NEARSHORE CIRCULATIONS UNDER SEA
BREEZE CONDITIONS AND WAVE-CURRENT INTEKACTIONS IN THE SURF ZONE

Edward K. Noda, et al

Tetra Tech Incorporated

Prepared for:
Office of Naval Research

February 1974

DISTRIBUTED BY:

Mational Technical Information Service
U. S. DEPARTMENT OF COMMERCE

5285 Port Royal Road, Springfield Va. 22151
isecurity rlessification it the, body of abstrect and indexind annotation must be entered when the overalt report is ciasaified)

Tetra Tech, Inc., 630 N . Rosemead Blvd. Unclassified

Pasadena, California 91107
Nearshore Circulations under Sea Breeze Conditions and Wave-Current Interactions in the Surf Zone
4. DESCRIPTIVE NOTES (Type of report and inclusive datet)

Technical Report
5. AUTHORISI (First neme, middle inififi, last nami)

Noda, Edward K., Sonu, Choule J., Rupert, Viviane C. and Collins, J. Lan

11. SUPPLEMENTARYNOTES \quad| '2. SPONSORINGMILITARYACTIVITY |
| :--- |
| Oíice ol ivavai Kesearch |
| Code 462 |

13. A5stmict

-Numerical models for nearshore circulation patterns in the surf zone have been developed and applied to an observed condition subjected to a sea breeze environment. Bottom topography and input waves were derived from observed data to predict surf zone circulation as a function oi time of day. It was found that many features observed in the surf zone were modeled but wave-current interactions are known to be important.

Wave-current interactions were modeled for shallow water assuming a two-dimensional metion which included rip current and longshore current components. The refraction effects caused by even small currents produce major changes in the wave induced driving forces in the surf zone which leads to the prediction of entirely different ripcurrent patterns when wave-current interactions are considered. Numerical results are presented and a discussion of the numerical techniques is included.

A review of water wave theories to include mass transport, vorticity and current was made for a vertical section in shallow water of constant depth.,
ripriatuceo tor
NATIONAL TFCHNICA!
INFORMATION SERVICE

NEAR SEIORE CIRCULATIONS UNDER SEA BREEZE CONDITIONS AND WAVE-CURRENT INTERACTIONS IN THE SURF ZONE

Prepared for:
Office of Naval Research Geography Programs, Code 462
Department of the Navy
Arlington, Virginia 22217

Prepared by:
Ed vard K. Noda, Ph. D.
Choule J. Sonu, Ph. D.
Viviane C. Rupert, Ph. D.
J. Ian Collins, Ph. D.

Contract No. No0014-69-C-0107

Tetra Tech No. TC-149-4

February, 1974

Tetra Tech, Inc.
630 North Rosermead Boulevard Pasadena, California 91107

Page
Preface and Acknowledgements iii
List of Figures iv
List of Tables vi
Abstract viii
1.0 INTRODUCTION AND SUMMARY 1
1.1 INTRODUCTION 1
1.2 REVIEW OF EARLIER WORK 2

1. 3 SUMMARY 9
1.3.1 WAVE INDUCED CIRCULATION OVER A RHYTHMIC TOPOGRAPHY 9
1.3.2 WAVE AND CURRENT INTERACTION OVFR A RHYTHMIC TOPOGRAPHY 11
1.3.3 WAVE-CURRENT INTERACTION WITAB VORTICITY (TWO-DIMENSIONAL) 13
2.0 CIRCULATIONS UNDER THE SEA BREEZE CONDITION 15
2.1 INTRODUCTION 15
2. 2 GOVERNING EQUATIONS 16
3. 3 BOTTOM TOPOGRAPHY 20
2.4 WAVES 26
4. 5 RESULTS 31
5. 5. 1 CIRCULATIONS UNDER WIND WAVES 31
2.5.2 CIRCULATIONS UNDER SWELL 33
1. 5. 3 CIRCULATIONS UNDER COEXISTING WIND WAVES AND SWELL 37
1. 6 DISCUSSIONS 37
2. 0 WAVE CURRENT INTERACTION OVER VARIABLE TOPOGRAPHY 41
3. 1 INTRODUCTION AND REVIEW OF HISTORICAL WORK 41
4. 2 WAVE CURRENT INTERACTION 43
3.2.1 WAVE KINEMATICS 43
5. 2. 2 WAVE DYNAMICS 49
1. 2. 3 NEARSHORE WAVE-CURRENT CIRCULATION FORMUIATION 60

TABLE OF CONTENTS (continued)
Page
3. 3 NUMERICAL ANALYSIS 67
3. 3. 1 NUMERICAL SOLUTION FOR WAVE CHARACTERISTICS WITH WAVE- CURRENT INTERACTION ON A LONGSHORE PERIODIC BEACH 68
3.3.2 VERIFICATION OF THE WAVE- CURRENT INTERACTION ALGORITHMS 79
3.3.3 NUMERICAL RESULTS FOR WAVE- CURRENT INTERACTION 84
3.4 CONCLUSIONS 139
4.0 WAVE AND CURRENT 141
4.1 INTRODUCTION 141
4. 2 BASIC EQUATIONS AND ASSUMPTIONS 142
4. 3 BOUNDARY CONDI'CIONS 147
4.4 EXPONENTIAL DISTRIBUTION OF VORTICITY 152
4.5 CONSTANT VORTICITY DISTRIBUTION 155
4. 6 HYPERBOLIC VORTICITY DISTRIBUTION 158
4.7 GENERAL SOLUTION 162
4. 8 SOLUTIONS FOR A WAVE SPECTRUM 164
4. 9 CONCLUSION 168
REFERENCES 169
APPENDIX A 175
APPENDIX B 181
LIST OF DISTRIBUTION 207

The research effort described herein was performed at Tetra Tech during the past twelve months. In particular Chapter 2, "Circulation Under Sea Breeze Condition," was the contribution of Dr. Choule J. Sonu, Chapter 3, "Wave-Current Interaction Over Variabe Topography, :' was contributed by Dr. Edward K. fioda and Chapter 4; "Wave and Current," was the research effort of Dr. Viviane C. Rupert.

This study was sponsored by the Office of Naval Research, Geography Programs urder Contract No. N00014-69-C-0107. The authors wish to acknowledge the contribution by discussion and encouragement of Dr. Bernard LeMehaute, Vice President, and many other members of Tetra Tech's staff. In particular the authors would like to thank Mr. Wayne Wier for considerable effort in computer programming and computer runs and plots.

Figure No.	Title	Page No.
1.1	Dependence of current patterns on wave incidence angles and suri zone topography (from Sonu, 1972)	3
1.2	Distribution of streamlines and depth contours in a circulation cell under normal wave incidence (from Sonu, 1972)	4
1.3	Ball trajectories and bottom contours for oblique waves incidence (from Sonu, 1972)	5
1.4	Streamline flow due to normal wave inci ence (Noda, 1973)	6
1.5	Strearn function solution for oblique wave incidence (Noda, 1973)	7
1.6	Meandering rip-current flow over a skewed channel (Noda, 1973)	8
1.7	Comparison of analytical model and an observed nearshore topography	10
2.1	Rhythmic surízone structures as reported by va:ious investigators	21
2.2	Rhythmic topography at the CSI study site	22
2.3	Mathematical simulation of lottom topography	27
2.4	(a) Wave spectrum (b) Power content of wind wave and swell (c) Direction of approach of swell and wind waves	28
2.5	Streamlines and bottom topography for wind wives at 1200 hours normal incidence	32
2.6	Streamlines during oblique wave incidences in the afternoon	34

LSST OF FIGURES

Figure No.	Title	Page No.
2.7	Breaker distribution	35
2.8	Typical streamlines under swell	36
2.9	Streamlines under combined effects of wind waves and swell	38
3.1	Schernatic view of nearshore beach terminology	46
3.2	Ray and wave front terminology	56
3.3	Schematic illustration of periodic beach terminology	69
3.4	Local grid description	72
3.5	Full grid description	74
3.6	Stream function field for no wave-current interaction	88
3.7	Stream function field for 20% wave-current interaction	98
3.8	Strezra function field for 50% wave-current interaction	108
3.9	Stream function field for no wave-current interaction	118
3.10	Stream function field for 50% wave-current interaction	128

Table NC. Title Page No.
2.1 Input wave characteristics 29
3.1 Analytic solution for wave- 81 current interaction: checkcase
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.11
3. 14
3.15
3.16
3.17
3.203.11

3.12
3.12

3.13
3.133. 143.153.163.17
. 20
Numerical results for the wave height H for the test case
Numerical results for the wave height h for the test caseNo wave-current interaction89
5 No wave-current interaction 91
No wave-current interaction 93
No wave-current interaction 94
No wave-current interaction 96
20% wave-current interaction 99

3.10
3. 10 20\% wave-current interaction 101$20 \%$ wave-current interaction103$50 \%$ wave-current interaction113

3.18
3.18 50% wave-current interaction114

3.19
3.19 No wave-current interaction 119No wave-current interaction121
Table No. Title Page No.
3.21 No wave-current interaction 123
3.22 No wave-current interaction 124
3.23 No wave-current interaction 126
3.24 50\% wave-current interaction 129
3.25 50% wave-current interaction 131
3.26 50% wave-current interaction 133
3.27 50% wave-current interaction 134
3.28$50 \%$ wave-current interaction136

ABSTRACT

Numerical models for nearshore circulation patterns in the surf zone have been developed and applied to an observed condition subjected to a sea breeze environment. Bottom topography and input waves were derived from observed data to predict surf zone circulation as a function of time of day. It was found that many features observed in the surf zone were modeled but wave-current interactions are known to be important.

