
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 20, NO. 1, FEBRUARY 2004 45

Nearness Diagram (ND) Navigation: Collision
Avoidance in Troublesome Scenarios

Javier Minguez, Associate Member, IEEE, and Luis Montano, Member, IEEE

Abstract—This paper addresses the reactive collision avoidance
for vehicles that move in very dense, cluttered, and complex
scenarios. First, we describe the design of a reactive navigation
method that uses a “divide and conquer” strategy based on situa-
tions to simplify the difficulty of the navigation. Many techniques
could be used to implement this design (since it is described at
symbolic level), leading to new reactive methods that must be
able to navigate in arduous environments (as the difficulty of
the navigation is simplified). We also propose a geometry-based
implementation of our design called the nearness diagram naviga-
tion. The advantage of this reactive method is to successfully move
robots in troublesome scenarios, where other methods present
a high degree of difficulty in navigating. We show experimental
results on a real vehicle to validate this research, and a discussion
about the advantages and limitations of this new approach.

Index Terms—Collision avoidance, mobile robots, reactive navi-
gation, sensor-based motion planning.

I. INTRODUCTION

T
HERE ARE a lot of tasks where robots are asked to move

safely in scenarios with unknown and dynamic obstacles.

In this case, the motion strategies must rely on sensory infor-

mation to compute the movements according to the unforeseen

circumstances. These strategies are the sensor-based motion

planning methods (also named reactive navigation methods).

The challenge for these approaches is to deal with very clut-

tered, dense, and complex scenarios, which are usually the case

in most robotic applications. A typical scenario is depicted in

Fig. 1, where the robot is required to move among random

distributions of obstacles with any shape, such as humans,

doors, chairs, tables, wardrobes, and filing cabinets. Many

existing reactive navigation methods have problems moving

a robot in this type of environment. In this paper, we present

how to use a classic paradigm to design a reactive navigation

method, and we describe a particular implementation of this

design that overcomes these navigation difficulties.

The situated-activity paradigm (see [1]) is a design method-

ology based on identifying situations and applying the corre-

sponding actions. We use this methodology to design at sym-

bolic level our reactive navigation method. Then, we simplify

Manuscript received September 27, 2002. This paper was recommended
for publication by Associate Editor N. Sarkar and Editor A. De Luca upon
evaluation of the reviewers’ comments. This work was supported in part
by the Ministerio de Ciencia y Tecnología del Gobierno España under
MCYT-DPI2000-1272. This paper was presented in part at the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Takamatsu, Japan,
October 31–November 5, 2000.

The authors are with the Departamento de Informática e Ingeniería
de Sistemas, Universidad de Zaragoza, 50015 Zaragoza, Spain (e-mail:
jminguez@unizar.es; montano@unizar.es).

Digital Object Identifier 10.1109/TRA.2003.820849

Fig. 1. Typical office environment. The snapshot was taken in an experiment
performed using a complete navigation system. The ND navigation is the
sensory-motor function that is driving the robot out of the office.

the navigation problem by a “divide and conquer” strategy based

on a set of complete and exclusive situations. Therefore, re-

active navigation methods implemented following our design

guidelines must be able to solve more complex navigation prob-

lems than other existing methods (i.e., to successfully navigate

in troublesome scenarios).

We call the nearness diagram (ND) navigation the geometric

implementation of our design. By using some diagrams, entities

as the proximity of obstacles and areas of free space are iden-

tified and used to define the set of situations, and to implement

laws of motion (actions) for each situation. In real time, the sen-

sory information is used to identify one situation, and the asso-

ciated action is executed computing the motion commands. We

validated our implementation with experimentation on a real ve-

hicle in the mentioned scenarios.

Navigation in these enviroments (Fig. 1) remains troublesome

for many existing methods, due to the appearance of classic

problems such as trap situations in U-shape obstacles, oscilla-

tory motion in narrow places, the difficulty of obtaining maneu-

vers that require motion toward the obstacles or far from the goal

direction, or the identification of areas of motion where the robot

could move without collisions. This paper describes how these

difficulties are avoided by the ND navigation method. More-

over, we compare this method with other existing approaches

on the basis of these limitations and problems.

In this paper, we discuss related work in Section II, and the

situated-activity design methodology in Section III. We present

the reactive navigation method design in Section IV, and our

1042-296X/04$20.00 © 2004 IEEE

46 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 20, NO. 1, FEBRUARY 2004

implementation in Section V. In Section VI, we show the exper-

imental results. Finally, in Section VII, we discuss the contribu-

tions and limitations of our reactive method, and in Section VIII,

we draw our conclusions.

II. RELATED WORK

The objective of our work is to compute collision-free mo-

tion for a robot operating in dynamic and unknown scenarios.

Roughly, the motion techniques are either global and based on

a priori information (motion planning), or local and based on

sensory information (reactive navigation).

The theoretical aspect of the motion planning problem is well

understood, and classically solved by computing a geometrical

trajectory avoiding known obstacles (see [2] for a review of

techniques). However, the general methods for motion planning

are not applicable if the environment is dynamic with a priori

unknown behavior, or if it is gradually discovered. Moreover,

when both the environment model and robot motion are uncer-

tain (as in the real world, because of sensing inaccuracies), exe-

cuting a theoretical geometric trajectory is not realistic and the

robot is doomed to collide with obstacles.

Hence, solving this problem involves sensing directly within

the motion planning and control loop. Reactive navigation is,

then, a more robust way to tackle the mobility problem by taking

into account the reality of the environment during motion. These

methods are based on a perception-action process that is re-

peated periodically at a high rate. First, the sensory information

is collected. Then, these methods compute the “best” motion

command to avoid collisions while moving the robot toward a

given goal location. This process is resumed while the vehicle

executes the motion command. These methods potentially deal

with unknown and dynamic scenarios because the sensory infor-

mation is integrated at a high rate within the framework. How-

ever, it is difficult to obtain optimal solutions and to avoid the

trap situations since they use a local fraction of the information

available (sensory information). Next, we describe related work

with these methods.

• Some methods use a physical analogy to compute the mo-

tion commands, where mathematical equations borrowed

from physics are applied to the sensory information and

the solutions are transformed into motion commands (e.g.,

the potential field methods [3]–[8], the perfume analogy

[9], and the fluid analogy [10], among others).

• Some methods compute a set of suitable motion com-

mands to select one command based on navigation strate-

gies. Some methods calculate sets of steering angles (e.g.,

[11]–[14]), and others compute sets of velocity commands

(e.g., [15]–[18]).

• Other methods compute some form of high-level informa-

tion description from the sensory information to obtain a

motion command later on (e.g., [6], [19], [20]). The ND

navigation method belongs to this group of approaches,

since some intermediate entities are computed to select a

given situation, and then an action that computes the mo-

tion is executed.

The majority of these methods have a high degree of diffi-

culty in safely navigating in very dense, cluttered, and complex

scenarios. Navigation in these circumstances is the motivation

and objective of our work.

III. THE SITUATED-ACTIVITY PARADIGM OF DESIGN

The situated-activity paradigm of behavioral design [1] was

used to design our reactive navigation method. This paradigm

is based on defining a set of situations that describe the rela-

tive state of the problem entities, and on actions associated with

each situation. During the execution phase, perception is used to

identify the current situation and the associated action is carried

out.

A design based on this paradigm has to comply with some

requirements.

• The situations have to be identifiable from sensory per-

ception, exclusive, and complete to represent the relative

state of the problem entities. Moreover, an explosion in the

number of situations needed has to be avoided. As com-

monly pointed out (see [21]), the most difficult step is to

find a set of situations that effectively describes the task.

