
Nearly Tight Bounds for Testing Function Isomorphism∗

Noga Alon † 1, Eric Blais 2, Sourav Chakraborty ‡ 3,
David Garćıa-Soriano ‡ 4, and Arie Matsliah § 5

1Schools of Mathematics and Computer Science, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv
69978, Israel. Email: nogaa@tau.ac.il.

2School of Computer Science, Carnegie Mellon University, Pittsburgh 15213, USA. Email: eblais@cs.cmu.edu.
3Chennai Mathematical Institute, India. Email: sourav@cmi.ac.in

4CWI Amsterdam, The Netherlands. Email: david@cwi.nl
5IBM Research and Technion, Haifa, Israel. Email: arie.matsliah@gmail.com

Abstract

We study the problem of testing isomorphism (equivalence up to relabeling of the input
variables) between Boolean functions. We prove that:

• For most functions f : {0, 1}n → {0, 1}, the query complexity of testing isomorphism
to f is Ω(n). Moreover, the query complexity of testing isomorphism to most k-juntas
f : {0, 1}n → {0, 1} is Ω(k).

• Isomorphism to any k-junta f : {0, 1}n → {0, 1} can be tested with O(k log k) queries.

• For some k-juntas f : {0, 1}n → {0, 1}, testing isomorphism to f with one-sided error
requires Ω(k log(n/k)) queries. In particular, testing if f : {0, 1}n → {0, 1} is a k-parity
with one-sided error requires Ω(k log(n/k)) queries.

• The query complexity of testing isomorphism between two unknown functions f, g : {0, 1}n →
{0, 1} is Θ̃(2n/2).

These bounds are tight up to logarithmic factors, and they significantly strengthen the bounds
proved by Fischer et al. (FOCS 2002) and Blais and O’Donnell (CCC 2010).

We also obtain results closely related to isomorphism testing, answering a question posed
by Diakonikolas et al. (FOCS 2007): testing whether a function f : {0, 1}n → {0, 1} can be
computed by a circuit of size ≤ s requires sΩ(1) queries.

All of our lower bounds apply to general (adaptive) testers.

∗This article is a joint full version of [AB10] and [CGM11b].
†Research supported in part by an ERC Advanced grant, by a USA-Israeli BSF grant and by the Hermann

Minkowski Minerva Center for Geometry at Tel Aviv University.
‡Research performed while at CWI in Amsterdam and supported by the Netherlands Organization for Scientific

Research through Vici grant 639.023.302.
§Research supported in part by an ERC-2007-StG grant number 202405.

1

Contents

1 Introduction 4
1.1 Background . 4
1.2 Recent developments . 5

2 Our results 6
2.1 Lower bounds for testing function isomorphism . 6
2.2 Upper bounds for testing function isomorphism . 6
2.3 Testing function isomorphism with one-sided error 7
2.4 Testing isomorphism between two unknown functions 7
2.5 Summary . 8

3 Preliminaries 8
3.1 Generalities . 8
3.2 Permutations . 9
3.3 Property testing . 9
3.4 Parities, Influence, Juntas and Core . 10
3.5 A lemma for proving adaptive lower bounds . 10

4 Brief overview of the main proofs 12
4.1 Overview of the lower bounds . 12
4.2 Overview of the upper bounds . 12
4.3 Overview of the one-sided-error lower bound . 13
4.4 Overview of the remaining parts . 14

5 Proof of Theorem 2.4 – Testing isomorphism with one-sided error 14
5.1 Proof of Proposition 5.1 (parity lower bound) . 15

5.1.1 Lower bound of Ω(log n) for 2 ≤ k ≤ bn/2c 15
5.1.2 Lower bound of Ω(log

(
n
k

)
) for 5 ≤ k ≤ αn . 15

5.1.3 Lower bound of Ω(k) for αn ≤ k ≤ bn/2c . 16
5.2 Proof of Proposition 5.2 (general upper bound) . 17

6 Ω(n) lower bound for testing isomorphism to most functions 18
6.1 Definitions and basic results . 18
6.2 Existence of regular functions . 21

7 Proof of Theorem 2.1 and its consequences 23
7.1 Theorem 7.2 – proof of hardness . 24
7.2 Theorem 7.2 – proof that f can be a low-degree polynomial over F2 25
7.3 Theorem 7.2 – proof that f can have a small circuit 26
7.4 Lower bound for testing circuit size . 26

8 Proof of Theorem 2.3 – isomorphism testers for k-juntas 26
8.1 Testing isomorphism between the cores . 27
8.2 Some definitions and lemmas . 29
8.3 From junta testers to noisy samplers . 30

2

8.4 Flattening out the distribution . 34

9 Proof of Theorem 2.3 34
9.1 Query-efficient procedure for drawing random samples from the core 35

10 Proof of Theorem 2.5 – Testing isomorphism of two unknown functions 36
10.1 Proof of the upper bound . 36
10.2 Proof of the lower bound . 37

A Distinguishing two random functions with Õ(
√
n) queries 41

3

1 Introduction

1.1 Background

The field of property testing, originally introduced by Rubinfeld and Sudan [RS96], has been
extremely active over the last few years – see, e.g., the recent surveys [Ron08, Ron10, RS11].

In this paper we focus on testing properties of Boolean functions. Despite the progress in the
study of the query complexity of many properties of Boolean functions (e.g., monotonicity [DGL+99,
FLN+02, GGL+00], juntas [FKR+04, CG04], having concise representations [DLM+07], halfs-
paces [MORS09a, MORS09b]), our overall understanding of the testability of Boolean function
properties still lags behind our understanding of the testability of graph properties, whose study
was initiated by Goldreich, Goldwasser, and Ron [GGR98].

A notable example that illustrates the gap between our understanding of graph and Boolean
function properties is isomorphism. Two graphs are isomorphic if they are identical up to relabeling
of the vertices, while two Boolean functions are isomorphic if they are identical up to relabeling
of the input variables. There are three main variants to the isomorphism testing problem. (In the
following list, an “object” refers to either a graph or a Boolean function.)

1. Testing isomorphism to a given object O. The query complexity required to test iso-
morphism in this variant depends on the object O; the goal for this problem is to characterize
the query complexity for every graph or Boolean function.

2. Testing isomorphism to the hardest known object. A less fine-grained variant of the
first problem asks to determine the maximum query complexity of testing isomorphism to O
over objects of a given size.

3. Testing isomorphism of two unknown objects. In this variant, the testing algorithm
has query access to two unknown objects O1 and O2 and must distinguish between the cases
where they are isomorphic to each other or far from isomorphic to each other.

Answering these questions, as suggested by [FKR+04] and [BO10], is an important step in the
research program of characterizing testable properties of Boolean functions.

The problem of testing graph isomorphism was first raised by Alon, Fischer, Krivelevich, and
Szegedy [AFKS00] (see also [Fis01]), who used a lower bound on testing isomorphism of two un-
known graphs to give an example of a non-testable first-order graph property of a certain type.
Fischer [Fis05] studied the problem of testing isomorphism to a given graph G and characterized
the class of graphs to which isomorphism can be tested with a constant number of queries. Tight
asymptotic bounds on the (worst-case) query complexity of the problem of testing isomorphism to
a known graph and testing isomorphism of two unknown graphs were then obtained by Fischer and
Matsliah [FM08]. As a result, the graph isomorphism testing problem is well understood1. Addi-
tionally, Babai and Chakraborty [BC10] proved query-complexity lower bounds for (generalizations
of) the problem of testing isomorphism between two uniform hypergraphs.

1To summarize,

• Graphs to which isomorphism can be tested with a constant number of queries are those that can be approxi-
mated by an “algebra” of constantly many cliques [Fis05];

• The worst-case query complexity of testing isomorphism to a given graph on n nodes is Θ̃(
√
n) [FM08].

4

The picture is much less complete in the setting of Boolean functions. The first question above is
particularly interesting because testing many function properties, like those of being a dictatorship,
a k-monomial, a k-parity and more, are equivalent to testing isomorphism to some fixed function
f . More general properties can often be reduced to testing isomorphism to several functions (as
a simple example, notice that testing whether g depends on a single variable can be done by first
testing if g is isomorphic to f(x) ≡ x1, then testing if g is isomorphic to f(x) ≡ 1 − x1, and
accepting if one of the tests accepts). The “Testing by Implicit Learning” approach of Diakonikolas
et al. [DLM+07] can also be viewed as a clever reduction from the task of testing a wide class of
properties to testing function isomorphism against a number of functions. We elaborate more on
[DLM+07] and how our work relates to it in the following section.

There are several classes of functions for which testing isomorphism is trivial. For instance,
if f is symmetric (invariant under permutations of variables), then f -isomorphism can be tested
with a constant number of queries2. More interesting functions are also known to have testers with
constant query complexity. Specifically, the fact that isomorphism to dictatorship functions and
k-monomials can be tested with O(1) queries follows from the work of Parnas et al. [PRS02].

The question of testing isomorphism against a known function f was first formulated explicitly
by Fischer, Kindler, Ron, Safra, and Samorodnitsky [FKR+04]. They gave a general upper bound
on the problem showing that for every function f that depends on k variables (that is, for every k-
junta), the problem of testing isomorphism to f is solvable with poly(k/ε) queries. Conversely, they
showed that when f is a parity function on k = o(

√
n) variables, testing isomorphism to f requires

Ω(log k) queries3. No other progress was made on the problem of testing isomorphism on Boolean
functions until recently, when Blais and O’Donnell [BO10] showed that for every function f that
“strongly” depends on k ≤ n/2 variables (meaning that f is far from all juntas on k−O(1) variables),
testing isomorphism to f requires Ω(log k) non-adaptive queries, which implies a general lower
bound of Ω(log log k). They also proved that there is a k-junta (namely, a majority on k variables)
against which testing isomorphism requires Ω(k1/12) queries non-adaptively, and therefore Ω(log k)
queries in general.

Taken together, the results in [FKR+04, BO10] give only an incomplete solution to the problem
of testing isomorphism to a given Boolean function and provide only weak bounds on the other two
versions of the isomorphism testing problem.

In this paper we settle the last two questions up to logarithmic factors, and report some progress
towards answering the first one.

1.2 Recent developments

Concurrently to the preliminary versions of this work ([AB10] and [CGM11b]), Goldreich [Gol10]
has published a proof of Ω(

√
n) lower bound on the number of queries required for testing isomor-

phism to a parity on n/2 variables4. This bound was subsequently improved to Ω(n) (and more
generally to Ω(k) for testing isomorphism to k-parities) by Blais, Brody and Matulef [BBM11].

2Since all permutations of a symmetric f are the same, the problem reduces to testing (strict) equivalence to a
given function.

3This was shown via an Ω(
√
k) lower bound for non-adaptive testers.

4A higher lower bound of Ω(n) queries was proved for non-adaptive testing.

5

2 Our results

2.1 Lower bounds for testing function isomorphism

It is easy to show that isomorphism to any f : {0, 1}n → {0, 1} can be ε-tested with O(n logn
ε)

queries, using Occam’s razor. For constant ε, which is the primary focus here, this is Õ(n); our
first result is a nearly matching lower bound of Ω(n) that applies for almost all functions f . In fact
we provide a lower bound of Ω(k) on the query complexity of testing (adaptively, with two-sided
error) isomorphism to k-juntas.

Theorem 2.1 Fix a constant 0 < ε < 1
4 and let k ≤ n. For a 1 − o(1) fraction of the k-juntas

f : {0, 1}n → {0, 1}, any algorithm for ε-testing isomorphism to f must make Ω(k) queries.

We present the proof of Theorem 2.1 in Section 7, after proving the special case for k = n in
Section 6.2. The proof is non-constructive, but we also show that the hardest functions to test
isomorphism to may have relatively simple descriptions, such as belonging to nonuniform NC or
being a polynomial over F2 of degree logarithmic in k. As a corollary we obtain the following lower
bound, resolving an open problem from [DLM+07]:

Corollary 2.2 Let ε < 1/4. There is a constant c ≥ 1 such that for all s ≤ nc, testing size-s
Boolean circuits requires Ω(s1/c) queries.

The proof of this corollary appears in Section 7.

Remark 2.1 While the lower bound of Theorem 2.1 is near best possible and applies to most
functions, the proof has the disadvantage of not being constructive. This is not the case in the
aforementioned lower bounds from [Gol10] and [BBM11], which apply to testing isomorphism to
linear functions.

2.2 Upper bounds for testing function isomorphism

Our second result (Theorem 2.3) is a nearly matching upper bound for testing isomorphism to any
fixed k-junta (with constant ε):

Theorem 2.3 Isomorphism to any k-junta can be ε-tested with O(1+k log k
ε) queries.

This generalizes the aforementioned O(n log n) upper bound and improves upon the Õ(k4) upper
bound of [FKR+04]. One consequence of our techniques, which is of independent interest, is the
following (see Proposition 9.2 for a formal statement):

Let ε > 0 and suppose we are given oracle access to a k-junta g : {0, 1}n → {0, 1}. Then, after
a preprocessing step that makes O(k log k/ε) queries to g, we can draw uniformly random samples
(x, a) ∈ {0, 1}k × {0, 1} labelled by core(g) : {0, 1}k → {0, 1} – the function of k variables lying
at the “core” of g, such that for each sample (x, a), core(g)(x) = a with probability at least 1− ε.
Furthermore, obtaining each sample requires making only one query to g.

Generating such samples is one of the main ingredients in the general framework of [DLM+07];
while the procedure therein makes Ω(k) queries to g for obtaining each sample (executing k in-
dependence tests of Fischer et al. [FKR+04]), our procedure requires only one query to g per
sample.

6

Remark 2.2 In subsequent work [CGM11a], a variation of this sampler is used to significantly
improve the query-complexity of the testers from [DLM+07] for various Boolean function classes.

2.3 Testing function isomorphism with one-sided error

Our third result concerns testing function isomorphism with one-sided error. The fact that the
one-sided error case is strictly harder than the two-sided error case was established in [FKR+04].
In particular, they showed the impossibility of testing isomorphism to 2-juntas with one-sided error
using a number of queries independent of n (their lower bound is Ω(log log n), which follows from
an Ω(log n) lower bound on non-adaptive testers). In this paper we show that the worst-case query
complexity of testing isomorphism to k-juntas with one-sided error is Θ(log

(
n
k

)
), up to k = n1−δ

(for any δ > 0).

Theorem 2.4 For every integer k ∈ [2, n] and every constant 0 < ε ≤ 1/2, the following holds:

• For any k-junta f , there is a one-sided tester of isomorphism to f making O(1
εk log n) non-

adaptive queries.