Wave-current interactions were modeled for shallow water assuming a two-dimensional motion which included rip current and longshore current components. The refraction effects caused by even small currents produce major changes in the wave induced driving forces in the surf zone which leads to the prediction of entirely different rip-current patterns when wave-current interactions are considered. Numerical results are presented and a discussior of the numerical techniques is included.

A review of water wave theorics t., include mass transport, vorticity and current was made for a vertical section in shallow water of constant depth.

1. INTRODUCTION AND SUMMARY
 1.1 INTRODUCTION

In the nearshore area waves arriving from offshcie continuously bring in momentum, energy and mass. Since the shoreline provides a fixed boundary the momentum and energy fluxes are dissipated in the surf zone. Most of the energy is converted to turbulence in the breaker zone but enough is left to supply a nearshore current system and move locse bed material. The momentum brought in by the waves will drive the nearshore current system and cause a local set-up or set-down of the mean water level.

Over the past four and one half years a series of analytic developments have been attempted to model some of the more pertinent charactexistics of the surf zone. The work is conveniently divided into two broad groups: statistical and deterministic. In the statistical approach (Collins, 1971 and Collins and Wier, 1969) a relatively simple beach topography was assumed and the effects on wave height statistics computed together with longshore currents and wave set-up. More recently, (Noda, 1972, 1973) a deterministic approach employing monochromatic waves and much more cor plex beach topographies has been explored.

A number of sub-tasks have been investigated during the past year. The three specific sub-tasks receiving intensive investigation include:
a) the application of wave-induced circulation computations on beaches having rythmic topography.
b) the development of a numerical model for wave induced circulation which incluAes wave-current interaction.
c) the analytical investigation of wave, current, and vorticity interaction.

The following sections of this report present details of the work performed. The subsections below pre 3 nt a brief review of some earlier work and a summary of the work completed during the past year.

1.2 REVIEW OF EARLIER WORK

In a recent study by Noda (1972, 1973) the solution to wave-induced nearshore circulation due to the incoming wave-bottom topography interaction ras studied. Results for both normal and oblique wave incidence were presented and while the results generally agreed with recent field data from Sonu (1972), Figures 1.1, 1. 2 and 1. 3, the nurrerically derived circulation velocities tended to be larger than measured in the field, Figures 1.4, 1.5 and 1.6.

Several possible reasons for the apparent discrepancies can be postulated including;
a) neglect of wave-current interaction) bottom ficrion approximation c) chuice of wave breaking criteria
d) assumption of monochromatic waves which consequently all break at the same location
e) over-estimates of the incoming wave height or errors ar direction
f) approximausns made in the analytical developments.

Of the possible reasons for dif"craces the assumptions made to comply with (c), (d) and te) sroduce simiar effects in that the nearshore circulation patwern is strongiy influenced by the wave breaker location. The dominant driving forces are produced by the radiation stresses induced by breaking waves. Also, because of this i^{+}must be realized ticit en relatively weak currents change the braker location and fraracteristics hence, the importance of wavecurrent interaction is as ajor one. Therefore reason (a) is of prime importance.

1. CIRCULATION UNDER NORMAL WAVE INCIDENCE

2. MEANDER UNDER OBLIQUE WAVE INCIDENCE

SWL

3. LONGSHORE SURF ZONE PROFILE

Figure 1. I: Dependence of Current Patterns on Wave Incidence Angles and Surf Zone Topography [From Sonu, 1972]

[^0]

[^1]
Figure 1.4: Streamline Flow Due to Normal Wave Incidence [Noda (1973)]
उHOHSONOT (s」etew) λ

A-2-5e0s

Figure 1. 6: Meandering Rip-Current Fiow Over a Skewed Channel [Noda (!973)]

It is believed that bottom friction effects are important and hence are never ignored in these investigations. However, approximations are necessary in order to yield a tractible numerical model. It is apparent that considerable room for improvement exists in the approximations generally made.

The numerical techniques employed were found to influence the predicted currents and a certain effort was needed to refine the earlier more crude methods. New approximations include the choice of more realistic beach topographic model and the procedures to solve the governing differential equaticns.

The following subsection (1.3) of this report presents a brief summary of the technical work which has been oriented towards improvements and refinements in the nearshore circulation models. More complete details are presented in Sections 2 and 3.

1.3 SUMMARY

1. 3. 1 Wave Induced Circulation Over a Rhythmic Topography

The data obtained by the Coastal Studies Institute (SALIS by Sonu et. al., 1973) has been investigated and attempts have been made to model the wave induced circulat ion using the procedures developed by Noda (1972) in an earlier phase of the work.

The steps required are:
a) topographic model
b) wave height-wave direction field
c) solution of the momentum equations
d) comparison with observed data

The field data was used to provide (a) and the offshore wave conditions. The topographic model was developed by choosing empirical functions and constants to closely simulate the observed topography. Fig. 1. 7 presents a sample of the topographic simulation as usca. More

(a) Analytical Simulation

(b) Observed Nearshore Topography (Davis \& Fox, 1971)

Figure 1. 7: Comparison of Analytical Model and an Observed Nearshore Topography
details will be included in Section 2.

The wrave height-direction field has been computed using the ray equations (see Noda, 1972) but some variations on the numerical techniques were found which yielded significant improvements in accuracy and speed of computation. The revised technique is based on a relaxation procedure rather than the previous method of marching along rays. Wave heights and directions are computed directly at the required grid points and yield considerable savings in computing time otherwise spent on interpolation subroutines. The techniques are fully detailed in Section 3.

The solution of the momentum equations for the wave induced circulation follows the pricicdures outlined in Technical Report No. 3 (Noda, 1972).

One apparent difference between the numerical results and typical observed data is that the numerical predictions show a too strong concentrating effect of the circulation near the transverse bar (or shoal) and a number of localized eddies in the nearshore area. Possible reasons for such effects have been indicated in Section 1.2 and these are alsu discussed in Section 2. 4. However, in spite of some obvious shortcomings it is apparent that the approach and results outlined in Section 2 have yielded a reasonable modeling capability for many features of the nearshore circulation over a rhythmic topography.

1.3.2 Wave and Current Interaction Over a Rhythmic Topography

It is apparent from even a casual glance at a beach that incoming waves interact strongly with the local currents which are themselves induced by the waves. Section 3 presents a detailed analysis of this problem. The interaction produces two dominant effects;
the currents change the wave refraction and also change the breaker locations.

These wave-induced nearshore circulation patterns were derived assuming no wave-current interaction. Thus interest was developed to determine if the effects of wave-current intcection produced significant changes in the nearshore circulation jatterns as observed in prototype. Section 3 deals with the theoretisal development and numerical computations of this process as affec*ing the circulation within the nearshore zone.

The initial computational steps followed those given in Section 1.3.1, i. e. topography-wave height and direction field-solution of the momentum equations. Then the resulting circulation relocities were considered as an existing mean current system, and waves were again propagated into this system and a new wave height, direction and nearshore circulation pattern obtained. It was hoped that continual interaction would finally yield an "equilibrium" solution including wave-current interaction, However, attempts to directly impose this derived mean current system in an interaction process with the incoming waves lead to failures of the technique because the mean current system derived for no wave-current interaction was too large. Hence, conditions arise where the local waves were no longer able to propagate into some areas.

An attempt was inade to take only a fercentage of the initially derived current system and then include interaction with the waves. This wast partly successful and indicated that considerations of wave-current interaction were extremely importart. Some major changes in the computed nearshore circulation system were produced. Section 3. 3. 3 presents some of the results.

It has been demonstrated that wave-current interactions are of major importance in determining the nearshore circulation but a complete solution was not possible because of the occurrance of regions in the nearshore zone where waves could no longer propogate when opposed by a current. Two major conclusion are deduced,
a) the current-wave interaction theory needs further development to include the special case of "no wave propagation" in some regions;
b) the nearshore circulation system is basically a non-steady pulsating system in that the breaking waves initially produce a circulation system which shuts off the waves in some regions and decays until the waves are re-established and reproduce the initial circulation.

There seems to be a considerable amount of qualitative field data to support the second hypothesis (see, for instance, Sonu, 1972).

