (Sets in F are large) Each subset A ∈ F is of the same size ℓ = Ω(n).

• (Intersections are small) For every two different subsets A,B ∈ F , |A ∩B| ≤ ℓ/2.

For each A ∈ F , we construct an instance CA in which the i-th arm has mean ∆ if i ∈ A
and mean 0 otherwise, where ∆ is a small real number. Clearly, a δ-correct algorithm must output

the subset A on instance CA with probability at least 1 − δ. Intuitively speaking, our lower bound

6. These two properties resemble the well-known set system of Nisan and Wigderson (1994).
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works by showing that if an algorithm A can correctly solve all CA’s, then there must exist two

different instances CA and CB , such that A can distinguish these two instance with a much smaller

confidence of δ/|F|. It is easy to see the later task requires Ω(∆−2 · ln |F|) samples by the change

of distribution method. Then, by a simple calculation, one can show that Low(CA) = Θ(∆−2) for

all A ∈ F .

An O(Low(CB) ·poly(lnn, ln δ−1)) Upper Bound. To prove Theorem 1.9 (ii), for each instance

of the form CB constructed above, we need to design a δ-correct algorithm AB which is particularly

fast on that instance. To this end, we provide a surprisingly fast testing algorithm Ahelp to distinguish

between two hypotheses x = 0 and ‖x‖2 ≥ 1 with sample complexity Õ(n) (see Theorem C.2 for

the details). This is somewhat surprising, considering the following argument: for this problem,

uniform sampling seems to be a good method as the problem is completely symmetric (no arm

is more special than others). If we sample every arm once, we actually get a sample (which is

an n-dimensional vector) from a multivariate Gaussian N(x, In×n). To decide whether the mean

x satisfies x = 0 or ‖x‖2 ≥ 1 with confidence 0.99, we need O(n) samples from multi-variate

Gaussian N(x, In×n), by a simple calculation. This argument suggests that we need O(n2) arm

pulls. However, we show that an interesting randomized sampling method only needs Õ(n) arm

pulls.

Worst Case Lower Bound for GENERAL-SAMP. We consider the following special case of

GENERAL-SAMP, which behaves like an OR function: namely, each arm has mean either 0 or ∆,

and the goal is to find out whether there is an arm with mean ∆, where ∆ is a small real number.

Let Ik be an instance in which the k-th arm has mean ∆, while other arms have mean 0. On

one hand, it is not hard to see that Low(Ik) = Θ(∆−2) via a simple calculation. On the other hand,

we show that in order to solve all Ik’s correctly, an algorithm must in a sense find the ∆-mean arm

itself, and hence are forced to spend Ω(n∆−2) total samples in the worst-case. While the high level

idea is simple, the formal proof is a bit technical and is relegated to Appendix D.

1.3. Other Related Work

An important and well-studied special case of BEST-SET and GENERAL-SAMP is BEST-1-

ARM, in which we would like identify the best single arm. For the PAC version of the prob-

lem, 7 Even-Dar et al. (2002) obtained an algorithm with sample complexity O(nε−2 · ln δ−1),
which is also optimal in worse cases. For the exact version of BEST-1-ARM, a lower bound of

Ω(
∑n

i=2∆
−2
[i] ln δ−1), where ∆[i] denotes the gap between the i-th largest arm and the largest arm,

has been proved by Mannor and Tsitsiklis (2004). In a very early work, Farrell (1964) established

a worst-case lower bound of Ω(∆−2
[2] ln ln∆

−1
[2] ) even if there are only two arms. An upper bound

of O(
∑n

i=2∆
−2
[i] (ln ln∆

−1
[i] + ln δ−1)) was achieved by the Exponential-Gap Elimination algo-

rithm by Karnin et al. (2013), matching Farrell’s lower bound for two arms. Later, Jamieson et al.

(2014) obtained the a more practical algorithm with the same theoretical sample complexity, based

the confidence bounds derived from the law of iterative logarithm. Very Recently, in Chen et al.

(2016b); Chen and Li (2016), the authors proposed an intriguing gap-entropy conjecture stating that

the optimal instance-wise sample complexity of BEST-1-ARM is related to the entropy of a certain

distribution of the arm gaps. On a different line, Garivier and Kaufmann (2016) proposed an algo-

rithm which is asymptotically optimal. The high level ideas of our algorithms for BEST-SET and

7. In the PAC version, our goal is to identify an ε-approximate optimal arm.

10
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GENERAL-SAMP are similar to the approach in Garivier and Kaufmann (2016), which also com-

putes the allocation of samples using a mathematical program, and then take samples according to

it. In a high level, our algorithms are also similar to the “explore-verify” approach used in Karnin

(2016).

The natural generalization of BEST-1-ARM is BEST-k-ARM, in which we would like to identify

the top k arms. The problem and its PAC versions have been also studied extensively in the past

few years Kalyanakrishnan and Stone (2010); Gabillon et al. (2012, 2011); Kalyanakrishnan et al.

(2012); Bubeck et al. (2013); Kaufmann and Kalyanakrishnan (2013); Zhou et al. (2014); Kaufmann

et al. (2015); Chen et al. (2016a, 2017).

All aforementioned results are in the fixed confidence setting, where we need to output the

correct answer with probability at least 1−δ, where δ is the given confidence level. Another popular

setting is called the fixed budget setting, in which one aims to minimize the failure probability,

subject to a fixed budget constraint on the total number of samples. (see e.g., Gabillon et al. (2012);

Karnin et al. (2013); Chen et al. (2014); Carpentier and Locatelli (2016)).

Our problems are related to the classic sequential hypothesis testing framework, which is pio-

neered by Wald (1945). In fact, they are closely related to the active hypothesis testing problem

first studied by Chernoff (1959). In Wald’s setting, the observations are predetermined, and we

only need to design the stopping time. In Chernoff’s setting, the decision maker can choose dif-

ferent experiments to conduct, which result in different observations about the underlying model.

Chernoff focused on the case of binary hypotheses and obtained an asymptotically optimal testing

algorithm as the error probability approaches to 0. Chernoff’s seminal result has been extended to

more than two hypothesis (see e.g., Draglia et al. (1999); Naghshvar et al. (2013)). In fact, the ac-

tive multiple hypothesis testing is already quite general, and includes the bandit model as a special

case. Our work differs from the above line of work in the following aspects: First, most of the

work following Chernoff’s approach (which extends Wald’s approach) uses different variants of the

SPRT (sequential probability ratio test). It is unclear how to compute such ratios (efficiently) for our

combinatorial pure exploration problem. However, the computation problem is a major focus of our

work (we devote Section 5 to discuss how to solve the computation problem efficiently). Second,

the optimality of their results are in the asymptotic sense (when δ → 0). In the high dimension (i.e.,

n is large) but moderate δ regime, the additive term, which is independent of δ but dependent on

n (see Theorem 1.9 and 1.14), may become the dominate term. Our work makes this term explicit

and aims at minimizing it as well.

2. Preliminaries

Some naming conventions first. Typically, we use a lowercase letter to denote an element, e.g.,

an arm a or an index i, uppercase letter to denote a set of elements, e.g., a set of arms S, and a

letter in calligraphic font to denote a family of sets, e.g., a set of sets of arms S . Given a BEST-SET

instance C = (S,F), µi denotes the mean of arm i ∈ S. For subset A ⊆ S, µ(A) denotes
∑

i∈A µi.

For two sets A,B, we use A△B to denote the symmetric difference of A and B. Namely,

A△B = (A\B) ∪ (B\A).

We need the following important lemma for calculating the confidence level of a subset of arms.

11
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Lemma 2.1 Given a set of Gaussian arms a1, a2, . . . , ak with unit variance and means µ1, µ2, . . . , µk,

suppose we take τi samples in the ith arm, and let Xi be its empirical mean. Then we have

Pr

[∣∣∣∣∣

k∑

i=1

Xi −
k∑

i

µi

∣∣∣∣∣ ≥ ǫ

]
≤ 2 exp

{
− ǫ2

2
∑k

i=1 1/τi

}
.

Proof [Proof of Lemma 2.1] By assumption,
∑k

i=1Xi−
∑k

i=1 µi follows the Gaussian distribution

with mean 0 and variance
∑k

i=1 1/τi. The lemma hence follows from the tail bound of Gaussian

distributions.

Tail bound of the χ2 distribution. A χ2 distribution with n degrees of freedom is the distribution

of a sum of the squares of n random variables drawn independently from the standard Gaussian

distributionN (0, 1). The following lemma, as a special case of (Laurent and Massart, 2000, Lemma

1), proves an exponential tail probability bound for χ2 distributions.

Lemma 2.2 Let X be a χ2 random variable with n degrees of freedom. For any x > 0, it holds

that

Pr [X ≥ 2n+ 3x] ≤ e−x.

Let KL(a1, a2) denote the Kullback-Leibler divergence from the distribution of arm a2 to that

of arm a1. For two Gaussian arms a1 and a2 with means µ1 and µ2 respectively, it holds that

KL(a1, a2) =
1

2
(µ1 − µ2)

2.

Moreover, let

d(x, y) = x ln(x/y) + (1− x) ln[(1− x)/(1− y)]

denote the binary relative entropy function.

Change of Distribution. The following “Change of Distribution” lemma, formulated by Kauf-

mann et al. (2015), characterizes the behavior of an algorithm when underlying distributions of the

arms are slightly altered, and is thus useful for proving sample complexity lower bounds. Similar

bounds are known in the sequential hypothesis testing literature (see e.g., (Ghosh and Ghosh, 1970,

p.283)) In the following, PrA,C and EA,C denote the probability and expectation when algorithm A

runs on instance C.

Lemma 2.3 (Change of Distribution) Let A be an algorithm that runs on n arms, and let C =
(a1, a2, . . . , an) and C′ = (a′1, a

′
2, . . . , a

′
n) be two sequences of n arms. Let random variable τi

denote the number of samples taken from the i-th arm. For any event E in Fτ , where τ is a stopping

time with respect to the filtration {Ft}t≥0, it holds that

n∑

i=1

EA,C [τi] KL
(
ai, a

′
i

)
≥ d

(
Pr
A,C

[E ], Pr
A,C′

[E ]
)

.
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3. Instance Lower Bound

3.1. Instance Lower Bound for BEST-SET

Given a BEST-SET instance C = (S,F), let O denote the optimal set inF (i.e., O = argmaxA∈F µ(A)).
We define Low(C) as the optimal value of the following mathematical program:

minimize
∑

i∈S

τi

subject to
∑

i∈O△A

1/τi ≤ [µ(O)− µ(A)]2 ∀A ∈ F

τi > 0, ∀i ∈ S.

(1)

We prove Theorem 1.6, which we restate in the following for convenience.

Theorem 1.6 (restated) Let C = (S,F) be an instance of BEST-SET. For any δ ∈ (0, 0.1) and

δ-correct algorithm A for BEST-SET, A takes Ω(Low(C) ln δ−1) samples in expectation on C.

Proof [Proof of Theorem 1.6] Fix δ ∈ (0, 0.1), instance C and δ-correct algorithm A. Let ni

be the expected number of samples drawn from the i-th arm when A runs on instance C. Let

α = d(1− δ, δ)/2 and τi = ni/α. It suffices to show that τ is a feasible solution for the program in

(1), as it directly follows that

n∑

i=1

ni = α
n∑

i=1

τi ≥ αLow(C) = Ω(Low(C) ln δ−1).

Here the last step holds since for all δ ∈ (0, 0.1),

d(1− δ, δ) = (1− 2δ) ln
1− δ

δ
≥ 0.8 ln

1√
δ
= 0.4 ln δ−1.

To show that τ is a feasible solution, we fix A ∈ F . Let ∆i = c/ni, where

c =
2[µ(O)− µ(A)]∑

i∈O△A 1/ni
.

We consider the following alternative instance C′: the mean of each arm i in O \ A is decreased by

∆i, while the mean of each arm i ∈ A \ O is increased by ∆i; the collection of feasible sets are

identical to that in C. Note that in C′, the difference between the weights of O and A is given by


µ(O)−

∑

i∈O\A

∆i


−


µ(A) +

∑

i∈A\O

∆i


 = µ(O)−µ(A)−c

∑

i∈O△A

1/ni = −(µ(O)−µ(A)) < 0.

In other words, O is no longer optimal in C′.
Let E denote the event that algorithm A returns O as the optimal set. Note that since A is

δ-correct, PrA,C [E ] ≥ 1− δ and PrA,C′ [E ] ≤ δ. Therefore, by Lemma 2.3,

∑

i∈O△A

ni ·
1

2
∆2

i ≥ d

(
Pr
A,C

[E ], Pr
A,C′

[E ]
)
≥ d(1− δ, δ).

13
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Plugging in the values of ∆i’s yields

2d(1− δ, δ) ≤
∑

i∈O△A

ni ·
c2

n2
i

=
4[µ(O)− µ(A)]2
(∑

i∈O△A 1/ni

)2
∑

i∈O△A

1/ni =
4[µ(O)− µ(A)]2∑

i∈O△A 1/ni
,

and it follows that ∑

i∈O△A

1/τi ≤ [µ(O)− µ(A)]2.

3.2. Comparison with Previous Lower Bound

In this section, we show that our lower bound is no weaker than the lower bound in Chen et al.

(2014). Formally, we prove Theorem 1.7. We restate it here for convenience.

Theorem 1.7 (restated) Let C = (S,F) be an instance of BEST-SET,

Low(C) ≥ HC(C).

Proof We start with the concept of gap, which was defined as follows in Chen et al. (2014). Let

C = (S,F) be an instance of BEST-SET with the optimal set O ∈ F . For each arm i, its gap ∆i is

defined as

∆i =

{
µ(O)−maxO′∈F ,i/∈O′ µ(O′), i ∈ O,

µ(O)−maxO′∈F ,i∈O′ µ(O′), i /∈ O.