• Each action design has to solve the task problem individ-

ually in the context of each situation.

Using this paradigm to design a module that executes action

tasks based on sensory information has the following advan-

tages.

• The paradigm itself describes perception-action process.

• The paradigm itself is a “divide and conquer” strategy

based on situations to reduce the task difficulty.

• A design using this paradigm does not have the real-time

action coordination problem1 because it is based on a com-

plete and exclusive set of situations (so there is not ambi-

guity in the action selection).

IV. THE REACTIVE NAVIGATION METHOD DESIGN

We describe in this section how we used the situated-activity

paradigm to design a reactive navigation method that works as

follows (Fig. 2). Periodically the sensory information collected

is used to identify the current situation among the predefined

set (Section IV-A), and then, the associated action is executed

computing the motion (Section IV-B).

A. The Set of Situations

The objective is to describe the relative state of the reactive

navigation entities (i.e., the robot, the obstacle distribution, and

the goal location) with a set of situations. First, we analyze the

relations among the entities to define the situations.

We obtain the relation between the robot and the obstacle

distribution with a safety evaluation [we check whether there

are obstacles within a security zone around the robot bounds, see

Fig. 3(a)]. In addition, we use an intermediate device, the free

walking area, to relate the robot and goal locations by means

of the obstacle distribution structure. The free walking area is

computed as follows. First, we search for gaps in the obstacle

distribution, and obtain the regions from two contiguous gaps.

1In short, this problem arises when the main task is divided into subtasks that
have to be arbitrated by a decision algorithm (to decide which subtask is active
in real time).

MINGUEZ AND MONTANO: NEARNESS DIAGRAM (ND) NAVIGATION: COLLISION AVOIDANCE IN TROUBLESOME SCENARIOS 47

LS2HSGR HSWR HSNR LS1

HSGR HSWR HSNR LS1 LS2

HSGR

no

ACTIONS

HIGH SAFETY LOW SAFETY

Motion Commands (V,W)

Criterion 1

Criterion 2

Criterion 3

Criterion 4

Sensory Data Goal location

SITUATIONS

DECISION

TREE

Robot Location Data

Fig. 2. Reactive navigation method design.

Next, we select the closest region to the goal location, checking

whether is “navigable” by the robot [Fig. 3(a)].

Next, we use these relations to define the set of situations that

are represented in a decision tree (Fig. 2). The inputs of the tree

are the robot, the obstacle distribution (sensory information),

and the goal, which allow us to identify the current situation

(output). The tree is traversed using binary decision rules based

on criteria that depend on the inputs and their relations. We de-

scribe the four criteria below.

Criterion 1: Safety criterion. There are two safety situations

(Fig. 2), depending on whether there are obstacles within the

security zone [Low Safety, see Fig. 3(a) and (b)] or not [High

Safety, see Fig. 3(c), (d), and (e)]. In Low Safety, we obtain the

first two situations by applying the next criterion.

Criterion 2: Dangerous obstacle distribution criterion.

1) Low Safety 1 (LS1): The robot is in LS1 when the obsta-

cles in the security zone are only on one side of the gap

(closest to the goal) of the free walking area [Fig. 3(a)].

2) Low Safety 2 (LS2): The robot is in LS2 when the ob-

stacles in the security zone are on both sides of the gap

(closest to the goal) of the free walking area [Fig. 3(b)].

There are three situations in High Safety. We obtain the first

one by applying the following criterion.

Criterion 3: Goal within the free walking area criterion.

3) High Safety Goal in Region (HSGR): The robot is in

HSGR when the goal location is within the free walking

area [Fig. 3(c)].

If not, we obtain the last situations by applying the next crite-

rion.

Criterion 4: Free walking area width criterion. A free

walking area is wide if its angular width is larger than a given

angle, and narrow, otherwise.

4) High Safety Wide Region (HSWR): The robot is in HSWR

when the free walking area is wide [Fig. 3(d)].

5) High Safety Narrow Region (HSNR): The robot is in

HSNR when the free walking area is narrow [Fig. 3(e)].

These situations are identifiable from sensory perception,

when it is available as depth maps. They are exclusive and

complete because they are represented with a binary decision

tree. In addition, there is no explosion in the number of situa-

tions because there are only five. This is because the situation

definition does not depend on the resolution or size of the

space considered. Then, we conclude that the set of situations

comply with the requirements imposed by the situated-activity

paradigm (mentioned in Section III).

B. Action Design

We describe next the action design guidelines associated with

each situation.

1) Low Safety 1 (LS1): This action moves the robot away

from the closest obstacle, and toward the gap (closest to

the goal) of the free walking area [Fig. 3(a)].

2) Low Safety 2 (LS2): Centers the robot between the two

closest obstacles at both sides of the gap (closest to the

goal) of the free walking area, while moving the robot

toward this gap [Fig. 3(b)].

3) High Safety Goal in Region (HSGR): Drives the robot

toward the goal [Fig. 3(c)].

4) High Safety Wide Region (HSWR): Moves the robot

alongside the obstacle [Fig. 3(d)].

5) High Safety Narrow Region (HSNR): Directs the

robot through the central zone of the free walking area

[Fig. 3(e)].

In each situation, the action individually solves the reactive

navigation task, which is to avoid obstacles while moving the

robot toward the goal location. This is achieved in Low Safety

because both actions avoid the obstacles while moving the robot

toward the gap (closest to the goal) of the free walking area

(notice that this gap implicitly has information about the goal

location). In High Safety, there is no need to avoid collisions

because the robot is not in danger. The actions drive the robot

toward the goal, toward the gap (closest to the goal) of the free

walking area, or toward the central zone of the free walking

area (i.e., these actions explicitly or implicitly drive the robot

toward the goal location). Then, the design of the actions comply

with the requirements imposed by the situated-activity paradigm

(mentioned in Section III).

There are some points worth mentioning here.

1) The reactive navigation method design is described at the

symbolic level. Learning techniques, fuzzy sets, potential

field implementations, optimization techniques, and other

tools may be used to implement the design, leading to

new reactive navigation methods. We describe in the next

section a geometry-based implementation.

48 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 20, NO. 1, FEBRUARY 2004

SIDE 1

ACTION

SIDE 2

GOAL
 X

GAP

FREE WALKING
AREA

CLOSEST
GAP

SECURITY ZONE

GAP

ACTION

FREE WALKING

GAP

SIDE 1

AREA
GOAL
 X

CLOSEST

SIDE 2

SECURITY ZONE

GAP

GOAL
 X

FREE WALKING

GAP

ACTION

AREA

SECURITY ZONE

GOAL
 X

FREE WALKING

ACTION

GAP

GAP

AREACLOSEST

SECURITY
ZONE

 X

ACTION

GAP

GAP

FREE WALKING

GOAL

AREA

CLOSEST

SECURITY ZONE

(a) (b)

(c) (d) (e)

Fig. 3. (a) LS1 situation/action example. (b) LS2 situation/action example. (c) HSGR situation/action example. (d) HSWR situation/action example. (e) HSNR
situation/action example.

2) Any reactive navigation method implemented following

the proposed design simplifies the reactive navigation

problem (by a “divide and conquer” strategy based on

situations). So, a good implementation might solve more

complicated navigation problems than other methods

(since the majority of them usually use a unique naviga-

tion heuristic). In addition, the design is flexible and new

situations could be defined to simplify even further.

3) The design does not suffer from the “action coordination

problem.” The actions are self-coordinated because the

general situations are complete and exclusive. Then, only

one situation is selected each time and only one action is

executed.