1.3.3 Wave-Current Interaction with Vorticity (Two-Dimensional)

As waves approach a shoreline they transport energy, momentum and mass from deep water towards the shore. Many aspects of the momentum balance have been evaluated in Sections 2 and 3 and summarized above. Mass transport by waves is closely related to the vorticity present in the water column. Section 4 of this report presents a detailed review of wave motion, currents, mass transport and vorticity and their interaction in two-dimensions. The early work of Dubreil-Jacotin (1934) and others is reviewed. It is shown that there are an infinite number of solutions for periodic waves in a perfect inviscid fluid associated with the presence of a more or less arbitrary vorticity distribution. A current having a velocity profile which varies over a vertical has an associated vorticity distribution and hence the form of periodic waves present do not
necessarily follow the clabsical Stokes solution.

In Section 4 of this report the equations required to solve at least up to the first order the problem of small amplitude weve propagation in the fresence of an arbitrary current for an arbitrary wave spectrum have been presented, and a review of the special solutions previousiy obtained for a single wave length has been made. The problem in general requires lengthy numerical computations.

However, for a current whose velocity distribution can be approximated by a linear depth dependence, it has been shown that, at most, a single numerical quadrature was required to obtain the average velocity components. This method may then be used to estimate the forces due to wave action in the presence of a current. An experimental knowledge of the current velocity at but a few depths (two minimum) will define the parameters nccessary to completely solve this problem.

2. CIRCULATIONS UNDER THE SEA BREEZE CONDITION

2. 1 INTRODUCTION

When the nearshore wave field is strongly influenced by a sea breeze, local wind waves undergo diurnal changes in height, period, and incidence angles. In the northern hemisphere, the wave direction rotates clockwise, while heights and periods both grow steadily toward late afternoon. Usually, a background swell is superimposed on these wind waves.

Nearshore circulations, which are sensitive to breakers and their incidence angles, will undergo rapid changes accordingly. Diurnal changes in nearshore and surf zone topography under this condition are probably more gentle. This situation is known to develop at a number of tropical and subtropical regions of the world.

In this chapter, a series of computations are performed to simulate successive stages of nearshore circulation under the influence of a day-time sea breeze condition. Some of the basic considerations included in the present computation are summarized as follows:

1) In reality, the change in the circulation velocity field occurs as a continuous process. However, a finite-difference solution of time-dependent equations involves technical difficulties as well as a considerable amount of computer time. Instead, the computation is performed for four discrese stages of circulation development (at three hourly intervals) using steady-state equations.
2) Quadratic inertia terms impose difficult, if not insurmountable, restrictions to the computation. Consequently, the equations of motion are linearized by neglecting the inertia terms.
3) Velo्city variations over a vertical are neglecled.
4) The formulation of the bottom friction term in the momentum equations was derived following the assumption that circulation velocity components are small as cornpared to wave orbital velocity, as in the previous report (Noda, 1972; Thornton, 1969).
5) The effect of interactions between wave and circulation, as discussed in detail in Section 3, is not included in the computations presented in this section.
6) When wind waves and swell coexist as separate wave trains, there will be an interaction not only between them but also between the currents they drive simultaneously. This situation is extremely conplex and involves a number of mechenisms wnich are not well understood. As an alternative, the case of coexisting wind wave and swell is treated by vector addition of the velocity fields associated with each of the wave trains.

2. 2 GOVERNING EQUATIONS

The method of computation is to solve by a finite difference approximation a set of steady-state linear equations of motion and a continuity equation. Basic mathematics of this method have been discussed in detail in the previous report (Noda, 1972). However, for the benefit of the reader, these will be briefly summarized:

Equations of mction (vertically integrated) are:

$$
\begin{align*}
& g \frac{\partial \eta}{\partial x}=M_{x}-F_{x} \\
& g \frac{\partial \eta}{\partial y}=M_{y}-F_{y}
\end{align*}
$$

and a continuity equation is:

$$
\frac{\partial}{\partial x}\left[u\left(r_{1}+d\right)\right]+\frac{\partial}{\partial y}[v(\eta+d)]=0
$$

where x and y are taiken normal and parallel to the coast, respectively.
M_{x} and M_{y} denote radiation stress terms (Longuet-Higgins, 1964), given by

$$
\begin{align*}
& M_{x}=-\frac{1}{\rho(\eta+d)}\left(\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}\right) \\
& M_{y}=-\frac{1}{\rho(\eta+d)}\left(\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \tau_{y x}}{\partial x}\right)
\end{align*}
$$

where, in shallow water,

$$
\begin{aligned}
& \sigma_{x x}=\frac{1}{16} \rho \mathrm{gH}^{2}\left[3 \cos ^{2} \theta+\sin ^{2} \theta\right] \\
& \sigma_{y y}=\frac{1}{16} \rho \mathrm{gH}^{2}\left[3 \sin ^{2} \theta+\cos ^{2} \theta\right]
\end{aligned}
$$

and

$$
\tau_{x y}=\tau_{y x}=\frac{1}{16} \rho g H^{2} \sin ^{2} \theta
$$

The friction terms are simplified as:

$$
\begin{aligned}
& \qquad F_{x}=\frac{2 \bar{c} H u}{(\eta+d) T \sinh k d} \equiv F . d . u \\
& F_{y}=\frac{2 \bar{c} H v}{(\eta+d) T \sinh k d} \equiv F . d . v \\
& \text { where } \bar{c} \text { is friction coefficient (0.01 in our computation); d is the } \\
& \text { water depth, and } \eta \text { is a set-up or set-down relative to the mean sea }
\end{aligned}
$$ level.

Defining a stream function given by

$$
\frac{\partial \psi}{\partial y}=-\mathbf{u d}, \frac{\partial t}{\partial x}=+\mathbf{v d}
$$

and assuming

$$
\begin{equation*}
\eta+d \cong d \tag{2. 12}
\end{equation*}
$$

Equations 2. 1-2. 3 reduce to a single equation:

$$
\begin{aligned}
& \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\frac{\partial F}{\partial y}}{F} \frac{\partial \psi}{\partial y}+\frac{\partial F}{\partial x} \frac{\partial \psi}{\partial x}= \\
& \frac{1}{o F}\left\{\frac{\partial}{\partial y}\left[\frac{1}{d}\left(\frac{\partial \sigma x x}{\partial x}+\frac{\partial \tau x y}{\partial y}\right)\right]-\frac{\partial}{\partial x}\left[\frac{1}{d}\left(\frac{\partial \sigma y}{\partial y}+\frac{\partial \tau x y}{\partial x}\right)\right]\right\}_{2.13}
\end{aligned}
$$

The boundary conditions are:

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}=0 \quad \text { at } x=0 \quad \text { and } \infty, \tag{2. 14}
\end{equation*}
$$

and

$$
\begin{equation*}
\downarrow(y, z)=\psi(y+\lambda, x) \tag{2. 15}
\end{equation*}
$$

The latter condition implies that the circulation field is periodic along the shore at a spacing equal to the wavelength λ of the bo'tom topography.

The computation solves Eq. 2. 13 using a relaxation (or GaussSeidell) method, as already discussed in the previous report. The \& values at the inshore and offshore boundaries can be chosen arbitrarily. I_{i} this case, ψ is chosen to be zero at $x=0$ and ∞. The iterative procedure was continued until a condition

$$
\left|\psi_{j+1}-\left.\right|_{j}\right| /\left|\psi_{j}\right| \leq 0.05
$$

was achieved between successive interation cycles $\boldsymbol{t}_{\mathbf{j}}$ and $\mathbf{*}_{\mathbf{j}+1}$ 。
The radiation stress field to be entered into Equation 2.13 is provided from a wave ray equation which combines effects of shoaling and refraction

$$
\frac{D^{2}{ }_{\beta}}{D s^{2}}+p(s) \frac{D_{B}}{D s}+q(s)_{R}=0
$$

where

$$
\begin{aligned}
& p(s)=-\cos \theta\left[\frac{1}{C} \frac{\partial C}{\partial x}\right]-\sin \theta\left[\frac{1}{C} \frac{\partial C}{\partial y}\right] \\
& q(s)=\sin ^{2} A\left[\frac{1}{C} \frac{\partial^{2} C}{\partial x^{2}}\right]-2 \sin \theta \cos \theta\left[\frac{1}{C} \frac{\partial^{2} C}{\partial x \partial y}\right]+\cos ^{2} \theta\left[\frac{1}{C} \frac{\partial^{2} C}{\partial y^{2}}\right]
\end{aligned}
$$

where
s is the arc length along the ray
β is the wave intensity, and C is the celerity.

Previously, the ray equation was solved by a fourth order RungeKutta scheme. In the present report, this equation is sclved by a relaxation technique, as described in detail in Section 3. This method computes incident w..ve heights and angles directly on the grid, whereas the previous method traced wave rays individually, which required additional visual inspection of wave ray density and interpolation steps to transfer the ray data onto the grid. The new method thus allows the entire wave field computation to be carried out in a single run of computer processing, resulting in a substantial improvement with respect to both speed and accuracy.