The hardness of the instance C, HC(C), is defined as HC(C) =
∑

i∈S m′
i, where m′

i = ∆−2
i .

Consider the following mathematical program, which is essentially the same as Program (1),

except for replacing summation with maximization in the constraints.

minimize
∑

i∈S

τ ′i

subject to max
i∈O△A

1/τ ′i ≤ [µ(O)− µ(A)]2 ∀A ∈ F

τ ′i > 0, ∀i ∈ S.

(2)

A simple observation is that, the optimal solution of Program (2) can be achieved by setting

τ ′i = max
i∈O△A

[µ(O)− µ(A)]−2 = m′
i.

Furthermore, every feasible solution of Program (1) is also a feasible solution of Program (2). The-

orem 1.7 hence holds.
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3.3. Instance Lower Bound for GENERAL-SAMP

For a GENERAL-SAMP instance I = (S,O) with mean profile µ ∈ O, we define Low(I) as the

optimal value of the following linear program:

minimize

n∑

i=1

τi

subject to

n∑

i=1

(νi − µi)
2 τi ≥ 1, ∀ν ∈ Alt(O),

τi ≥ 0.

(3)

Here Alt(O) =
⋃

O′∈O\{O}O
′.

We prove that Ω(Low(I) ln δ−1) is an instance-wise sample complexity lower bound for in-

stance I. The proof is very similar to that in Garivier and Kaufmann (2016), and we provide it here

for completeness.

Theorem 3.1 Suppose δ ∈ (0, 0.1) and I is an instance of GENERAL-SAMP. Any δ-correct

algorithm for GENERAL-SAMP takes Ω(Low(I) ln δ−1) samples in expectation on I.

Proof Fix δ ∈ (0, 0.1), instance I and a δ-correct algorithm A. Let ni be the expected number of

samples drawn from the i-th arm when A runs on instance I. Let α = 2d(1− δ, δ) and τi = ni/α.

It suffices to show that τ is a feasible solution for the program in (3), as it directly follows that the

expected sample complexity of A is lower bounded by

n∑

i=1

ni = α
n∑

i=1

τi ≥ αLow(I) = Ω(Low(I) ln δ−1).

Here the last step holds since for all δ ∈ (0, 0.1),

d(1− δ, δ) = (1− 2δ) ln
1− δ

δ
≥ 0.8 ln

1√
δ
= 0.4 ln δ−1.

To show that τ is a feasible solution, we fix ν ∈ Alt(O). Let I ′ be an alternative instance

obtained by changing the mean profile in I from µ to ν. Let E denote the event that algorithm

A returns O as the optimal set. The δ-correctness of A guarantees that PrA,I [E ] ≥ 1 − δ and

PrA,I′ [E ] ≤ δ. By Lemma 2.3,

n∑

i=1

ni ·KL(N (µi, 1),N (νi, 1)) ≥ d

(
Pr
A,I

[E ], Pr
A,I′

[E ]
)
≥ d(1− δ, δ).

Plugging in α = 2d(1− δ, δ) and KL(N (µi, 1),N (νi, 1)) =
1
2(νi − µi)

2 yields

α = 2d(1− δ, δ) ≤
n∑

i=1

ni · (νi − µi)
2 = α

n∑

i=1

(νi − µi)
2τi,

and it follows that
∑n

i=1(νi − µi)
2τi ≥ 1.

15



CHEN GUPTA LI QIAO WANG

4. Optimal Algorithm for Combinatorial Bandit

In this section, we present an algorithm for BEST-SET that nearly achieves the optimal sample

complexity. We postpone the computationally efficient implementation of the algorithm to the next

section.

4.1. Overview

Our algorithm is based on a process of successive elimination. However, unlike the previous

approaches Karnin et al. (2013); Chen and Li (2015); Chen et al. (2016a,b); Gabillon et al. (2016)

which maintained a set of arms, our algorithm maintains a collection of candidate sets and performs

the eliminations on them directly. Specifically, at the r-th round of the algorithm, we adopt a

precision level ǫr := 2−r, and maintain a set of candidates sets Fr ⊆ F ; and the goal of the r-th

round is to eliminate those sets in Fr with a optimality gap8 of at least Θ(ǫr).

A crucial difficulty in implementing the above elimination is that it seems we have to compute

the optimal set itself in order to approximate the optimality gaps. To circumvent this problem,

we instead approximate the gaps between every pair of sets in Fr, which certainly include the

optimality gaps. Roughly speaking, we solve an optimization similar to that in (1), and sample the

arms accordingly to obtain an O(ǫr) approximation of the gap between every pair of sets that are

still under consideration. Now if there is a set pair (A,B) such that the empirical mean of B exceeds

that of A by ǫr, we are certain that A is not the optimal set, and thus we stop considering A as a

candidate answer. This process is repeated until only one set remains.

4.2. Algorithm

We first define a few useful subroutines that play important roles in the algorithm. Procedure

SimultEst takes as its input a set U ⊆ F together with an accuracy parameter ǫ and a confidence

level δ. It outputs a vector {mi}i∈S over S that specifies the number of samples that should be taken

from each arm, so that the difference between any two sets in U can be estimated to an accuracy of

ǫ with probability 1− δ.

Algorithm 1: SimultEst(U , ǫ, δ)
Input: U , accuracy parameter ǫ, and confidence level δ.

Output: A vector m, indicating the number of samples to be taken from each arm.

1 Let {mi}i∈S be the optimal solution of the following program:

minimize
∑

i∈S

mi

subject to
∑

i∈A△B

1

mi
≤ ǫ2

2 ln(2/δ)
, ∀A,B ∈ U

mi > 0, ∀i ∈ S

2 return m;

Procedure Verify takes a sequence F1, . . . ,Fr of subsets of F together with a confidence pa-

rameter δ. Similar to SimultEst, it returns a vector {mi}i∈S of the number of samples from each

8. The optimality gap for a set A ∈ F is simply µ(O)− µ(A) where O is the optimal set.
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arm, so that the gap between the conjectured answer Ô, the only set in Fr, and each set in Fk can be

estimated to O(ǫk) accuracy. (Recall that ǫk = 2−k.) Notice that in general, the solutions returned

by SimultEst and Verify are real-valued. We can simply get an integer-valued solution by rounding

up without affecting the asymptotical performance.

Algorithm 2: Verify({Fk}, δ)
Input: {Fk}k∈[r] and confidence level δ. It is guaranteed that |Fr| = 1.

Output: A vector m, indicating the number of samples to be taken from each arm.

1 Ô ← the only set in Fr; λ← 10;

2 Let {mi}i∈S be the optimal solution of the following program:

minimize
∑

i∈S

mi

subject to
∑

i∈Ô△A

1

mi
≤ (ǫk/λ)

2

2 ln(2/δ)
, ∀k ∈ [r], A ∈ Fk

mi > 0, ∀i ∈ S

3 return m;

Sample is a straightforward sampling procedure: it takes a vector m, samples each arm i ∈ S
exactly mi times, and returns the empirical means. We finish the description of all subroutines.

Remark 4.1 In this section, we focus on the sample complexity and do not worry too much about

the computation complexity of our algorithm. It would be convenient to think that the subsets in F
are given explicitly as input. In this case, the convex programs in the subroutines can be solved in

time polynomial in n and |F|. We will consider computational complexity issues when F is given

implicitly in Section 5.

Now, we describe our algorithm NaiveGapElim for BEST-SET. NaiveGapElim proceeds in

rounds. In each round r, it calls the SimultEst procedure and samples the arms in S accordingly,

and then removes the sets with Θ(ǫr) gaps from Fr. When exactly one set Ô remains in Fr (i.e., the
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condition at line 3 is met), the algorithm calls Verify and Sample, and verifies that the conjectured

answer Ô is indeed optimal.

Algorithm 3: NaiveGapElim(C, δ)
Input: BEST-SET instance C = (S,F) and confidence level δ.

Output: The answer.

1 F1 ← F ; δ0 ← 0.01; λ← 10;

2 for r = 1 to∞ do

3 if |Fr| = 1 then

4 m← Verify({Fk}rk=1, δ/(r|F|));
5 µ̂← Sample(m);

6 Ô ← the only set in Fr;

7 if µ̂(Ô)− µ̂(A) ≥ ǫk/λ for all A ∈ F \ Fk and all k ∈ [r] then

8 return Ô;

9 else

10 return error;

11 ǫr ← 2−r; δr ← δ0/(10r
2|F|2);

12 m(r) ← SimultEst(Fr, ǫr/λ, δr);

13 µ̂(r) ← Sample(m(r));

14 optr ← maxA∈Fr µ̂
(r)(A);

15 Fr+1 ← {A ∈ Fr : µ̂
(r)(A) ≥ optr − ǫr/2− 2ǫr/λ};

4.3. Correctness of NaiveGapElim

We formally state the correctness guarantee of NaiveGapElim in the following lemma.

Lemma 4.2 For any δ ∈ (0, 0.01) and BEST-SET instance C, NaiveGapElim(C, δ) returns the

correct answer with probability 1− δ0 − δ, and returns an incorrect answer w.p. at most δ.

The proof proceeds as follows. We first define two “good events” Egood0 and Egood, which

happen with probability at least 1 − δ0 and 1 − δ, respectively. Our algorithm always returns the

correct answer conditioned on Egood0 ∩ Egood, and it either returns the correct answer or reports an

error conditioned on Egood. This implies that NaiveGapElim is (δ + δ0)-correct. This is not ideal

since δ0 is a fixed constant, so in Section 4.5 we use a parallel simulation construction to boost its

success probability to 1− δ, while retaining the same sample complexity.

Good events. Define Egood0,r as the event that either the algorithm terminates before round r, or for

all A,B ∈ Fr, ∣∣∣(µ̂(r)(A)− µ̂(r)(B))− (µ(A)− µ(B))
∣∣∣ < ǫr/λ.

Here λ is the constant in NaiveGapElim. Moreover, we define Egood0 as the intersection of {Egood0,r },
i.e.,

Egood0 :=

∞⋂

r=1

Egood0,r .
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Egood is defined as the event that for all A ∈ Fr,

∣∣∣(µ̂(Ô)− µ̂(A))− (µ(Ô)− µ(A))
∣∣∣ < ǫr/λ.

Here µ̂ and Ô are defined at lines 5 and 6 in NaiveGapElim.

Lemma 4.3 Pr
[
Egood0

]
≥ 1− δ0 and Pr

[
Egood

]
≥ 1− δ.

Proof [Proof of Lemma 4.3] Since m(r) is a feasible solution of the program in SimultEst(Fr, ǫr/λ, δr),
it holds for all A,B ∈ Fr that

∑

i∈A△B

1

m
(r)
i

≤ (ǫr/λ)
2

2 ln(2/δr)
.

By Lemma 2.1,

Pr
[∣∣∣(µ̂(r)(A)− µ̂(r)(B))− (µ(A)− µ(B))

∣∣∣ ≥ ǫr/λ
]

= Pr
[∣∣∣(µ̂(r)(A \B)− µ̂(r)(B \A))− (µ(A \B)− µ(B \A))

∣∣∣ ≥ ǫr/λ
]

≤ 2 exp

{
− (ǫr/λ)

2

2
∑

i∈A△B 1/m
(r)
i

}

≤ 2 exp (− ln(2/δr)) = δr.

By a union bound over all possible A,B ∈ Fr, we have Pr
[
Egood0,r

]
≤ |F|2 δr = δ0/(10r

2). It

follows from another union bound that

Pr
[
Egood0

]
≥ 1−

∞∑

r=1

Pr
[
Egood0,r

]
≥ 1−

∞∑

r=1

δ0
10r2

≥ 1− δ0.

A similar union bound argument over all k ∈ [r] and A ∈ Fr yields that Pr
[
Egood

]
≥ 1− δ.

Implications of good events. Let O denote the optimal set in F , i.e., O = argmaxA∈F µ(A).
Throughout the analysis of our algorithm, it is useful to group the sets in F based on the gaps

between their weights and µ(O). Formally, we define Gr as

Gr := {A ∈ F : µ(O)− µ(A) ∈ (ǫr+1, ǫr]}. (4)

We also adopt the shorthand notation G≥r = {O} ∪
⋃∞

k=r Gk.

Lemma 4.4 Conditioning on Egood0 , O ∈ Fr for all r ≥ 1.

Proof [Proof of Lemma 4.4] Suppose for a contradiction that O ∈ Fr \ Fr+1 for some r. By

definition of Fr+1, it holds that

µ̂(r)(O) < optr − ǫr/2− 2ǫr/λ.
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Observe that optr = µ̂(r)(A) for some A ∈ Fr. Therefore, µ̂(r)(O)− µ̂(r)(A) < −(1/2 + 2/λ)ǫr.

Since O is the maximum-weight set with respect to µ, µ(O) − µ(A) ≥ 0. These two inequalities

imply that

∣∣∣(µ̂(r)(O)− µ̂(r)(A))− (µ(O)− µ(A))
∣∣∣ > 0− [−(1/2 + 2/λ)ǫr] > ǫr/λ,

which happens with probability zero conditioning on event Egood0 , since O,A ∈ Fr.

The following lemma, as a generalization of Lemma 4.4 to all sets in F , states that the sequence

{Fr} is an approximation of {G≥r} conditioning on event Egood0 .

Lemma 4.5 Conditioning on Egood0 , G≥r ⊇ Fr+1 ⊇ G≥r+1 for all r ≥ 1.

Proof [Proof of Lemma 4.5] We first prove the left inclusion. Suppose that A ∈ Fr and A /∈ G≥r.