In summary, we have presented in this section the design of a

reactive navigation method using the situated-activity paradigm,

and demonstrated that the design complies with the requirements

imposed by the paradigm. Next, we implement the design.

V. ND NAVIGATION

We describe here a geometry-based implementation of the

reactive navigation method design called ND navigation. We

consider a circular (with radius) and holonomic vehicle that

moves over a flat surface. The workspace is , and a motion

command is (,) (with the translational velocity,

and the rotational velocity).

We assume that the sensory information is available as depth

point maps to maintain the sensor as generally as possible (the

great majority of sensory information can be processed and then

reduced to points), and to avoid the use of structured informa-

tion (as lines or polygons that otherwise can be used if they are

available).

In order to implement the ND method (Fig. 2), first we intro-

duce the tools used to analyze the information (Section V-A).

Next, we present the implementation of the set of situations

(Section V-B), and of the associated actions (Section V-C).

A. Tools and the Relations Among the Navigation Entities

The NDs are the tools used to analyze the relations between

the robot, obstacle distribution, and goal location.

From now on, the reference system is the robot reference.

We divide the space in sectors centered in the origin (in our

MINGUEZ AND MONTANO: NEARNESS DIAGRAM (ND) NAVIGATION: COLLISION AVOIDANCE IN TROUBLESOME SCENARIOS 49

GOAL

x

SECURITY
DISTANCE

ROBOT
ORIENTATION

FREE WALKING
AREA

GAP 1

GAP 2

GAP 3

REGION 1

GAP 5

GAP 4

REGION 2

REGION 3

GAP 6

GAP 7
0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

SECTORS

PND

ROBOT

ORIENTATION

1

2

3

4

5

6

7

VALLEY 1
SELECTED

VALLEY

VALLEY 2
Sgoal

VALLEY 3

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

SECTORS

RND

SECURITY

NEARNESS

(a) (b) (c)

Fig. 4. (a) Gaps, regions, and free walking area. (b) PND. (c) RND. The following values were set: R = 0:3 m, d = 3 m, d = 0:3 m.

implementation , so 2.5 is the angle of each sector).

Once a sector is selected, we compute the bisector angle as

(1)

Let be the list of the obstacle points perceived, then is

the function that computes the minimum distance to an obstacle

point in sector (with when there are no obstacles in

sector , and where is the maximum

range of the sensor). Then we define the diagrams as follows.

Definition 1: ND from the central Point (PND)

if

else

Definition 2: ND from the Robot bounds (RND)

if

else

where is the robot radius for a circular robot.2

The PND represents the nearness of the obstacles from the

robot center and the RND represents the nearness of the obsta-

cles from the robot boundary (see Fig. 4). Next, we consider the

relations among the robot, the obstacle distribution, and the goal

using these diagrams.

We obtain the robot and obstacle distribution relation by

checking whether there are obstacles within the security zone

(defined with a security distance, , to the robot bounds). Then,

we use a security nearness (computed by) in

the RND to evaluate the robot safety [Fig. 4(a) and (c)].

The relation between the robot and the goal location is ob-

tained from the free walking area device. We carry out the fol-

lowing analysis in the PND to identify it. First we identify gaps,

2If the robot is not circular, E is the distance from the robot center to the
robot bounds in sector i.

and from these gaps, we obtain the regions. Finally, we select

one region, the free walking area [Fig. 4(a)].

1) Gaps: We identify gaps in the obstacle distribution as dis-

continuities in the PND.

A discontinuity exists between two adjacent3 sectors (,

) if . Fig. 4(a) depicts the gaps that

are identified as discontinuities in the PND [Fig. 4(b)].

Notice that the robot diameter is used because we

are only interested in the gaps where the robot fits.

For a discontinuity between two sectors (,), if, for

instance, , we differ between a rising

discontinuity from to and a descending discontinuity

from to .

2) Regions: Two contiguous gaps form a region. We identify

the regions as valleys in the PND.

Let be the set of all sectors. A

valley is a nonempty set of sectors of , ,

that satisfies the following conditions.

(a) There are no discontinuities between adjacent sec-

tors of (i.e., there are no discontinuities within

the valley).

(b) There are two discontinuities in the extreme sectors

of (and)

AND

(c) At least one of the previous discontinuities is a

rising discontinuity from or from

OR

where the rising discontinuities identify potential

gaps to drive the robot within the region, so at least

one is required.

Fig. 4(a) shows the four regions identified as valleys

in the PND [Fig. 4(b)]. These valleys do not have inside

discontinuities [condition (a)], and they have a disconti-

nuity in both extremes [condition (b)]. Furthermore, each

valley has at least one rising discontinuity [condition (c)].

3The adjacent sectors to i are i � 1 and i + 1. In all the operations among
sectors, we use themod(�; n) function to give continuity to the diagrams. Thus,
if i = n, then i = 0.

50 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 20, NO. 1, FEBRUARY 2004

For instance, valley 1 is created by discontinuities 1 and

2, both rising discontinuities (and identifies region 1 cre-

ated by gaps 1 and 2). However, valley 2 is created by

the rising discontinuity 5 and the descending disconti-

nuity 6 (identifying region 2 created by gaps 5 and 6).

Notice that the descending discontinuity 6 identifies the

gap 6 that cannot be reached moving within the region 2.

However, on the other side, discontinuity 6 is a rising dis-

continuity, and with discontinuity 7 creates the valley 3

(identifying region 3). A special case is when the goal is

between an obstacle and the robot, then it could be that

the sector that contains the goal location does not

belong to a valley. When this situation is detected, we set

, which creates an artificial valley in the

goal sector (in this case, we force the goal to be within a

region). Another special case is when there are no obsta-

cles, and then all the sectors form the valley.

3) Free walking area: The “navigable” region closest to the

goal location, which is identified as follows. We select

first the valley with the rising discontinuity closest4 to

(in Fig. 4, we select the valley created by disconti-

nuities 3 and 4, because discontinuity 3 is the rising dis-

continuity closest to). Next, we check whether the

candidate region is “navigable” (see the Appendix for de-

scription of the algorithm). The selected valley identifies

the free walking area. If it is not “navigable,” we select

another valley and repeat the process until we find a “nav-

igable” region, or no region exists.

We still need to differ between a wide free walking area

and a narrow one. If its angular width is greater than a

given quantity (for us, 90) is wide, if not, it is narrow.

Then, since the number of sectors of a valley is the angular

width of the region, a valley is wide if the number of

sectors is greater than (that is, 90), and

narrow otherwise.

We adopt the following notation to simplify the description

of the set of situations and the associated actions in the next

subsections (see Fig. 5).

• : sector that contains the goal location.

• and : is the sector corresponding to the rising

discontinuity (closest to) of the selected valley. This

sector contains the potential gap (closest to the goal) of

the free walking area. is the sector corresponding to

the other discontinuity. This sector contains the other gap

of the free walking area.

• and : RND sectors that exceed the security nearness

at both sides of (with maximum values). These sectors

contain the closest obstacle points at both sides of the po-

tential gap (closest to the goal) of the free walking area.

B. Set of Situations

Using these tools, we address the implementation of the set

of situations mentioned in Section IV-A. The situations are rep-

resented in the same decision tree of Fig. 2, and the criteria of

the tree branches are described below.

4The term closest is in number of sectors.

Criterion 1: Safety criterion. To compute this criterion, we

check whether there are obstacles that exceed the security near-

ness in the RND (Low Safety), or not (High Safety) (Fig. 5). In

Low Safety, we obtain the first two situations by applying the

next criterion.

Criterion 2: Dangerous obstacle distribution criterion.