• There is a k-junta f : {0, 1}n → {0, 1} for which ε-testing f -isomorphism with one-sided error
requires Ω(log

(
n
≤k
)
) queries.5

Regarding the lower bound (second item), note that for k ≥ n/2 we have log
(
n
≤k
)

= Θ(n); and

for k < n/2, log
(
n
≤k
)

= Θ(log
(
n
k

)
) = Θ(k log(n/k)). The range of k in the theorem is optimal: when

k = 1, as we mentioned in the introduction, testing isomorphism to any 1-junta with one-sided error
can be done with O(1/ε) queries [PRS02].

The lower bound in Theorem 2.4 follows from the following result: for any 2 ≤ k ≤ n− 2, the
query complexity of testing with one-sided error whether a function is a k-parity (i.e, an XOR of
exactly k indices of its input) is Θ(log

(
n
k

)
). This is in stark contrast to the problem of testing with

one-sided error whether a function is a k-parity for some k, which can be done with a constant
number of queries by the well-known BLR test [BLR90].

2.4 Testing isomorphism between two unknown functions

Finally, we examine the problem of testing two unknown functions for the property of being iso-
morphic. A simple algorithm can ε-test isomorphism in this setting with Õ(2n/2/

√
ε) queries. We

give a lower bound establishing that no algorithm can do much better.

Theorem 2.5 The query complexity of testing isomorphism of two unknown functions in {0, 1}n →
{0, 1} is Θ̃(2n/2) for constant ε.

Again, this bound holds for all testing algorithms (adaptive or non-adaptive, with 1-sided or 2-sided
error).

5
(
n
≤k

)
,
(
n
1

)
+ · · ·+

(
n
k

)

7

Testing problem
Prior bounds

This work
Adaptive Non-adaptive

Isomorphism to k-
juntas

Ω(log k) [FKR+04, BO10]

Õ(k4) [FKR+04, DLM+07]
Ω(
√
k) for k � n [FKR+04]

Ω(k1/12) for k � n [BO10]

Ω(k)
O(k log k)

(Thm. 2.1)
(Thm. 2.3)

Isomorphism to k-
juntas with 1-sided
error

Ω(log logn) [FKR+04] Ω(logn) [FKR+04]
Ω(log

(n
≤k
)
)

O(k logn)
(Thm. 2.4)

Having circuits of size
s

Ω̃(log s) [DLM+07]

Õ(s6) [DLM+07]
sΩ(1) (Coro. 2.2)

Isomorphism between
two unknown functions

Ω(2n/2/n1/4)

O(2n/2
√
n logn)

(Thm. 2.5)

Table 1: Summary of results

2.5 Summary

In Table 1 we summarize our main results, and compare them to prior work. A few remarks are in
order:

• Some of the lower bounds from prior work were obtained via exponentially larger lower bounds
for non-adaptive testers, and some of them held only for limited values of k. The third column
contains the details. Our lower bounds apply to general (adaptive, two-sided error) testers,
and hold for all k ≤ n.

• In the case of testing for being a k-parity with 1-sided error, the lower bound of Ω(log
(
n
≤k
)
)

(Thm. 2.4) is asymptotically tight.

• The exponent in our sΩ(1) bound for testing circuit size depends on the size of the smallest
circuit that can generate s4-wise independent distributions (see details in Section 7.4). In
particular, standard textbook constructions show that the exponent is at least 1/8.

Organization of the rest of the paper. After the necessary preliminaries, we give a brief
overview of the main proofs in Section 4. The proofs for one-sided-error testing are given in
Section 5. In Section 6 we present the Ω(n) lower bound on the query complexity of testing
isomorphism, which is then extended to the Ω(k) lower bound for k-juntas in Section 7. The lower
bound for testing whether a function has a circuit of size s is given in Section 7.4. The algorithm
for testing isomorphism to k-juntas is given in Section 8. In Section 10 we prove the bounds for
testing isomorphism in the setting where both functions have to be queried.

3 Preliminaries

3.1 Generalities

Throughout the paper, f and g represent Boolean functions {0, 1}n → {0, 1}. Tilde notation is
used to hide polylogarithmic factors – for example r(n) = Θ̃(t(n)) if there is a positive constant c

such that r(n) = Ω(t(n)
logc t(n)) and r(n) = O(t(n) logc t(n)).

Let n, k ∈ N and x ∈ {0, 1}n. We use the following standard notation:

8

• [n] = {1, . . . , n} and [k, n] = {i ∈ [n] : k ≤ i ≤ n};

• |x| = |{i ∈ [n] : xi = 1}| (the Hamming weight of input x ∈ {0, 1}n);

For a set S and k ∈ N,
(
S
k

)
is the collection of all k-sized subsets of S and

(
S
≤k
)

is the collection

of all subsets of size at most k; a similar notation is used for binomial coefficients
(
m
≤k
)
.

Given a subset I ⊆ [n] of cardinality k, x�
I

denotes the k-bit binary string obtained by restricting
x to the indices in I, according to the natural order of [n]. We also write f�

S
for the restriction of a

function to a set S. For y ∈ {0, 1}|I|, x
I←y denotes the string obtained by taking x and substituting

y for its values in I.
We also write

{0, 1}nn
2
±h , {x ∈ {0, 1}

n : n2 − h ≤ |x| ≤
n
2 + h}.

3.2 Permutations

The group of permutations π : [n] → [n] is denoted Sn. For a permutation π ∈ Sn and x =
(x1, . . . , xn) ∈ {0, 1}n, we write, with some abuse of notation, π(x) = (xπ(1), . . . , xπ(n)) (sometimes
this may be written as xπ). The map sending x ∈ {0, 1}n to π(x) ∈ {0, 1}n is a permutation of
{0, 1}n, which we denote also by π. (The corresponding permutation of {0, 1}n can be viewed as
the natural action of π−1 on {0, 1}n). Clearly there are n! permutations of {0, 1}n arising this way.

The function gπ : {0, 1}n → {0, 1} represents the function defined by gπ(x) = g(π(x)) for every
x ∈ {0, 1}n. Two functions f and g are isomorphic (in short, f∼=g) if there is a permutation π ∈ Sn
such that f = gπ.

3.3 Property testing

A property P of Boolean functions is simply a subset of those functions. Given a pair f, g : D →
{0, 1} of Boolean functions defined on D, the distance between them is dist(f, g) , Prx∈D[f(x) 6=
g(x)]. (Throughout this paper, e ∈ S under the probability symbol means that an element e is
chosen uniformly at random from a set S.)

The distance of a function f to P is the minimum distance between f and g over all g ∈ P, i.e.,
dist(f,P) = ming∈P dist(f, g). For ε ∈ R+, f is ε-far from P if dist(f,P) ≥ ε, otherwise it is ε-close
to P.

A (q, ε)-tester for the property P is a randomized algorithm T that queries an unknown function
f on q different inputs in {0, 1}n and then (1) accepts f with probability at least 2

3 when f ∈ P,
and (2) rejects f with probability at least 2

3 when f is ε-far from P. (If the property deals with a
pair of input functions, the algorithm may query both.)

The query complexity of a tester T is the worst-case number of queries it makes before making
a decision. A is non-adaptive if its choice of queries does not depend on the outcomes of earlier
queries. A tester that always accepts functions in P has 1-sided error, otherwise it has 2-sided
error. We assume without loss of generality that testers never query the same input twice. By
default, in all testers (and bounds) discussed in this paper we assume adaptivity and two-sided
error, unless mentioned otherwise.

The query complexity of a property P for a given ε > 0 is the minimum value of q for which
there is a (q, ε)-tester for P.

9

Isomorphism testing

The distance up to permutations of variables is defined by distiso(f, g) , minπ∈Sn dist(fπ, g).
Testing f -isomorphism is defined as the problem of testing the property Isomf , {fπ : π ∈ Sn}

in the usual property testing terminology (see above). It is thus the task of distinguishing the case
f∼=g from the case distiso(f, g) ≥ ε.

If C is a set of functions, then the query complexity for testing isomorphism to C is the maximum,
taken over all f ∈ C, of the query complexity for testing f -isomorphism.

3.4 Parities, Influence, Juntas and Core

A parity is a linear form on Fn2 , i.e., a function f : {0, 1}n → {0, 1} given by

f(x) = 〈x, v〉 mod 2 =
⊕
i∈[n]

xivi

for some v ∈ {0, 1}n. We say that f is a k-parity if its associated vector v has Hamming weight
exactly k. The set of all k-parities is denoted PARk.

For a function g : {0, 1}n → {0, 1} and a set A ⊆ [n], the influence of A on g is defined as

Infg(A) , Pr
x∈{0,1}n, y∈{0,1}|A|

[
g(x) 6= g(x

A←y)
]
.

Thus Infg(A) measures the probability that the value of g changes after a random modification of
the bits in A of a random input x. Note that when |A| = 1, this value is half that of the most
common definition of influence of one variable; for consistency we stick to the previous definition
instead in this case as well. For example, every variable of a k-parity (k ≥ 1) has influence 1

2 .
An index (variable) i ∈ [n] is relevant with respect to g if Infg({i}) 6= 0. A k-junta is a function

g that has at most k relevant variables; equivalently, there is S ∈
([n]
k

)
such that Infg([n] \ S) = 0.

Junk will denote the class of k-juntas (on n variables), and for A ⊆ [n], JunA will denote the class
of juntas all of whose relevant variables are contained in A.

Definition 3.1 Given a k-junta f : {0, 1}n → {0, 1} we define corek(f) : {0, 1}k → {0, 1} to be the
restriction of f to its relevant variables (where the variables are placed according to the natural order
of [n]). In case f has fewer than k relevant variables, corek(f) is extended to a {0, 1}k → {0, 1}
function by adding dummy variables.

3.5 A lemma for proving adaptive lower bounds

Let P be a property of functions mapping T to {0, 1}. Let

R ⊆ {f : T → {0, 1} | dist(f,P) ≥ ε}.

Any tester for P should, with high probability, accept inputs from P and reject inputs from R.
We use the following lemma in various lower bound proofs for two-sided adaptive testing. It

is proven implicitly in [FNS04], and a detailed proof appears in [Fis01]. Here we use a somewhat
stronger version of it, but still, the original proof works as is (we reproduce it here for completeness).

10

Lemma 3.2 Let P,R be as in the preceding discussion, and let Fyes and Fno be distributions over

P and R, respectively. If q is such that for all Q ∈
(
T
q

)
and a ∈ {0, 1}Q we have

α Pr
f∈Fyes

[f�
Q

= a] < Pr
f∈Fno

[f�
Q

= a] + β · 2−q

for some constants 0 ≤ β ≤ α ≤ 1, then any tester for P with error probability ≤ (α − β)/2 must
make more than q queries.

Observe that for any fixed α < 1 and β > 0 this implies a lower bound of Ω(q) queries, since
even if (α− β)/2 < 1/3, the error probability can be reduced from 1/3 to (α− β)/2 by a constant
(depending on α, β) number of repetitions.

Proof. Assume towards a contradiction that there is such a tester T making ≤ q queries;
without loss of generality it makes exactly q queries. Define a distribution D obtained by selecting
one of Fyes and Fno with probability 1

2 , and then drawing f from the selected distribution. Fix a

random seed so that the tester correctly works for f ∈ D with probability at least 1 − α−β
2 ; now

the behaviour of the tester can be described by a deterministic decision tree of height q. Each
leaf corresponds to a set Q ∈

(
T
q

)
, along with an evaluation a : Q → {0, 1}; the leaf is reached if

and only if f satisfies the evaluation. Consider the set L corresponding to accepting leaves; f is
accepted if and only if there is (Q, a) ∈ L such that f�

Q
= a. These |L| events are disjoint, so the

probability of acceptance of f is
∑

(Q,a)∈L Pr[f�
Q

= a].

Let p = Prf∈Fyes [f is accepted], r = Prf∈Fno [f is accepted]. Applying the hypothesis to each
term of the sum

∑
(Q,a)∈L Pr[f�

Q
= a] yields αp < r+ β, so p− r < (1− α)p+ β ≤ 1− α+ β. But

then the overall success probability of T when f is taken from D is 1
2 + p−r

2 < 1− α−β
2 , contradicting

our assumption.

In practice we sometimes make use of slightly different claims; their proof is still the same.

• The same conclusion holds if instead the inequality

α Pr
f∈Fno

[f�
Q

= a] < Pr
f∈Fyes

[f�
Q

= a] + β · 2−q

is satisfied for all Q, a.

• If Fyes and Fno are distributions of functions such that Prg∼Fyes [f ∈ P],Prg∼Fno [f ∈ R] =
1 − o(1), the lemma is not quite applicable as stated. However in that case the success
probability of the tester can be no larger than (1 + p− r + o(1))/2 < 1− α−β

2 + o(1) (where
p and r are as in the proof of the lemma), so an Ω(q) lower bound still follows.

• Finally, note that the proof of the lemma is based on an indistinguishability result that a
tester needs q queries to tell apart a random f ∼ Fyes from a random f ∼ Fno (where Fyes

or Fno are chosen with probability half). If we drop the condition that Fno only contains
functions far from Fyes, the implication for property testing lower bounds disappears, but the
indistinguishability result still holds.

11

4 Brief overview of the main proofs

4.1 Overview of the lower bounds

The proof of Theorem 2.1 is done in two steps. First (in Section 6) we establish the result for the
special case k = n, that is, we show that testing isomorphism to most (not necessarily k-junta)
functions f : {0, 1}n → {0, 1} requires Ω(n) queries. Then (in Section 7) we prove that it implies
the general case k ≤ n by “padding” the hard-to-test functions obtained before (this requires
showing that for any f ′, g′ : {0, 1}k → {0, 1} and their extensions (paddings) f, g : {0, 1}n → {0, 1},
distiso(f, g) = Ω(distiso(f ′, g′)) holds).

A few words concerning the first (and main) step. We fix a function f enjoying some regularity
properties; its existence is established via a probabilistic argument. Then we introduce two distri-
butions Fyes and Fno such that a function g ∼ Fyes is isomorphic to f and a function g ∼ Fno is ε-far
from isomorphic to f with overwhelming probability, and then proceed to show indistinguishability
of the two distributions with o(n) adaptive queries.