By definition of G≥r, µ(O)− µ(A) > ǫr. Conditioning on Egood0 , we have O ∈ Fr by Lemma 4.4,

and thus

µ̂(r)(O)− µ̂(r)(A) > µ(O)− µ(A)− ǫr/λ > (1− 1/λ)ǫr.

Recall that optr = maxA∈Fr µ̂
(r)(A) ≥ µ̂(r)(O), and 1− 1/λ > 1/2 + 2/λ by our choice of λ. It

follows that

µ̂(r)(A) < µ̂(r)(O)− (1− 1/λ)ǫr < optr − ǫr/2− 2ǫr/λ,

and thus A /∈ Fr+1.

Then we show that A ∈ G≥r+1 implies A ∈ Fr+1. Note that A ∈ G≥r+1 implies µ(O) −
µ(A) ≤ ǫr+1 = ǫr/2, and thus,

µ̂(r)(O)− µ̂(r)(A) ≤ µ(O)− µ(A) + ǫr/λ ≤ (1/2 + 1/λ)ǫr.

Moreover, since optr = µ̂(r)(B) for some B ∈ Fr, it holds that

optr − µ̂(r)(O) = µ̂(r)(B)− µ̂(r)(O) ≤ µ(B)− µ(O) + ǫr/λ ≤ ǫr/λ.

Adding the two inequalities above yields

µ̂(r)(A) ≥ optr − (1/2 + 2/λ)ǫr.

By definition of Fr+1 in NaiveGapElim, A ∈ Fr+1, which completes the proof.

Correctness conditioning on Egood0 ∩ Egood. By Lemma 4.4, conditioning on Egood0 , the correct

answer is in Fr for every r. This guarantees that whenever the algorithm enters the if-statement

(i.e., when |Fr| = 1), it holds that Fr = {O}. Moreover, let r∗ be a sufficiently large integer such

that G≥r∗ = G≥r∗+1 = {O}. Then Lemma 4.5 implies that Fr∗+1 = {O}, and consequently the

algorithm eventually enters the if-statement, either before or at round r∗ + 1.

Now we show that the algorithm always returns the correct answer O instead of reporting an

error, conditioning on Egood0 ∩ Egood. Fix A ∈ F \ {O}. Let r be the largest integer such that
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A ∈ Fr, i.e., A ∈ Fr \ Fr+1. By Lemma 4.5, we have Fr+1 ⊇ G≥r+1. It follows that A /∈ G≥r+1,

and thus µ(O)− µ(A) > ǫr+1 = ǫr/2.

Recall that since O,A ∈ Fr, conditioning on event Egood, µ̂(O) − µ̂(A) is within an additive

error of ǫr/λ to µ(O)− µ(A). Therefore,

µ̂(O)− µ̂(A) > µ(O)− µ(A)− ǫr/λ > (1/2− 1/λ)ǫr > ǫr/λ.

Here the last step follows from our choice of parameter λ.

Consequently, the condition at line 7 of NaiveGapElim is always met conditioning on Egood0 ∩
Egood, and NaiveGapElim returns the correct answer O.

Soundness conditioning on Egood. Finally, we show that conditioning on Egood, NaiveGapElim

either returns the correct answer or reports an error. Suppose that when the algorithm enters the

if-statement at line 3, Fr is equal to {Ô} for some Ô 6= O. Let r be the unique integer that satisfies

O ∈ Fr \ Fr+1. Recall that since O, Ô ∈ Fr, conditioning on event Egood,

∣∣∣(µ̂(Ô)− µ̂(O))− (µ(Ô)− µ(O))
∣∣∣ < ǫr/λ.

By definition, µ(Ô)− µ(O) < 0, and it follows that

µ̂(Ô)− µ̂(O)) < µ(Ô)− µ(O) + ǫr/λ < ǫr/λ.

This guarantees that the condition at line 7 is not met when Ô 6= O, and thus the algorithm does not

incorrectly return Ô.

4.4. Sample Complexity

We analyze the sample complexity of the NaiveGapElim algorithm conditioning on event

Egood0 ∩ Egood. Let ∆ = µ(O) − maxA∈F\{O} µ(A) denote the gap between the set with the

second largest weight in F and the weight of O.

Lemma 4.6 For any δ ∈ (0, 0.01) and BEST-SET instance C, NaiveGapElim(C, δ) takes

O
(
Low(C) ln δ−1 + Low(C) ln∆−1

(
ln ln∆−1 + ln |F|

))

samples conditioning on event Egood0 ∩ Egood.

Proof Recall that for a BEST-SET instance C = (S,F), Low(C) is defined as

Low(C) :=
∑

i∈S

τ∗i ,

where τ∗ denotes the optimal solution to the following program:

minimize
∑

i∈S

τi

subject to
∑

i∈O△A

1/τi ≤ [µ(O)− µ(A)]2, ∀A ∈ F

τi > 0, ∀i ∈ S.

(5)
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For each r, we construct a feasible solution to the corresponding program in SimultEst(Fr, ǫr/λ, δr),
thereby proving an upper bound on the number of samples taken in round r. Let α = 16λ2 ln(2/δr)
and mi = ατ∗i . Fix A,B ∈ Fr. By Lemma 4.5, we have A,B ∈ G≥r−1, and thus µ(O)− µ(A) ≤
ǫr−1 and µ(O)− µ(B) ≤ ǫr−1. Therefore,

∑

i∈A△B

1/mi ≤ α−1


 ∑

i∈O△A

1/τ∗i +
∑

i∈O△B

1/τ∗i




≤ α−1
[
[µ(O)− µ(A)]2 + [µ(O)− µ(B)]2

]

≤ 2α−1ǫ2r−1 =
(ǫr/λ)

2

2 ln(2/δr)
.

Here the second step holds since τ∗ is a feasible solution to the program in (1). The third step

follows from µ(O) − µ(A) ≤ ǫr−1 and µ(O) − µ(B) ≤ ǫr−1. Finally, the last step applies

α = 16λ2 ln(2/δr).

Therefore, {mi} is a valid solution to the program in SimultEst, and then the number of samples

taken in round r is upper bounded by

∑

i∈S

mi = α
∑

i∈S

τ∗i = O(Low(C) ln δ−1
r ) = O (Low(C) (ln r + ln |F|)) .

The last step holds due to

ln δ−1
r = ln(10r2|F|2/δ0) = O(ln r + ln |F|).

Recall that ∆ = µ(O)−maxA∈F\{O} µ(A). Let r∗ =
⌊
log2∆

−1
⌋
+ 1 be the smallest integer

such that ǫr∗ < ∆. As shown in the proof of correctness, the algorithm terminates before round

r∗ + 1. Summing over all r between 1 and r∗ yields

O

(
Low(C)

r∗∑

r=1

(ln r + ln |F|)
)

= O (r∗ · Low(C) (ln r∗ + ln |F|))

= O
(
ln∆−1 · Low(C)

(
ln ln∆−1 + ln |F|

))
.

It remains to upper bound the number of samples taken in the last round, denoted by round r.

Let β = 8λ2 ln(2r|F|/δ), and mi = βτ∗i . Fix k ∈ [r] and A ∈ Fk. By Lemma 4.5, we have

A ∈ G≥k−1, which implies that µ(O)−µ(A) ≤ ǫk−1. It also follows from Lemma 4.4 that Ô = O.

Thus we have
∑

i∈Ô△A

1/mi = β−1
∑

i∈O△A

1/τ∗i

≤ β−1[µ(O)− µ(A)]2

≤ 4β−1ǫ2k =
(ǫk/λ)

2

2 ln(2r|F|/δ) .

In other words, {mi} is a feasible solution to the program in Verify({Fk}, δ/(r|F|)). Therefore,

the number of samples taken in the last round r is upper bounded by

∑

i∈S

mi = β
∑

i∈S

τ∗i = O
(
Low(C)

(
ln δ−1 + ln ln∆−1 + ln |F|

))
.
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In sum, the number of samples taken by NaiveGapElim conditioning on Egood0 ∩ Egood is

O
(
Low(C) ln δ−1 + Low(C) ln∆−1

(
ln ln∆−1 + ln |F|

))
.

4.5. Parallel Simulation

In the above sections, we showed that conditioning on the “good” events we had low sample

complexity and returned correct answers. We now show how to remove the conditioning and get

a δ-correct algorithm with the same sample complexity in expectation (which is nearly optimal),

using a “parallel simulation” idea. The idea was first used in the BEST-1-ARM problem in Chen

and Li (2015).

Definition 4.7 An algorithm A is (δ0, δ, A,B)-correct if there exist two events E0 and E1 satisfying

the following three conditions:

1. Pr [E0] ≥ 1− δ0 − δ and Pr [E1] ≥ 1− δ.

2. Conditioning on E0, A returns the correct answer, and takes O(A ln δ−1 +B) samples.

3. Conditioning on E1, A either returns the correct answer or terminates with an error.

By Lemma 4.2 and Lemma 4.6, NaiveGapElim is a (δ0, δ, A,B)-correct algorithm for BEST-

SET, where E0 = Egood0 ∩ Egood and E1 = Egood, δ0 = 0.01, A = Low(C) and

B = Low(C) ln∆−1(ln ln∆−1 + ln |F|).

The following lemma shows that we can obtain a δ-correct algorithm with the same O(A ln δ−1+B)
sample complexity, thus proving Theorem 1.8.

Lemma 4.8 (Parallel Simulation) If there is a (δ0, δ, A,B) algorithm for a sampling problem for

δ0 = 0.01 and any δ < 0.01, there is also a δ-correct algorithm for any δ < 0.01 that takes

O(A ln δ−1 +B) samples in expectation.

We postpone the proof of Lemma 4.8 to Appendix A.

5. Optimal Algorithm for Combinatorial Bandit with Efficient Computation

In this section, we present a computationally efficient implementation of the NaiveGapElim

algorithm. Recall that NaiveGapElim maintains a sequence of set families {Fr}, which contain

the sets still under consideration at the beginning of each round r. As |F|, the number of feasible

sets, is typically exponential in the number of arms, it may be computationally expensive to compute

{Fr} explicitly. The key to computational efficiency is to find a compact representation of {Fr}. In

this paper, we represent Fr+1 using the empirical means µ̂(r) and some carefully chosen threshold

θr:

Fr+1 = {A ∈ F : µ̂(r)(A) ≥ θr}.
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Consequently, we have to adapt the procedures in NaiveGapElim, including SimultEst and Verify,

so that they work with this implicit representation of set families. To this end, we use the ε-

approximate Pareto curve framework of Papadimitriou and Yannakakis (2000). This technique

allows us to implement our subroutines in polynomial-time with respect to the input size and 1/ǫ,
if we relax the constraints in the subroutines by an multiplicative factor of 1 + ǫ. In particular, if

1/ǫ is upper bounded by the sample complexity of the instance, we would obtain a computationally

efficient implementation of the algorithm.

5.1. Algorithm

We give a simplified version of the algorithm, and then later boost its probability of success by a

parallel simulation (Lemma 4.8). The algorithm relies on computationally efficient implementations

of the subroutines SimultEst and Verify, as well as three new procedures Unique, Check and OPT.

We start by introducing the syntax and performance guarantees of these procedures, and postpone

their efficient implementation to Section 5.4.

Procedure SimultEst takes as its input a weight µ on S, two thresholds θhigh and θlow, together

with an accuracy parameter ǫ and a confidence level δ, and outputs a vector {mi}i∈S indicating

the number of samples to be taken from each arm in S to estimate the difference between any two

sets in {A ∈ F | µ(A) ≥ θhigh} to an accuracy of ǫ with confidence 1 − δ. This new procedure

is akin to the version in Section 4, where we set U = {A′ ∈ F : µ(A′) ≥ θhigh}. While the

lower threshold θlow is not explicitly used, it gives us the approximation guarantee of the procedure:

indeed, while SimultEst will be guaranteed to output a feasible solution to the original program, the

resulting objective will be a constant approximation of the tightened program obtained by replacing

{A′ ∈ F : µ(A′) ≥ θhigh} with {A′ ∈ F : µ(A′) ≥ θlow} in the constraints. A detailed

specification of SimultEst appears in Section 5.2.

Algorithm 4: SimultEst(µ, θhigh, θlow, ǫ, δ)

Input: Mean vector µ, thresholds θhigh and θlow, accuracy parameter ǫ, confidence level δ.

Output: A vector m, indicating the number of samples to be taken from each arm.

1 Let {mi}i∈S be an approximate solution to the following program:

minimize
∑

i∈S

mi

subject to
∑

i∈A△B

1

mi
≤ ǫ2

2 ln(2/δ)
, ∀A,B ∈ {A′ ∈ F : µ(A′) ≥ θhigh}

mi > 0, ∀i ∈ S

2 return m;

Similarly, procedure Verify takes a sequence of means {µ̂(k)}, two threshold sequences {θhighk }
and {θlowk }, together with a confidence parameter δ. It returns a vector {mi}, indicating the number

of samples from each arm, so that the gap between the conjectured answer Ô and each set in {A ∈
F : µ̂(k−1)(A) ≥ θhighk−1} can be estimated to O(ǫk) accuracy. As in SimultEst, the resulting
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objective value is guaranteed to be bounded by a constant times the optimal value of the tightened

program, obtained by replacing θhighk−1 with θlowk−1 in the contraint.

Algorithm 5: Verify({µ̂(k)}, {θhighk }, {θlowk }, δ)
Input: A sequence {µ̂(k)}r−1

k=0 of empirical means, threshold sequences {θhighk }r−1
k=0 and {θlowk }r−1

k=0,

together with a confidence level δ.

Output: A vector m, indicating the number of samples to be taken from each arm.