2) Low Safety 1 (LS1): The robot is in LS1 when the RND

sectors that exceed the security nearness are only on one

side of the rising discontinuity (closest to the goal sector)

of the selected valley. We depict this situation in Fig. 5,

where in LS1 there are RND sectors that exceed the se-

curity nearness, but only on one side of .

3) Low Safety 2 (LS2): The robot is in LS2 when the RND

sectors that exceed the security nearness are on both sides

of the rising discontinuity (closest to the goal sector) of

the selected valley. This case is similar to the previous

one, but the RND sectors that exceed the security nearness

are now at both sides of (see Fig. 5).

There are three situations in High Safety. We obtain the first

one by applying the following criterion.

Criterion 3: Goal within the free walking area criterion.

3) High Safety Goal in Region (HSGR): The robot is in

HSGR if the goal sector belongs to the selected

valley (see Fig. 5 and notice that the robot is in High Safety

because no RND sector exceeds the security nearness).

If not, we obtain the last situations by applying the next cri-

terion.

Criterion 4: Free walking area width criterion.

4) High Safety Wide Region (HSWR): The robot is in

HSWR when the selected valley is wide. We show this

situation in Fig. 5, where the selected valley is wide (the

number of sectors is).

5) High Safety Narrow Region (HSNR): The robot is in

HSNR when the selected valley is narrow. In Fig. 5, the

selected valley is narrow because the number of sectors is

.

C. Associated Actions

We describe next the implementation of the actions associated

with each situation. The objective is to find simple control laws

that produce the desired navigation behavior in each situation

(following the design guidelines mentioned in Section IV-B).

Each action computes a motion command (, ,), whose

implementation is summarized in Table I.

1) Translational Velocity Direction : To compute the

most promising motion direction, we carry out all the opera-

tions with sectors that are converted into an angle by using

(1) (as , then , i.e., any direction of motion

can be selected).

In Low Safety, the direction of motion must bring the robot

to a secure situation, since the robot is in danger of colliding

because there are obstacles within the security zone.

1) Low Safety 1: In this situation, the direction of motion is

computed by adding two terms. The first one is as it im-

plicitly contains the information of the goal location. The

second one is a magnitude that depends on the angle be-

tween and the closest obstacle direction , plus a

MINGUEZ AND MONTANO: NEARNESS DIAGRAM (ND) NAVIGATION: COLLISION AVOIDANCE IN TROUBLESOME SCENARIOS 51

FREE WALKING

C

SECURITY ZONE

GOAL
 X

AREA

SOLUTION
Sθ

Smed1

SECURITY
DISTANCE

Smed2

GAP

Sml

Smr

CLOSEST

Srd

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

SECTORS

PND

Sθ

V
A
L
L
E
Y

Smed2 Smed1Sgoal Srd

Sml

Smr

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

SECTORS

RND

Srd
SIDE 1 SIDE 2

Security
Nearness

SmrSml

SECURITY ZONE

GOAL
 X

AREA

FREE WALKING
Sθ

SOLUTION

DISTANCE

SECURITY

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

SECTORS

PND

θS
Sgoal

V
A
L
L
E
Y

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

SECTORS

RND

Nearness
Security

 X
GOAL

SECURITY ZONE

Sθ SOLUTION

Smax/2

FREE WALKING
AREA

Srd

SECURITY
DISTANCE

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

SECTORS

PND

Sgoal SθSrd

VALLEY

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

SECTORS

RND

Nearness
Security

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

2.5

3

3.5

4

SECTORS

PND

SθSgoal Srd Sod

V

A

L
L

E
Y

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

SECTORS

RND

Nearness
Security

SECURITY ZONE

SECURITY
DISTANCE

θ

GAP

FREE WALKING AREA

Sp

S SOLUTION

GOAL
 X

Sml

Srd

CLOSEST

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

SECTORS

PND

Sθ

V
A
L
L
E
Y

SrdSgoalSml

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

SECTORS

RND

SIDE 1 SIDE 2

Security
Nearness

SrdSml

SITUATION SCENARIO PND RND

LS1

LS2

HSGR

HSWR

HSNR

 X

FREE WALKING
AREA

GOAL

S
θ

 SOLUTION

SECURITY ZONE
SECURITY
DISTANCE

Sod
Srd

Fig. 5. Situation/Action table and the PND and RND diagrams.

52 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 20, NO. 1, FEBRUARY 2004

TABLE I
SITUATION/ACTION TABLE

fixed angle . The addition of both terms leads to a

motion behavior toward while avoiding the closest ob-

stacle (see Fig. 5).

The parameter is an experimentally tuned parameter (in

our implementation) whose value ensures a

smooth behavior in the transitions among the situations. The

parameter acts as an adaptive proportional controller.

2) Low Safety 2: The direction solution is computed as the

bisector of the direction of the two closest obstacles (

and). From the bisector and the complementary angle,

we choose the closest to , as it implicitly contains the

information of the goal location. In addition, we add a term

that is a correction function used to keep the robot centered

between the two closest obstacles, since motion along the

bisector does not center the robot. The function depends on

the closest obstacle distance and on the difference between

the distances of the two closest obstacles. This quantity, ,

is added or subtracted depending on the sector (or)

that contains the closest obstacle.

In High Safety, we move the robot within the free walking

area because the robot is not in danger of colliding.

3) High Safety Goal in Region: In this situation, the direc-

tion of motion is toward the goal location. We explicitly

use the goal to compute the motion commands only in this

situation (notice that in this situation the robot is not in

danger of colliding and the goal is within the free walking

area).

4) High Safety Wide Region: The direction of motion is the

addition of (that contains information of the goal) and

a given angle . This produces a motion alongside

the obstacle toward the goal.

5) High Safety Narrow Region: The direction is computed

as the bisector of the direction of the discontinuities of the

selected valley, that is, toward the central zone of the free

walking area.

2) Translational Velocity Absolute Value : Let be

the maximum translational velocity, be the distance from

the closest obstacle to the robot bounds, and be the secu-

rity distance. Then, with the proposed velocity control (Table I),

the robot moves at maximum speed (High Safety) until one ob-

stacle shows up in the security zone. Then, the robot reduces

the speed in proportion to the distance to the closest obstacle

(Low Safety), until the security zone is clear. In addition, large

changes in the direction of motion also reduce the translational

velocity module. Notice that since we will use a sensor with

180 visibility, we prohibit instantaneous backward motion and

force the velocity direction to be . Then, large

changes in the direction of motion also reduce the translational

velocity module.

3) Rotational Velocity : We introduce this angular ve-

locity term because the sensor has visibility constraints (it is

considered that the main sensor direction and the robot ori-

entation match). This angular velocity control (Table I) aligns

the main sensor direction with the robot instantaneous direction

of motion, with large turns of the robot when there are great

changes in (the robot rotates facing the direction of motion as

soon as possible), and smooth turns when the changes are small.

In summary, in this section we have presented the ND method

that is a geometry-based implementation of the reactive method

design. This reactive method computes the motion commands

(, ,) from the sensory information, in order to safely drive

a vehicle among locations.

VI. SETTINGS AND EXPERIMENTAL RESULTS

In this section, we present the experimental results to validate

the ND method.

A. Mobile Platform and Settings

We tested the ND method on a Nomadic XR4000, a circular

(with a radius of 24 cm) and holonomic vehicle equipped with

a 2-D laser rangefinder and an on-board Pentium II. The com-

putation time of the ND method was around 125 ms when pro-

cessing a short-time memory (required to deal with the sensor

visibility constraints) built with the last 20 laser measurements

(361 20 points). We set the maximum translational velocity

to m/s and the maximum rotational one to

rad/s. We fixed these velocity limits because the intention

was to move the robot in indoor human environments, where

there is a high density of obstacles and the safety of the humans

around must be preserved (see Fig. 1).