2. 3 BOTTOM TOPOGRAPHY

The input information for bottom topography and wave characteristics is derived from the observations carried out by the Coastal Studies Institute on Santa Rosa Island, Florida, in 1972 (SALIS Project, see Sonu et al., 1973). The CSI data are especially pertinent ic our study because they contained detailed sharacteristics of the surf zone topngraphy to which the nearshore circulation is known to be sensitive (Somu, 1972, 1973). The CSI data also contained general information cf circulation pattern and current velocities as revealed from repeated dye experiments.

Importance of bottom topography, particularly that of undulations in the surf zone bottom, to nearshore circulation has been pointed out by a number of field observers, among them Evans (1939), McKenzie (1958), Shadrin (1961), Davis and Fox (1971, 1972), and Sonu (1972, 1973). Stirf zone topographies as reported by these investigators are summarized in Figure 2.1. Evans reported a meandering current consisting of an inflow across the bar and an outflow originating from the shoreline embayment. McKenzie reported an inflow across the bank (shoal) and an outflow along a conspicuous rip channel (or depression) between banks. It should be noted that allhough a schematic presented by MicKenzie depicts the shoreline with a straight line, his photographs indicated a periodically curved shoreline. According to Shadrin, an outflow generally initiated in the embayment, but its orientation depended upon not only wave direction but also wave height. Davis and Fox reported meandering currents under wind wave conditions. These rhythmic topographies had wavelengths ranging between 70 and 200 meters.

Figure 2.2 shows the surf zone topography at the site of the CSI project. Note that a cuspate portion of the rhythmic shoreline descends directly to a shoal in the surf zone. A line of iongshore bar exists approximately 30 meters from the average shoreline position. This

Evans (1939)

[^2]

June 17, 1971

Figure 2-2: Rhythmic Topography at the CSI Study Site
rhythmic topography was formed at the time of a strong local atorm and remained essentially unchanged for as long as 14 days while a local sea breeze dominated the area.

Figure 2. 2 also shows a typical example of water movement as revealed from the movement of dye. The dye, initially injected at the break point on a shoal, streaked toward an embayment in approximately the same direction as the breaker. It then travelled parallel to the shoreline for some distance before making a seaward turn. The outflow across the surf zone usually occurred on the depression, which, upon reaching a break point, tended to turn alongshore and eventually returned shoreward across the downstream shoal. This type of meandering current pattern was typical of afternoon conditions when wind waves associated with the sea breeze arrived obliquely to the coast. Current speeds in the meandering currents generally amounted to $30 \mathrm{~cm} / \mathrm{sec}$ in the inflow current across the shoal, $10-15 \mathrm{~cm} / \mathrm{sec}$ in the parallel current near the shoreline, and about $20 \mathrm{~cm} / \mathrm{se}=$ in the outflow or rip.

During the morning hours when the wave field was dominated by the background swell, the currents tended to form closed circulations of minor velocities, consisting of an inflow on the shoal and an outflow on the depression. Maximum speed under this condition was no more than $20 \mathrm{~cm} / \mathrm{sec}$.

For mathematical representation, a rhythmic topography may be broken up into three components, (1) mean profile, (2) longshore bar, and (3) longshore undulations.

The mean profile of a $\mathrm{c}^{\text {a }}$ at is generally concave upward and may be approximated by

$$
d_{1}=\mu x^{\mathbf{Y}}
$$

in which d_{1} is the depth measured from the mean sea level, x is the distance seaward from the shoreline, and μ and Y are numerical coefficients; especially, $Y<1$ to ensure the concavity of the profile. Bruun (1973) showed on the basis of a wide range of evidence, that v varies between about $2 / 3$ nearshore and about $1 / 2$ offshore.

The bar can be defined, for the sake of simplicity, as a symmetrical hump superimposed on the mean profile. Assuming a bell-shaped configuration similar to an error function, the bar profile is given by,

$$
d_{2}=b \cdot \exp \left[-\left(x-x_{b}\right)^{2} /\left(x_{b} / 2\right)^{2}\right]
$$

The longshore undulation is generally confined within the surf zorie, and its amplitude attenuates quite rapidly outside the breaker line. Thus, we assume a longshore undulation whose amplitude decreases linearly toward zero at $x=1, i$, e.

$$
\begin{equation*}
d_{3}=a\left(1-x / 1_{b}\right) \sin \frac{2 \pi}{\lambda}(y-\delta) \tag{2. 19}
\end{equation*}
$$

in which a is the maximum amplitude and λ is the wave length of the undulation, The term δ in Equation 2.19 represents a degree of distortion to be introduced in the geometry of the undulation. Normally, this will consist of two parts:

$$
\delta=\delta_{1}+\delta_{2}
$$

Where a longshore current is aignificant, the longshore cross-section of the sinusoidal undulation is skewed, yielding a steeper alope facing the downstream side. Furthermore, under this condition, the crestline of the undulation will extend obliquely seaward from the shoreline.

The first of these effects, the skewness, can be incorporated in Equation 2.19 by considering δ_{1} of the form

$$
\delta_{1}=\delta_{\max } \sin \frac{2 \pi}{\lambda}\left(y-\delta_{1}\right)
$$

In other words, the symmetrical sinusoid of the original undulation, $\sin \frac{(2 \pi y)}{\lambda}$, is distorted by displacing the coordinate y by a variable distance δ_{1} in such a way as to achieve a steep downstream slope. The displacement is maximum ($\delta_{\text {max }}$) along the crest of undulation. e.g. at $y=\frac{\pi}{4}(2 n+1)+\delta_{\text {max }}$, decreasing in both directions away from this in proportion tc $\sin \frac{2 \pi}{\lambda}\left(y-\delta_{1}\right)$.

The oblique downstream orientation of the crest of the undulation can be represented by δ_{2} of the form

$$
\delta_{2}=x \tan \alpha
$$

in which Q is the angle between the normal to the shoreline and the crest of undulation.

Thus, combining the mean profile, a bar, and skewed undulations, the general expression for the rhythmic topography is

$$
\begin{gather*}
d=d_{1}-d_{2}+d_{3} \\
=u x^{Y}-b . \exp \left[-\left(x-x_{b}\right)^{2} /\left(x_{b} / 2\right)^{2}\right]+a\left(1-x / 1_{b}\right) \sin \frac{2 \pi}{\lambda}\left(y-\delta_{1}-\delta_{2}\right)
\end{gather*}
$$

Figure 2. 3 shows successive superimposition of d_{1}, d_{2} and d_{3}, in which $\mu=0.075, \gamma=0.600, b=0.300$ (meters), $x_{b}=30.00$ (meters), $a=0.200$ (meters), $l_{b}=80$ (meters), $\lambda=115($ metirs $)$, and $a=20^{\circ}$,

2.4 WAVES

Figures 2.4(a), (b), and (c) show diurnal changes in wave character istics. Typically, the waves during the morning were dominated by the background swell arriving normal to the shore. As the sea breeze began to increase between 1100-1200 hours, small wind waves became superimposed on swell. Wind waves subsequently grew both in height and period, while rotating its direction clockwise, until they dominated the sea state around 1500-1800 hours in the afternoon. In the evening hours after 1800 hours, wind waves steadily attenuated and were gradually replaced by the background swell until the next morning.

In Figure 2.4(a) and 2.4(b), it is seen that the wind waves (0.3-0.7 CPs) were strongly coupled with sea breeze, so that the period increased rapidly from about 1 sec at 1000 hours to 3 sec at 1600 hours, the time of maximum sea breeze. The direction of wind waves also increased from about 20° to 40° against the normal to the shoreline (Fig. 2.4(c)). The swell spectrum underwent a slight change, its direction remaining essentially perpendicular to the shoreline.

Flom these data, the wave heights, periods, and directions to be input into the computation were determined, as shown in Table 2.1. The significant wave height was computed from the power spectrum according to

$$
H_{1 / 3}=4\left[\int_{f_{1}}^{f_{2}} S(f) d f\right]^{\frac{1}{2}}
$$

Figure 2-3: Mathematical Simulation of Bottom Topography

Figure 2-4: (a) Wave spectrum at the outer bar over a 2B-hour period showing the presence of sea breeze wind waves (as curving ridge) at high frequency and swell (as
straight ridge) as low frequency.
(b) Power content of wind wave and swell peaks over 28 hours at outer bar (see is Fig. 2.4(a) tor spectrum); change in relative height of wind waves and swell is
(c) Direction of approach of swell and wind waves during 28 -hour period.
(data processed and organized by Suhayda)

TABLE 2.1

INPUT WAVE CHARACTERISTICS

Time of Day hours	Wind Wave		Swell	
	$\mathrm{H}_{1 / 3} \mathrm{~T}$		$\mathrm{H}_{1 / 3} \mathrm{~T}$	θ
	cm sec	-	cm sec	c-
1200	17.91 .62	0.0	26.07 .00	-2.0
1500	28.82 .41	15.0	28.87 .70	-1.0
1800	33.92 .75	25.0	29.07 .90	-C. 5
2100	29.02 .96	40.0	25.5 7.90	0

The term inside the parentheses denotes either wind-wave or swell portions of the power spectrum, as plotted in Figure 2.4(b). Wave periods were obtained directly from the spectral density peaks for wind-wave and swell.