1 λ← 10; Ô ← argmaxA∈F µ̂(r)(A);
2 Let {mi}i∈S be an approximate solution to the following program:

minimize
∑

i∈S

mi

subject to
∑

i∈Ô△A

1

mi
≤ (ǫk/λ)

2

2 ln(2/δ)
, ∀k ∈ [r], A ∈ {A′ ∈ F : µ̂(k−1)(A′) ≥ θhighk−1}

mi > 0, ∀i ∈ S

3 return m;

The EfficientGapElim algorithm (Algorithm 6) proceeds in rounds. At round r, EfficientGapElim

first calls the subroutine Unique to determine whether exactly one set survives (i.e., has a weight

greater than θr−1 − ǫr−1/λ with respect to µ̂(r−1). If so, the algorithm invokes Verify, Sample (a

straightforward sampling procedure) and Check (a procedure analogous to Line 7 in NaiveGapE-

lim), in order to verify that the conjectured answer Ô is indeed optimal. The algorithm terminates

and depending on these tests, returns either Ô or an error.

Otherwise, EfficientGapElim calls SimultEst and Sample to estimate the means to sufficient

accuracy. After that, OPT is called to compute the approximately optimal set among the sets under

consideration. Finally, the algorithm computes the threshold for the next round based on optr.

5.2. Specification

We formally state the performance guarantees of the subroutines in EfficientGapElim, which

are crucial to the analysis of the algorithm. In Section 5.4 we discuss implementations that meet

these specifications.

1. Given weights µ and threshold θ, Unique(µ, θ) correctly decides whether there is exactly one

set A ∈ F such that µ(A) ≥ θ.

2. Both SimultEst and Verify return feasible solutions to the programs defined in the procedures.

Moreover, the resulting objective function should be at most a constant times the optimal

value of the tightened programs obtained by replacing θhigh with θlow (or replacing {θhighk }
with {θlowk }) in the constraints.

3. Given empirical means µ, threshold θ, weight w, and accuracy level ǫ, OPT(µ, θ, w, ǫ) returns

a set A ∈ F such that: (a) µ(A) ≥ θ − ǫ (i.e., A is approximately feasible); (b) w(A) ≥
maxB∈F ,µ(B)≥θ w(B)− ǫ (i.e., A is approximately optimal).
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Algorithm 6: EfficientGapElim(C, δ)
Input: BEST-SET instance C = (S,F) and confidence level δ.

Output: The answer.

1 µ̂(0) ← 0; θ0 ← 0;

2 δ0 ← 0.01; λ← 20;

3 for r = 1 to∞ do

4 if Unique(µ̂(r−1), θr−1 − ǫr−1/λ) then

5 m← Verify({µ̂(k)}r−1
k=0, {θk − ǫk/λ}r−1

k=0, {θk − 2ǫk/λ}r−1
k=0, δ/(r|F|));

6 µ̂← Sample(m);

7 Ô ← argmaxA∈F µ̂(r−1)(A);

8 if Check(Ô, µ̂(k), µ̂, θk, ǫk/λ) for all k ∈ [r − 1] then

9 return Ô;

10 else

11 return error;

12 ǫr ← 2−r; δr ← δ0/(10r
3|F|2);

13 m(r) ←∑r
k=1 SimultEst(µ̂(k−1), θk−1 − ǫk−1/λ, θk−1 − 2ǫk−1/λ, ǫk/λ, δr);

14 µ̂(r) ← Sample(m(r));

15 optr ← OPT(µ̂(r−1), θr−1, µ̂
(r), ǫr−1/λ);

16 θr ← optr − (1/2 + 2/λ)ǫr;

4. When Check(Ô, µ̂(k), µ̂, θ, ǫ) is called, and it holds that µ̂(Ô) − µ̂(A) ≥ 2ǫ for all A ∈ F
such that µ̂(k)(A) < θ, the procedure returns “true”. If µ̂(Ô) − µ̂(A) ≤ ǫ for some A ∈ F
such that µ̂(k)(A) < θ− ǫ, the procedure always returns “false”. In other cases, the procedure

may return arbitrarily.

5.3. Analysis of EfficientGapElim

We state the performance guarantees of algorithm EfficientGapElim in the following two lem-

mas. The proofs are essentially identical to those in Sections 4.3 and 4.4, and are therefore post-

poned to Appendix B.

Lemma 5.1 For any δ ∈ (0, 0.01) and BEST-SET instance C, EfficientGapElim(C, δ) returns the

correct answer with probability 1− δ0 − δ, and returns an incorrect answer w.p. at most δ.

Recall that ∆ = µ(O) −maxA∈F\{O} µ(A) is the gap between the set with the second largest

weight in F and the weight of O.

Lemma 5.2 For any δ ∈ (0, 0.01) and BEST-SET instance C, EfficientGapElim(C, δ) takes

O
(
Low(C) ln δ−1 + Low(C) ln2∆−1

(
ln ln∆−1 + ln |F|

))

samples conditioning on event Egood0 ∩ Egood.

Lemmas 5.1, 5.2 and 4.8 imply that there is a δ-correct algorithm that matches the sample

complexity stated in Theorem 1.12. It remains to implement the subroutines specified in Section 5.2

efficiently.
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5.4. Efficient Computation via ε-approximate Pareto Curve

In this section, we propose a general framework for efficiently implementing the subroutines

specified in Section 5.2, thus proving Theorem 1.12. Here, by “efficient”, we mean the time com-

plexity of the algorithm is bounded by a function polynomial both in n and the sample complexity

of the algorithm. Indeed, for any natural algorithm, the time complexity is at least the same as the

sample complexity. We use the concept of ε-approximate Pareto curve, a general framework for

multi-objective optimization, which was first introduced by Papadimitriou and Yannakakis (2000).

In this section, we only need bi-objective optimization problems, i.e., problems with two objec-

tive functions. For a bi-objective optimization problem, for each instance x, we denote F (x) to be

its feasible solution space. For each feasible solution s ∈ F (x), two objective functions f1(x, s)
and f2(x, s) will be used to evaluate the quality of the solution s. The goal here is to maximize the

objective functions. Meanwhile, as shown in Papadimitriou and Yannakakis (2000), minimization

problems can be treated similarly.

The Pareto curve of an instance x, denoted by P (x), is a set of 2-dimension points. For each

v ∈ P (x),

(1) There exists some s ∈ F (x) such that fi(x, s) = vi, for i = 1 and i = 2.

(2) There is no feasible solution s′ such that fi(x, s) ≥ vi for i = 1 and i = 2, with at least one

inequality holding strictly.

The Pareto curve naturally provides a trade-off between the two objective functions. How-

ever, the Pareto curve is exponentially large in size in general and cannot be efficiently computed.

Thus, Papadimitriou and Yannakakis (2000) considered the approximate version of Pareto curves.

The ε-approximate Pareto curve of an instance x, denoted by Pε(x), is a set of feasible solu-

tions, such that for each feasible solution s′ ∈ F (x), there exists some s ∈ Pε(x) such that

fi(x, s
′) ≤ (1 + ε)fi(x, s) for i = 1 and i = 2. For a problem A where the objective functions

are linear, Papadimitriou and Yannakakis (2000) give an FPTAS for constructing the approximate

Pareto curve, given a pseudopolynomial algorithm for the exact version of A. The exact version

of A is one where, given an instance x and a value B, we have to decide if there exists a feasible

solution with cost exactly B.

Many combinatorial problems admit pseudopolynomial algorithms for the exact version, in-

cluding the shortest path problem, the minimum spanning tree problem and the matching problem,

as noted in Papadimitriou and Yannakakis (2000). In the following sections, we will show how

to efficiently implement the algorithm descried in previous sections, when the approximate Pareto

curve of the underlying combinatorial problem of the BEST-SET instance can be computed by an

FPTAS. We also assume that the single-objective maximization version of the underlying combi-

natorial problem can be solved in polynomial time, i.e., given a weight vector w, there exists an

algorithm that runs in polynomial time that can calculate argmaxA∈F w(A). 9

5.4.1. EFFICIENT IMPLEMENTATION OF OPT, Check AND Unique

We begin with the implementation of OPT. Notice that OPT is actually a bi-objective opti-

mization problem, by setting f1(·) to be µ(·) and f2(·) to be w(·). We can efficiently implement

9. Such an algorithm has already been used implicitly in Line 7 of algorithm EfficientGapElim.
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OPT by listing all points in the approximate Pareto curve. Notice that it is required that OPT

outputs a solution with additive approximation term, while the FPTAS presented in Papadimitriou

and Yannakakis (2000) can only be used to generate approximate Pareto curve with multiplicative

approximation ratio. An important observation is that, for any S ∈ F , µ(S) is bounded by O(n)
and w(S) is bounded by a function polynomial in the sample complexity of our algorithm. Thus, to

calculate an additive ε-approximate Pareto curve, it suffices to set ε′ to be a value polynomial in n, ε
and the sample complexity of our algorithm, and calculate the multiplicative ε′-approximate Pareto

curve.

Similarly, Check is also a bi-objective optimization problem, by setting f1(·) to be µ̂(k)(·) and

f2(·) to be µ̂(·). We can still efficiently implement Check by listing all points in the approximate

Pareto curve. We omit implementation details due to the similarity.

Given a polynomial-time algorithm A for the single-objective maximization version of the un-

derlying combinatorial problem, it will be straightforward to implement Unique. One possible way

is to calculate the subset with second largest objective value, which is given as follows. We first

call A to find a subset A with maximum µ(A). Then we enumerate every element a ∈ A, set µ(a)
to −∞ and call A again. By doing so, we will be able to find the subset A′ with second largest

objective value. We can then decide whether there is exactly one subset A such that µ(A) ≥ θ by

comparing µ(A′) with θ.

5.4.2. EFFICIENT IMPLEMENTATION OF SimultEst AND Verify

Now we present our implementation for SimultEst. To solve the convex program described

in Algorithm 4, we apply the Ellipsoid method. It suffices to devise a polynomial time separation

oracle 10 (see e.g., Schrijver (2002)). Concretely, we need to solve the following separation problem.

Definition 5.3 (Separation problem of SimultEst) Given (µ, θhigh, θlow, ε, δ) and vector m⋆, the

goal of the separation problem of SimultEst(µ, θhigh, θlow, ε, δ) is to decide whether there exists two

subsets A,B ∈ {A′ ∈ F : µ(A′) ≥ θhigh} such that

∑

i∈A△B

1

m⋆
i

≥ ε2

2 ln(2/δ)
.

Notice that we do not need to solve the separation problem exactly: a constant approximation

suffices, as this would only increase a constant factor hidden in the big-O notation of the sample

complexity. (This trick is often used in the approximation algorithms literature; see, e.g., Carr et al.

(2000).) Specifically, it is sufficient to find two subsets A,B ∈ {A′ ∈ F : µ(A′) ≥ θhigh} such that

∑

i∈A△B

1

m⋆
i

≥ C · ε2

2 ln(2/δ)

for some constant C (assuming there are subsets A′, B′ satisfying
∑

i∈A′△B′
1
m⋆

i
≥ ε2

2 ln(2/δ) ). More-

over, as noted in the previous section, the constraint A,B ∈ {A′ ∈ F : µ(A′) ≥ θhigh} can also be

relaxed to allow an additive approximate term of θhigh − θlow.

10. Given a point x, the separation oracle needs to decide whether x is in the feasible region. If not, the separation oracle

should output a constraint that x violates.
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To decide whether such a pair of subset (A,B) exists or not, we first arbitrarily choose a subset

O in {A′ ∈ F : µ(A′) ≥ θhigh} and then find a subset O′ ∈ {A′ ∈ F : µ(A′) ≥ θhigh} such that

∑

i∈O△O′

1

m⋆
i

.

is maximized. The following lemma shows that, (O,O′) is a 2-approximation of the original sepa-

ration problem.

Lemma 5.4 For any A,B ∈ {A′ ∈ F : µ(A′) ≥ θhigh},
∑

i∈O△O′

1

m⋆
i

≥ 1

2

∑

i∈A△B

1

m⋆
i

.

Proof [Proof of Lemma 5.4] As O′ is chosen so that

∑

i∈O△O′

1

m⋆
i

.

is maximized, it follows that ∑

i∈O△O′

1

m⋆
i

≥
∑

i∈O△A

1

m⋆
i

and ∑

i∈O△O′

1

m⋆
i

≥
∑

i∈O△B

1

m⋆
i

.

Thus,

2
∑

i∈O△O′

1

m⋆
i

≥
∑

i∈O△A

1

m⋆
i

+
∑

i∈O△B

1

m⋆
i

≥
∑

i∈A△B

1

m⋆
i

.

Now it remains to show how to find O′ efficiently. In order to find O′, we find O1 ∈ {A′ ∈ F :
µ(A′) ≥ θhigh} such that ∑

i∈O\O1

1

m⋆
i

is maximized, and O2 ∈ {A′ ∈ F : µ(A′) ≥ θhigh} such that

∑

i∈O2\O

1

m⋆
i

is maximized. Again, the following lemma shows that, by using the method described above, we

can get a 2-approximation.

Lemma 5.5 For any O′ ∈ {A′ ∈ F : µ(A′) ≥ θhigh},

2max




∑

i∈O\O1

1

m⋆
i

,
∑

i∈O2\O

1

m⋆
i



 ≥

∑

i∈O△O′

1

m⋆
i

.
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Proof [Proof of Lemma 5.5]

2max




∑

i∈O\O1

1

m⋆
i

,
∑

i∈O2\O

1

m⋆
i



 ≥

∑

i∈O\O1

1

m⋆
i

+
∑

i∈O2\O

1

m⋆
i

.

According to our choice of O1 and O2, it follows that

∑

i∈O\O1

1

m⋆
i

+
∑

i∈O2\O

1

m⋆
i

≥
∑

i∈O\O′

1

m⋆
i

+
∑

i∈O′\O

1

m⋆
i

=
∑

i∈O△O′

1

m⋆
i

.