B. Experiments

We present here three experiments carried out using this ve-

hicle in unknown, unstructured, and dynamic scenarios (only

the goal location was given in advance). In addition, we de-

signed the experiments to verify that the ND method complies

with the goal of this work: To safely drive a robot in very dense,

MINGUEZ AND MONTANO: NEARNESS DIAGRAM (ND) NAVIGATION: COLLISION AVOIDANCE IN TROUBLESOME SCENARIOS 53

cluttered, and complex scenarios. Furthermore, these experi-

ments will also allow a discussion (next section) of some other

contributions of the ND method summarized next: i) avoiding

trap situations due to the perceived environment structure (e.g.,

U-shaped obstacles and two very close obstacles); ii) computing

stable and oscillation-free motion; iii) selecting motion direc-

tions toward obstacles; iv) exhibiting a high goal insensitivity

(i.e., to be able to choose motion directions far away from the

goal direction); and v) selecting regions of motion using a ro-

bust “navigable” criterion.

Experiment 1: In this experiment, the robot reached the goal

location in a dense scenario, with narrow places and highly

reduced room to maneuver [see the robot trajectory and the

laser points perceived in Fig. 6(a) and the sequence of snapshots

Fig. 6(c)–(j)]. Fig. 6(d), (f), and (g) depict some parts of the ex-

periment where the robot moved among obstacles with less than

10 cm on both sides (the tile size is about 10 cm). In addition,

we did not observe trap situations due to the motion in narrow

places.

The robot was able to enter and travel along the passage be-

cause the available space was checked with the free walking

areas [some of them are shown in Fig. 6(e), (k), (f), and (l)].

The selection of directions toward the obstacles was essential to

successfully accomplish this experiment (in Fig. 6(e), (k), (f),

(l), (g), and (m) we depict some instants when the computed di-

rection solution pointed toward an obstacle). The motion was

oscillation free, which is illustrated in the robot path and in the

velocity profiles [see Fig. 6(a) and (b)]. We show in Fig. 6(n)

the situation selected at each time, where the robot was mainly

in LS2 because there were obstacles within the security zone on

both sides of the free walking area at every moment.

The experiment was carried out in 60 s, and the average trans-

lational velocity was 0.114 m/s.

Experiment 2: The robot navigated in a dense, complex,

and cluttered scenario that was dynamically built by a human

while the robot was moving [the sequence of snapshots show

the highly dynamic nature of the environment in Fig. 7(c)–(j)].

In the first part of the experiment, the human closed the

passage when the robot was in the first corridor [Fig. 7(f)].

This situation was detected and the robot was stopped (notice

that in Fig. 7(b) the velocities from second 33 to 52 are zero).

Here, a flag could be launched to a higher level module to plan

a new subgoal, however, in these experiments, we only tested

the reactive method. Finally, the passage was opened and the

robot resumed the motion [Fig. 7(g)].

In some parts of the experiment, the robot navigated among

very close obstacles [see Fig. 7(e), (k), (g), and (l)], where we

did not detect trap situations. The selection of areas of motion

where the robot fitted was carried out using the free walking

area [see some of them in Fig. 7(e), (k), (h), and (m)]. The ND

method selected motion directions toward the obstacles when it

was required [some of them are illustrated in Fig. 7(e), (k), (g),

(l), (h), and (m)]. To successfully navigate in this environment,

the method selected directions of motion far away from the goal

direction (mentioned before as goal insensitivity). Fig. 7(g), (l),

(h), and (m) depict some instants when the motion direction so-

lutions and goal directions differ in more than 90 (any differ-

ence could be obtained with the reactive method). We did not

observe oscillations during the run, which is illustrated by the

robot path and the velocity profile [Fig. 7(a) and (b)].

We show the situations selected in Fig. 7(n), where the robot

mainly was in LS2 because there were obstacles within the se-

curity zone on both sides of the free walking area at almost every

moment. Sometimes the robot was in LS1 because there were

risky obstacles only on one side of the free walking area. This is

due to the sensor visibility constraints and the limited short-time

memory (sometimes the robot did not “see” any obstacle on one

side, however, when the robot turned, it could “see” the obsta-

cles and the situation became LS2).

The complete time of the experiment was 220 s and the av-

erage translational velocity was 0.104 m/s.

Experiment 3: In this experiment, the robot reached the goal

location avoiding three U-shape obstacles placed in the environ-

ment [see Fig. 8(a) and Fig. 8(c) and (g)]. The robot avoided en-

tering and getting trapped because the areas of motion selected

(free walking areas) were out of the U-shaped obstacles (i.e.,

the ND method uses the free walking area device to avoid these

structural trap situations). Fig. 8(c), (k), (e), (l), (g), and (m) de-

pict some parts of the experiment and the free walking areas

that, in all the cases, are out of the U-shaped obstacles. The free

walking area of Fig. 8(m) has the same shape as region 1 in

Fig. 4, while the ones of Fig. 8(k) and (l) have the same shape

as region 2.

Directions toward the obstacles were selected during almost

the whole experiment (see in Fig. 8(e), (l), (g), and (m) some of

these moments). In some parts of the experiment, motion direc-

tions far from the goal direction were required [Fig. 8(m)].

The velocity profile is illustrated in Fig. 8(b). These velocities

are higher than in other experiments because the robot was often

in High Safety [Fig. 8(n)] and then moved at maximum speed.

The time of the experiment was 83 s and the average transla-

tional velocity was 0.247 m/s.

VII. DISCUSSION

We present here a discussion regarding other collision avoid-

ance approaches, the limitations of the ND method and the lim-

itations of the reactive approaches in general.

A. Comparison With Existing Methods

The ND method avoids the local trap situations due to the

environmental structure (e.g., U-shaped obstacles and very

close obstacles). The method successfully selects areas of mo-

tion among very close obstacles because the free walking areas

are selected with a width-checking criterion [see Fig. 6(d), (k),

(f), and (l) and Fig. 7(e), (k), (h), and (m)]. In addition, there

are no free walking areas within a U-shaped obstacle when it

is completely “visible.” In this case, the free space within the

obstacle is not selected for motion [see Fig. 8(c), (k), (e), (l),

(g), and (m)]. Sometimes the free walking area could be within

an obstacle when it is not completely “visible.” In this case,

some symmetrical conditions involving the goal location would

produce motion toward the inside of the obstacle.

The potential field methods produce local trap situations due

to the motion among close obstacles and the U-shaped obsta-

cles [22] (both cases create potential minima that trap the robot).

54 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 20, NO. 1, FEBRUARY 2004

0 10 20 30 40 50
-0.5

0

0.5

Velocities

Time (sec)

X
 V

el
o
ci

ty
 (

m
/s

ec
)

0 10 20 30 40 50
-0.5

0

0.5

Time (sec)

Y
 V

el
o
ci

ty
 (

m
/s

ec
)

0 10 20 30 40 50

-1

0

1

Time (sec)

R
o
ta

ti
o
n
al

 V
el

o
ci

ty
 (

ra
d
/s

ec
)

x
GOAL

x GOAL

ROBOT

LASER POINTS

ND SOLUTION

0 10 20 30 40 50 60
0

1

2

3

4

5

6

Time (sec)

S
it

u
at

io
n

s

LS2

LS1

HSWR

HSNR

HSGV

SITUATIONS

Snapshot 1

Snapshot 2

Snapshot 3

Snapshot 4

Snapshot 5

Snapshot 6

Snapshot 7

Snapshot 8

x

GOAL

1 meter

(c) (d) (e) (f)

(g) (h)

GOAL

(i) (j)

(a) (b)

(k) (l) (m) (n)

Fig. 6. Experiment 1.