A first idea for Fno may be to make it the uniform distribution over all Boolean functions
{0, 1}n → {0, 1}. However, it is possible for a tester to collect a great deal of information from
looking at inputs with very small or very large weight. In particular, just by querying strings 0̄ and
1̄ we would obtain a tester that succeeds with probability 3/4 in distinguishing Fyes from Fno if Fno

were completely uniform. To prevent an algorithm from gaining information by querying inputs of
very small or very large weight, the functions appearing in both distributions are the same outside
the middle layers of the hypercube. We remark that such “truncation” is essential for this result
to hold – as Proposition A.1 says (see Section A in the Appendix), random permutations of any
f can be distinguished from completely random functions with Õ(

√
n) queries and arbitrarily high

constant success probability.
Although it may seem that such an indistinguishability result might be obtained via straight-

forward probabilistic techniques, the actual proof has to overcome some technical difficulties. We
borrow ideas from the work of Babai and Chakraborty [BC10], who proved query-complexity lower
bounds for testing isomorphism of uniform hypergraphs. However, in order to be applicable to our
problem, we have to extend the method of [BC10] in several ways. One of the main differences
is that, because of the need to consider truncated functions, we have to deal with general sets of
permutations to prove that a random permutation “shuffles” the values of a function uniformly.
To compensate for this lack of structure, we show that any large enough set of permutations that
are “independent” in some technical sense has the regularity property we need. Then the result
for general sets is established by showing that any large enough set of permutations can be decom-
posed into a number of such sets. This can be deduced from the celebrated theorem of Hajnal and
Szemerédi [HS69] on equitable colorings.

Another difference is that for the proof of Corollary 2.2 we need a hard-to-test f that has a circuit
of polynomial size, rather than just a random f . To address the second issue we relax the notion
of uniformity to poly(n)-wise independence, and then apply standard partial derandomization
techniques.

4.2 Overview of the upper bounds

The main ingredient in the proof of Theorem 2.3 is the nearly-optimal junta tester introduced in
[Bla09]. In fact, a significant part of the proof deals with analyzing this junta tester, and proving

12

that it satisfies stronger conditions than what was required for testing juntas.
Let us briefly describe the resulting isomorphism tester: The algorithm begins by calling the

junta tester, which may either reject (meaning that g is not a k-junta), or otherwise provide a set of
k′ ≤ k blocks (subsets of indices) such that if g is close to some k-junta, then with high probability
it is also close to some k′-junta h′ that has at most one relevant variable in each of the k′ blocks.
Using these k′ blocks we define an extension h of h′ (if k′ < k), and a noisy sampler that provides
random samples (x, a) ∈ {0, 1}k×{0, 1}, such that Pr[h(x) 6= a] is sufficiently small. Finally, we use
the (possibly correlated) samples of the noisy sampler to test if h is ε/10-close to the core function
of f or 9ε/10-far from it.

We note that our approach resembles the high-level idea in the powerful “Testing by Implicit
Learning” paradigm of Diakonikolas et al. [DLM+07]. Furthermore, an upper bound of roughly
O(k4) queries to our problem follows easily from the general algorithm of [DLM+07].

Apart from addressing a less general problem, there are several additional reasons why our
algorithm attains a better upper bound of O(k log k). First, in our case the known function is
a proper junta, and not just approximated by one. (However, in [CGM11a] it is shown that this
requirement can be disposed of if the approximation is good enough). Second, in simulating random
samples from the core of the unknown function g, we allow a small, possibly correlated, fraction
of the samples to be incorrectly labelled. This enables us to generate a random sample with just
one query to g, sparing us the need to perform the independence tests of [FKR+04]. Then we
perform the final test (the parallel of Occam’s razor from [DLM+07]) with a tester that is tolerant
(i.e., accepts even if the distance to the defined property is small) and resistant against (possibly
correlated) noise.

4.3 Overview of the one-sided-error lower bound

As mentioned earlier, the lower bound, which is the interesting part of Theorem 2.4, is obtained
via a lower bound for testing isomorphism to k-parities with one-sided error.

We start with the simple observation that testing isomorphism to k-parities is equivalent to
testing isomorphism to (n − k)-parities. Since testing 0-parities (constant zero functions) takes
O(1) queries, and testing 1-parities (dictatorship functions) takes O(1) queries as well (by Parnas
et al. [PRS02]), we are left with the range 2 ≤ k ≤ n/2.

We split this range into three parts: small (constant) k, medium k and large k. For small k’s a
lower bound of Ω(log n) is quite straightforward. For the other two ranges, we use the combinatorial
theorems of Frankl–Wilson and Frankl–Rödl, which bound the size of families of subsets with
restricted intersection sizes. (The reason for this technical case distinction is to comply with the
hypotheses of the respective theorems). We obtain lower bounds of Ω(k log(n/k)).

In all three cases we employ the same methodology: suppose that we want to prove a lower
bound of q = q(n, k). We define a function g that is either a k′-parity (for a suitably chosen k′ 6= k)
6 or a constant, and depends only on n and k. This function is fixed (independent of the tester), and
has the property that for all x1, . . . , xq ∈ {0, 1}n there exists a k-parity f satisfying f(xi) = g(xi)
for all i ∈ [q]. Hence, no matter the answers to the (adaptive, random) queries made, any one-sided
error tester of PARk making ≤ q queries is forced to accept g, even though it is (1/2)-far from any
k-parity. 7

6Note that not every choice of k′ works, even if k and k′ are very close to each other. For example, if k′ = k + 1,
it is easy to tell PARk from PARk′ by simply querying the all-ones vector.

7This is because for two parities p1 and p2 of different sizes, pπ1 ⊕ p2 is always a parity of non-zero size and hence

13

4.4 Overview of the remaining parts

The upper bounds in Theorem 2.4 (testing with one-sided error) and Theorem 2.5 (testing of
two unknown functions) are fairly straightforward. The testers start by random sampling, and
then perform exhaustive search over all possible permutations, checking if one of them defines an
isomorphism that is consistent with the samples. Their analysis is essentially the same as that of
Occam’s razor.

The lower bound in the setting where both functions are unknown is proved by defining two
distributions on pairs of functions, the first supported on isomorphic pairs and the second on pairs
that are far from being isomorphic. Then Yao’s principle is applied via Lemma 3.2, which gives
bounds for adaptive testers.

To prove that any function f : {0, 1}n → {0, 1} is distinguishable from a completely random
function (without the truncation) with Õ(

√
n) queries (Proposition A.1) we borrow the ideas from

[FM08], using which we reduce our problem to testing closeness of distributions, and then we apply
the distribution tester of Batu et al. [BFF+01].

5 Proof of Theorem 2.4 – Testing isomorphism with one-sided
error

We prove here Theorem 2.4. Note that if f ∈ PARk, then testing isomorphism to f is the same
as testing membership in PARk. Hence the lower bound in Theorem 2.4 for any 2 ≤ k ≤ n follows
from the next proposition. (If k ≥ n/2, the Ω(n) lower bound for k-juntas follows from the Ω(n)
lower bound for k′ , bn/2c because any k′-junta is also a k-junta).

Proposition 5.1 Let ε ∈ (0, 1
2] be fixed. The following holds for all n ∈ N:

• For any k ∈ [2, n−2], the query complexity of testing PARk with one-sided error is Θ(log
(
n
k

)
).

Furthermore, the upper bound is obtainable with a non-adaptive tester, while the lower bound
applies to adaptive tests, and even to the certificate size for proving membership in PARk. 8

• For any k ∈ {0, 1, n−1, n}, the query complexity of testing PARk with one-sided error is Θ(1).

For every f : {0, 1}n → {0, 1} let Isomf denote the set of functions isomorphic to f . The upper
bound in Theorem 2.4 follows from the next proposition.

Proposition 5.2 Isomorphism to any given function f : {0, 1}n → {0, 1} can be tested with one-
sided error and O((1 + log |Isomf |)/ε) non-adaptive queries.

This immediately implies the desired upper bound, since |Isomf | ≤
(
n
k

)
· k! for any k ∈ [n] and k-

junta f . This also implies the upper bound in the first item of Proposition 5.1, since for a k-parity
f , |Isomf | = |PARk| =

(
n
k

)
.

takes the value 1 on precisely half the inputs.
8By this we mean the size of the smallest set of inputs such that the evaluations of f : {0, 1}n → {0, 1} on those

inputs allow us to prove that f is a k-parity, assuming f is linear.

14

5.1 Proof of Proposition 5.1 (parity lower bound)

We begin with the following observation, which is immediate from the fact that p is a k-parity if
and only if p(x)⊕ x1 ⊕ . . .⊕ xn is an (n− k)-parity:

Observation 5.1 Let ε ∈ (0, 1
2], n ∈ N and k ∈ [0, n]. Any ε-tester for PARk can be converted into

an ε-tester for PARn−k, while preserving the same query complexity, type of error, and adaptivity.

As mentioned earlier, the upper bound in the first item of Proposition 5.1 follows by Proposition
5.2. It is also easy to verify that the second item holds for k = 0. For k = 1, the bound follows
from [PRS02], who show that one-sided-error testing of functions for being a 1-parity (monotone
dictatorship) can be done with O(1) queries. So, according to Observation 5.1 we only have to
prove the lower bound in the first item of Proposition 5.1 for k ∈ [2, bn/2c].

To this end we make a distinction between three cases. First we prove a lower bound of
Ω(log n) for any k ∈ [2, bn/2c]. Then a lower bound of Ω(log

(
n
k

)
) is shown for k ∈ [5, αn], where

αn , bn/212c. Finally we prove a lower bound of Ω(k) queries that works for k ∈ [αn, bn/2c].
Combining the three bounds will complete the proof.

In all three cases we follow the argument sketched in the overview (Section 4.3).

5.1.1 Lower bound of Ω(log n) for 2 ≤ k ≤ bn/2c

Let q = blog nc − 1, and let x1, . . . , xq ∈ {0, 1}n be the set of queries. For any k ∈ [2, bn/2c] we let
g be the parity on the last k− 2 variables: g(x) = xn−k+3⊕ · · · ⊕ xn (in case k = 2, g is simply the
constant zero function). By the pigeonhole principle, it is possible to find j, j′ ∈ [n− k + 2], j 6= j′

such that xij = xij′ for all i ∈ [q]; this is because 2q < n−k+2. Let f be the k-parity corresponding

to {j, j′}∪ [n−k+3, n]. Then f(xi) = g(xi) for all i ∈ [q], so the tester must accept g, even though
it is 1/2-far from any k-parity.

This simple idea can only yield lower bounds of Ω(log n). We need to generalize it in order to
obtain lower bounds that grow with k.

5.1.2 Lower bound of Ω(log
(
n
k

)
) for 5 ≤ k ≤ αn

Let q = b 1
20 log

(
n
k

)
c. Given k ∈ [5, bn/2c], let k′ ≥ 1 be the smallest integer such that (k − k′)/2

is a prime power; the reason for this requirement will be explained shortly. Note that k′ < k/2 as
k ≥ 5. We let g be the k′-parity g(x) = xn−k′+1 ⊕ · · · ⊕ xn. With a slight abuse of notation, let g
also denote the n-bit string with ones exactly in the last k′ indices. It suffices to show that for any
x1, . . . , xq ∈ {0, 1}n there exists y ∈ {0, 1}n such that

• |y| = k − k′,

• y ∩ g = ∅ and

• 〈y, xi〉 ,
⊕n

j=1(yj · xij) = 0 for all i ∈ [q].

Indeed, if such a y exists, then the k-parity corresponding to g∪y is consistent with g on x1, . . . , xq.
Let Y = {y ∈ {0, 1}n : |y| = k−k′ and y∩g = ∅}. Partition Y into disjoint subsets {Yα}α∈{0,1}q ,

such that y ∈ Yα if and only if 〈y, xi〉 = αi for all i ∈ [q]. Clearly, one of the sets Yα must be of size

at least
(
n−k′
k−k′

)
/2q. We interpret the elements of this Yα as `-subsets of [m], where ` , k − k′ and

15

m , n− k′, and show that there must be y1, y2 ∈ Yα such that |y1 ∩ y2| = `/2 = (k − k′)/2. Once
the existence of such a pair is established, the claim will follow by taking y to be the bitwise XOR
of y1 and y2. Indeed, it is clear that |y| = k − k′ and y ∩ g = ∅, and it is also easy to verify that
〈y, xi〉 = 〈y1, xi〉 ⊕ 〈y2, xi〉 = 0 for all i ∈ [q].

At this point we appeal to the Frankl-Wilson Theorem:

Theorem 5.3 ([FW81], Thm. 7b; see also [FR87], p. 3) Let m ∈ N and let ` ∈ [m] be even,

such that `/2 is prime power. If F ⊆
([m]
`

)
is such that for all F, F ′ ∈ F , |F ∩ F ′| 6= `/2, then

|F| ≤
(
m
`/2

)(3`/2−1
`

)
/
(3`/2−1

`/2

)
= 1

2

(
m
l/2

)
.

Let us check that the hypothesis on the size of F is satisfied when F = Yα. Let c , n/k; observe
that c ≤ m/` ≤ 2c. In the following we use the bounds b(log(a/b)) ≤ log

(
a
b

)
≤ b(log(a/b) + 2).

We have

log |Yα| ≥ log

((
n−k′
k−k′

)
2q

)
≥ log

(
m

`

)
− 1

20
log

(
n

k

)
≥ `(log(m/`))− 1

20
k(log(n/k) + 2)

≥ `(log c)− 1

10
`(log c+ 2)

= `

(
9

10
log c− 1

5

)
.

On the other hand,

log

(
1

2

(
m

`/2

))
≤ `

2
(log(m/`) + 3)

≤ `

(
1

2
log c+ 3

)
.

Since c ≥ 212, these inequalities together with Theorem 5.3 imply that there must be y1, y2 ∈ Yα
such that |y1 ∩ y2| = `/2, as desired.

5.1.3 Lower bound of Ω(k) for αn ≤ k ≤ bn/2c

The reasoning in this case is very similar. For large k the previous method can be made to work
using more accurate estimates, but for simplicity we prefer to switch to the related theorem of
Frankl and Rödl, using which we can prove a lower bound of Ω(k) (instead of Ω(log

(
n
k

)
)), but for

the current range of k they are asymptotically the same.

Theorem 5.4 ([FR87], Thm. 1.9) There is an absolute constant δ > 0 such that for any even
k the following holds: Let F be a family of subsets of [2k] such that no two sets in the family have
intersection of size k/2. Then |F| ≤ 2(1−δ)2k.

Let n be large enough with respect to α and δ. Given k ∈ [αn, bn/2c], we set q = δk. Assume
first that k is even – we mention the additional changes required for odd k below.

We set g to be the zero function, and show that for any x1, . . . , xq ∈ {0, 1}n there exists
y ∈ {0, 1}n such that

16

Algorithm 1 (Non-adaptive one-sided-error tester for the known-unknown setting)

1: Let q ← 1
ε (2 + ln |Isomf |).

2: for i = 1 to q do
3: Pick xi ∈ {0, 1}n uniformly at random.
4: Query g on xi.
5: end for
6: Accept if and only if there exists h ∈ Isomf such that g(xi) = h(xi) for all i ∈ [q].