The analysis above suggests, to decide whether there exists two subsets A,B ∈ {A′ ∈ F :
µ(A′) ≥ θhigh} such that

∑

i∈A△B

1

m⋆
i

≥ ε2

2 ln(2/δ)

approximately, it suffices to decide whether exists O1, O2 ∈ {A′ ∈ F : µ(A′) ≥ θhigh} such that

∑

i∈O\O1

1

m⋆
i

≥ ε2

2 ln(2/δ)

or ∑

i∈O2\O

1

m⋆
i

≥ ε2

2 ln(2/δ)
.

The problem of finding O1 and O2, are actually bi-objective optimization problems. As men-

tioned in previous sections, the first constraint, i.e., O1, O2 ∈ {A′ ∈ F : µ(A′) ≥ θhigh} can be

relaxed to allow an additive approximate term of θhigh−θlow, where 1/(θhigh−θlow) is bounded by

the sample complexity of our algorithm. Thus, by using the approximate Pareto curve, it is straight-

forward to decide whether such O2 exists or not. We set wi to be 1
m∗

i
, and further, for any i ∈ O,

we set wi to be zero. We can then decide whether O2 exists or not by calling OPT and using w as

the weight vector.

Deciding whether O1 exists or not is more involved, but still in a similar manner. Again, our

plan is to approximately decide the existence of such O1. More specifically, our method will return

“yes” when there exists O1 such that

∑

i∈O\O1

1

m⋆
i

≥ 2ε2

2 ln(2/δ)
,

return “no” when for any O1 ∈ {A′ ∈ F : µ(A′) ≥ θhigh},
∑

i∈O\O1

1

m⋆
i

≤ ε2

2 ln(2/δ)

and return arbitrarily otherwise.
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When ∑

i∈O

1

m⋆
i

<
2ε2

2 ln(2/δ)

we simply return “no”, as there will be no O1 such that

∑

i∈O\O1

1

m⋆
i

≥ 2ε2

2 ln(2/δ)
.

Otherwise, we set wi to be 1
m⋆

i
, and further, for any i /∈ O, we set wi to be zero. Then we use

approximate Pareto curve to find O1 ∈ {A′ ∈ F : µ(A′) ≥ θhigh} with approximately maximum

w(O1).

Here, we use set the multiplicative approximation ratio to be

1 +
ε2

2 ln(2/δ)w(O)
,

as such a multiplicative approximation ratio will induce an additive approximate term of

ε2

2 ln(2/δ)w(O)
· w(O∗

1) ≤
ε2

2 ln(2/δ)w(O)
· w(O) =

ε2

2 ln(2/δ)
,

where O∗
1 denotes the subset in {A′ ∈ F : µ(A′) ≥ θhigh} with maximum

∑

i∈O\O∗
1

1

m⋆
i

.

Such an additive approximate term is enough to distinguish the two cases (return “yes” or “no”)

stated above. Meanwhile, the time complexity for calculating such an approximate Pareto curve is

bounded by a function polynomial in the sample complexity of our algorithm.

Given the efficient implementation for SimultEst, Verify can be implemented in a similar man-

ner. We also apply the Ellipsoid method and approximately solve the separation problem by using

approximate Pareto curve. We do not repeat those details due to the similarity.

6. Optimal Algorithm for General Sampling Problem

In this section, we present a nearly optimal algorithm LPSample for the GENERAL-SAMP

problem. Given an instance I = (S,O) and a confidence level δ, LPSample either identifies an

answer set in O as the answer, or reports an error. The algorithm is guaranteed to return the correct

answer with probability 1− δ− δ0, where δ0 = 0.01, while the probability of returning an incorrect

answer is upper bounded by δ. Therefore, LPSample can be transformed to a δ-correct algorithm

while retaining its sample complexity by applying the parallel simulation idea from Lemma 4.8.

6.1. Algorithm

Algorithm LPSample consists of two stages. In the first stage, we sample each arm repeatedly

in round-robin fashion, until the confidence region of µ intersects exactly one answer set Ô ∈ O. 11

11. Here B(x, r) denotes the closed ℓ2-ball
{

x′ ∈ R
n : ‖x− x′‖2 ≤ r

}

.
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We identify Ô as the candidate answer. We further sample each arm a few more times in order to

obtain a sufficiently tight confidence region for the second stage.

The second stage is devoted to verifying the candidate Ô. We first calculate the optimal sam-

pling profile by linear programming. Let Alt(Ô) denote
⋃

O∈O\{Ô}O, the union of all answer sets

other than Ô. Each point ν ∈ Alt(Ô) defines a constraint of the linear program, which states that

sufficiently many samples must be taken, in order to distinguish the actual mean profile from ν.

Finally, we verify the candidate answer by sampling the arms according to the sampling profile.

Note that in the first stage, LPSample samples the arms in an inefficient round-robin fashion,

while the candidate answer Ô is verifed using the optimal sampling profile in Stage 2. Thus, LP-

Sample uses a less stringent confidence (i.e., δ0) in Stage 1, and then adopts the required confidence

level δ in the second stage.

Algorithm 7: LPSample(I, δ)
Input: Instance I = (S,O) and confidence level δ.

Output: Either an answer set in O or an error.

1 t← 0, δ0 ← 0.01;

2 repeat

3 t← t+ 1;

4 Sample each arm in S once;

5 µ̂(t) ← empirical means of the arms among the first t samples;

6 rt ←
√[

2n+ 3 ln (δ0/(4t2))
−1
]
/t;

7 until B
(
µ̂(t), 3rt

)
intersects with exactly one of the answer sets, denoted by Ô;

8 α← rt/
√
8n; M ← α−2

[
2n+ 3 ln(δ0/2)

−1
]
;

9 µ̂← Sample((M,M, . . . ,M));

10 if B(µ̂, rt) intersects with Alt(Ô) then

11 return error;

12 Let x∗ be the optimal solution to the following linear program:

minimize

n∑

i=1

xi

subject to

n∑

i=1

(νi − µ̂i)
2 xi ≥ 1, ∀ν ∈ Alt(Ô),

xi ≥ 0.

(6)

13 β ← 64; m← βx∗i
(
ln δ−1 + n

)
;

14 X ← Sample(m);
15 if

∑n
i=1mi(Xi − µ̂i)

2 ≤ 36
(
ln δ−1 + n

)
then

16 return Ô;

17 else

18 return error;
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6.2. Correctness

Good Events. We start by defining two “good events” conditioning on which the correctness and

the sample complexity optimality of LPSample can be guaranteed. Recall that µi denote the mean

of arm Ai. Define Egood0 as the event that in Stage 1,
∥∥µ̂(k) − µ

∥∥
2
≤ rk holds for all k, and

‖µ̂− µ‖2 ≤ α also holds. Note that both k
∥∥µ̂(k) − µ

∥∥2
2

and M ‖µ̂− µ‖22 are χ2 random variables

with n degrees of freedom. The tail probability bound of the χ2-distribution (Lemma 2.2) implies

that

Pr
[∥∥∥µ̂(k) − µ

∥∥∥
2
> rk

]
= Pr

[
k
∥∥∥µ̂(k) − µ

∥∥∥
2

2
> 2n+ 3 ln

(
δ0
4k2

)−1
]
≤ δ0

4k2
.

Similarly,

Pr [‖µ̂− µ‖2 > α] = Pr

[
M ‖µ̂− µ‖22 > 2n+ 3 ln

(
δ0
2

)−1
]
≤ δ0

2
.

By a union bound,

Pr[Egood0 ] ≥ 1− δ0
2
−

∞∑

k=1

δ0
4k2
≥ 1− δ0.

We define Egood as the event that in Stage 2, it holds that

n∑

i=1

mi(Xi − µi)
2 ≤ 2n+ 3 ln δ−1. (7)

Note that
√
mi(Xi − µi) follows the standard normal distribution. Thus, Lemma 2.2 implies that

that Pr[Egood] ≥ 1− δ.

LP Solution Bound. We have the following simple lemma, which upper bounds the optimal so-

lution x∗ of the linear program in Stage 2.

Lemma 6.1
∑n

i=1 x
∗
i ≤ nr−2

t .

Proof Since LPSample completes Stage 1 without reporting an error, B(µ̂, rt) is disjoint from

Alt(Ô). In other words, for all ν ∈ Alt(Ô) we have ‖ν − µ̂‖2 > rt. It directly follows that

x1 = x2 = · · · = xn = r−2
t

is a feasible solution of the linear program (6), which proves the lemma.

Lemma 6.2 (Soundness) Conditioning on Egood, LPSample never returns an incorrect answer.

Proof Recall that at the end of algorithm LPSample, the following inequality is verified:

n∑

i=1

mi(Xi − µ̂i)
2 ≤ 36

(
ln δ−1 + n

)
. (8)

Suppose the candidate answer Ô chosen in Stage 1 is correct, the lemma trivially holds, so assume

that the candidate is incorrect (i.e., µ ∈ Alt(Ô)). We now show that conditioning on event Egood,
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inequality (8) is violated, and thus LPSample reports an error, rather than returning the incorrect

answer Ô.

Define ai =
√
mi (Xi − µ̂i). Note that inequality (8) is equivalent to ‖a‖2 ≤ 6

√
n+ ln δ−1.

Let us write a into a = b + c, where bi =
√
mi (Xi − µi) and ci =

√
mi (µi − µ̂i). We first note

that conditioning on event Egood, inequality (7) guarantees that

‖b‖2 =

√√√√
n∑

i=1

mi (Xi − µi)
2 ≤

√
2n+ 3 ln δ−1 < 2

√
n+ ln δ−1.

On the other hand, since µ ∈ Alt(Ô), the constraint corresponding to point µ in linear program (6)

implies that

‖c‖2 =

√√√√
n∑

i=1

mi (µi − µ̂i)
2 =

√√√√β (n+ ln δ−1)
n∑

i=1

x∗i (µi − µ̂i)
2 ≥ 8

√
n+ ln δ−1.

Therefore, we conclude that

‖a‖2 = ‖b+ c‖2 ≥ ‖c‖2 − ‖b‖2 > 6
√
n+ ln δ−1,

which completes the proof.

Lemma 6.3 (Completeness) Conditioning on Egood0 ∩ Egood, LPSample always returns the cor-

rect answer.

Proof Recall that conditioning on event Egood0 , the actual mean profile µ is in B(µ̂(t), rt). According

to LPSample, Ô is the only answer set that intersects B(µ̂(t), rt), and thus Ô is indeed the correct

answer. It remains to show that LPSample terminates without reporting errors.

We first prove that at the end of Stage 1, B(µ̂, rt) and Alt(Ô) are disjoint. Let ν be an arbitrary

point in Alt(Ô). Our choice of t ensures that
∥∥µ̂(t) − ν

∥∥
2
≥ 3rt. Conditioning on event Egood0 , we

also have
∥∥µ̂(t) − µ

∥∥
2
≤ rt and ‖µ̂− µ‖2 ≤ α < rt. It follows from the three inequalities above

that

‖µ̂− ν‖2 ≥
∥∥∥µ̂(t) − ν

∥∥∥
2
−
∥∥∥µ̂(t) − µ

∥∥∥
2
− ‖µ̂− µ‖2 > 3rt − rt − rt = rt,

which implies ν 6∈ B(µ̂, rt). Therefore, B(µ̂, rt) and Alt(Ô) are disjoint, and LPSample finishes

Stage 1 without reporting an error.

Next we show that LPSample does not report an error at the end of Stage 2 (i.e., inequality (8)

holds). As in the proof of Lemma 6.2, define ai =
√
mi (Xi − µ̂i), bi =

√
mi (Xi − µi), and ci =√

mi (µi − µ̂i). Then inequality (8) is equivalent to showing ‖a‖2 = ‖b+ c‖2 ≤ 6
√
n+ ln δ−1.

Conditioning on Egood, ‖b‖2 < 2
√
n+ ln δ−1 follows from inequality (7) as in Lemma 6.2. Next,

‖c‖22 = β
(
n+ ln δ−1

) n∑

i=1

x∗i (µi − µ̂i)
2

(by definition of c and mi)

≤ 64
(
n+ ln δ−1

)( n∑

i=1

x∗i

) n∑

i=1

(µi − µ̂i)
2

(u · v ≤ ‖u‖1 · ‖v‖1)

≤ 64
(
n+ ln δ−1

)
· nr−2

t · α2

≤ 8
(
n+ ln δ−1

)
.
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Above, the third step applies Lemma 6.1 and the fact that ‖µ̂− µ‖2 ≤ α. The last step plugs in the

parameter α = rt/
√
8n. Therefore, we conclude that

‖a‖2 ≤ ‖b‖2 + ‖c‖2 < 2
√
n+ ln δ−1 +

√
8(n+ ln δ−1) < 6

√
n+ ln δ−1,

and thus LPSample returns the correct answer without reporting an error.

6.3. Sample Complexity

We show that LPSample is nearly optimal: the sample complexity of the algorithm matches the

instance lower bound Ω(Low(I) ln δ−1) as δ tends to zero. Specifically, we give an upper bound on

the sample complexity of algorithm LPSample conditioning on the “good event” Egood0 , in terms

of Low(I) and

∆ = inf
ν∈Alt(O)

‖µ− ν‖2 .

(Note that the assumption that O is disjoint from the closure of Alt(O) guarantees that ∆ > 0.) We

first prove a simple lemma, which relates ∆ to Low(I).

Lemma 6.4 Low(I) ≥ ∆−2.

Proof By definition, Low(I) =∑n
i=1 τ

∗
i , where {τ∗i } is the optimal solution to (3). Note that

Low(I) ‖νi − µi‖22 ≥
n∑

i=1

(νi − µi)
2τ∗i ≥ 1.