2. 5 RESULTS

2.5.1 Circulations Under Wind Waves

Figures 2.5 and 2.6 show streamlines caused by wind waves only at 1200, 1500, 1800 and 2100 hours. Note that the streamline separation represents. $2 \mathrm{~m}^{3} / \mathrm{sec}$.

According to Figure 2. 5 (case of normal wave incidence), an inflow dominates the area of shoals ($y=30-60,140-170$ meters). An inflow also occurs at part of the depression immediately to the right of the shoal. However, most of the depression area ($y=90-120$ meters) is dominated by outflow. Thus, there is a general indication that an inflow is strong on the shoal and an outflow is strong on the depression.

However, a detailed streamline distribution is more complex and includes some departures from the general rule. There is a small but well-defined eddy immediately to the right of the shoal ($y=70-90$, 185-205), which surrounds an area marked by a contour 0.4 meters. Another eddy of much smaller velocity is located almost directly offshore. These eddies have not been noticed during the field ubservation. It must be noted that, although the congested streamlines give the impression of a strong current, they only involve velocities on the order of a few cm/sec. Normal velocity components are clearly larger than the longshore components. The inflow velocity on the shoal is on the order of $1.5 \mathrm{~cm} / \mathrm{sec}$; the outflow velocity in the middle of the depression is on the order of $1.8 \mathrm{~cm} / \mathrm{sec}$. The maximum inflow velocity reaches about $8.6 \mathrm{~cm} / \mathrm{sec}$ at $\mathrm{y}=70$; the maximum outflow velocity reaches about $7.6 \mathrm{~cm} / \mathrm{sec}$ at $\mathrm{y}=85$. Maximum velocity outside of the surf zone is only about $4 \mathrm{~cm} / \mathrm{sec}$.

These low velocities are typical of weak breaker activities prior to the arrival of the sea breeze wave front in the surf zone. It is noticed in Figure 2.5 that waves are breaking only in the immediate vicinity of a shoal.

ORMAL WAVE APPROACH; CONTOUR INTERVAL $0.2 \mathrm{~m}^{3} / \mathrm{sec}$

Figure 2-5: Streamlines and Bottom Topography for Wind Waves
at 1200 hours Normal Incidence

Figure 2.6 shows casea of oblique wind waves in the afternoon. These streamlines now exhibit a stronger tendency for meander than in the case of normal incidence of Fig. 2.5. The outflow portion of the meander is located in the depression. However, an inflow also occurs at the depression nearer an upstream shoal. Small eddies tend to persist throughout the period of computation.

One of the conspicuous features of the afternoon situations is the tendency for the longshore current along the bar crest to intensify in proportion to the breaking activity. Fig. 2. 7 shows the diatribution of breakers at times corresponding to Fig. 2.6. Breaking is the most intensive at 1800 hours, e.g. at the peak of sea breeze activity, generating a strongest current along the bar crest (maximum 23 $\mathrm{cm} / \mathrm{sec}$). Both before and after this event (e.g. , at 1500 and 2100 hours) when the breaker zone was narrower, current speeds along the bar reached a maximum of only $15 \mathrm{~cm} / \mathrm{sec}$. Concentration of longshore current velocity in the breaker zone arises from the longshore wave thrust generated directly by a breaking phenomenon, in proportion to the rate of shoreward decrease in the flux of long shore momentum across a plane parallel to the shore.

2.5.2. Circulations Under Swell

Figure 2.8 show streamlines associated with swell. Only two cases are shown inasmuch as the swell characteristics changed little under the sea breeze condition. Streamline separation is . $6 \mathrm{~m}^{3} / \mathrm{sec}$.

A salient feature of these streamlines is the occurrence of a local circulation immediately to the right of the shoal $(y=60-80,175-185)$, which contains velocities as high as $120 \mathrm{~cm} / \mathrm{sec}$ seawards and 80 $\mathrm{cm} / \mathrm{sec}$ onshore. These circulation are located somewhat offshore of the eddies at noticed in the case of wind waves (compare with Figures 2.5 and 2.6).

Figure 2-6: Streamlines During Oblique Wave Incidences in the Afternoon

(meters)

Figure 2-7: Breaker Distribution

X (mesers)

Figure 2.8: Typical Streamlines Under Swell

These velocity patterns contratt strongly with the case of ciosed circulations previously observed by Sonu off the Seagrove beach (Sonu, 1972; See Figure 1.2 in this report). In the latter case, the bottom undulation was symmetrical, containing a broad shoal and narrow depression. In the present case, a depression occupies a larger area than a shoal, and the shoal is non-symmetrical, causing a more complex distribution of radiation stresses than in the case of a symmetrical broad shoal.
2.5.3. Circulations Under Coexisting Wind Waves And Swell

Figure 2. 9 shows superimposition of streamlines associated with wind waves and swell. Again, streamline separation is $0.6 \mathrm{~m} / \mathrm{sec}$.

As expected, the results generally indicated both features of windwave and swell cases. At 1200 hours, when wind waves produce weak breakers, the current field is dominated by swell. Effects of wind waves steadily increase through 1500 hours toward 1800 hours, the tendency for current meander becoming gradually more evident. At 1800 hours, a current arriving at a ehoal partly escapes seaward and partly meanders back shoreward. A local circulation near the tip of a shoal persists, reflecting a complicated radiation stress distribution over the sharply skewed bottom topography. It is also noted that a strong longshore current along the bar crest remains in force during the time of maximum sea breeze at 1800 hours. In general, current activities are concentrated around the steep fall of this shoal where the breaker height variation is most pronounced.

2.6 DISCUSSIONS

The simulated streamlines indicate both similarities and differences as compared with field observations. In general, the feature of inflow dominance over the shoal and outflow dominance over the depression is revealed in the computed streamlines, but it is also dis rupted to various degrees by the occurrence of localized eddies and small
Y (merert

$$
1500 \mathrm{~mm}
$$

Figure 2-9: Streamlines Under Combined Effects of Wind Waves and Swell
circulations persisting near the steep face of the skewed bottom undulation. Especially in the case of swell, these localized flows tend to dominate the overall streamline distribution. Also, the computed velocities tend to be higher than observations by a substantial margin especially in the case of awell.

Several approaches seem possible to improve the degree of reliability of numerical simulation for nearshore circulations.

First, the criterion for breaking inception and the estimation of wave heights during breaking should be improved. The present computation uses the Miche criterion,

$$
\left(\frac{H}{L}\right)_{b}=0.12 \tanh 2 \pi\left(\frac{d}{L}\right)_{b}
$$

for both breaking inception and post-breaking wave height. Since this criterion requires wave heights to diminish to zero at the shoreline, the rate of wave height reduction during breaking, hence the magnitude of radiation stress, may result in over-estimation. This could be one of the causes for overestimation of velocities.

There exists a critical deficiency of knowledge on the behavior of breaking waves. One way to overcome this difficulty may be to take into consideration a wave set-up in the water depth estimation in the surf zone. This problem has been handled numerically in a two-dimensional case (Hwang and Divoky, 1970). In the threedimensional case, as in our study, this problem could be handled by stepwise approximation. First, the result of the computation which is based on the assumption (Eq. 2.12).

$$
\eta+d \equiv d
$$

could be substituted into the starting equations $2.1-2.3$ to determine η_{1}.

In the next iteration, η_{1} will be added to the mean-sea-level water depth d and the new wave field and streamlines will be determined. This resuit will again be recycled to the starting equations to determine η_{2} and initiate the second iteration, and so on. These procedures will result in a slower breaker height reduction on the shoal and hence smaller radiation stresses and weaker currents.

The second approach is to take into consideration the randomness in the incident waves. Since wave breaking will occur in a zone instead of at a point, the radiation stresses will be spread more broadly, resulting in a general lowering of peak current velocities. In the case of two-dimensional longshore currents, this approach has resulted in a velocity distribution comparable to a derivation using a turbulent momentum mixing or eddy viscosity assumption (Collins, 1972).

Third, a more rigorous formulation of the bottom friction term may be needed. In the present computation, the bottom friction is associat ed primarily with wave orbital motion, Retardation of circulation velocity, presumably of considerable magnitude, is not taken into consideration in full value. As already mentioned, this approach requires readjustment of numerical scheme to ensure a sufficient degree of computational stability.