• |y| = k and

• 〈y, xi〉 = 0 for all i ∈ [q].

Let Y = {y ∈ {0, 1}n : y ⊆ [2k] and |y| = k}. As in the previous case, partition Y into disjoint
subsets {Yα}α∈{0,1}q , such that y ∈ Yα if and only if 〈y, xi〉 = αi for all i ∈ [q]. One of the sets Yα

must be of size at least
(

2k
k

)
/2q = 22k−1−q, which is greater than 2(1−δ)2k for large enough n (and

hence k). We interpret the elements of this Yα as k-subsets of [2k] in the natural way. Thus, by
Theorem 5.4, there must be y1, y2 ∈ Yα such that |y1 ∩ y2| = k/2. Take y to be the bitwise XOR
of y1 and y2. Clearly |y| = k, and 〈y, xi〉 = 0 for all i ∈ [q].

For an odd k, we use the 1-parity g(x) = xn instead of the zero function. We follow the same
steps to find y ⊆ [2k − 2] of size |y| = k − 1 such that 〈y, xi〉 = 0 for all i ∈ [q]. Then, the vector
y ∪ {n} corresponds to a function in PARk that is consistent with g on the q queries.

5.2 Proof of Proposition 5.2 (general upper bound)

Consider the simple tester described in Algorithm 1. It is clear that this is a non-adaptive one-sided
error tester, and that it only makes O(log |Isomf |/ε) queries to g. So we only need to show that
for any f and any g that is ε-far from f , the probability of acceptance is small. Indeed, for a
fixed h ∈ Isomf the probability that g(xi) = h(xi) for all i ∈ [q] is at most (1 − ε)q. Applying
the union bound on all functions h ∈ Isomf , we can bound the probability of acceptance by
|Isomf |(1− ε)q ≤ |Isomf |e−εq < 1/3.

An upper bound of O(log
(
n
k

)
) for testing PARk follows from Proposition 5.2, but in fact some-

thing much stronger holds in this case. Since the distance between any two parity functions is 1/2,
the algorithm from Proposition 5.2 (which can be thought of as a learning algorithm) can actually
decode the parity bits of the tested function with the same number of queries:

Fact 5.5 There is a non-adaptive algorithm A that, given n, k and oracle access to g : {0, 1}n →
{0, 1}, satisfies the following:

• if g is a k-parity then A outputs the k parity indices of g with probability 1;

• if g is ε-far from being k-parity then A rejects with probability at least 2/3;

• A makes O(log
(
n
k

)
) queries to g.

Furthermore, if we drop the requirement of the second item, A can be even made deterministic.

17

This contrasts with the matching lower bound that applies even for the much simpler task of
deciding whether the size of a given parity is k.

The fact that for all n and k there is such deterministic algorithm can be seen by taking q twice
as large as that in Proposition 5.2, arguing that with high probability no two parities agree on all
q samples, and fixing a set of samples with this property; alternately, it follows from the existence
of binary linear codes of word length n, distance 2k and O(k log(n/k)) parity check equations,
for k up to Ω(n). The existence of a uniform algorithm (whose running time is poly(nk)) is then
implied by standard derandomization techniques, such as the method of conditional expectations
(c.f. [AS92, Juk01]) applied to the expression

E
x1,...,xq

E
f∈PAR2k

I[f(x1) = f(x2) . . . = f(xi) = 0].

6 Ω(n) lower bound for testing isomorphism to most functions

6.1 Definitions and basic results

To prove lower bounds for testing isomorphism to a function f , it suffices to show the stronger
claim that one can choose g with distiso(f, g) ≥ ε and such that no tester can reliably distinguish
between the cases where a function h is a random permutation of f or a random permutation of g.

Definition 6.1 Let f, g : {0, 1}n → {0, 1} be Boolean functions and ε > 0. Consider the dis-
tribution D obtained by choosing a random permutation of f with probability half, and a random
permutation of g with probability half.

We say that the pair (f, g) is (q, ε)-hard if distiso(f, g) ≥ ε and no tester with oracle access
to h ∼ D can determine if h∼=f or h∼=g with overall success probability ≥ 2/3 using less than q
queries.

The existence of a q-hard pair f, g implies a lower bound of q + 1 on the query complexity of
testing isomorphism to f (or to g, for that matter). The function g will be defined to agree with f
on all unbalanced inputs, as defined below.

Definition 6.2 A query x ∈ {0, 1}n is balanced if n
2 − 2

√
n ≤ |x| ≤ n

2 + 2
√
n. Otherwise, we say

that x is an unbalanced query.

Note that the fraction of unbalanced inputs is 2−n
∑
|i−n/2|>2

√
n

(
n
i

)
< 2 exp(−8) < 1/1000 by

standard estimates on the tails of the binomial distribution.

Definition 6.3 For every f , a random f-truncated function is a random function uniformly
drawn from the set of all g : {0, 1}n → {0, 1} satisfying g(x) = f(x) for all unbalanced x.

Proposition 6.4 Fix 0 < ε < 1
2(1 − 10−3). For any function f : {0, 1}n → {0, 1}, a random

f -truncated function g is ε-close to isomorphic to f with probability at most o(1).

Proof. Let N , |{0, 1}nn
2
±2
√
n| = Ω(2n) and η , 1− (2n+1/N)ε > 0. For any π ∈ Sn, note that

distn/2±2
√
n(fπ, g) = (2n/N)dist(fπ, g), where the term on the left hand side denotes the relative

distance when the domain is {0, 1}n
n/2±2

√
n
. Then, by the Chernoff bound,

Pr[distn/2±2
√
n(fπ, g) < (2n/N)ε] = Pr[distn/2±2

√
n(fπ, g) < (1− η)/2] ≤ exp(−Nη2/4) = o(1

n!).

18

Taking the union bound over all choices of π ∈ Sn completes the proof.

In the rest of this section and all its subsections, we assume ε < 1
2(1 − 10−3). See Remark 6.1

in Section 6.2 for the details on how to deal with any ε < 1
2 .

Let T denote any deterministic non-adaptive algorithm that attempts to test f -isomorphism
with at most q queries to an unknown function g (where q = Ω(n) is a parameter to be determined
later). Let Q ⊆ {0, 1}n be the set of queries performed by T on f . We partition the queries in Q
in two: the set Qb of balanced queries, and the set Qu of unbalanced queries.

The tester cannot distinguish f from g by making only unbalanced queries. Some unbalanced
queries, however, could conceivably yield useful information to the tester and let it distinguish f
from g with only a small number of balanced queries. The next proposition shows that this is not
the case, and that little information is conveyed by the responses to unbalanced queries.

Definition 6.5 For a fixed function f : {0, 1}n → {0, 1}, a set Q of queries, and a : Q → {0, 1},
the set of permutations of f compatible with Q and a is

Πf (Q, a) = {π ∈ Sn : fπ�
Q

= a}

Proposition 6.6 For any function f : {0, 1}n → {0, 1}, any set Q of queries, and any 0 < t < 1,

Pr
π∈Sn

[∣∣Πf (Q, fπ�
Q

)
∣∣ < t · n!

2|Q|

]
< t.

This implies that when the unknown function g is truncated according to f , with high proba-
bility the set Πf (Qu, g

π�
Qu

) is large, which will be useful later.

Proof. For every a ∈ {0, 1}|Q|, let Sa ⊆ Sn be the set of permutations σ for which gσ�
Q

= a.

A set Sa is small if |Sa| < t n!
2|Q|

. The union of all small sets covers less than 2|Q| · t n!
2|Q|

= tn!
permutations, so the probability that a randomly chosen one belongs to a small set is less than t.

We now examine the balanced queries.

Definition 6.7 Write any set Q of queries as Q = Qu ∪Qb, where the queries in Qb are balanced
and those in Qu are not.

Let n, q ∈ N. We say that a Boolean function f : {0, 1}n → {0, 1} is q-regular if for every
Q = Qu ∪Qb of total size at most q, and every pair of functions ab : Qb → {0, 1}, au : Qu → {0, 1}
such that |Πf (Qu, au)| ≥ 1

3
n!
22q ,

| Pr
π∈Πf (Qu,au)

[fπ�
Qb

= ab]− 2−q| < 1
6 · 2

−q.

It is easy to see that “at most q” may be replaced with “exactly q” in the definition, as long as
q does not surpass the total number of unbalanced inputs. Also note that whether f is regular or
not depends only on the values it takes on balanced inputs. This restriction is necessary for Ω(n)-
regularity to be possible, since the condition implies in particular the existence of Ω(2q) elements
in the orbit under Sn of any 1-query set.

19

Definition 6.7 is useful because two functions f, g that are both regular and agree on unbalanced
inputs will be hard to tell from each other, as they both resemble random functions on balanced
inputs. This holds no matter how f is defined on unbalanced inputs. This is formalized in the
following lemma:

Lemma 6.8 If f, g are q-regular, identical on unbalanced inputs, and distiso(f, g) ≥ ε, then the
pair (f, g) is (q, ε)-hard.

Proof. Consider the following two distributions:

• Fyes: pick π ∈ G uniformly at random, and return fπ.

• Fno: pick π ∈ G uniformly at random, and return gπ.

By definition, any h1 ∈ Fyes is isomorphic to f , whereas any h2 ∈ Fno is isomorphic to g and
hence ε-far from isomorphic to f .

Let Q = Qu ∪Qb be any set of at most q queries and a = (au, ab) any set of |Q| responses. We
show that

Pr
π∈Sn

[fπ�
Q

= a]− Pr
π∈Sn

[gπ�
Q

= a] < 1
32−q.

There are two cases to consider.

Case 1: |Πf (Qu, au)| < 1
3
n!
22q . In this case, by Proposition 6.6 we have that Prπ[fπ�

Qu
= au] ≤ 1

32−q.

This immediately implies that Prπ[fπ�
Q

= a] ≤ 1
32−q.

Case 2: |Πf (Qu, au)| ≥ 1
3
n!
22q . Note that

Pr
π

[fπ�
Q

= a] = Pr
π

[fπ�
Qu

= au] · Pr
π

[fπ�
Qb

= ab | fπ�Qu = au]

= Pr
π

[fπ�
Qu

= au] · Pr
π∈Πf (Qu,au)

[fπ�
Qb

= ab]

= (1± δ)2−q Pr
π

[fπ�
Qu

= au],

where δ < 1/6. The second equality transforms a conditional probability into a uniform probability
over a set of permutations, namely Πf (Qu, au). The last line uses the regularity of f .

Similarly, by the regularity of g,

Pr
π

[gπ�
Q

= a] = (1± δ)2−q Pr
π

[gπ�
Qu

= au]

= (1± δ)2−q Pr
π

[fπ�
Qu

= au],

because f and g are defined identically on unbalanced inputs. (We can choose the same δ < 1/6
for both). Therefore, for any a : Q→ {0, 1},

Pr
π

[fπ�
Q

= a]− Pr
π

[gπ�
Q

= a] < 1
32−q Pr

π
[fπ�

Qu
= au] ≤ 1

32−q,

and an appeal to Lemma 3.2 establishes the claim.

The main step of the proof of existence of regular functions in the next section is to show that
any sufficiently “uniform” family of functions contains regular functions.

20

Definition 6.9 A distribution F of Boolean functions on {0, 1}n is r-uniform if it is r-independent

and uniform on sets of r balanced inputs, i.e., for all Qb ∈
({0,1}nn

2±2
√
n

r

)
and a : Qb → {0, 1},

Pr
f∈F

[f�
Qb

= a] = 2−r.

For example, the uniform distribution over all Boolean functions is 2n-uniform. The reason we
deal with this more general case is to establish the existence of relatively simple functions that are
hard to test isomorphism to (see Section 7).

6.2 Existence of regular functions

The main tool we need is the following:

Proposition 6.10 Let F be an n4-uniform distribution over Boolean functions. Then a random
function from F is (n3 − 2dlog ne)-regular with probability 1− o(1).

Before providing the proof, we show how it implies the special case of Theorem 2.1 when k = n.

Theorem 6.11 Fix any 0 < ε < 1
2 . Let f : {0, 1}n → {0, 1} be chosen at random from an n4-

uniform distribution F , and let g : {0, 1}n → {0, 1} be a random f -truncated function. Then with
probability 1− o(1), the pair (f, g) is (Ω(n), ε)-hard.

Hence, for most functions f : {0, 1}n → {0, 1}, testing f -isomorphism requires Ω(n) queries.

Proof. Assume ε < 1
2(1− 10−3); see Remark 6.1 below to see how to handle larger ε. For some

q = Ω(n) we can pick one q-regular function f from F by Proposition 6.10. The distribution of
functions drawn from F and truncated according to f is also n4-uniform, so a random such g is also
q-regular with probability 1− o(1). Also, with probability 1− o(1) we have distiso(f, g) = Ω(1). 9

By the union bound some g satisfies both conditions. By Lemma 6.8, the pair f, g is q-hard and f
needs more than q queries to test isomorphism to. The “hence” part follows by taking for F the
uniform distribution among all functions.

Proof of Proposition 6.10. Let q , n
3−2 log n. Fix a set Q = Qu∪Qb of q queries (those in Qu

are unbalanced, and those in Qb balanced). Also fix functions ab : Qb → {0, 1}, au : Qu → {0, 1}.
For any f : {0, 1}n → {0, 1}, let S , Πf (Qu, au) and assume its size is |S| ≥ 1

3
n!
22q . For each π ∈ S,

define the indicator variable X(f, π) , I[fπ�
Qb

= a] and define A(f) , Prπ∈S [X(f, π) = 1]. We

aim to compute the probability, over a random function f drawn from F , that A(f) deviates from
2−q by 2−q/6 or more. Since q ≤ n4, the n4-uniform distribution F is also q-uniform. As a result,

Ef A(f) = Eπ Ef X(f, π) = Eπ Prf∼F [fπ�
Qb

= a] = Eπ 2−q = 2−q.

Consider any pair σ1, σ2 ∈ S such that σ1(Qb) ∩ σ2(Qb) = ∅. Since 2q ≤ n4, a random function
from F assigns values independently to each element of σ1(Qb) ∪ σ2(Qb), so the random variables
X(f, σ1) and X(f, σ2) are independent conditioned on the choice of σ1, σ2.

More generally, for any s permutations σ1, . . . , σs of S under which the images of Qb are pair-
wise disjoint, the variables X(f, σ1), . . . , X(f, σs) are n4/q ≥ n3-wise independent. We show that

9The proof is the same as that of Proposition 6.4, except that we use n4-independence in place of full independence,
and employ the variation of Chernoff bounds stated below in Theorem 6.14. This leads to a bound of exp(−Ω(n4))
instead of exp(−Ω(2n)), but is still o(1/n!).