Thus

Low(I) ≥ sup
ν∈Alt(O)

‖ν − µ‖−2
2 = ∆−2.

Lemma 6.5 Conditioning on event Egood0 , LPSample takes O(Low(I)(ln δ−1 + n3 + n ln∆−1))
samples.

Proof Recall that in the first stage of LPSample, rk is defined as

rk =

√
2n+ 3 ln[δ0/(4k2)]−1

k
,

and the number of samples taken in Stage 1 is nt+ nM , where

M = α−2
[
2n+ 3 ln(δ0/2)

−1
]
= O(nα−2) = O(n2r−2

t ),

and t is the smallest index such that B(µ̂(t), 3rt) intersects only one set in O. In order to upper

bound t, let t∗ be the smallest integer such that rt∗ < ∆/4. A simple calculation gives t∗ =

O
(
∆−2(n+ ln∆−1)

)
. Moreover, at round t∗, conditioning on event Egood0 implies that µ̂(t∗) ∈

B(µ, rt∗). It follows that

B(µ̂(t∗), 3rt∗) ⊆ B(µ, 4rt∗) ⊂ B(µ,∆).
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By definition of ∆, B(µ̂(t∗), 3rt∗) is disjoint from Alt(O), and thus the round-robin sampling in

Stage 1 terminates before taking t∗ samples from each arm (i.e., t ≤ t∗). Therefore, nt is upper

bounded by

nt∗ = O
(
∆−2(n2 + n ln∆−1)

)
.

Moreover, we have nM = O(n3r−2
t ) = O(n3r−2

t∗ ) = O(n3∆−2). Also, we note that ∆−2 =
O(Low(I)) by Lemma 6.4. Putting this all together, the number of samples in Stage 1 is

O
(
Low(I)(n3 + ln∆−1)

)
.

Now for the second stage samples. Let τ∗ be the optimal solution to the linear program defined

in (3). By definition, Low(I) = ∑n
i=1 τ

∗
i . Then we construct a feasible solution to the linear pro-

gram in Stage 2 from τ∗. Recall that conditioning on event Egood0 , we have |µ̂i−µi| ≤ ‖µ̂− µ‖2 ≤
α for all i ∈ [n]. It follows that for all ν ∈ Alt(Ô),

(νi − µ̂i)
2 = [(νi − µi) + (µi − µ̂i)]

2 ≥ (νi − µi)
2 /2− 2 (µi − µ̂i)

2 ≥ (νi − µi)
2 /2− 2α2.

Here the second step applies the inequality (a+ b)2 ≥ a2/2− 2b2. Therefore, for all ν ∈ Alt(Ô),

n∑

i=1

(νi − µ̂i)
2 τ∗i ≥

n∑

i=1

τ∗i

[
(νi − µi)

2 /2− 2α2
]

≥ 1

2

n∑

i=1

(νi − µi)
2 τ∗i − 2α2

n∑

i=1

τ∗i

≥ 1

2
− 2α2 · nr−2

t =
1

4
.

(9)

The third step holds due to the feasibility of τ∗ and the fact that
∑n

i=1 τ
∗
i ≤ nr−2

t , which follows

from an analogous argument to the proof of Lemma 6.1. The last step follows from our choice of

parameter α = rt/
√
8n.

Inequality (9) implies that xi = 4τ∗i is a feasible solution of the linear program in Stage 2 of

LPSample. It follows that the number of samples taken in Stage 2 is bounded by

n∑

i=1

mi = β
(
ln δ−1 + n

) n∑

i=1

x∗i ≤ β
(
ln δ−1 + n

) n∑

i=1

4τ∗i = O
(
Low(I)

(
ln δ−1 + n

))
.

In conclusion, LPSample takes

O
(
Low(I)(ln δ−1 + n3 + n ln∆−1)

)

samples in Stage 1 and Stage 2 in total, conditioning on event Egood0 .

Finally, we prove Theorem 1.13, which we restate for convenience in the following.

Theorem 1.13 (restated) There is a δ-correct algorithm for GENERAL-SAMP that takes

O(Low(I)(ln δ−1 + n3 + n ln∆−1))
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samples on any instance I = (S,O) in expectation, where

∆ = inf
ν∈Alt(O)

‖µ− ν‖2

is defined as the minimum Euclidean distance between the mean profile µ and an alternative mean

profile ν ∈ Alt(O) with an answer other than O.

Proof By Lemmas 6.2, 6.3 and 6.5, LPSample is a (δ0, δ, A,B)-correct algorithm for GENERAL-

SAMP (as per Definition 4.7), where E0 = Egood0 ∩Egood, E1 = Egood, δ0 = 0.01, A = Low(I) and

B = Low(I)(n3+n ln∆−1). Lemma 4.8 implies that there is a δ-correct algorithm for GENERAL-

SAMP with expected sample complexity

O(A ln δ−1 +B) = O
(
Low(I)(ln δ−1 + n3 + n ln∆−1)

)
.
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Organization of the Appendix

In Appendices A and B, we present the missing proofs in Sections 4 and 5. In Appendices

C and D, we prove our negative results on the sample complexity of BEST-SET and GENERAL-

SAMP (Theorems 1.9 and 1.14).

Appendix A. Missing Proof in Section 4

In this section, we prove the “parallel simulation” lemma (Lemma 4.8) in Section 4, which we

restate below for convenience.

Lemma 4.8 (restated) If there is a (δ0, δ, A,B) algorithm for a sampling problem for δ0 = 0.01
and any δ < 0.01, there is also a δ-correct algorithm for any δ < 0.01 that takes O(A ln δ−1 +B)
samples in expectation.

Proof [Proof of Lemma 4.8] For each integer k ≥ 0, let Ak be a (δ0, δ/2
k+1, A,B) algorithm for

the problem. We construct an algorithm A, which simulates the sequence {Ak}k≥0 of algorithms in

parallel.

We number the time slots with positive integers 1, 2, . . . At time slot t, for each integer k ≥ 0
such that 2k divides t, A either starts or resumes the execution of algorithm Ak, until Ak requests a

sample or terminates. In the former case, A draws a sample from the arm that Ak specifies and feeds

it to Ak. After that, the execution of Ak is suspended. As soon as some algorithm Ak terminates

without an error (i.e., it indeed returns an answer), A outputs the answer that Ak returns.

To analyze this construction, we let E0,k and E1,k denote the events E0 and E1 in Definition 4.7

for algorithm Ak. By definition,

Pr [E0,k] ≥ 1− δ0 − δ/2k+1 ≥ 0.98

and

Pr [E1,k] ≥ 1− δ/2k+1.

We first note that since A never returns an incorrect answer conditioning on
⋂∞

k=0 E1,k, by a

union bound, the probability that A outputs an incorrect answer is upper bounded by

∞∑

k=0

Pr
[
E1,k

]
≤

∞∑

k=0

δ/2k+1 = δ,

and thus A is δ-correct. 12

Then we analyze the sample complexity of A. Let random variable T be the smallest index such

that E0,T happens. Since the execution of the algorithm sequence {Ak} is independent, we have

Pr [T = k] ≤
k−1∏

j=0

(1− Pr [E0,k]) ≤ 0.02k.

Conditioning on T = k, Ak takes at most α(A ln(2k+1/δ) + B) samples before it terminates for

some universal constant α. Since Ak takes a sample every 2k time slots, algorithm A terminates

12. We may easily verify that A terminates almost surely conditioning on
⋂∞

k=0 E1,k.
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within α2k(A ln(2k+1/δ) +B) time steps. Then the total number of samples taken by A is at most

∞∑

j=0

α2k(A ln(2k+1/δ) +B)

2j
≤ α2k+1(A ln(2k+1/δ) +B).

Therefore, the expected number of samples taken by A is upper bounded by

∞∑

k=0

Pr [T = k] · α2k+1(A ln(2k+1/δ) +B)

≤ α

∞∑

k=0

0.02k · 2k+1(A ln 2k+1 +A ln δ−1 +B)

≤ α(A ln δ−1 +B)
∞∑

k=0

0.02k · 2k+1 + αA
∞∑

k=0

0.02k · 2k+1 ln 2k+1

= O
(
A ln δ−1 +B

)
.

Appendix B. Missing Proofs in Section 5

In this section, we present the missing proofs of Lemmas 5.1 and 5.2 in Section 5.

B.1. Correctness

We restate Lemma 5.1 in the following.

Lemma 5.1 (restated) For any δ ∈ (0, 0.01) and BEST-SET instance C, EfficientGapElim(C, δ)
returns the correct answer with probability 1 − δ0 − δ, and returns an incorrect answer w.p. at

most δ.

Proof Define {Fr} and {F̃r} as

Fr+1 := {A ∈ F : µ̂(r)(A) ≥ θr}
and

F̃r+1 := {A ∈ F : µ̂(r)(A) ≥ θr − ǫr/λ}.
Intuitively, Fr is analogous to the set Fr used in NaiveGapElim, which represents the collection of

remaining sets at the beginning of round r, while F̃r+1 is a relaxed version of Fr+1.

Then we note that at each round r, when SimultEst is called with parameters µ = µ̂(k−1) and

θhigh = θk−1 − ǫk−1/λ for k ∈ [r], the set {A′ ∈ F : µ(A′) ≥ θhigh} involved in the mathematical

program is exactly F̃k. Similarly, when Verify is called at the last round with parameters θhighk =

θk − ǫk/λ, the set {A′ ∈ F : µ̂(k−1)(A′) ≥ θhighk−1} is also identical to F̃k.

Good events. As in the analysis of the NaiveGapElim algorithm, two good events Egood0 and

Egood play important roles. Let Egood0,r denote the event that either the algorithm terminates before

or at round r, or it holds that
∣∣∣(µ̂(r)(A)− µ̂(r)(B))− (µ(A)− µ(B))

∣∣∣ < ǫk/λ
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for all k ∈ [r] and A,B ∈ F̃k. Note that this definition is stronger than the one in the analysis of

NaiveGapElim, where only the accuracy of the gaps between set pairs in F̃r is required. Egood0 is

defined as the intersection of all Egood0,r ’s. Moreover, we define Egood as the event that at line 7, it

holds that ∣∣∣(µ̂(Ô)− µ̂(A))− (µ(Ô)− µ(A))
∣∣∣ < ǫk/λ

for all k and A ∈ F̃k.

The following lemma, similar to Lemma 4.3, bounds the probability of the good events.

Lemma B.1 Pr
[
Egood0

]
≥ 1− δ0 and Pr

[
Egood

]
≥ 1− δ.

Proof Recall that m(r) is the sum of

SimultEst(µ̂(k−1), θk−1 − ǫk−1/λ, θk−1 − 2ǫk−1/λ, ǫk/λ, δr)

over all k ∈ [r]. This guarantees that m(r) is a valid solution to all programs. Specifically, for each

k ∈ [r] and A,B ∈ F̃k, it holds that

∑

i∈A△B

1/m
(r)
i ≤

(ǫk/λ)
2

2 ln(2/δr)
.

By Lemma 2.1, it holds that

Pr
[∣∣∣(µ̂(r)(A)− µ̂(r)(B))− (µ(A)− µ(B))

∣∣∣ < ǫk/λ
]
≥ 1− δr.

A union bound over all possible choices of k,A,B yields that

Pr
[
Egood0,r

]
≥ 1− r|F|2δr ≥ 1− δ0

10r2
.

It follows from another union bound over all r that Pr
[
Egood0

]
≥ 1 − δ0, and a similar argument

proves that Pr
[
Egood

]
≥ 1− δ.

Implications. We prove the analogues of Lemmas 4.4 and 4.5 for EfficientGapElim.

Lemma B.2 Conditioning on Egood0 , O ∈ Fr ⊆ F̃r for all r.

Proof [Proof of Lemma B.2] Suppose for a contradiction that O ∈ Fr \ Fr+1 for some r. Recall

that OPT guarantees optr = µ̂(r)(A) for some A ∈ F such that µ̂(r−1)(A) ≥ θr−1 − ǫr−1/λ, i.e.,

A ∈ F̃r. Since A ∈ F̃r and O ∈ Fr ⊆ F̃r, it holds conditioning on Egood0 that

µ̂(r)(O)− µ̂(r)(A) > µ(O)− µ(A)− ǫr/λ ≥ −ǫr/λ.

It follows that

µ̂(r)(O) > µ̂(r)(A)− ǫr/λ = optr − ǫr/λ > θr,

which leads to a contradiction to O /∈ Fr+1.

The following lemma is analogous to Lemma 4.5. In addition, we also characterize the relation

between G≥r−1 and {A ∈ F : µ̂(r)(A) ≥ θr − 2ǫr/λ}, which serves as a further relaxation of F̃r.
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Lemma B.3 Conditioning on Egood0 , it holds that G≥r ⊇ F̃r+1 ⊇ Fr+1 ⊇ G≥r+1 and G≥r−1 ⊇
{A ∈ F : µ̂(r)(A) ≥ θr − 2ǫr/λ}.

Proof [Proof of Lemma B.3] We prove by induction on r. The base case that r = 0 holds due to the

observation that F1 = F̃1 = G≥0 = F . Now we prove the lemma for r ≥ 1.

Part I. A /∈ G≥r implies A /∈ F̃r+1. Suppose that A ∈ Gk for some k ≤ r − 1. Then by

the inductive hypothesis, A ∈ G≥k ⊆ F̃k. Also by Lemma B.2, O ∈ Fk ⊆ F̃k. Therefore,

conditioning on event Egood0 , it holds that

µ̂(r)(O)− µ̂(r)(A) > µ(O)− µ(A)− ǫk/λ > ǫk+1 − ǫk/λ = (1/2− 1/λ)ǫk.