Fourth, it must be noted that the present computation does not consider interactions between wave and circulation. Therefore, there is an implicit assumption as if the wave field had been abruptly removed after driving the current instantaneously. However, the current, once produced, will interact with waves at all phases of its development. It is possible that the effect of such interactions is to produce an equilibrium circulation with less current velocities than obtained in the present computation, or a pulsation of the circulation around a certain mean equilibrium state.

3. WAVE CURRENT INTERACTION OVER VARIABLE TOPOGRAPHY

3.1 INTRODUCTION AND REVIEW OF HISTORICAL WORK

The available literature on surface wave-current interaction is not extensive. Unna (1942) and Sverdrup (1944) considered the case of deep-water waves encountering a following or opposing current and applied their results to waves in tidal entrances. Johnson (1941) discussed the refraction of deep-water waves encountering a uniform current moving at an angle to the wave system. Arthur (1950) studied the problem of shallow-water waves being refracted by both changes in bottom bathymetry and a nonuniform current system. Application of refraction effects due to a current distribution similar to an intense rip current was solved by considering the analogous problem of determining the minimum flight path of an airplane flying in a variable wind field.

Taylor (1955) investigated the influence an outward flowing surface current would have in preventing the passage of waves coming in from the sea. This study was in association with the concept of utilizing a surface current produced by a curtain of air bubbles as a "pneumatic breakwater'. Evans (1955) performed an experimental investigation of this concept.

Ursell (1960) and Whitham (1960) developed the general geometrical equation governing the interaction of a variable current and any type of wave motion. In a classic series of papers by Longuet-Higgins and Stewart ($1960,1961,1962$) and by Whitharn (1962) the conservation equations of mass, momentum and energy per unit area for a wave system superimposed on a variable current system were derived. A very good summary of this work is given by Phillips (1966). Taylor (1962) studied the characteristics of free-standing waves on either a contracting or expanding current and provided experimental data. Hughes and Stewart (1961) also conducted experimental investigations to determine the characteristics of gravity waves on a shear flow.

Recently Jonsson, Skougaard and Wang (1970) concentrated attention on the "current-wave set-down" for two-dimensional wave current propagation over a gently sloping bed. Kenyon (1971) studied the kinemetics of deep-water waves in conjunction with a variable current to show the possibility of either the trapping or total reflection of waves by the current.

To carry out the basic objective of this study as indicated at the very outset of this introduction, the important kinematic and dynamic relationships are first set forth. Numerical techniques are developed to solve these relationships so that the stream function and associated circulation pattern can be obtained. The basic philosophy is to first solve the nearshore wave-induced circulation problem with no wavecurrent interaction. Then the output of these circulation velocities are now considered the existing mean current system, and waves are again propagated into this system and a new wave height, direction and nearshore circulation pattern obtained. It is hoped that this continual interaction will finally yield an "equilibrium" solution.

3. 2
 WAVE CURRENT INTERACTION

3.2.1 Wave Kinematics

Inherent in the concept of three-dimensional waves is the motion of a "wave front". Crests and troughs of a wave often tend to maintain their identity as they propagate, which ia represented by surfeces everywhere perpendicular to the direction of wave motion. These surfaces are called "surfaces of constant phase" or phase surfaces. The propagation of gravity water waves can be represented by a form

$$
\begin{equation*}
\zeta(\vec{x}, t)=a(\vec{x}, t) e^{i \varphi(\vec{x}, t)} \tag{3.1}
\end{equation*}
$$

where $a(\vec{x}, t)$ is an amplitude function and the sinusoidal term provides for the motion of the wave, where the surfaces $\varphi(x, t)=$ constant are the surfaces of constant phase [Morse and Feshbach (1953), Phillips (1966)].

This physical interpretation of the phase surface function φ yields the defintion of the wave-number vector field \vec{k} and the scalar wave-frequency field $' \bar{i}$ in terms of the phase function:

$$
\begin{equation*}
\vec{k}=\nabla \varphi \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\overrightarrow{\boldsymbol{i}}=-\frac{\partial \varphi}{\partial t} \tag{3.3}
\end{equation*}
$$

In particular, the classic solution for the surface oscillation of a progressive water wave moving in the tx direction [Lamb (1945), Stoker (1957), Wiegel (1965)] is given by

$$
\begin{equation*}
C_{S}(x, t)=a \sin 2 \pi\left(\frac{x}{L}-\frac{t}{T}\right) \tag{3,4}
\end{equation*}
$$

where

	a is the wave amplitude
	L is the wave length
and \quad	T is the wave period.

Thus application of (3.2) and (3.3) to (3.4) where $\varphi=2 \pi\left(\frac{x}{L}-\frac{t}{T}\right)$ yields the wave-number in the $+x$ direction as

$$
\begin{equation*}
k_{0} \equiv \frac{2 \pi}{L} \tag{3.5}
\end{equation*}
$$

and the wave-frequency

$$
\begin{equation*}
\bar{\omega}_{0} \equiv \frac{2 \pi}{T} \tag{3.6}
\end{equation*}
$$

Note that in Equations (3.5) and (3.6) a subscript o has been utilized. Ir all following analyses this subscript refers to conditions of no wavecurrent interaction and not to deep-water conditions as is often ienoted in the literature. For dsep-water conditions the subscript d will be utilized.

Since the curl $(\operatorname{grad} \varphi) \equiv 0$, then Equation (3.2) becomes

$$
\begin{equation*}
\nabla \times \vec{k}=0 \tag{3.7}
\end{equation*}
$$

and consequently the weve-number vector field is irrotational, Moreover if $\varphi(\vec{x}, t)$ is a continhous function then the order of differertiation yields identical results and consequently

$$
\begin{equation*}
\frac{\partial}{\partial t}(\nabla \varphi)=\nabla\left(\frac{\partial \varphi}{\partial t}\right) \tag{3.8}
\end{equation*}
$$

Thus substituting from Equations (3.2) and (3.3) yieles

$$
\begin{equation*}
\frac{\partial \vec{k}}{\partial t}+\nabla \bar{\omega}=0 \tag{3.9}
\end{equation*}
$$

Equarion (3.9) is a kinematical relationship which describes the conservation of wave number. Consider a single wave train being viewed by an "Eulerian" observer at a stationary point. The time rate of change of waves viewed by the observer must be balanced by the convergence or divergence of the wave frequency \bar{w}, which describes the flux of the number of waves.

Consider now the case of surface waves interacting with a mean current $\overrightarrow{\mathrm{U}}$. Kinematical requirements yield that the wave frequency is given by

$$
\begin{equation*}
\bar{\omega}=\omega+\vec{k} \cdot \vec{U} \tag{3.10}
\end{equation*}
$$

where the first term on the RHS is the wave number with respect to the current system where

$$
\begin{equation*}
\omega=\omega(k, \vec{x}) \tag{3.11}
\end{equation*}
$$

In the following analysis concerning surface gravity waves it is assumed that the depth of water d and mean current \vec{U} vary slowly so that the classical solutions for no wave-current interaction are valid during interaction such that

$$
\begin{equation*}
\omega^{2}=\operatorname{gk} \tanh (k d) \tag{3.12}
\end{equation*}
$$

where g is the gravitational constant, the phase velocity c in the local wave direction is

$$
\begin{equation*}
c^{2}=\frac{g}{k} \tanh (k d) \tag{3.13}
\end{equation*}
$$

and the group velocity is

$$
\begin{equation*}
\left(c_{g}\right)_{i}=\frac{\partial \omega}{\partial k_{i}}=\frac{1}{2} c_{i}\left(1+\frac{2 k d}{\sinh (2 k d)}\right) \tag{3.14}
\end{equation*}
$$

Figure (3.1) schematically describes the basic wave-current interaction terminology. Furthermore all following analyses will assume that averaging over the water depth or vertical integration has taken place. From the condition of the irrotationality of the wave number vector \vec{k} in horizontal space coordinates x and y due to vertical integration, Equation (3.7) becomes, in cartesian coordinates,

$$
\begin{equation*}
\nabla_{h} \times \vec{k}=\frac{\partial k_{x}}{\partial y}+\frac{\partial k_{y}}{\partial x}=0 \tag{3.15}
\end{equation*}
$$

Figure 3.1: Schematic View of Nearshore Beach Terminology
where

$$
\begin{equation*}
k_{x}=k \cos \theta \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{k}_{\mathbf{y}}=\mathbf{k} \sin \theta \tag{3.17}
\end{equation*}
$$

Furthermore, assuming steady flow conditions exist, then $\frac{\partial}{\partial t} \equiv 0$ and Equation (3.9) becomes

$$
\begin{equation*}
\nabla_{h} \bar{\omega}=\nabla_{h}(\omega+\vec{k} \cdot U)=0 \tag{3.18}
\end{equation*}
$$

and for an arbitrary mean current system, the gradient of a scalar field can only be identically zero if

$$
\begin{equation*}
\omega+\vec{k} \cdot \vec{U}=\text { constant } \tag{3.19}
\end{equation*}
$$

If $\vec{U} \equiv 0$ then Equation (3.19) becomes identically the invariant wave frequency w_{0} and thus Equation (3.19) becomes in cartesian form

$$
\begin{equation*}
[g k \tanh (k d)]^{\frac{1}{2}}+U(x, y) k \cos \theta+V(x, y) k \sin \theta=\omega_{0} \tag{3,20}
\end{equation*}
$$

where $\quad \omega_{0}=2 \pi T T_{0}$ and after substitution of Equation (3. 12).