21

S can be partitioned into a number of large sets of permutations, each of them satisfying the
pairwise disjointness property. The proof of this claim uses the celebrated theorem of Hajnal and
Szemerédi [HS69].

Theorem 6.12 (Hajnal-Szemerédi) Let G be a graph on n vertices with maximum vertex degree
∆(G) ≤ d. Then G has a (d+ 1)-coloring in which all the color classes have size b n

d+1c or
⌈

n
d+1

⌉
.

Lemma 6.13 Let S be a set of permutations on [n] (with n ≥ 30) and let Qb be a set of at most
q < n balanced queries. Then there exists a partition S1∪̇ · · · ∪̇Sm of the permutations in S such
that for i = 1, 2, . . . ,m,

(i) |Si| ≥ |S|n!
2n

2n2
√
n
− 1, and

(ii) The sets {π(Qb)}π∈Si are pairwise disjoint.

Proof. Construct a graph G on S where two permutations σ, τ are adjacent iff there exist
x, y ∈ Qb such that σ(x) = τ(y) or σ(y) = τ(x). By this construction, when T is a set of
permutations that form an independent set in G, the sets {π(Qb)}π∈T are pairwise disjoint.

Let N ,
(

n
n/2−2

√
n

)
= 2n√

n

(√
2
π + o(1)

)
≥ 2n

2
√
n
. Note that for any x, y ∈ {0, 1}nn

2
±2d
√
ne,

Pr
π∈Sn

[π(x) = y] =

{
0, |x| 6= |y|

1

(n|x|)
, |x| = |y|

}
≤ 1

N
.

This holds because the orbit of x under Sn is the set of all
(
n
|x|
)

strings of the same weight. So by
applying the union bound over all choices of x, y ∈ Qb, we can upper bound the degree of G by
d , q2n!/N < n2n!/N . Therefore, by the Hajnal-Szemerédi Theorem, G can be colored so that
each color class has size at least ⌊

|S|
d+ 1

⌋
≥ |S|

n!

2n

2n2
√
n
− 1.

In our case |S|/n! ≥ 2−2q/3, and by our choice of q we conclude that each of the elements of
the partition has size at least |Si| ≥ n3 · 2q for large enough n. Since A(f) is a weighted average of
the random variables Yi(f) , Eπ∈Si X(f, π), it is enough to show that with probability 1− o(1)

|Yi(f)− 2−q| < 2−q/6

holds simultaneously for all i = 1, . . . ,m.
Each quantity Yi(f) is the average of |Si| random variables that are n3-wise independent, each

satisfying Ef X(f, π) = 2−q. We apply the following version of Chernoff bounds:

Theorem 6.14 (Chernoff bounds for k-wise independence.) [SSS95] Let X be the sum of s
k-wise independent random variables in the interval [0, 1], and let p = 1

s E[X]. For any 0 ≤ δ ≤ 1,

Pr[|X − ps| ≥ δps] ≤ e−Ω(min(k,δ2ps)).

22

Since 2−q|Si| ≥ n3 and k = n3, using the above theorem with δ = 1
6 we obtain that for all

i ∈ [k],

Pr
f

[|Yi(f)− 2−q| ≥ δ2−q] ≤ 2−Ω(n3),

hence we can bound

Pr
f

[|A(f)− 2−q| ≥ δ2−q] ≤ Pr
f

[∃i ∈ [m] : |Yi(f)− 2−q| ≥ δ2−q] ≤ m2−Ω(n3) ≤ n!2−Ω(n3).

To conclude the proof we apply the union bound over all possible choices of Q and a ∈ {0, 1}Q,
yielding

Pr
f

[∃ Q, a : |A(f)− 2−q| ≥ 2−q/6] ≤
(

2n

q

)
2qn!2−Ω(n3) = o(1).

Remark 6.1 It is not difficult to see that if one replaces n
2 ± 2

√
n in the definition of balanced

inputs with n
2 ± c

√
n for some other constant c > 2, the result still holds for the same lower bound

q and large enough n. We refrained from doing so and introducing an additional parameter in all
the definitions and proofs. The only place where this matters is in claiming the Ω(n) lower bound
for any fixed ε < 1

2 . The value c = 2 only suffices for ε < 1
2(1 − 10−3) because of Proposition 6.4,

but choosing larger values can prove the theorem for any constant ε < 1
2 .

7 Proof of Theorem 2.1 and its consequences

Here we prove the following stronger version of Theorem 2.1. Before stating it, let us extend
Definition 6.3 to k-juntas as follows.

Definition 7.1 Let f : {0, 1}n → {0, 1} be a k-junta with A ⊆ [n], (|A| = k) being the set of its
influential variables. A random f-truncated k-junta function is a function g : {0, 1}n → {0, 1}
drawn uniformly at random from the set

{h ∈ JunA | for all unbalanced x ∈ {0, 1}k, core(h)(x) = core(f)(x)}

.

Theorem 7.2 (extending Theorem 2.1) For every ε < 1
4 and all large enough k ≤ n, it holds

that for 1 − o(1) fraction of all k-juntas f : {0, 1}n → {0, 1}, a random f -truncated k-junta g
satisfies that (f, g) is (Ω(k), ε)-hard with probability 1− o(1). Moreover, such k-juntas f can have
either one of the following properties:

• f can be written as a polynomial of degree O(log k) over F2;

• f can be in non-uniform NC, i.e., computed by bounded fan-in circuits of size poly(k) and
depth O(polylog(k)).

23

7.1 Theorem 7.2 – proof of hardness

The proof of hardness of testing isomorphism to k-juntas is obtained by combining the Ω(n) lower
bound of Theorem 6.11 with the following lemma, which uses a “preservation of distance under
padding” argument to allow us to embed a function on k variables into one on n variables, so that
the hardness of testing remains roughly the same. 10

Lemma 7.3 (extension from {0, 1}k to {0, 1}n) Let k, n ∈ N, k ≤ n, and let f ′, g′ : {0, 1}k →
{0, 1} be a pair of functions. Define f = pad(f ′) to be the padding extension of f ′, where f :
{0, 1}n → {0, 1} is given by f(x) = f ′(x�

[k]
) for all x ∈ {0, 1}n. Likewise, define g = pad(g′). Then

the following holds:

• distiso(f ′, g′) ≥ distiso(f, g) ≥ distiso(f ′, g′)/2.

• If (f ′, g′) is (q, ε)-hard, then (f, g) is (q, ε/2)-hard.

Note that the inequality distiso(f, g) ≥ distiso(f ′, g′)/2 is tight for some functions. Consider,
for example, the case where n = k + 1, f ′(x) = |x| mod 2 and g′(x) = 1− f(x).

Proof. The inequality distiso(f ′, g′) ≥ distiso(f, g) in the first item is obvious, so we start by
proving distiso(f, g) ≥ distiso(f ′, g′)/2. Take π for which dist(f, gπ) = distiso(f, g). The function
f is a junta on [k], while gπ is a junta on π−1([k]). Let A = π−1([k]) \ [k], B = π−1([k]) ∩ [k],
C = [k] \ B; note that |A| = |C| (because π is bijective and thus π−1([k]) = |π(k)| = k). Let σ
denote the permutation of [k] for which gπ(x) = g′σ(x�

A∪B).

For b ∈ {0, 1}B, let Xb , {x ∈ {0, 1}n | x�B = b}, and for i, j ∈ {0, 1}, let

pbij , Pr
x∈Xb

[f ′(x�
[k]

) = i ∧ g′σ(x�
[k]

) = j] = Pr
x∈Xb

[f ′(x�
A∪B) = i ∧ g′σ(x�

A∪B) = j].

Obviously pb01 + pb10 = Prx∈Xb [f
′(x�

[k]
) 6= g′σ(x�

[k]
)] ≤ 1, so pb01 + pb10 ≥ (pb01 + pb10)2 ≥ 4pb01p

b
10. As

x�
A

and x�
C

are mutually independent for random x ∈ Xb, we have

10It appears likely that one can obtain an Ω(k) lower bound for any ε < 1/2, as opposed to any ε < 1/4, by arguing
that for two random functions f ′, g′, the isomorphism distance between their extensions is still very close to 1/2
instead of distiso(f ′, g′)/2 ≈ 1/4. Similar remarks apply to the lower bounds for degree and circuit size, but we will
not pursue this direction here.

24

Pr
x∈Xb

[f(x) 6= g(x)] = Pr
x∈Xb

[f ′(x�
[k]

) 6= g′σ(x�
A∪B)]

= Pr
x∈Xb

[f ′(x�
[k]

) = 0] · Pr
x∈Xb

[g′σ(x�
A∪B) = 1]

+ Pr
x∈Xb

[f ′(x�
[k]

) = 1] · Pr
x∈Xb

[g′σ(x�
A∪B) = 0]

= (pb00 + pb01)(pb01 + pb11) + (pb10 + pb11)(pb00 + pb10)

≥ pb01(pb00 + pb01 + pb11) + pb10(pb00 + pb10 + pb11)

= pb01(1− pb10) + pb10(1− pb01)

=
pb01 + pb10

2
+
pb01 + pb10 − 4pb01p

b
10

2

≥ pb01 + pb10

2

=
Prx∈Xb [f

′(x�
[k]

) 6= g′σ(x�
[k]

)]

2
.

Hence, by taking expectations over b,

distiso(f, g) = dist(f, gπ) = Pr
x∈{0,1}n

[f ′(x�
[k]

) 6= g′σ(x�
A∪B)]

≥ 1

2
Pr

x∈{0,1}n
[f ′(x�

[k]
) 6= g′σ(x�

[k]
)]

=
1

2
dist(f ′, g′σ) ≥ 1

2
distiso(f ′, g′),

concluding the proof of the first item.
For the second item, assume that there is an algorithm A capable of distinguishing a random

permutation of f from a random permutation of g with fewer than q queries. Based on A, we can
construct an algorithm to distinguish whether h′ : {0, 1}k → {0, 1} is a random permutation of
f ′ or a random permutation of g′ in the following manner: pick a uniformly random permutation
σ ∈ Sn, and apply A to pad(h′)σ (clearly, any query to pad(h′)σ can be simulated by one query to
h′, and the distribution of pad(h′)σ is a random permutation of either f or g). Hence no such A
exists.

7.2 Theorem 7.2 – proof that f can be a low-degree polynomial over F2

We show in the next lemma that there is an n4-uniform distribution over low-degree polynomials.
Combining this lemma with Theorem 6.11 completes the lower bound in Theorem 7.2 for testing
isomorphism to low-degree polynomials over F2.

Lemma 7.4 Let Fd be the set of all polynomials p : Fn2 → F2 of degree at most d. Then the uniform
distribution over Fd is (2d+1 − 1)-uniform.

Proof. To prove independence, it is enough to prove the following claim: for any set S ⊆ Fn2 of
size |S| < 2d+1, and any function f : S → F2, there is a polynomial q ∈ Fd such that q�

S
= f . (This

is the known fact that the codewords of the Reed-Muller code RM(d, n) form an orthogonal array

25

of strength 2d+1 − 1. See also [KS05] and [BEHL09] for some generalizations.) Indeed, if the claim
holds then Prp∈Fd [p�S = f] = Prp∈Fd [(p ⊕ q)�S = 0] = Prp′∈Fd [p

′�
S

= 0], since the distributions of

p and p′ , p⊕ q are uniform over Fd. Therefore this probability is the same for every f .
We prove now this fact by induction on |S|+n; it is trivial for |S| = n = 0. Suppose that, after

removing the first bit of each element of S, we still get |S| distinct vectors; then we can apply the
induction hypothesis with S and n − 1. Otherwise, there are disjoint subsets A,B,C ⊆ {0, 1}n−1

such that S = {0, 1} ×A ∪ {0} ×B ∪ {1} × C, and A 6= ∅.
We can find, by induction, a polynomial p0A,0B,1C of degree ≤ d on n−1 variables that computes

f on {0}×A∪{0}×B ∪{1}×C. As |S| = 2|A|+ |B|+ |C|, either |A|+ |B| or |A|+ |C| is at most
|S|
2 < 2d; assume the latter. Then any function g : A∪C → F can be evaluated by some polynomial
pAC(y) of degree ≤ d− 1; consider g(y) = 0 if y ∈ C and g(y) = f(1, y)− p0A,0B,1C(1, y) if y ∈ A.
Then the polynomial p(x, y) = p0A,0B,1C(y) + xpAC(y) does the job.

7.3 Theorem 7.2 – proof that f can have a small circuit

To complete the lower bound in Theorem 7.2 for the query complexity of testing isomorphism to
functions computable by small circuits, we just need the following fact:

Proposition 7.5 (see, e.g., [AS92]) There is an n4-uniform distribution F over NC circuits.

One example of a distribution that proves Proposition 7.5 is the distribution over circuits that
computes a uniformly random polynomial of degree n4 over the finite field of size 2n and returns
the last bit of the result. These circuits are known to belong to NC. The size of these circuits is
O(nc) for some small constant c ≥ 1.

7.4 Lower bound for testing circuit size

Here we prove the lower bound for testing size-s Boolean circuits.
Proof of Corollary 2.2. Fix r = Θ(s1/c). Theorem 7.2 shows that there is a function f ′ :
{0, 1}r → {0, 1} such that f ′ can be computed by circuits of size rc (for some constant c) and for
an f ′-truncated random function g′ : {0, 1}r → {0, 1}, the pair (f ′, g′) is (Ω(r), 2ε)-hard. With
overwhelming probability, g′ will be far from all circuits of size rc (and even of size 2c

′r for some
c′). Consider the functions f, g : {0, 1}n → {0, 1} obtained by the padding extensions f = pad(f ′)
and g = pad(g′). By Lemma 7.3, the pair (f, g) is also (Ω(r), ε)-hard. Since the extension does
not change the size of the Boolean circuit that computes the corresponding functions, the query
complexity of testing a function of size-s Boolean circuits is Ω(r) = Ω(s1/c).

8 Proof of Theorem 2.3 – isomorphism testers for k-juntas

In this section we prove that O(k log k) queries suffice to test isomorphism against any function
f : {0, 1}n → {0, 1} that is a k-junta.

High-level overview of the proof. The first ingredient in our proof is a tolerant, noise-
resistant and bias-resistant isomorphism tester RobustIsoTest (Algorithm 2 below). Informally,
RobustIsoTest allows us to test isomorphism of an unknown g to a known function f , even if
instead of an oracle access to g we are given a sampler that produces pairs (x, a), where

26

• there is some h that is close to g, and Pr[h(x) = a] is high;

• the distribution of the x’s from the sampled pairs is close to uniform.