Recall that OPT guarantees that

optr − µ̂(r)(O) ≥ max
B∈Fr

µ̂(r)(B)− ǫr/λ− µ̂(r)(O) ≥ −ǫr/λ.

The second step holds since, by Lemma B.2, O ∈ Fr. Note that as k ≤ r − 1, ǫk ≥ 2ǫr, and then

the two inequalities above imply that

optr − µ̂(r)(A) > (1/2− 1/λ)ǫk − ǫr/λ ≥ (1− 3/λ)ǫr.

It follows that

µ̂(r)(A) < optr − (1− 3/λ)ǫr ≤ optr − (1/2 + 3/λ)ǫr = θr − ǫr/λ,

and thus A /∈ F̃r+1. Here the second holds due to λ = 20.

Part II. A ∈ G≥r+1 implies A ∈ Fr+1. For fixed A ∈ G≥r+1, the inductive hypothesis implies

that A ∈ G≥r ⊆ F̃r. Also by Lemma B.2, O ∈ F̃r. Thus conditioning on event Egood0 ,

µ̂(r)(O)− µ̂(r)(A) < µ(O)− µ(A) + ǫr/λ ≤ ǫr+1 + ǫr/λ = (1/2 + 1/λ)ǫr.

Note that OPT guarantees that optr = µ̂(r)(B) for some B ∈ F̃r. Thus, conditioning on Egood0 ,

optr − µ̂(r)(O) = µ̂(r)(B)− µ̂(r)(O) < µ(B)− µ(O) + ǫr/λ ≤ ǫr/λ.

Adding the two inequalities above yields

µ̂(r)(A) > optr − (1/2 + 2/λ)ǫr = θr,

and therefore A ∈ Fr+1.

Part III. A /∈ G≥r−1 implies µ̂(r)(A) < θr − 2ǫr/λ. Suppose A ∈ Gk for k ≤ r − 2. By the

inductive hypothesis, A ∈ G≥k ⊆ F̃k. Since O ∈ F̃k by Lemma B.2,

µ̂(r)(O)− µ̂(r)(A) > µ(O)− µ(A)− ǫk/λ > ǫk+1 − ǫk/λ = (1/2− 1/λ)ǫk.

The specification of OPT guarantees that

optr − µ̂(r)(O) ≥ max
B∈Fr

µ̂(r)(B)− ǫr/λ− µ̂(r)(O) ≥ −ǫr/λ.
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Recall that k ≤ r − 2 and λ = 20. Therefore,

µ̂(r)(A) < optr − (1/2− 1/λ)ǫk + ǫr/λ

= optr − (2− 4/λ)ǫr + ǫr/λ

< optr − (1/2 + 2/λ)ǫr − 2ǫr/λ = θr − 2ǫr/λ.

Correctness conditioning on Egood0 ∩ Egood. We show that EfficientGapElim always returns the

correct answer O conditioning on both Egood0 and Egood. Let r∗ be a sufficiently large integer such

that G≥r∗ = {O}. By Lemma B.3, it holds that F̃r∗+1 = Fr∗+1 = {O} conditioning on Egood0 .

Thus, the condition at line 4 is eventually satisfied, either before or at round r∗ + 1.

It suffices to show that the condition of the if-statement at line 8 is also met, and thus the

algorithm would return the correct answer, instead of reporting an error. Fix k ∈ [r− 1] and A ∈ F
with µ̂(k)(A) < θk. Since A /∈ Fk+1, by Lemma B.3, A /∈ G≥k+1, and therefore A ∈ Gt for some

t ≤ k. By Lemma B.3, A ∈ F̃t. Thus, conditioning on Egood,

µ̂(O)− µ̂(A) > µ(O)− µ(A)− ǫt/λ > ǫt+1 − ǫt/λ = (1/2− 1/λ)ǫt ≥ 2ǫk/λ.

It follows that µ̂(O) − µ̂(A) ≥ 2ǫk/λ for all A ∈ F with µ̂(k)(A) < θk. According to the specifi-

cation of Check, Check(O, µ̂(k), µ̂, θk, ǫk/λ) always returns true, and thus the algorithm returns the

optimal set O.

Soundness conditioning on Egood. Now we show that the algorithm never returns an incorrect

answer (i.e., a sub-optimal set) conditioning on Egood. Suppose that at some round r, F̃r = {Ô} for

Ô ∈ F \ {O}, and thus the condition at line 4 is met. It suffices to show that the algorithm reports

an error, rather than incorrectly returning Ô as the answer.

Since the correct answer O is not in F̃r, there exists an integer k such that O ∈ F̃k \ F̃k+1.

Conditioning on Egood, it holds that

µ̂(Ô)− µ̂(O) < µ(Ô)− µ(O) + ǫk/λ ≤ ǫk/λ.

Therefore, we have µ̂(k)(O) < θk−ǫk/λ and µ̂(Ô)−µ̂(O) ≤ ǫk/λ. Thus Check(Ô, µ̂(k), µ̂, θk, ǫk/λ)
is guaranteed to return false, and the algorithm does not return the incorrect answer Ô.

This finishes the proof of Lemma 5.1.

B.2. Sample Complexity

We restate Lemma 5.2 for convenience.

Lemma 5.2 (restated) For any δ ∈ (0, 0.01) and BEST-SET instance C, EfficientGapElim(C, δ)
takes

O
(
Low(C) ln δ−1 + Low(C) ln2∆−1

(
ln ln∆−1 + ln |F|

))

samples conditioning on event Egood0 ∩ Egood.
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Proof [Proof of Lemma 5.2] For a BEST-SET instance C = (S,F), let τ∗ be the optimal solution to

the program in (1):

minimize
∑

i∈S

τi

subject to
∑

i∈O△A

1/τi ≤ [µ(O)− µ(A)]2, ∀A ∈ F

τi > 0, ∀i ∈ S.

Recall that Low(C) =∑i∈S τ∗i .

We start by upper bounding the number of samples taken according to m(r) in each round r.

Specifically, we construct a small feasible solution to the mathematical program defined in

SimultEst(µ̂(k−1), θhigh, θlow, ǫk/λ, δr),

where θhigh = θk−1 − ǫk−1/λ and θlow = θk−1 − 2ǫk−1/λ, thereby obtaining a bound on the

optimal solution of the program.

Let α = 64λ2 ln(2/δr) and mi = ατ∗i . Fix A,B ∈ {A′ ∈ F : µ̂(k−1)(A′) ≥ θlow}. By

Lemma B.3, we have A,B ∈ G≥k−2, and thus both µ(O) − µ(A) and µ(O) − µ(B) are smaller

than or equal to ǫk−2 = 4ǫk. It follows that

∑

i∈A△B

1/mi ≤ α−1


 ∑

i∈O△A

1/τ∗i +
∑

i∈O△B

1/τ∗i




≤ α−1
[
[µ(O)− µ(A)]2 + [µ(O)− µ(B)]2

]

≤ 2α−1 · (4ǫk)2 =
(ǫk/λ)

2

2 ln(2/δr)
.

Here the second step holds since τ∗ is a feasible solution to the program in (1). The last step applies

α = 64λ2 ln(2/δr). Therefore, this setting {mi} is a valid solution even for the tightened program

defined just above the description of SimultEst(µ̂(k−1), θhigh, θlow, ǫk/λ, δr) (Algorithm 4). More-

over, by our choice of mi = ατ∗i , the number of samples contributed by r and k is upper bounded

by ∑

i∈S

mi = α
∑

i∈S

τ∗i = O(Low(C) ln δ−1
r ) = O (Low(C) (ln r + ln |F|)) .

In sum, EfficientGapElim takes O (Low(C) (r ln r + r ln |F|)) samples in round r.

This can now be used to bound the number of samples in all but the last round. Let ∆ =
µ(O)−maxA∈F\{O} µ(A) and r∗ =

⌊
log2∆

−1
⌋
+1. Observe that G≥r∗ = G≥r∗+1 = {O}. Thus

by Lemma B.3, F̃r∗+1 = {O} and the algorithm terminates before or at round r∗ + 1. Summing

over all r between 1 and r∗ yields

O

(
Low(C)

r∗∑

r=1

r · (ln r + ln |F|)
)

= O (r∗ · Low(C) (r∗ ln r∗ + r∗ ln |F|))

= O
(
ln2∆−1 · Low(C)

(
ln ln∆−1 + ln |F|

))
.
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Then we bound the number of samples taken at the last round, denoted by round r. Let β =
32λ2 ln(2r|F|/δ), and mi = βτ∗i . We show that {mi} is a feasible solution to the program in

Verify({µ̂(k)}, {θhighk }, {θlowk }, δ/(r|F|)).

Here θhighk = {θk− ǫk/λ}, and θlowk = {θk− 2ǫk/λ}. Fix k ∈ [r] and A ∈ {A′ ∈ F : µ̂(k−1)(A) ≥
θlowk−1}. By Lemma B.3, we have A ∈ G≥k−2, which implies that µ(O) − µ(A) ≤ ǫk−2 = 4ǫk.

Recall that by Lemma B.2, Ô = O. Thus we have

∑

i∈Ô△A

1/mi = β−1
∑

i∈O△A

1/τ∗i

≤ β−1[µ(O)− µ(A)]2

≤ 32β−1ǫ2k =
(ǫk/λ)

2

2 ln(2r|F|/δ) .

Recall that r ≤ r∗ + 1 = O(ln∆−1). Therefore, the number of samples taken in the last round is

upper bounded by

∑

i∈S

mi = β
∑

i∈S

τ∗i = O
(
Low(C)

(
ln δ−1 + ln r + ln |F|

))

= O
(
Low(C)

(
ln δ−1 + ln ln∆−1 + ln |F|

))
.

Therefore, conditioning on Egood0 ∩ Egood, the number of samples taken by EfficientGapElim is

O
(
Low(C) ln δ−1 + Low(C) ln2∆−1

(
ln ln∆−1 + ln |F|

))
.

This completes the analysis of the sample complexity.

Appendix C. Worst-Case Lower Bound for Combinatorial Bandit

In this section we construct a family of BEST-SET instance to show that

O(Low(C) ·
(
ln |F|+ ln δ−1

)
)

samples are required for any δ-correct algorithm in the worst case. We need the following lemma

for our theorem, which constructs a list of subsets resembling the Nisan-Wigderson design Nisan

and Wigderson (1994).

Lemma C.1 Given an integer n and there exists a list of m = 2cn subsets S1, S2, . . . , Sm of [n]
where c is a universal constant, such that |Si| = ℓ = Ω(n) for each Si, and |Si ∩ Sj | ≤ ℓ/2 for

each i 6= j.

Proof We prove the lemma via the probabilistic method. Let ℓ = n/10, and m = 2cn. We

simply let S1, S2, . . . , Sm be a sequence of independent uniformly random subsets of [n] with size

ℓ. Clearly, we have

Pr[|Si ∩ Sj | > ℓ/2] ≤ 2−Ω(n)

47



CHEN GUPTA LI QIAO WANG

for each i 6= j. Hence, we can set the constant c to be sufficiently small so that

Pr[∃i 6= j, |Si ∩ Sj | > ℓ/2] < m2 · 2−Ω(n) < 1,

which implies the existence of the desired list.

We now prove Theorem 1.9, which we restate here for convenience.

Theorem 1.9. (restated) (i) For δ ∈ (0, 0.1), two positive integers n and m ≤ 2cn where c is a

universal constant, and every δ-correct algorithm A for BEST-SET, there exists an infinite sequence

of n-arm instances C1 = (S1,F1), C2 = (S2,F2), . . . , such that A takes at least

Ω(Low(Ck) · (ln |Fk|+ ln δ−1))

samples in expectation on each Ck, |Fk| = m for all k, and Low(Ck) goes to infinity.

(ii) Moreover, for each Ck, there exists a δ-correct algorithm Ak for BEST-SET such that Ak takes

O(Low(Ck) · poly(lnn, ln δ−1))

samples in expectation on it. (The constants in Ω and O do not depend on n,m, δ and k.)

Our proof for the first part is based on a simple but delicate reduction to the problem of distin-

guishing two instances with a much smaller confidence parameter O(δ/|F|).
Proof [Proof of the first part of Theorem 1.9] We fix a real number ∆ ∈ (0, 0.1), and let constant c
and ℓ = Ω(n) be as in Lemma C.1. For each subset A ⊆ [n], we define CA to be the n-arm instance

whose i-th arm has mean ∆ when i ∈ A and mean 0 otherwise. Let S1, S2, . . . , S2cn be a list whose

existence is guaranteed by Lemma C.1, and set F = {S1, S2, . . . , Sm}.
Let A be a δ-correct algorithm for BEST-SET. For a subset A ∈ F , let EA be the event that A

outputs CA. Fixing a subset A ∈ F , the definition implies that

∑

B∈F ,B 6=A

Pr
A,CA

[EB] ≤ δ.

By a simple averaging argument, there exists another subset B ∈ F such that PrA,CA [EB] ≤ 2δ/|F|.
Now, from the fact that A is δ-correct, we have PrA,CB [EB] ≥ 0.9. Combining the above two facts

with Lemma 2.3, we can see that A must spend at least

d

(
Pr
A,CB

[EB], Pr
A,CA

[EB]
)
·∆−2 = Ω((ln |F|+ ln δ−1) ·∆−2)

samples on CB in expectation. On the other hand, one can easily verify that setting τi = Θ(1/ℓ·∆−2)
satisfies the constraints in the lower bound program (1) in Section 3, and hence Low(CB) ≤ Θ(n/ℓ ·
∆−2) = Θ(∆−2).

Therefore, to prove the first part of this theorem, we set ∆ to be 1/n, 1/2n, 1/3n, . . . and set

Ck to be corresponding CB constructed from the above procedure. (The property that ∆ ≤ 1/n will

be used in the proof for the second part.)