Expanding Equation (3.15) yields

$$
\begin{equation*}
\cos \theta \frac{\partial \theta}{\partial x}+\sin \theta \frac{\partial \theta}{\partial y}=\cos \theta \frac{1}{k} \frac{\partial k}{\partial y}-\sin \theta \frac{l}{k} \frac{\partial k}{\partial x} \tag{3.21}
\end{equation*}
$$

where the wave number k is defined by the transcendental relationship (3.20). Notice that if a local coordinate system s and $\overline{\mathrm{n}}$ as shown in Figure (3.1) are utilized, the form of Equation (3.21) becomes

$$
\begin{align*}
& \frac{\mathrm{D} \theta}{\mathrm{D}_{s}}=\frac{1}{k} \frac{\mathrm{Dk}_{k}}{D_{\bar{n}}} \tag{3.22}\\
& \text { with } \quad \frac{\mathrm{D}_{\mathbf{x}}}{\overline{D_{s}}}=\cos \theta \tag{3.23}\\
& \text { and } \quad \frac{D_{y}}{\overline{D_{s}}}=\sin \theta \tag{3.24}
\end{align*}
$$

where the operators of s and \bar{n} are

$$
\begin{equation*}
\frac{D}{D s}=\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial y} \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D}{\bar{D} \bar{n}}=-\sin \theta \frac{\partial}{\partial x}+\cos \theta \frac{\partial}{\partial y} \tag{3,26}
\end{equation*}
$$

Enuations (3.22), (3.23) and (3.24) are very similar to the kinematical relationships cobtained by Munk and $\mathrm{Ar}^{+t h} 4$ (1951) starting from Fermat's principle of minimum travel t ime for a water wave ray or orthogonal except that Equation $(3,22)$ is repiaced instead by

$$
\begin{equation*}
\frac{\mathrm{D} \theta}{\bar{D} s}=-\frac{1}{\mathrm{c}} \frac{\mathrm{D}_{\mathrm{c}}}{\mathrm{D}_{\bar{n}}} \tag{3.27}
\end{equation*}
$$

where c is the phase speed of the water wave as given by Equation (3.13). In fact, if the mean current, is identically zero $U=V \cong 0$, then it can be shown that Equation (3.22) reduces exactly to (3.27, and thus (3.22), (3.23) and (3.24) are the general relationships governing the ray path with wave-current interaction.

While the form of Equations (3.22) to (3.24) appear deceptively simple such that a standard numerical computational technique such as a Runge-Kutta or similar method could be utiiized, an expansion of the RIIS of Equation (3.22) yields a problem. Differentiating Equation (3.20) yields

$$
\begin{align*}
& \frac{\partial k}{\partial x}=\left\{k \frac{\partial \jmath}{\partial x}(U \sin \theta-V \cos \theta)-k\left(\cos \theta \frac{\partial U}{\partial x}+\sin \theta \frac{\partial V}{\partial x}\right)\right. \\
&-\frac{g^{2} \operatorname{sech}^{2}(k d)}{\left.2[g k \tanh (k d)]^{\frac{1}{2}} \frac{\partial d}{\partial x}\right\} \div\{U \cos \theta+V \sin \theta} \tag{3.28}\\
&\left.+\frac{\left.g\left[k d \operatorname{sech}^{2}(k d)+\tanh (k d)\right]\right\}}{2[g k \tanh (k d)]^{\frac{1}{2}}}\right\}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\partial k}{\partial y}=\left\{k \frac{\partial \theta}{\partial y}(U \sin \theta-V \cos \theta)-k\left(\cos \theta \frac{\partial U}{\partial y}+\sin \theta \frac{\partial V}{\partial y}\right)\right. \\
&\left.-\frac{g k^{2} \operatorname{sech}^{2}(k d)}{2[g k \tanh (k d)]^{\frac{1}{2}}} \frac{\partial d}{\partial y}\right\} \div\{U \cos \theta+V \sin \theta \tag{3.29}\\
&\left.+\frac{g\left[k d \operatorname{sech}^{2}(k d)+\tanh (k d)\right]}{2[g k \tanh (k d)]^{\frac{1}{2}}}\right\}
\end{align*}
$$

and notice that both $\frac{\partial k}{\partial x}$ and $\frac{\partial k}{\partial y}$ each have a term $\frac{\partial \theta}{\partial x}$ and $\frac{\partial \theta}{\partial y}$, respectively. Thus Equation (3.22) does not explicitly yield an expression for the ray angle θ in terms of only changes along the ray path 3 . Hence the valuable technique of integrating along characteristic lines is no longer valid if Equation (3.21) is to be fully solved.

3.2.2 Wave Dynamics

As indicated in the introduction, Section 3.1, the objective of this current research effort is to determine the effects of wave-current interaction on the nearshore circulation characteristics. Thus of prime interest with respect to wave dynamics is the change in wave height characteristics as the wave interacts with the nearshore current distribution. The conservation for mass, mornentum and energy per unit area due to the interaction of wave motion on a variable current have been given by Longuet-Higgins and Stewart (1960, 1961) and Whitham (1962). In this section the important relationship arises from the energy balance of the fluctuating motion of a wave train in which energy dissipation is negligible.

Vertically integrating the energy balance due to the fluctuating wave train superimposed on a variable current system and averaging over time during a wave period yields the energy relationship

$$
\begin{equation*}
\frac{\partial E}{\partial t}+\frac{\partial}{\partial x_{i}}\left\{E\left[U_{i}+\left(c_{g}\right)_{i}\right\}+\sigma_{i, j} \frac{\partial U_{i}}{\partial x_{i}}=0\right. \tag{3,30}
\end{equation*}
$$

where

$$
\begin{aligned}
& E= \frac{1}{8} \rho \mathrm{gH}^{2} \text { is the energy density per unit area } \\
& \sigma_{i, j} \text { is the "radiation stress" for surface waves } \\
& \text { defined by Longuet-Higgins and Stewart } \\
&(1960,1961)
\end{aligned}
$$

and given by

$$
\begin{align*}
& \sigma_{x x}=E\left[\left(2 n-\frac{1}{2}\right) \cos ^{2} \theta+\left(n-\frac{1}{2}\right) \sin ^{2} \theta\right] \tag{3.32}\\
& \sigma_{y y}=E\left[\left(2 n-\frac{1}{2}\right) \sin ^{2} \theta+\left(n-\frac{1}{2}\right) \cos ^{2} \theta\right] \tag{3,33}\\
& \tau_{x y}=\tau_{y x}=\frac{E}{2} n \sin (2 \theta)
\end{align*}
$$

where

$$
\begin{equation*}
n=\left(\frac{c_{g}}{c}\right)_{i}=\frac{1}{2}\left(1+\frac{2 k d}{\sinh (2 k d)}\right) \tag{3.35}
\end{equation*}
$$

Since the region of primary concern is the nearshore coastal zone especially between the breaker zone and beachline, the tendency to consider kd <<l as was assumed by Noda $(1972,1973)$ is very strong and outwardly very reasonable. But a more careful analysis of the physical processes involved in the breaker zone deems this unwise. In particular consider the degenerate case of surface waves propagating in the $+x$ direction on a variable current $U(x)$ in infinitely deep water. In this case since $\theta=0$ everywhere the kinematic relationship Equation (3.21) is identically satisfied and Equation (3.20) yields a quadratic equation with solution

$$
\begin{equation*}
c=\frac{c_{o}}{2}\left[1+\left(1+\frac{4 U}{c_{\mathrm{c}}}\right)^{\frac{1}{2}}\right] \tag{3.36}
\end{equation*}
$$

where the positive sign in the square root term is taken so that

$$
\begin{equation*}
c=c_{0}=c_{d}=\left(\frac{g}{k_{0}}\right)^{\frac{1}{2}} \tag{3.37}
\end{equation*}
$$

when $U=0$. Notice the interesting effect that no solution to Equation (3. 36) can exist if $U / c_{0}<-\frac{1}{4}$. At the critical velocity of $U=-\frac{C_{0}}{4}$ the square root term becomes zero and Equation (3.36) yields

$$
\begin{equation*}
c=\frac{c_{\mathbf{o}}}{2} \tag{3.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{U}{c}=-\frac{1}{2} \tag{3.39}
\end{equation*}
$$

Since the local group velocity of the deep-water wave system is

$$
\begin{equation*}
c_{g}=\frac{1}{2} c \tag{3.40}
\end{equation*}
$$

then Equation (3.39) physically implies that the wave system can no longer propagate when the mean current exactly opposes the energy propagating speed of the wave system.