The basic idea that allows us to use RobustIsoTest for testing isomorphism to k-juntas is the
following: if we could simulate a noisy almost-uniform sampler to the core of h, where h : {0, 1}n →
{0, 1} is the presumed k-junta that is close to g : {0, 1}n → {0, 1}, then we could test whether g
is isomorphic to f . What we show is, roughly speaking, that for the aforementioned simulation
it suffices to detect k disjoint subsets J1, . . . , Jk ⊆ [n] such that each subset contains at most one
relevant variable of the presumed k-junta h : {0, 1}n → {0, 1}.

To obtain such sets we use the second ingredient, which is the optimal junta tester of Blais
[Bla09]. This tester, in addition to testing whether g is a k-junta, can provide (in case g is close
to some k-junta h) a set of ≤ k blocks (sets of indices), such that each block contains exactly one
of the relevant variables of h. The trouble is that the k-junta h may not be the closest one to g.
In fact, even if g is a k-junta itself, h may be some other function that is only close to g. Taking
these considerations into account constitutes the bulk of the proof.

8.1 Testing isomorphism between the cores

In the following we use the term black-box algorithm for algorithms that take no input.

Definition 8.1 Let g : {0, 1}k → {0, 1} be a function, and let η, µ ∈ [0, 1). An (η, µ)-noisy
sampler for g is a black-box probabilistic algorithm g̃ that on each execution outputs (x, a) ∈
{0, 1}k × {0, 1} such that

• for all α ∈ {0, 1}k, Pr[x = α] = 1
2k

(1± µ).

• Pr[a = g(x)] ≥ 1− η;

• the pairs output on each execution of g̃ are mutually independent.

Here the probability is taken over the randomness of g̃, which also determines x.
An η-noisy sampler is an (η, 0)-noisy sampler.

We stress that the two items are not necessarily independent; e.g., it may be that for some
α ∈ {0, 1}k, Pr[a = g(x) | x = α] = 0.

The following is essentially a strengthening of Occam’s razor that is both tolerant and noise-
resistant:

Proposition 8.2 There is an algorithm RobustIsoTest that, given ε ∈ R+, k ∈ N, a function
f : {0, 1}k → {0, 1} and a η-noisy sampler g̃ for some g : {0, 1}k → {0, 1}, where η ≤ ε/100,
satisfies the following:

• if distiso(f, g) < ε/20, it accepts with probability at least 9/10;

• if distiso(f, g) > 9ε/10, it rejects with probability at least 9/10;

• it draws O(1+k log k
ε) samples from g̃.

27

Algorithm 2 RobustIsoTest

1: Let q ← 1
ε (90 + 800 ln |S|);

2: Obtain q independent samples (x1, a1), . . . , (xq, aq) from g̃;
3: Accept if and only if minh∈S

∣∣{i ∈ [q] | h(xi) 6= ai}
∣∣ < εq/2.

Proof. Let S = Isomf denote the set of permutations of f , and write distiso(g,S) = minh∈S distiso(g, h).
Consider the following variation of Algorithm 1 (on page 17).

It is clear that the query complexity is as stated, since |S| ≤ k!. For h ∈ S, write δh , dist(h, g)
and let ∆h ⊆ {0, 1}k be the set of inputs on which h and g disagree, where |∆h| = δh2k. Since
the x’s are independent and uniformly distributed random variables, we have Prx [x ∈ ∆h] = δh.
Also let Λh be a random variable representing the fractional disagreement between h and g in the
sample:

Λh =

∣∣{i ∈ [q] | h(xi) 6= g(xi)}
∣∣

q
.

If distiso(g,S) > 9ε/10, then for any fixed h ∈ S the probability that Λh is at least 4ε/5 can be
bounded by using the Chernoff inequality in its multiplicative form:

Pr [Λh < 8ε/10 ≤ (1− 1/9)δh] = e−(1/9)2(9/10)εq/2 <
1

20|S|
.

Hence with probability 19/20, Λh ≥ 8ε/10 for all h ∈ S. To relate this to the fraction of samples
(x, a) for which h(x) 6= a, we use Markov’s inequality:

Pr
[∣∣{i ∈ [q] | ai 6= g(xi)}

∣∣ ≥ (3/10)εq
]
≤ Pr

[∣∣{i ∈ [q] | ai 6= g(xi)}
∣∣ ≥ 27ηq

]
≤ 1/27. (1)

Hence with probability at least 9/10,

min
h∈S

∣∣{i ∈ [q] | h(xi) 6= ai}
∣∣ > εq/2.

On the other hand, if distiso(g,S) < ε/10, picking h ∈ S with dist(g, h) < ε/10 we obtain in the
same way

Pr
[∣∣{i ∈ [q] | h(xi) 6= g(xi)}

∣∣ > 2ε/10 ≥ 2δhq
]
≤ e−(1/10)εq/3 <

1

20

(no union bound is needed here). As (1) continues to hold, we conclude in this case that with
probability at least 9/10,

min
h∈S

∣∣{i ∈ [q] | h(xi) 6= ai}
∣∣ < 2εq/5 < εq/2.

Remark 8.1 Note that this algorithm does not provide an estimate of dist(g,S) with additive ac-
curacy O(ε), because when dist(g,S) is large the approximation obtained is only good up to constant
multiplicative factors. This meets our requirements. Nonetheless, it is equally easy to obtain an
algorithm that estimates dist(g,S) up to, say, ε/10, by turning the 1/ε factor into O(1/ε2). The
analysis would then use the additive Chernoff bounds.

28

8.2 Some definitions and lemmas

Throughout the rest of this section, a random partition I = I1, . . . , I` of [n] into ` sets is constructed
by starting with ` empty sets, and then putting each coordinate i ∈ [n] into one of the ` sets
picked uniformly at random. Unless explicitly mentioned otherwise, I will always denote a random
partition I = I1, . . . , I` of [n] into ` subsets, where ` is even; and J = J1, . . . , Jk will denote an
(ordered) k-subset of I (meaning that there are a1, . . . , ak such that Ji = Iai for all i ∈ [k]).

Definition 8.3 (Operators replicate and extract) We call y ∈ {0, 1}n I-constant if the restric-
tion of y on every set of I is constant; that is, if for all i ∈ [`] and j, j′ ∈ Ii, yj = yj′.

• Given z ∈ {0, 1}`, define replicateI(z) to be the I-constant string y ∈ {0, 1}n obtained by
setting yj ← zi for all i ∈ ` and j ∈ Ii.

• Given an I-constant y ∈ {0, 1}n and an ordered subset J = (J1, . . . , Jk) of I, define extractI,J (y)

to be the string x ∈ {0, 1}k where for every i ∈ [k]: xi = yj if j ∈ Ji; and xi is a uniformly
random bit if Ji = ∅.

Definition 8.4 (Distributions DI and DJ) For any I and J ⊆ I as above, we define a pair of
distributions:

• The distribution DI on {0, 1}n: A random y ∼ DI is obtained by

1. picking z ∈ {0, 1}` uniformly at random among all
(
`
`/2

)
strings of weight `/2;

2. setting y ← replicateI(z).

• The distribution DJ on {0, 1}|J |: A random x ∼ DJ is obtained by

1. picking y ∈ {0, 1}n at random, according to DI ;

2. setting x← extractI,J (y).

Lemma 8.5 (Properties of DI and DJ)

1. For all α ∈ {0, 1}n, Pr
I,y∼DI

[y = α] = 1/2n;

2. Assume ` > 4|J |2. For every I and J ⊆ I, the total variation distance between DJ and the

uniform distribution on {0, 1}|J | is bounded by 2|J |2/`. Moreover, the L∞ distance between
the two distributions is at most 4|J |2/(`2|J |).

Proof.

1. Each choice of z ∈ {0, 1}`, |z| = `/2, in Definition 8.4 splits I into two equally-sized sets:
I0 and I1; and the bits corresponding to indices in Ib (where b ∈ {0, 1}) are set to b in the
construction of y. For each index i ∈ [n], the block it is assigned to is chosen independently
at random from I, and therefore falls within I0 (or I1) with probability 1/2, independently
of other j ∈ [n]. (This actually shows that the first item of the lemma still holds if z is an
arbitrarily fixed string of weight `/2, rather than a randomly chosen one).

29

2. Let k = |J |. Let us prove the claim about the L∞ distance, which implies the other one. We
only need to take care of the case were all sets Ji in J are non-empty; having empty sets can
only decrease the distance to uniform. Let w ∈ {0, 1}k. The choice of y ∼ DI , in the process
of obtaining x ∼ DJ , is independent of J ; thus, for every i ∈ [k] we have

Pr
x∼DJ

[xi = wi | xj = wj ∀j < i] ≤ `/2

`− k
<

1

2
+
k

`
,

and

Pr
x∼DJ

[xi = wi | xj = wj ∀j < i] ≥ `/2− k
`− k

>
1

2
− k

`
.

Using the inequalities 1−my ≤ (1− y)m for all y < 1,m ∈ N and (1 + y)m ≤ emy ≤ 1 + 2my
for all m ∈ [0, 1

2y], we conclude

Pr
x∼DJ

[x = w] =

(
1

2
± k

`

)k
=

1

2k

(
1± 4k2

`

)
.

whereas a truly uniform distribution U should satisfy Prx∼U [x = w] = 1/2k.

Definition 8.6 (Black-box algorithm sampler) Given I,J as above and oracle access to g :
{0, 1}n → {0, 1}, we define a probabilistic black-box algorithm samplerI,J (g) that on each execution

produces a pair (x, a) ∈ {0, 1}|J |×{0, 1} as follows: it picks a random y ∼ DI and outputs the pair
(extractI,J (y), g(y)).

Note that just one query is made to g in every execution of samplerI,J (g). Notice also that

the x in the pairs (x, a) ∈ {0, 1}|J | × {0, 1} produced by samplerI,J (g) is distributed according to
distribution DJ defined above.

8.3 From junta testers to noisy samplers

Given a function g : {0, 1}n → {0, 1}, we denote by g∗ : {0, 1}n → {0, 1} the k-junta that is closest
to g (if there are several k-juntas that are equally close, break ties using some arbitrarily fixed
scheme). Clearly, if g is itself a k-junta then g∗ = g.

We make repeated use of the following lemma:

Lemma 8.7 [FKR+04] For any f : {0, 1}n → {0, 1} and A ⊆ [n]

dist(f, JunA) ≤ Inff([n] \A) ≤ 2 · dist(f, JunA).

We also use the fact (see [FKR+04, Bla09] for a proof) that influence is monotone and subad-
ditive; namely, for all f : {0, 1}n → {0, 1} and A,B ⊆ [n],

Inff(A) ≤ Inff(A ∪ B) ≤ Inff(A) + Inff(B).

For the following definition and lemma the reader should keep in mind the distributions DI and
DJ from Definition 8.4.

30

Definition 8.8 Given δ > 0, function g : {0, 1}n → {0, 1}, partition I = I1, . . . , I` of [n] and a
k-subset J of I (where ` > 4k2), we call the pair (I,J) δ-good (with respect to g) if there exists a
k-junta h : {0, 1}n → {0, 1} such that the following conditions are satisfied.

1. Conditions on h:

(a) Every relevant variable of h is also a relevant variable of g∗ (recall that g∗ denotes the
k-junta closest to g);

(b) dist(g∗, h) < δ.

2. Conditions on I:

(a) For all j ∈ [`], Ij contains at most one variable of corek(g
∗); 11

(b) Pry∼DI [g(y) 6= g∗(y)] ≤ 10 · dist(g, g∗);

3. Conditions on J :

(a) The set
⋃
Ij∈J Ij contains all relevant variables of h;

Lemma 8.9 Let δ, g, I,J be as in the preceding definition. If the pair (I,J) is δ-good with respect
to g, then

Pr
y∼DI

[g∗(y) 6= corek(g
∗)π(extractI,J (y))] < 4δ + 4k2/`

for some permutation π of corek(g
∗).

Proof. Let h be the k-junta that witnesses the fact that the pair (I,J) is δ-good. Let V ⊆ [n]
be the set of k variables of corek(g

∗). (Recall that V may actually be a superset of the relevant
variables of g∗.) Let J ′ , {Ij ∈ I : Ij ∩V 6= ∅} be an ordered subset respecting the order of J , and
let π be the permutation whose inverse maps the i-th relevant variable of g∗ (in the standard order)
to the index of the element of J ′ in which it is contained. We assume without loss of generality
that π is the identity map.

It follows from Definition 8.8 that |J ′| = |V | = k, since each block in I contains at most one
variable of corek(g

∗). For any I-uniform y ∈ {0, 1}n, let x , extractI,J (y) and x′ , extractI,J ′(y)
denote the k-bit strings corresponding to J and J ′. By definitions, we have the equalities

(1) g∗(y) = corek(g
∗)(x′),

(2) corek(h)(x) = corek(h)(x′).
The first equality is by Definition 8.3, and the second one follows from items 1a and 3a in Definition
8.8. From item 1b we also have

(3) Prr∈{0,1}k [corek(g
∗)(r) 6= corek(h)(r)] < 2δ,

where r is picked uniformly at random. However, by the second item of Lemma 8.5, the distribution
DJ is 2k2/` close to uniform 12; combining this with (3) we also get

(4) Pry∼DI [corek(g
∗)(x) 6= corek(h)(x)] < 2δ + 2k2/`.

Likewise, we have

11Note that this, along with 1a, implies that every block Ij contains at most one relevant variable of h, since the
variables of corek(g∗) contain all relevant variables of g∗.

12Recall that DJ is a distribution on {0, 1}k, where a random x ∼ DJ is obtained by picking a random y ∼ DI
and setting x← extractI,J (y).

31

(5) Pry∼DI [corek(g
∗)(x′) 6= corek(h)(x′)] < 2δ + 2k2/`,

thus, using (2, 4, 5) and the union bound we get
(6) Pry∼DI [corek(g

∗)(x′) 6= corek(g
∗)(x)] < 4δ + 4k2/`.

Combining (1) and (6) we conclude that

Pr
y∼DI

[g∗(y) 6= corek(g
∗)(x)] < 4δ + 4k2/`,

and the claim follows.

Corollary 8.10 If the pair (I,J) is δ-good (with respect to g), then samplerI,J (g) is (η, µ)-noisy
sampler for a permutation of corek(g

∗), with η ≤ 4δ + 4k2/`+ 10 · dist(g, g∗) and µ ≤ 4k2/`.

Proof. Recall that samplerI,J (g) is a probabilistic black-box algorithm that on each execution

produces a pair (x, a) ∈ {0, 1}k × {0, 1} as follows: it picks a random y ∼ DI and outputs the pair
(x, a) , (extractI,J (y), g(y)).