For the second part of Theorem 1.9, we first design an algorithm for an interesting special case

of GENERAL-SAMP.
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Theorem C.2 For a positive integer n, a positive real number r ≤ 1 and a vector u ∈ R
n, we

define

O = {{u}, {v ∈ R
n : ‖u− v‖2 ≥ r}}.

There is a δ-correct algorithm for GENERAL-SAMP which takes

O
(
n ln2 n · r−2 · (lnn+ ln δ−1) · ln δ−1

)

samples in expectation on the instance I = (S,O), where S is a sequence of arms with mean profile

u.

Before proving Theorem C.2, we show it implies the moreover part of Theorem 1.9.

Proof [Proof of the moreover part of Theorem 1.9] Let Ck = (Sk,Fk) be a constructed instance

in the proof of the first part of Theorem 1.9, and ∆, B, F , ℓ, m be the corresponding parameters

during its construction. From our choice of ∆, we have ∆ ≤ 1/n. And in the whole proof we

assume n is sufficiently large for simplicity.

Let Aball be the algorithm guaranteed by Theorem C.2. Our algorithm works as follows:

• Given an instance C = (S,F), run an arbitrary δ-correct algorithm for BEST-SET when

F 6= Fk.

• Run Aball with r = c1 · ∆ ·
√
n, mean profile u set as the mean profile of instance Ck and

confidence level set as δ/2, where c1 is a constant to be specified later. (Note that r ≤ 1 as

∆ ≤ 1/n.)

– Recall that O = {A1, A2}, where A1 = {u} and A2 = {v ∈ R
n : ‖u− v‖2 ≥ r}.

– (Case I) If Aball returns A1, outputs set B.

– (Case II) Otherwise, run an arbitrary δ/2-correct algorithm for BEST-SET, and outputs

its output.

First, we condition on the event Egood that both Aball and the simulated algorithm in Case II

operate correctly, which happens with probability at least 1 − δ. Then we prove its correctness.

Since we condition on Egood, whenever it enters Case II, it must output the correct answer. So it

would only make mistakes in Case I.

Now we suppose that the algorithm enters Case I. Let u be the mean profile of the instance Ck,

and v be the mean profile of the given instance C. Conditioning on Egood, from Theorem C.2, we

must have

‖u− v‖2 < c1 ·∆ ·
√
n, (10)

since otherwise v ∈ A2 and Aball would output A2 instead. We are going to show in this case, the

correct answer must be B. That is tantamount to prove that for A ∈ F with A 6= B, we have

∑

i∈B

vi −
∑

i∈A

vi =
∑

i∈B\A

vi −
∑

i∈A\B

vi > 0.

Note that from the construction of Ck, we have ui = ∆ when i ∈ B, and ui = 0 otherwise.

Therefore,
∑

i∈B

ui −
∑

i∈A

ui =
∑

i∈B\A

ui −
∑

i∈A\B

ui ≥ (|B| − |A ∩B|) ·∆ = ∆ · ℓ/2,
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and
∣∣∣∣
(∑

i∈B

ui −
∑

i∈A

ui

)
−
(∑

i∈B

vi −
∑

i∈A

vi

)∣∣∣∣ =
∣∣∣∣
∑

i∈B\A

(ui − vi)−
∑

i∈A\B

(ui − vi)

∣∣∣∣

≤ ‖u− v‖1 ≤ ‖u− v‖2 ·
√
n < c1 ·∆ · n.

Since ℓ = Ω(n), we set c1 to be a sufficiently small constant so that c1 · ∆ · n < ∆ · ℓ/2. This

implies that ∑

i∈B\A

vi −
∑

i∈A\B

vi > 0

and hence ∑

i∈B

vi >
∑

i∈A

vi.

Therefore, B strictly dominates any other set A ∈ F in the given instance C, which means it is the

correct answer.This concludes the proof for its correctness.

For the sample complexity on the instance Ck, note that conditioning on Egood, it must enter

Case I, which means it takes

O(n · r−2 · poly(lnn, ln δ−1))

= O(∆−2 · poly(lnn, ln δ−1))

= O(Low(Ck) · poly(lnn, ln δ−1))

samples on that instance with probability 1− δ.

Strictly speaking, the above sample complexity does not hold in expectation, as the algorithm

may takes an arbitrary number of samples if Egood does not happen. So we complete the final step

by a simple application of the parallel simulation trick (see Lemma 4.8), to transform the above

algorithm into an algorithm with an

O(Low(Ck) · poly(lnn, ln δ−1))

expected sample complexity on Ck.

Finally, we devote the rest of this section to prove Theorem C.2.

Proof [Proof of Theorem C.2] Without loss of generality, we can assume that u is the all zero vector

z. Let A1 = {u} and A2 = {v ∈ R
n : ‖u − v‖2 ≥ r}, then O = {A1, A2}. For simplicity We

assume n is sufficiently large in the whole proof. Our algorithm works as follows.

• Given an instance I0 = (S,O0), whenO0 6= O, run another δ-correct algorithm for GENERAL-

SAMP instead (for example the algorithm in Section 6).

• For each integer k from 1 to ⌈log2 n⌉+ 2.

– Pick Nk = c1 · n lnn · 2−k · ln δ−1 arms at uniformly random, let the set of taken arms

be Sk.
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– For each arm a ∈ Sk, take c2 · r−2 · 2k · (lnn+ ln δ−1) samples from it and let µ̂k
a be its

empirical mean. If there is an arm a ∈ Sk such that |µ̂k
a| > r · 2−k/2−1, output A2 and

terminates the algorithm.

• If the algorithm does not halt in the above step, then output A1.

To show the algorithm works, we start by setting c2 to be a sufficiently large constant so that for

each k, and each arm a ∈ Sk, we have

Pr
[
|µ̂k

a − µa| ≥ r · 2−k/2−1
]
< δ/2 · n−2.

By a simple union bound over all k, with probability at least 1− δ/2,

∣∣∣µ̂k
a − µa

∣∣∣ < r · 2−k/2−1

for all k and a ∈ Sk. We denote the above as event Egood. A simple calculation shows that the above

algorithm takes

O
(
n ln2 n · r−2 · (lnn+ ln δ−1) · ln δ−1

)

samples.

Next we prove its correctness. Let the mean profile of the given instance I0 be x. We first show

that when x equals u = z (i.e. x ∈ A1), the algorithm outputs A1 with probability at least 1 − δ.

Conditioning on event Egood, for each k and a ∈ Sk, we have |µ̂k
a| < r · 2−k/2−1, therefore the

algorithm outputs the correct answer A1. Since Pr[Egood] ≥ 1− δ, we finish the case when x = z.

For the second case when x ∈ A2, we have ‖x‖2 ≥ r, which means

n∑

i=1

x2i /r
2 ≥ 1.

Now, for each positive integer k, we define Xk = {i : x2i /r2 ∈ (2−k, 2−k+1]}, and let

W(Xk) :=
∑

i∈Xk

x2i /r
2.

We can see
∞∑

k=⌈log2 n⌉+3

W(Xk) ≤ n · 2−⌈log2 n⌉−2 ≤ 1/4.

and hence
⌈log2 n⌉+2∑

k=1

W(Xk) ≥ 3/4.

Let k⋆ be the k with maximum W(Xk), then we have

W(Xk⋆) ≥
1

2 log2 n
.
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When k = k⋆ in the above algorithm, we have that |Xk| ≥ 1
2 log2 n

· 2k−1. Therefore, we can set c1
to be sufficiently large so that we have

Pr [|Sk ∩Xk| > 0] > 1− δ/2.

Let the above be event Enon-empty. We claim that conditioning on both Egood and Enon-empty, our

algorithm correctly outputs A2. Let a ∈ Sk ∩ Xk, we have that |µa| > r · 2−k/2. More-

over, |µ̂k
a| > r · 2−k/2−1 from the definition of Egood. Hence our algorithm outputs A2. Since

Pr[Egood ∩ Enon-empty] ≥ 1− δ, this finishes the case when x ∈ A2, and hence the proof.

Appendix D. Another Worst-Case Lower Bound for the General Case

Recall that BEST-SET is clearly a special case of GENERAL-SAMP, so the lower bound in Sec-

tion C also applies to the latter problem. Here we present another lower bound for the GENERAL-

SAMP problem, which illustrates the “non-uniform” nature of the instance-wise lower bound Low(I).
In the following we will construct a family of instances which are similar to an OR function and

prove an

O(Low(I) · (n+ ln δ−1))

worst-case lower bound for all δ-correct algorithm A for the general sampling problem.

Theorem 1.14. (restated) For δ ∈ (0, 0.1), a positive integer n and every δ-correct algorithm

A for the general sampling problem, there exists an infinite sequence of n-arm instances I1 =
(S1,O1), I2 = (S2,O2), . . . , such that A takes at least

Ω(Low(Ik) · (ln δ−1 + n))

samples in expectation on each Ik, |Ok| = O(1) for all k, and Low(Ik) goes to infinity. Moreover,

for each Ik, there exists a δ-correct algorithm Ak for GENERAL-SAMP such that Ak takes

O(Low(Ik) · ln δ−1)

samples in expectation on it. (The constants in Ω and O does not depend on n,m, δ and k.)

Proof We fix a real number ∆ ∈ (0, 1]. Let z be the all zero vector with length n, and ei be the

length-n vector whose i-th element is ∆ and all other elements are zero. Consider the following

collection of answer sets O = {A1, A2}, where A1 = {e1, e2, . . . , en} and A2 = {z}. That is, we

must distinguish between the cases when all arms have mean zero, and when exactly one arm has

mean ∆. In the rest of the proof, we will always assume the collection of answers of the instances

are O. Therefore, to specify an instance, we only need to specify a mean profile.

For each i ∈ [n], let I(i) be the instance with mean profile ei, and I(0) be the instance with

mean profile z. Let A be a δ-correct algorithm for the general sampling problem. First, it is not

hard to see that Low(I(i)) = ∆−2 for each i ∈ [n]. We are going to show that A must draw at least

Ω(n · ∆−2) samples in expectation on at least one I(i), where i ∈ [n]. When n is a constant, the

above holds trivially, so we assume from now on that n ≥ 100.

Consider the following new algorithm Anew, which simply simulates A as long as it draws at

most c1 ·n∆−2 samples, where c1 is a small constant to be specified later. Anew outputs A’s output if

A halts before the specified amount of steps, and outputs ⊥ otherwise. Now, consider running Anew
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on instance I(0). Let p⊥ be the probability that Anew outputs ⊥, and τi be the number of samples

taken on the i-th arm. We claim that p⊥ > 0.5.

Suppose for contradiction that p⊥ ≤ 0.5. So with probability at least 0.5, the simulated version

of A within Anew outputs something before it halts. Let pi be the probability that Anew outputs i.
Since

∑n
i=1 pi ≤ 1, there are at least n/2 values of i satisfying pi ≤ 2/n. Let i◦ be such an i with

the minimum E
Anew,I(0) [τi]. We have

E
Anew,I(0) [τi◦ ] ≤ 2 · c1∆−2

since
n∑

i=1

E
Anew,I(0) [τi] ≤ c1 · n∆−2.

Let Eerr be the event that Anew outputs something different from⊥ and i◦. Observe that Pr
Anew,I(0) [Eerr] ≥

0.5− 2/n ≥ 0.48.

Now we run Anew on I(i◦). Note that I(i◦) and I(0) differ only on arm i◦, so by Lemma 2.3, we

have

d

(
Pr

Anew,I(0)
[Eerr], Pr

Anew,I(i◦)
[Eerr]

)
≤ E

Anew,I(0) [τi◦ ] ∆
2 = 2c1.

For a sufficiently small c1, we can see the above leads to Pr
Anew,I(i◦) [Eerr] > 0.2, which implies that

running the original algorithm A yields an incorrect answer with probability at least 0.2 on instance

I(i◦), contradiction to the fact that A is δ-correct.

Therefore, we conclude that p⊥ ≥ 0.5, which means the simulated A runs for a full c1 · n∆−2

period with probability at least 0.5. Let E⊥ be the event that Anew outputs ⊥, and i⋆ be the i with

minimum E
Anew,I(0) [τi]. Clearly, we have E

Anew,I(0) [τi] ≤ c1 ·∆−2. Again as above, we run Anew

on instance I(i⋆) and use Lemma 2.3 to get

d

(
Pr

Anew,I(0)
[E⊥], Pr

Anew,I(i⋆)
[E⊥]

)
≤ E

Anew,I(0) [τi⋆ ]∆
2 = c1.

To prove the first part of our theorem, the above discussion gives us the Ω(Low(Ik) · n) term.

The Ω(Low(Ik) · ln δ−1) part follows from Theorem 3.1, and we can set ∆ = 1/1, 1/2, . . . , 1/k
and let Ik be the corresponding Ii⋆ .

For the second part of the theorem, let Ik be a constructed instance, and ∆, i⋆ be the parameters

as in its construction process. Our algorithm Ak simply takes O(∆−2 ln δ−1) samples from arm i⋆

so that

Pr[|µi⋆ − µ̂i⋆ | < ∆/2] ≥ 1− δ/2,

where µ̂i⋆ is the empirical mean of arm i⋆.

If µ̂i⋆ > ∆/2 then it outputs A1 and halts. Else, it runs another δ/2-correct algorithm for

GENERAL-SAMP (for example, the algorithm in Section 6). Clearly, this is a δ-correct algorithm.

And with probability at least 1 − δ, it takes O(∆−2 ln δ−1) samples in total when running on in-

stance Ik. Finally we can turn the sample complexity into a bound in expectation via the parallel

simulation trick (Lemma 4.8), which concludes the proof.
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