To move a robot among close obstacles, the methods based on

polar histograms [12], [13], [23] have the difficulty of tuning an

empirical threshold. While one threshold is necessary to nav-

igate among close obstacles, the threshold has to be modified

to navigate in environments with no obstacle density. Traps due

to the U-shaped obstacles are not avoided by the methods that

use constrained optimizations [11], [15], [16], [18]. This is be-

cause the optimization loses the information of the environment

structure that is necessary to solve these situations (the environ-

ment structure is studied with the free walking area in the ND

MINGUEZ AND MONTANO: NEARNESS DIAGRAM (ND) NAVIGATION: COLLISION AVOIDANCE IN TROUBLESOME SCENARIOS 55

0 50 100 150 200
-0.5

0

0.5
Velocities

Time (sec)

X
 V

el
o
ci

ty
 (

m
/s

ec
)

0 50 100 150 200
-0.5

0

0.5

Time (sec)

Y
 V

el
o
ci

ty
 (

m
/s

ec
)

0 50 100 150 200

-1

0

1

Time (sec)R
o
ta

ti
o
n
al

 V
el

o
ci

ty
 (

ra
d
/s

ec
)

U-SHAPE
OBSTACLE

X
GOAL

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

S
it

u
at

io
n

s

LS2

LS1

HSWR

HSNR

HSGR

SITUATIONS

(c) (d) (e) (f)

(g) (h) (i) (j)

(a) (b)

(k) (l) (m) (n)

GOAL
DIRECTION

GOAL

GOAL
DIRECTION

Snapshot 1

Snapshot 2

GOAL

Snapshot 7

Snapshot 6

Snapshot 5

BLOCKED

PASSAGE

Snapshot 4

Snapshot 8 X

1 meter

Snapshot 3

Fig. 7. Experiment 2.

method). There are methods based on a given path deformed in

real time [6], [19], [20], [24]. A trap situation appears when the

path lies within U-shaped obstacles dynamically created.

The ND method computes oscillation-free motion when the

robot moves among very close obstacles, because the LS2 ac-

tion was implemented to comply with this requirement [see the

complete robot path and the velocity profile in Fig. 6(a) and (b)

and Fig. 7(a) and (b)]. The potential field methods can produce

oscillatory motion when moving among very close obstacles or

narrow corridors [22].

Motion directions far away from the goal direction are ob-

tained with the ND method (mentioned before as goal insensi-

56 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 20, NO. 1, FEBRUARY 2004

U-SHAPE
OBSTACLES

GOAL

U-SHAPE
OBSTACLES

GOAL

Snapshot 1

Snapshot 2

Snapshot 3

Snapshot 5

Snapshot 6

Snapshot 8

x
GOAL

Snapshot 4

Snapshot 7

U-SHAPE OBSTACLES

1 meter
0 10 20 30 40 50 60 70

-0.5

0

0.5
Velocities

Time (sec)

X
 V

el
o
ci

ty
 (

m
/s

ec
)

50 60 70

1

0 10

-1

20 30 40

0

Time (sec)

R
o
ta

ti
o
n
al

 V
el

o
ci

ty
 (

ra
d
/s

ec
)

0 10 20 30 40 50 60 70
-0.5

0

0.5

Time (sec)

Y
 V

el
o
ci

ty
 (

m
/s

ec
)

GOAL

DIRECTION

U-SHAPE

OBSTACLE

GOAL

DIRECTION

U-SHAPE

OBSTACLE

DIRECTION

GOAL

OBSTACLE

U-SHAPE

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

Time (sec)

S
it

u
at

io
n

s

LS2

LS1

HSWR

HSNR

HSGV

SITUATIONS

(c) (d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m) (n)

(a) (b)

X
GOAL

Fig. 8. Experiment 3.

tivity). This is because the goal direction is only used directly

in one of the five motion laws (in HSGR, where the robot is

not in danger and there is not an apparent navigation difficulty).

This property was essential in many situations encountered in

the experiments [see Fig. 7(l) and (m) and Fig. 8(m)]. The reac-

tive methods that make a physical analogy use the goal location

directly in the motion heuristic (e.g., [3]–[10]). These methods

exhibit high goal sensitivity, so directions of motion far away

from the goal location are difficult to obtain (in all the situa-

tions where they are required). In the methods that solve the

problem with a constrained optimization (e.g., [11], [15], [16],

[18]), one of the balance terms is the goal heading. Therefore,

these methods also exhibit high goal sensitivity.

In the ND method, nothing prohibits the selection of motion

directions toward the obstacles, so they are computed when

required [see Fig. 6(k)–(m), Fig. 7(k)–(m), and Fig. 8(l) and

(m)]. However, some methods explicitly prohibit the selection

of motion toward the obstacles (e.g., [13]).

MINGUEZ AND MONTANO: NEARNESS DIAGRAM (ND) NAVIGATION: COLLISION AVOIDANCE IN TROUBLESOME SCENARIOS 57

One difficulty found in most of the collision avoidance ap-

proaches is the tuning of the internal parameters. It is difficult

to find the optimum values for a good behavior in all the colli-

sion avoidance situations. The ND method only has one param-

eter that is chosen heuristically (parameter). This parameter is

only used in one of the five navigation laws, it is a multiplier of

a physical magnitude, and it is easy to find a value that does not

determine the final method behavior.

The ND method uses five different situations and the

associated actions to compute the motion commands. We im-

plemented a hysteresis behavior to smooth transitions between

some situations.

We have not addressed the sensor noise in the ND method im-

plementation. We believe that external modules should process

the sensory information in order to deal with noisy sensors (e.g.,

[25]). However, strategies such as increasing the security dis-

tance according to the sensor uncertainty could be designed.

Seen as a whole, the ND method is a robust reactive naviga-

tion method, which is mainly the result of two facts.

• Using a “divide and conquer” strategy to decompose the

reactive navigation problem in subproblems (by different

situations) and developing strategies for motion in any sit-

uation.

• Using the free walking area device gives the guarantee that

it is possible to reach the goal, or that it is possible to reach

the closest point to the goal within the maximum reach of

the sensory information (the gap closest to the goal).

B. ND Navigation Limitations

We think that the main limitation of the ND method is the

portability to different types of robots, because it does not take

into account noncircular shapes or the vehicle kinematic and

dynamic constraints. Some existing methods consider the robot

shape (e.g., [3], [11], [16], [18]); others compute motion com-

mands that comply with the robot kinematics (e.g., [11], [13],

[15], [16], [18]) and others with the robot dynamics (e.g., [11],

[15], [16], [18]).

It is difficult for the ND method to deal with noncircular

shapes since it is formulated to apply over the workspace,

while the classical space used to represent the robot geometry

is the configuration space [26]. We have developed an under-

constrained solution for square and rectangular shapes [27].

We have also proposed a spatial representation to deal with the

kinematic constraints [28]. Using this work, the ND method

can be used on two-wheeled, tricycle, and car-like robots. We

also constructed a space to represent the vehicle dynamics [29].

From these results, the ND velocity limits can be significantly

increased and safety is guaranteed.

C. Improvements to All Reactive Approaches

The common limitation of all the reactive navigation

methods analyzed in this section (including the ND method)

is that they cannot guarantee global convergence to the goal

location, because they use a local fraction of the information

available (sensory information). Recently, some researchers

have worked on introducing global information into the reactive

methods to avoid the global trap situations. For example, [23]

uses a look-ahead verification to analyze the consequences

of heading toward the candidate directions, avoiding the trap

situations by running the algorithm a few steps in advance

of the algorithm execution. Furthermore, [20], [24], and [30]

exploit the information of the connectivity of the space using

a navigation function, which provides global information to

the reactive method to avoid trap situations. In addition, these

approaches are adapted to work in highly dynamic scenarios.