To be an (η, µ)-noisy sampler for corek(g
∗)π, samplerI,J (g) has to satisfy the following:

• the distribution of x ∈ {0, 1}k in its pairs should be almost uniform (i.e., each element appears
with probability 1

2k
(1± µ));

• Pr(x,a)←samplerI,J (g)

[
a = corek(g

∗)π(x)
]
≥ 1− η.

The first item follows from the second item of Lemma 8.5. The second item follows from Lemma
8.9.

Now we set up a version of the junta tester from [Bla09] that is needed for our algorithm. A
careful examination of the proof in [Bla09] yields the following:

Theorem 8.11 (Corollary to [Bla09]) The property Junk can be tested with one-sided error us-
ing O(k log k + k/ε) queries.

Moreover, the tester T? can take a (random) partition I = I1, . . . , I` of [n] as input, where
` = `[Bla09](k, ε) = Θ(k9/ε5) is even, and output (in case of acceptance) a k-subset J of I such
that for any g the following conditions hold (the probabilities below are taken over the randomness
of the tester and the construction of I):

• if g is a k-junta, T? always accepts;

• if g is ε/2400-far from Junk, then T? rejects with probability at least 9/10;

• for any g, with probability at least 4/5 either T? rejects, or it outputs J such that the pair
(I,J) is ε/600-good (as per Definition 8.8). (In particular, if g is a k-junta then with prob-
ability at least 4/5, T? outputs a set J such that (I,J) is ε/600-good.)

Proof. In view of the results stated in [Bla09], only the last item needs justification. 13

We start with a brief description of how T? works. Given the partition I, T? starts with
an empty set S = ∅, and iteratively finds indices j ∈ [`] \ S such that for some pair of inputs

13The somewhat different constants can be easily achieved by increasing (by a constant factor) the number of
iterations and partition sizes of the algorithm.

32

y, y′ ∈ {0, 1}n, y�
[n]\Ij

= y′�
[n]\Ij

but g(y) 6= g(y′). In other words, it finds j such that Ij contains at

least one influential variable (let us call such a block Ij relevant). Then j is joined to S, and the
algorithm proceeds to the next iteration. T? stops at some stage, and rejects if and only if |S| > k.
If g is not rejected (i.e., if T? terminates with |S| ≤ k), then

(∗) with probability at least 19/20 the set S satisfies Infg

(
[n] \ (

⋃
j∈S

Ij)
)
≤ ε/4800.

We will use this S to construct the subset J ⊆ I as follows:

• for every j ∈ S, we put the block Ij into J ;

• if |S| < k then we extend J by putting in it k−|S| additional “dummy” blocks from I (some
of them possibly empty), obtaining a set J of size exactly k.

Now we go back to proving the third item of Theorem 8.11. Recall that g∗ denotes the closest
k-junta to g. Let R ∈

([n]
≤k
)

denote the set of the relevant variables of g∗, and let V ∈
([n]
k

)
, V ⊇ R,

denote the set of the variables of corek(g
∗). Assume that dist(g, Junk) ≤ ε/2400, 14 and T? did not

reject. In this case,

• by (∗), with probability at least 19/20 the set J satisfies

Infg

(
[n] \

(⋃
Ij∈J

Ij

))
≤ Infg

(
[n] \

(⋃
j∈S

Ij

))
≤ ε/4800;

• since `� k2, with probability larger than 19/20 all elements of V fall into different blocks of
the partition I;

• by Lemma 8.5, PrI,y∼DI

[
g(y) = g∗(y)

]
= dist(g, g∗); hence by Markov’s inequality, with

probability at least 9/10 the partition I satisfies Pry∼DI [g(y) 6= g∗(y)] ≤ 10 · dist(g, g∗).

So with probability at least 4/5, all three of these events occur. Now we show that conditioned on
them, the pair (I,J) is ε/600-good.

Let U = R ∩ (
⋃
Ij∈J Ij). Informally, U is the subset of the relevant variables of g∗ that were

successfully “discovered” by T?. Since dist(g, g∗) ≤ ε/2400, we have Infg([n] \ V) ≤ ε/1200 (by
Lemma 8.7). By the subadditivity and monotonicity of influence we get

Infg([n] \U) ≤ Infg([n] \V) + Infg(V \U) ≤ Infg([n] \V) + Infg

(
[n] \ (

⋃
Ij∈J

Ij)
)
≤ ε/960,

where the second inequality follows from V \ U ⊆ [n] \ (
⋃
Ij∈J Ij). This means, by Lemma 8.7,

that there is a k-junta h in JunU satisfying dist(g, h) ≤ ε/960, and by the triangle inequality,
dist(g∗, h) ≤ ε/2400 + ε/960 < ε/600. Based on this h, we can verify that the pair (I,J) is
ε/600-good by going over the conditions in Definition 8.8.

14For other g’s the third item follows from the second item.

33

8.4 Flattening out the distribution

We would like to obtain a perfectly uniform distribution for the first component of the samples (to
comply with the hypothesis of Proposition 8.2). One can easily obtain an exactly uniform sampler
from a slightly non-uniform sampler at the expense of a small increase in the error probability:

Lemma 8.12 Let g̃ be an (η, µ)-noisy sampler for g : {0, 1}k → {0, 1}, which on each execution
picks x ∈ {0, 1}k according to some fixed distribution D. Then we can construct an (η + µ)-noisy
sampler g̃uniform for g that makes one query to g̃ for each sample (and no queries to g itself).

Proof. Let U denote the uniform distribution on {0, 1}k. The new sampler g̃uniform acts as
follows: first it obtains a sample (x, a) from g̃, and proceeds as follows:

(acceptance) with probability px ,
Pry∼U [y=x]

(1+µ) Prz∼D [z=x] it outputs (x, a);

(rejection) with probability 1− px it picks an uniformly random z ∈ {0, 1}k and outputs (z, 0).

(Note that px ≤ 1 by definition of (n, µ)-noisy sampler.)
Let (x′, a′) denote the pairs output by g̃uniform. We can compute the overall acceptance prob-

ability as

E
x∼D

[px] =
∑

x∈{0,1}k
Pr
z∼D

[z = x] · px = 1/(1 + µ).

Also note that for any x,

Pr
x′

[x′ = x and the sample was accepted] = Pr
z∼D

[z = x] · px =
Pry∈U [y = x]

1 + µ
.

Therefore, conditioned on acceptance (which, as we just saw, happens with probability 1/(1+µ)), x
is uniformly distributed. In case of rejection (which occurs with probability µ/(1+µ)) it is uniform
by definition; hence the overall distribution of x is uniform too. Recalling that Pr [a 6= g(x)] ≤ η,
we conclude that Pr [a′ 6= g(x′)] ≤ η + µ/(1 + µ) ≤ η + µ.

We remark that the conversion made in Lemma 8.12 is only possible when the distribution D
is known. This is the case for the sampler that we construct here nonetheless.

9 Proof of Theorem 2.3

Consider the tester described in Algorithm 3. Theorem 2.3 follows from the next proposition:

Proposition 9.1 Algorithm 3 satisfies the following conditions:

1. if g∼=f then it accepts with probability at least 2/3;

2. if distiso(f, g) ≥ ε then it rejects with probability at least 2/3;

3. its query complexity is O(k log k/ε+ 1/ε).

34

Algorithm 3 (Tests isomorphism to a k-junta f)

1: Let ` = `[Bla09](k, ε) = Θ(k9/ε5).
2: Randomly partition [n] into I = (I1, . . . , I`).
3: Test g for being a k-junta, using T? with I = I1, . . . , I`. (See Theorem 8.11.)
4: if T? rejects then
5: Reject.
6: end if
7: Let J ⊆ I be the set output by T?.
8: Construct samplerI,J (g) and turn it into a uniform sampler. (See Sections 8.2 and 8.4.)
9: Accept iff RobustIsoTest(corek(f), uniformsamplerI,J (g)) accepts. (See Section 8.1.)

Proof of item 1. Assume g∼=f , and hence corek(g)∼=corek(f). Since g is a k-junta, Algorithm
3 does not reject on line 5, because T? has one-sided error. So in this case, by Theorem 8.11,
with probability at least 4/5 the pair (I,J) is ε/600-good. If so, by Corollary 8.10, samplerI,J (g)
is a (η, µ)-noisy sampler for a function isomorphic to corek(g

∗) = corek(g), where η ≤ 4ε/600 +
4k2/` + 10 · 0 and µ ≤ 4k2/`. By Lemma 8.12, we can make it an (η′, 0) sampler, where η′ ≤
4ε/600 + 8k2/` < ε/100. Hence RobustIsoTest accepts with probability at least 9/10. Thus the
overall acceptance probability is at least 2/3.

Proof of item 2. If distiso(f, g) ≥ ε then one of the following must hold:

• either g is ε/2400-far from Junk,

• or dist(g, Junk) = dist(g, g∗) ≤ ε/2400 and distiso(corek(f), corek(g
∗)) ≥ ε− ε/2400 > 9ε/10.

If the first case holds, then T? rejects with probability greater than 2/3 and we are done. So assume
that the second case holds.

By the third item of Theorem 8.11, with probability at least 4/5, T? either rejects g, or the
pair (I,J) is ε/600 good. If T? rejects then we are done. Otherwise, if an ε/600-good pair is
obtained, then by Corollary 8.10 and Lemma 8.12, uniformsamplerI,J (g) is a (η′, 0)-noisy sampler
for a function isomorphic to corek(g

∗), where η′ ≤ 2ε/600 + 8k2/`+ 10 · ε/2400 < ε/100, and hence
RobustIsoTest rejects with probability at least 9/10. Thus the overall rejection probability is at
least 2/3.

Proof of item 3. As for the query complexity, it is the sum of O(k log k+ k/ε) queries made by
T?, and additional O(k log k/ε) queries made by RobustIsoTest.

This completes the proof of Theorem 2.3.

9.1 Query-efficient procedure for drawing random samples from the core

We conclude this section by observing that the tools developed above can be used for drawing
random samples from the core of a k-junta g, so that generating each sample requires only one
query to g.

Proposition 9.2 Let γ > 0 be an arbitrary constant. There is a randomized algorithm A, that
given oracle access to any k-junta g : {0, 1}n → {0, 1} satisfies:

35

• Algorithm A has two parts: preprocessor AP and sampler AS. AP is executed only once; it
makes O(k log k) queries to g, and produces a state α ∈ {0, 1}poly(n). The sampler AS can
then be called on demand, with the state α as an argument; in each call, AS makes only one
query to g and outputs a pair (x, a) ∈ {0, 1}k × {0, 1}.

• With probability at least 4/5, the state α produced by AP is such that for some permutation
π : [k]→ [k],

Pr
(x,a)←AS(α)

[core(g)π(x) = α] ≥ 1− γ.

Furthermore, the x’s generated by the sampler AS are independent random variables, dis-
tributed uniformly on {0, 1}k.

Proof. The preprocessor AP starts by constructing a random partition I and calling the junta
tester T? with ε , γ. Then AP encodes in the state α the partition I and the subset J ⊆ I output
by T? (see Theorem 8.11). The sampler, given α = (I,J), obtains a pair (x, a) ∈ {0, 1}k × {0, 1}
by executing samplerI,J (g) (once). The result is then processed to obtain a uniform (γ, 0)-sampler.

10 Proof of Theorem 2.5 – Testing isomorphism of two unknown
functions

Recall that an ε-tester for function isomorphism in the unknown-unknown setting is a probabilistic
algorithm A that, given oracle access to two functions f, g : {0, 1}n → {0, 1}, satisfies the following
conditions: (1) if f∼=g it accepts with probability at least 2/3; (2) if distiso(f, g) ≥ ε it rejects with
probability at least 2/3.

In the rest of the section we prove the following restatement of Theorem 2.5.

Theorem 10.1 For any fixed ε > 0,

1. There exists a non-adaptive ε-tester with one-sided error for function isomorphism in the
unknown-unknown setting that has query complexity O(2n/2

√
n log n/ε); and

2. Any adaptive tester for function isomorphism in the unknown-unknown setting must have
query complexity Ω(2n/2/n1/4).

10.1 Proof of the upper bound

In this section we show that isomorphism of a pair of unknown functions can be tested with a
one-sided-error non-adaptive tester that makes O(2n/2

√
n log n/ε) queries. The tester is described

in Algorithm 4.
It is clear that Algorithm 4 is non-adaptive, has one-sided error and makes O(2n/2

√
n log n/ε)

queries. Let f and g be ε-far up to isomorphism; we prove that the probability of the tester
accepting is o(1). We may assume that the event |Q| ≤ 10

√
2nn lnn/ε holds, since it occurs with

probability 1−o(1). For any permutation π ∈ Sn there are at least ε2n inputs x ∈ {0, 1}n for which
f(x) 6= g(π(x)). When x satisfies this condition, the probability that both x and π(x) belong to Q
is at least n lnn

ε2n , so the permutation π passes the acceptance condition in the last line of Algorithm 4
with probability no more than (1− n lnn/(ε2n))ε2

n ≤ e−n lnn = n−n = o(1/n!). The claim follows
by taking the union bound over all n! permutations.

36

Algorithm 4 (Non-adaptive one-sided error tester for the unknown-unknown setting)

1: Generate a set Q by including every x ∈ {0, 1}n in Q w.p.
√

n lnn
ε2n independently at random.

2: if |Q| > 10
√

2n

ε n lnn then

3: Accept.
4: end if
5: Query both f and g on all inputs in Q.
6: Accept iff there exists π such that for all x ∈ Q, either f(x) = g(π(x)) or π(x) /∈ Q.

10.2 Proof of the lower bound

In this section we prove that any two-sided adaptive tester in the unknown-unknown setting must
make Ω̃(2n/2) queries.

We define two distributions Fyes and Fno on pairs of functions such that any pair of functions
drawn from Fyes are isomorphic, while any pair drawn from Fno is 1/8-far from isomorphic with
probability 1−o(1). The distribution Fyes is constructed by letting the pair of functions be (f, fπ),
where f ∈ Fn

2
±2
√
n is a random truncated function on {0, 1}n (see Definition 6.3) and π ∈ Sn is a

uniformly random permutation.
For the distribution Fno the pair of functions are two independently chosen random truncated

functions f and g; with probability 1 − o(1), distiso(f, g) ≥ 1/8 (Proposition 6.4). For any set
Q = {x1, . . . , xt} ⊆ {0, 1}n of t queries and any p, q ∈ {0, 1}t let Pr(f,g)∈Fyes

[(f, g)�
Q

= (p, q)] be

the probability that for all 1 ≤ i ≤ t, f(xi) = pi and g(xi) = qi when f and g are drawn according
to Fyes. Similarly we define Pr(f,g)∈Fno

[(f, g)�
Q

= (p, q)].