D. ND Navigation Background

We have validated the ND method on the Diligent5 robot

at LAAS-CNRS (Toulouse, France). Furthermore, this method

was integrated as the low-level motion generator of the vehicle

and it is used daily for demonstrations [31]. In the Robels system

[32], the ND method is one of the five sensory-motor functions

used to move the robot (two other sensory-motor functions are

evolutions of the ND method, which are described in [30]).

With some modifications, the method works in other in-

door/outdoor mobile platforms (see [27]: Hilare, Hilare2,6 and

Lama7 at LAAS-CNRS (France); Otilio8 at the University

of Zaragoza (Spain), and r29 at the Technical University of

Lisbon (Portugal). Currently, the method is being implemented

on Dalay10 at LAAS-CNRS (France).

VIII. CONCLUSIONS

We addressed in this paper reactive collision avoidance for

mobile robots. We have presented the design of a reactive nav-

igation method using the situated-activity paradigm of behav-

ioral design. The advantage is that our design employs a “divide

and conquer” strategy to reduce the difficulty of the navigation

problem. As a consequence, the reactive navigation methods im-

plemented (following the design guidelines) must be able to suc-

cessfully navigate in more troublesome scenarios than other ex-

isting methods.

Our reactive method design has been used to implement some

reactive navigation methods adapted to their collision avoid-

ance context (for example, the free zone method [33] for soccer-

player robots). We have used the design guidelines to implement

the ND method. The main contribution of this method is that it

robustly achieves navigation in very dense, cluttered, and com-

plex scenarios. These environments are a challenge for many

other methods. Currently, the ND method is working as the reac-

tive module in several robots at different laboratories. Although

the method is presented here for circular and holonomic robots,

it has been extended to work in vehicles with other shapes, and

with kinematic and dynamic constraints.

5Diligent is a Nomadic XR4000 platform equipped with a 2-D planar laser.
6Hilare and Hilare2 are indoor rectangular differential-driven robots equipped

with 2-D planar lasers.
7Lama is a rectangular outdoor robot that can work in differential-driven

mode. The sensor used was a pair of black-and-white cameras.
8Otilio is square and differential-driven indoor robot equipped with a 3-D

laser.
9r2 is a circular and differential-driven indoor robot. The sensor used was a

ring of ultrasound sensors.
10Dalay is a rectangular and differential-driven outdoor robot equipped with

a 2-D planar laser.

58 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 20, NO. 1, FEBRUARY 2004

FR

FL

BL

BR

x
Xgoal1

Xgoal2

2R

OBSTACLES

x Xgoal

Xrobot

P

REGION

GAP

FR

FL

BL

BR

Xgoal2

Xgoal1

C-OBSTACLES
Xgoal

Xrobot

P

FR

FL

BL

BR

Xgoal2

Xgoal1

4R

Xgoal

Xrobot

x

x

x

x x
x

x

(a) (b) (c)

Fig. 9. Example of how the algorithm checks whether a point can be reached in the space.

APPENDIX

We introduce in this Appendix a procedure to verify whether

a region is “navigable” for a circular and holonomic robot. First,

we present an algorithm to check whether the robot can reach

a location in the space, and next we use it to verify whether a

region is “navigable.”

A. The Basic Algorithm

The algorithm computes the existence of a path that connects

the robot location and a point of the space (notice that the algo-

rithm does not compute a path). The inputs of the algorithm are

as follows.

1) The robot location and robot radius .

2) The goal location .

3) A list of obstacle points, where an obstacle is .

The output of the algorithm is whether the goal location can be

reached from the robot location or not.

We first divide the plane in four semiplanes (, , ,

)11 by the line (named) that contains and ,

and the perpendicular line to the previous line over

[Fig. 9(a)]. Then:

1) if then cannot be reached;

2) eliminate from every point that:

(a) or ;

(b) ;

(c) ;

3) if for all the remaining points of , (with

and), then can be reached,

else, it cannot be reached.

We discuss next the algorithm step by step.

1) The algorithm checks whether the is within any

-obstacle12 [26] to detect whether the goal location is in

collision. We show the configuration space in Fig. 9(b),

where is not within a -obstacle.

11F: forward. B: backward. R: right. L: left.
12A C-obstacle in this case is computed by enlarging each obstacle point with

the robot radius.

2) The algorithm eliminates the obstacle points that are out

of the rectangle with height the segment that joins

and , and width [Fig. 9(c)]. Within this rectangle

is where the path is searched for.

3) The algorithm checks intersections among -obstacles of

and . If there are no intersections, then there is

a collision-free path that joins and . Notice

how in Fig. 9(c) there are not intersections among obsta-

cles in and , thus there are many collision-free

paths that join the robot and goal location within the rec-

tangle.

The usefulness of this algorithm for reactive navigation is to

know if a given point of the space can be reached (without ex-

plicitly computing any path). Then, this point could be a land-

mark point or the goal location itself. However, the algorithm

could fail in some situations. For instance, if we use the algo-

rithm with , the solution is that it cannot be reached while

there exists a path. We show how to solve this situation in the

next subsection.

B. Algorithm to Verify Whether a Region is “Navigable”

We use the algorithm to verify if a region is “navigable” as

follows.

1) If the goal location is inside the region, then the algorithm

checks if the goal location can be reached [e.g., in

Fig. 9(a)].

2) If the goal location is not inside the region, then the algo-

rithm checks whether the middle point of the gap (closest

to the goal location) of the region can be reached (e.g., if

the goal location is in Fig. 9(a), then we use the al-

gorithm with). Notice how the middle point of the

gap is used as a landmark in order to reach the

goal location .

In both cases, the solution of the algorithm is that both points

can be reached. This region is “navigable” for both and

, and then it would be identified as the free walking area

in both cases.

MINGUEZ AND MONTANO: NEARNESS DIAGRAM (ND) NAVIGATION: COLLISION AVOIDANCE IN TROUBLESOME SCENARIOS 59

We remark that the case is solved with the landmark

computed from the region, but there are other cases that

cannot be avoided by using local algorithms and require global

information (see a discussion on this topic in Section VII-G).

ACKNOWLEDGMENT

The authors wish to thank all the members of R. Chatila’s

research group who hosted J. Minguez’s visit to LAAS-CNRS.

In particular, we thank R. Alami and T. Simeon for their valuable

comments and discussions, and S. Fleury for her help with the

algorithm implementation on the XR4000 Nomadic platform.

REFERENCES

[1] R. C. Arkin, Behavior-Based Robotics. Cambridge, MA: MIT Press,
1999.

[2] J. C. Latombe, Robot Motion Planning. Norwell, MA: Kluwer, 1991.
[3] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” Int. J. Robot. Res., vol. 5, pp. 90–98, 1986.
[4] B. H. Krogh and C. E. Thorpe, “Integrated path planning and dynamic

steering control for autonomous vehicles,” in Proc. IEEE Int. Conf.
Robotics and Automation, San Francisco, CA, 1986, pp. 1664–1669.

[5] R. B. Tilove, “Local obstacle avoidance for mobile robots based on the
method of artificial potentials,” in Proc. IEEE Int. Conf. Robotics and
Automation, vol. 2, Cincinnati, OH, 1990, pp. 566–571.