Without loss of generality we may assume that |xi| ∈ [n2 − 2
√
n, n2 + 2

√
n] for all i ∈ [t], since

functions drawn from Fyes or Fno always take the value 0 on all other inputs. If the pair f, g is
drawn from Fno, the answers to the queries will be uniformly distributed by definition, so for any
p, q ∈ {0, 1}t, we have

Pr
(f,g)∈Fno

[(f, g)�
Q

= (p, q)] = 1/22t.

Now let the pair be drawn according to Fyes and let π be the permutation that defined the pair.
Let EQ denote the event that π(Q) and Q are disjoint, i.e., that for all i, j ∈ [t], the inequality
π(xi) 6= xj holds. Conditioned on EQ, the answers to the queries will again be distributed uniformly,
that is

Pr
(f,g)∈Fyes

[(f, g)�
Q

= (p, q) | EQ] = Pr
(f,g)∈Fno

[(f, g)�
Q

= (p, q)].

(Note that the event in question is independent of EQ when the pairs is drawn from Fno.)
Let us now show that EQ occurs with probability at least 3

4 . For t ≤ 2n/2/(200n1/4) and any

fixed i, j ∈ [t], we have that Prπ[π(xi) = xj] ≤ 1/
(

n
n/2−2

√
n

)
≤ e9

√
n

2n because xi is balanced. So by
the union bound we have that

Pr[EQ] ≥ 1− e9t2
√
n

2n
≥ 3

4
.

37

Therefore,

Pr
(f,g)∈Fyes

[(f, g)�
Q

= (p, q)] ≥ Pr[EQ] · Pr
(f,g)∈Fyes

[(f, g)�
Q

= (p, q) | EQ]

≥ 3
4 · Pr

(f,g)∈Fno

[(f, g)�
Q

= (p, q)].

By Lemma 3.2, this implies that the success probability of any tester that makes fewer than
2n/2/(200n1/4) queries is at most 5/8 + o(1) < 2/3 and completes the proof of the lower bound in
Theorem 10.1.

Acknowledgements.

We thank Ronald de Wolf for many valuable comments. In addition, E.B. thanks Ryan O’Donnell
for much valuable advice throughout the course of this research and Michael Saks for enlightening
discussions.

References

[AB10] Noga Alon and Eric Blais. Testing boolean function isomorphism. In Proc. RANDOM-
APPROX, pages 394–405, 2010.

[AFKS00] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing
of large graphs. Combinatorica, 20:451–476, 2000. 10.1007/s004930070001.

[AS92] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, New York, 1992.

[BBM11] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing via communication
complexity. Proc. CCC, 2011.

[BC10] Laszlo Babai and Sourav Chakraborty. Property testing of equivalence under a per-
mutation group action. To appear in the ACM Transactions on Computation Theory
(ToCT), 2010.

[BEHL09] Ido Ben-Eliezer, Rani Hod, and Shachar Lovett. Random low degree polynomials are
hard to approximate. In Proc. RANDOM-APPROX, pages 366–377, 2009.

[BFF+01] T. Batu, L. Fortnow, E. Fischer, R. Kumar, R. Rubinfeld, and P. White. Testing ran-
dom variables for independence and identity. Proc. IEEE Symposium on Foundations
of Computer Science, 0:442, 2001.

[Bla09] Eric Blais. Testing juntas nearly optimally. In Proc. ACM symposium on the Theory
of computing, pages 151–158, New York, NY, USA, 2009. ACM.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. In Proceedings of the twenty-second annual ACM symposium on
Theory of computing, STOC ’90, pages 73–83, New York, NY, USA, 1990. ACM.

[BO10] Eric Blais and Ryan O’Donnell. Lower bounds for testing function isomorphism. In
IEEE Conference on Computational Complexity, pages 235–246, 2010.

38

[CG04] Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Information
Processing Letters, 90:301–305, June 2004.

[CGM11a] Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah. Efficient sample ex-
tractors for juntas with applications. In Proc. ICALP, 2011.

[CGM11b] Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah. Nearly tight bounds
for testing function isomorphism. In Proc. SODA, 2011.

[DGL+99] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron,
and Alex Samorodnitsky. Improved testing algorithms for monotonicity. In Proc.
RANDOM-APPROX, pages 97–108, 1999.

[DLM+07] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld,
Rocco A. Servedio, and Andrew Wan. Testing for concise representations. Proc. IEEE
Symposium on Foundations of Computer Science, 0:549–558, 2007.

[Fis01] Eldar Fischer. The art of uninformed decisions. Bulletin of the EATCS, 75:97, 2001.

[Fis05] Eldar Fischer. The difficulty of testing for isomorphism against a graph that is given
in advance. SIAM J. Comput., 34(5):1147–1158, 2005.

[FKR+04] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky. Test-
ing juntas. Journal of Computer and System Sciences, 68(4):753 – 787, 2004. Special
Issue on FOCS 2002.

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Alex Samorodnitsky. Monotonicity testing over general poset domains. In STOC,
pages 474–483, 2002.

[FM08] Eldar Fischer and Arie Matsliah. Testing graph isomorphism. SIAM J. Comput.,
38(1):207–225, 2008.

[FNS04] Eldar Fischer, Ilan Newman, and Jǐŕı Sgall. Functions that have read-twice constant
width branching programs are not necessarily testable. Random Struct. Algorithms,
24(2):175–193, 2004.

[FR87] P. Frankl and V. Rödl. Forbidden intersections. Trans. Amer. Math. Soc. 300, pages
259–286, 1987.

[FW81] P. Frankl and M. Wilson. Intersection theorems with geometric consequences. Com-
binatorica 1, pages 357–368, 1981.

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky.
Testing monotonicity. Combinatorica, 20(3):301–337, 2000.

[GGR98] Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. J. ACM, 45:653–750, July 1998.

[Gol10] Oded Goldreich. On testing computability by small width obdds. In APPROX-
RANDOM, pages 574–587, 2010.

39

[HS69] András Hajnal and Endre Szemerédi. Proof of a conjecture of Paul Erdős. In Combi-
natorial Theory and its Applications, pages 601–623, 1969.

[Juk01] Stasys Jukna. Extremal Combinatorics: with applications in computer science.
Springer, 2001.

[KS05] Peter Keevash and Benny Sudakov. Set systems with restricted cross-intersections
and the minimum rank of inclusion matrices. SIAM J. Discrete Math., 18(4):713–727,
2005.

[MORS09a] Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. Testing
halfspaces. In SODA, pages 256–264, 2009.

[MORS09b] Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. Testing
±1-weight halfspaces. In Proceedings of the 12th International Workshop and 13th
International Workshop on Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, APPROX ’09 / RANDOM ’09, pages 646–657,
Berlin, Heidelberg, 2009. Springer-Verlag.

[PRS02] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing basic boolean formulae.
SIAM J. Discrete Math., 16(1):20–46, 2002.

[Ron08] Dana Ron. Property testing: A learning theory perspective. Found. Trends Mach.
Learn., 1:307–402, March 2008.

[Ron10] Dana Ron. Algorithmic and analysis techniques in property testing. Found. Trends
Theor. Comput. Sci., 5:73–205, February 2010.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25:252–271, February 1996.

[RS11] Ronitt Rubinfeld and Asaf Shapira. Sublinear time algorithms. Electronic Colloquium
on Computational Complexity (ECCC), 11(013), 2011.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding bounds
for applications with limited independence. SIAM J. Discrete Math., 8(2):223–250,
1995.

40

Appendix

A Distinguishing two random functions with Õ(
√
n) queries

In light of the fact that two trimmed random functions are hard to distinguish with fewer than n
queries (roughly), we may ask whether the restriction to trimmed functions is necessary. In this
section we show that without such a restriction, the aforementioned task can be completed with
only Õ(

√
n) queries. We prove the following proposition, which says in particular that any function

can be distinguished from a completely random function using Õ(
√
n) queries.

Proposition A.1 Let p < 1 be an arbitrary constant. For any function f and any distribution Dy
over functions isomorphic to f , it is possible to distinguish g ∈ Dy from g ∈ U with probability at

least p using Õ(
√
n) queries.

Note that querying g only on inputs of Hamming weights 0, 1, n − 1, n is only of limited help.
By querying the all-zero and all-one inputs, we can distinguish between the two cases only with
probability 3/4; notice that this success probability cannot be amplified, since the probability is
taken over the choice of functions, rather than the randomness of the tester. When considering
singletons (and likewise, inputs of weight n − 1), then f, g are isomorphic only if |{|x| = 1 :
f(x) = 1}| = |{|x| = 1 : g(x) = 1}|. So a natural (and only) approach is to test the equality
of these measures by sampling. But notice that for most f , with very high probability (over the
choice of g), these two measures will be at most O(

√
n) away from each other, which means that

distinguishing the two cases requires at least Ω(n) samples.
We show that Õ(

√
n) queries into inputs of weight ≤ 2 are sufficient for distinguishing g ∈ Dy

from g ∈ U with high probability. One way to do this is to interpret the restriction of f and
g to

(
[n]
2

)
as adjacency functions of graphs on n vertices. It is not hard to prove that for any

f and a randomly chosen g, the corresponding graphs Gf , Gg are 1/3-far from being isomorphic
with overwhelming probability. On the other hand, if f is isomorphic to g then Gf is obviously
isomorphic to Gg. Hence, we can use the isomorphism tester of [FM08] (in the appropriate setting)
to distinguish between the two cases.

But in fact, the graph case is more complicated, since it is concerned with the worst case scenario
(i.e., it should work for any pair of graphs). In our case, we only wish to distinguish a (possibly
random) permutation of some given f from a random function g. Indeed, it turns out that we can
reduce our problem directly to the task of testing equivalence of a samplable distribution to an
explicitly given one. Then we can use an algorithm of Batu et al. [BFF+01] that solves exactly
this problem with Õ(

√
n) queries. We work out the formal details below.

Proof. Let ` = 2 log n. Given a function f : {0, 1}n → {0, 1} and i ∈ [n] we define α(f, i) ∈
{0, 1}` as follows: the j’th bit of α(f, i) is one if and only if f({i, j}) = 1, where we allow j to
range from 1 to ` only (rather than the full range of [n]). We then define the distribution Df over

{0, 1}`, where the probability of β ∈ {0, 1}` under Df is 1
n |{i ∈ [n] : α(f, i) = β}|. Clearly, if f = g

then Df = Dg. Now we claim something similar for f and g that are isomorphic.
Let Π be a set of permutations of [n], such that there is one-to-one correspondence between the

elements of Π and the possible injections I : [`]→ [n] as follows. Each π ∈ Π is associated with an

41

injection Iπ : [`]→ [n], such that

π(i) =


Iπ(i) , i ∈ [`]
i , i ∈ [n] \ [`] and I−1

π (i) = ∅
I−1
π (i) , i ∈ [n] \ [`] and I−1

π (i) 6= ∅

 .

Clearly, |Π| ≤ n`.

Claim A.1 If f is isomorphic to g, then for some π ∈ Π, Df = Dgπ . On the other hand, for any
function f ,

Pr
g

[
|Df −Dgπ | ≤ 1/4 for some π ∈ Π

]
= 1− o(1).

Proof. The first statement is straightforward: Let f and g be isomorphic, i.e., f = gσ for some
σ : [n]→ [n]. Take π ∈ Π such that σ(i) = π(i) for all i ∈ [`]. Then Df = Dgπ .

Now, fix f , and let g be chosen uniformly at random. We would like to show that for all π ∈ Π,

Prg

[
|Df −Dgπ | ≤ 1/4

]
= 1−o(1/|Π|), so that we can apply the union bound. But notice that it is

sufficient to prove this inequality when π is the identity, because the function g is chosen uniformly
at random.

Fix i ∈ [n]. For every j ∈ [n],

Pr
g

[
α(f, i) = α(g, j)

]
= 2−`,

hence
Pr
g

[
α(f, i) = α(g, j) for some j ∈ [n]

]
≤ n2−` = 1/n.

Therefore, the expected intersection size between the multisets15 {α(f, i) : i ∈ [n]} and {α(g, i) : i ∈
[n]} is O(1). But notice that in order for the distributions Df and Dg to be close, the intersection
of these multisets must be of size Ω(n). Using the fact that the events

Ei , I
[
α(f, i) = α(g, j) for some j ∈ [n]

]
are independent, we can apply standard concentration bounds to conclude that

Pr
g

[
|Df −Dg| ≤ 1/4

]
= 1− 2−Ω(n) = 1− o(1/|Π|),

completing the proof.
Notice that the distribution Df can be constructed exactly given f . On the other hand, given

an oracle access to g, we can obtain a random sample from Dg by picking a random i ∈ [n] and
querying g on ` inputs {i, 1}, . . . , {i, `}. This observation, together with Claim A.1, suggests that
we use the following lemma from [BFF+01], which states that Õ(

√
n) samples are sufficient for

testing equivalence between a samplable distribution and an explicitly given one.

Lemma A.2 There is a tester TDist that for any two distributions DK ,DU over {0, 1}∗, each having
support of size at most n, and where DK is given explicitly and DU is given as a black box that
allows sampling, satisfies the following: If DK = DU then the TDist accepts with probability at least
1−n−3 logn; and if |DK −DU | ≥ 1/4 then TDist rejects with probability at least 1−n−3 logn. In any
case, TDist uses Õ(

√
n) samples.

15Intersection here can be a multiset as well. For example, {a, a, b, c, c, c} ∩ {a, a, b, b, c} = {a, a, b, c}.

42

Actually, this is an amplified version of the lemma from [BFF+01], which can be achieved
by independently repeating the algorithm provided there polylog(m) many times and taking the
majority vote.

To conclude, we can reduce our problem to testing equivalence of distributions as follows. Given
f and oracle access to g, go over all permutations π ∈ Π and test, with TDist, if Df and Dgπ are
equal. If TDist accepts for some π, accept; otherwise reject.

By Claim A.1, if f is isomorphic to g then for some π ∈ Π we have Df = Dgπ , and so TDist

will with high probability accept while checking that particular π. On the other hand, every π
for which |Df − Dgπ | ≥ 1/4 is accepted with probability at most n−3 logn = o(1/|Π|). Thus, for
randomly chosen g, TDist rejects with probability 1− o(1).

As for the query complexity, the amplified version of Lemma A.2 allows us to reuse the same
Õ(
√
n) samples for checking all permutations in Π. Therefore, since simulating a random sample

from Dgπ requires ` = 2 log n queries to g, the bound on the query complexity is Õ(
√
n).

43