[6] M. Khatib, “Sensor-based motion control for mobile robots,” Ph.D. dis-
sertation, LAAS-CNRS, Toulouse, France, 1996.

[7] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mo-
bile robots,” IEEE Trans. Syst., Man, Cybern., vol. 19, pp. 1179–1187,
May 1989.

[8] L. Montano and J. Asensio, “Real-time robot navigation in unstruc-
tured environments using a 3D laser rangefinder,” in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, vol. 2, Grenoble, France, 1997, pp.
526–532.

[9] K. Azarm and G. Schmidt, “Integrated mobile robot motion planning
and execution in changing indoor environments,” in Proc. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, Munchen, Germany, 1994, pp.
298–305.

[10] A. Masoud, S. Masoud, and M. Bayoumi, “Robot navigation using a
pressure generated mechanical stress field, the biharmonical potential
approach,” in Proc. IEEE Int. Conf. Robotics and Automation, San
Diego, CA, 1994, pp. 124–129.

[11] W. Feiten, R. Bauer, and G. Lawitzky, “Robust obstacle avoidance in
unknown and cramped environments,” in Proc. IEEE Int. Conf. Robotics
and Automation, San Diego, CA, 1994, pp. 2412–2417.

[12] J. Borenstein and Y. Koren, “The vector field histogram—fast obstacle
avoidance for mobile robots,” IEEE Trans. Robot. Automat., vol. 7, pp.
278–288, Apr. 1991.

[13] I. Ulrich and J. Borenstein, “VFH+: reliable obstacle avoidance for fast
mobile robots,” in Proc. IEEE Int. Conf. Robotics and Automation, 1998,
pp. 1572–1577.

[14] M. Hebert, C. Thorpe, and A. Stentz, Intelligent Unmanned
Ground Vehicles: Autonomous Navigation Research at Carnegie
Mellon. Norwell, MA: Kluwer, 1997.

[15] R. Simmons, “The curvature-velocity method for local obstacle avoid-
ance,” in Proc. IEEE Int. Conf. Robotics and Automation, Minneapolis,
MN, 1996, pp. 3375–3382.

[16] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robot. Automat. Mag., vol. 4, pp. 23–33,
Mar. 1997.

[17] O. Brock and O. Khatib, “High-speed navigation using the global dy-
namic window approach,” in Proc. IEEE Int. Conf. Robotics and Au-
tomation, Detroit, MI, 1999, pp. 341–346.

[18] K. Arras, J. Persson, N. Tomatis, and R. Siegwart, “Real-time obstacle
avoidance for polygonal robots with a reduced dynamic window,” in
Proc. IEEE Int. Conf. Robotics and Automation, Washington, DC, 2002,
pp. 3050–3055.

[19] S. Quinlan and O. Khatib, “Elastic bands: connecting path planning and
control,” in Proc. IEEE Int. Conf. Robotics and Automation, vol. 2, At-
lanta, GA, 1993, pp. 802–807.

[20] O. Brock and O. Khatib, “Real-time replanning in high-dimensional
configuration spaces using sets of homotopic paths,” in Proc. IEEE Int.
Conf. Robotics and Automation, San Francisco, CA, 2000, pp. 550–555.

[21] M. Ginger, “Universal planning: an (almost) universally bad idea,” AI
Mag., vol. 10, no. 4, pp. 40–44, Winter 1989.

[22] Y. Koren and J. Borenstein, “Potential field methods and their in-
herent limitations for mobile robot navigation,” in Proc. IEEE Int.
Conf. Robotics and Automation, vol. 2, Sacramento, CA, 1991, pp.
1398–1404.

[23] I. Ulrich and J. Borenstein, “VFH : local obstacle avoidance with look-
ahead verification,” in Proc. IEEE Int. Conf. Robotics and Automation,
San Francisco, CA, 2000, pp. 2505–2511.

[24] O. Brock, “Generating robot motion: The integration of planning and
execution,” Ph.D. dissertation, Stanford Univ., Stanford, CA, 1999.

[25] J. Borenstein and Y. Koren, “Histogramic in-motion mapping for mobile
robot obstacle avoidance,” IEEE J. Robot. Automat., vol. 7, pp. 535–539,
Aug. 1991.

[26] T. Lozano-Perez, “Spatial planning: a configuration space approach,”
IEEE Trans. Comput., vol. C-32, pp. 108–120, Mar. 1983.

[27] J. Minguez and L. Montano, “Robot navigation in very complex dense
and cluttered indoor/outdoor environments,” presented at the Proc. 15th
IFAC World Congr., Barcelona, Spain, 2002.

[28] J. Minguez, L. Montano, and J. Santos-Victor, “Reactive collision avoid-
ance for nonholonomic robots using the ego-kinematic space,” in Proc.
IEEE Int. Conf. Robotics and Automation, Washington, DC, 2002, pp.
3074–3080.

[29] J. Minguez, L. Montano, and O. Khatib, “Reactive collision avoidance
for navigation at high speeds or systems with slow dynamics,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Lausanne, Switzer-
land, 2002, pp. 588–594.

[30] J. Minguez, L. Montano, N. Simeon, and R. Alami, “Global nearness
diagram navigation (GND),” in Proc. IEEE Int. Conf. Robotics and Au-
tomation, Seoul, Korea, 2001, pp. 33–39.

[31] R. Alami, I. Belousov, S. Fleury, M. Herb, F. Ingrand, J. Minguez, and
B. Morisset, “Diligent: toward a human-friendly navigation system,”
in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taka-
matsu, Japan, 2000, pp. 2094–2100.

[32] B. Morisset and M. Gallab, “Learning how to combine sensory-motor
modalities for a robust behavior,” in Advances in Plan-Based Control
of Robotic Agents, Lecture Notes in Artificial Intelligence 2466. New
York: Springer, 2002, pp. 157–178.

[33] C. Marques and P. Lima, “Multi-sensor navigation for soccer robots,” in
2001: Robot Soccer World Cup V. Berlin, Germany: Springer-Verlag,
July 2002.

Javier Minguez (S’00–A’02) received the physics
science degree in 1996 from the Universidad Com-
plutense de Madrid, Madrid, Spain, and the Ph.D.
degree in computer science and systems engineering
in 2002 from the University of Zaragoza, Zaragoza,
Spain.

During his student period, in 1999 he was with the
Robotics and Artificial Intelligence Group, LAAS-
CNRS, Toulouse, France, for eight months. In 2000,
he visited the Robot and Computer Vision Laboratory
(ISR-IST), Technical University of Lisbon, Lisbon,

Portugal, for ten months. In 2001, he was with the Robotics Laboratory, Stan-
ford University, Stanford, CA, for five months. He is currently a full-time Re-
searcher in the Robot, Vision, and Real Time Group, University of Zaragoza.
His research interests are techniques for reactive navigation and sensor-based
motion planning for mobile robots.

Luis Montano (M’01) was born on September 6,
1958 in Huesca, Spain. He received the industrial
engineering degree in 1981 and the PhD degree
in 1987, both from the University of Zaragoza,
Zaragoza, Spain.

He is currently an Associate Professor of Systems
Engineering and Automatic Control at the University
of Zaragoza, and Principal Researcher in robotic
research projects. He is also the coordinator of
the Robotics, Perception, and Real Time group
at the Aragon Institute of Engineering Research,

University of Zaragoza. The group works in research and development projects
within the areas of robotics, automation, and real time, and more specifically
in task coordination, mobile robot navigation, simultaneous localization, and
mapping (SLAM) and automatic 3-D model building. Previously, he was Head
of the Computer Science and Systems Engineering Department, University of
Zaragoza. His major research interests are robotics and perception systems.