For this special case the energy relationship Equation (3. 30) becomes

$$
\begin{equation*}
\frac{l}{E} \frac{d E}{d x}+\frac{1}{\left(U+c_{g}\right)} \frac{d\left(U+c_{g}\right)}{d x}+\frac{1}{2\left(U+c_{g}\right)} \frac{d U}{d x}=0 \tag{3.41}
\end{equation*}
$$

and the solution to (3.41) is

$$
\begin{equation*}
\frac{H}{H_{o}}=\frac{c_{o}}{[c(c+2 U)]^{\frac{1}{2}}} \tag{3.42}
\end{equation*}
$$

These results were given by Longuet-Higgins and Stewart (1961).

Extension of these concepts to the nearshore coastal zone implies that the complicated vector direction of the mean current coupled with the wave direction could yield the equivalent situation where the mean current directly opposes the local energy propagation
or group velocity of the wave. In the limit as this situation is approached the local wave length will approach zero with respect to a stationary observer. Thus while the local water depth d may be small, the local wave number $k=2 \pi / L$ may become very large such that the so called "shallow water" approximation may not be valid. Hence in all subsequent theoretical formulations with wave-current interaction, no approximations are made for the magnitude of the term kd.

Expanding Equation (3.30) in cartesian coordinates yields

$$
\begin{align*}
&\left(U+c_{g} \cos \theta\right) \frac{1}{E} \frac{\partial E}{\partial x}+\left(V+c_{g} \sin \theta\right) \frac{1}{E} \frac{\partial E}{\partial y} \\
&+\frac{\partial}{\partial x}\left(U+c_{g} \cos \theta\right)+\frac{\partial}{\partial y}\left(V+c_{g} \sin \theta\right) \\
&+\left[\bar{\sigma}_{x x} \frac{\partial U}{\partial x}+\bar{\tau}_{y x} \frac{\partial U}{\partial y}+\bar{\tau}_{x y} \frac{\partial V}{\partial x}+\bar{\sigma}_{y y} \frac{\partial V}{\partial y}\right]=0 \tag{3.43}
\end{align*}
$$

where

$$
\begin{align*}
& \bar{\sigma}_{x x}=\left(2 n-\frac{1}{2}\right) \cos ^{2} \theta+\left(n-\frac{1}{2}\right) \sin ^{2} \theta \tag{3.44}\\
& \bar{\sigma}_{y y}=\left(2 n-\frac{1}{2}\right) \sin ^{2} \theta+\left(n-\frac{1}{2}\right) \cos ^{2} \theta \tag{3.45}
\end{align*}
$$

and $\bar{\tau}_{x y}=\bar{\tau}_{y x}=\frac{n}{2} \sin (2 \theta)$
Since E is defined by Equation (3.31), substituting for E in Equation (3. 43) provides directly a relationship for the wave height

$$
\begin{gather*}
\left(U+c_{g} \cos \theta\right) \frac{2}{H} \frac{\partial H}{\partial x}+\left(V+c_{g} \sin \theta\right) \frac{2}{H} \frac{\partial H}{\partial y}+\frac{\partial}{\partial x}\left(U+c_{g} \cos \theta\right) \\
+\frac{\partial}{\partial y}\left(V+c_{g} \sin \theta\right)+\bar{\sigma}=0 \tag{3.47}
\end{gather*}
$$

where

$$
\begin{equation*}
\bar{\sigma} \equiv\left[\bar{\sigma}_{y x} \frac{\partial U}{\partial x}+\bar{\tau}_{y x} \frac{\partial U}{\partial y}+\bar{\tau}_{x y} \frac{\partial V}{\partial x}+\bar{\sigma}_{y y} \frac{\partial V}{\partial y}\right] \tag{3.48}
\end{equation*}
$$

Finally expanding Equation (3.47) fully yields

$$
\begin{align*}
& \left(U+c_{g} \cos \theta\right) \frac{2}{H} \frac{\partial H}{\partial x}+\left(V+c_{g} \sin \theta\right) \frac{2}{H} \frac{\partial H}{\partial y}+\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y} \\
& \quad-c_{g} \sin \theta \frac{\partial \theta}{\partial x}+\cos \theta \frac{\partial c_{g}}{\partial x}+c_{g} \cos \theta \frac{\partial \theta}{\partial y}+\sin \theta \frac{\partial c_{g}}{\partial y} \\
& +\bar{\sigma}=0 \tag{3.49}
\end{align*}
$$

The group velocity and wave celerity functions are given by

$$
\begin{align*}
c= & {\left[\frac{g}{k} \tanh (k d)\right]^{\frac{1}{2}} } \tag{3.50}\\
c_{g}= & \frac{c}{2}\left[1+\frac{2 k d}{\sinh (2 k d)}\right] \tag{3.51}\\
\frac{\partial c_{g}}{\partial x}= & \frac{c\left[k \frac{\partial d}{\partial x}+d \frac{\partial k}{\partial x}\right] \cdot[\sinh (2 k d)-2 k d \cosh (2 k d)]}{\sinh ^{2}(2 k d)} \\
& +\frac{1}{2}\left[1+\frac{2 k d}{\sinh (2 k d)}\right] \frac{\partial c}{\partial x} \tag{3.52}\\
\frac{\partial c_{g}}{\partial y}= & \frac{c\left[k \frac{\partial d}{\partial y}+d \frac{\partial k}{\partial y}\right] \cdot[\sinh (2 k d)-2 k d \cosh (2 k d)]}{\sinh ^{2}(2 k d)} \\
& +\frac{1}{2}\left[1+\frac{2 k d}{\sinh (2 k d)}\right] \frac{\partial c}{\partial y} \tag{3.53}
\end{align*}
$$

where

$$
\begin{align*}
& \frac{\partial c}{\partial y}=\frac{g}{2 k^{2} c}\left[k \operatorname{sech}^{2}(k d)\left(k \frac{\partial d}{\partial x}+d \frac{\partial k}{\partial x}\right)-\tanh (k d) \frac{\partial k}{\partial x}\right] \tag{3.54}\\
& \frac{\partial c}{\partial y}=\frac{\tilde{g}^{2}}{2 k^{2} c}\left[k \operatorname{sech}^{2}(k d)\left(k \frac{\partial d}{\partial y}+d \frac{\partial k}{\partial y}\right)-\tanh (k d) \frac{\partial k}{\partial y}\right] \tag{3.55}
\end{align*}
$$

and where $\frac{\partial k}{\partial x}$ and $\frac{\partial k}{\partial y}$ are given by Equations (3.28) and (3.29) respectively and k defined by the solution to Equation (3.20).

To understand some of the physical processes interacting within the energy equation (3.49), it is useful to transform (3.49) in terms of the local coordinate system s along the wave ray and $\overline{\mathrm{n}}$ along the wave front. Utilizing operators defined by Equations (3.25) and (3.26), Equation (3.49) becomes

$$
\begin{align*}
\frac{1}{H} \frac{D H}{D s} & +\frac{1}{2} \frac{D \theta}{D \bar{E}}+\frac{1}{2 c_{g}} \frac{D c_{g}}{D s}+\frac{1}{2 c_{g}}\left[\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}\right]+\frac{1}{c_{g} H}\left[U \frac{\partial H}{\partial x}+V \frac{\partial H}{\partial y}\right] \\
& +\frac{\bar{g}}{2 c_{g}}=0 \tag{3.56}
\end{align*}
$$

If the mean current velocity is now set equal to zero, $U=V=0$, then Equation (3.56) becomes

$$
\begin{equation*}
\frac{1}{H} \frac{D H}{D s}+\frac{1}{2} \frac{D \theta}{D n}+\frac{1}{2 c_{g}} \frac{D c_{g}}{D_{s}}=0 \tag{3.57}
\end{equation*}
$$

or in terms of the energy density

$$
\begin{equation*}
\frac{1}{E} \frac{D E}{D_{s}}+\frac{D \theta}{D_{\tilde{n}}}+\frac{1}{c_{g}} \frac{D c_{g}}{D_{s}}=0 \tag{3.58}
\end{equation*}
$$

Notice that both Equations (3.57) and (3.58) describe the changes in the wave height or energy as being related to the curvature of the wave front $\frac{\mathrm{D} \theta}{\mathrm{D}} \mathrm{n}_{\text {a }}$ and to the logarithmic change in group velocity along the ray path, $\frac{1}{c_{g}} \frac{D_{c_{g}}}{D_{s}}$. In point-of-fact $\frac{D_{\theta}}{D_{n}}$ describes ray refraction and $\frac{1}{c_{g}} \frac{\mathrm{Dc}_{g}}{\mathrm{Ds}_{\mathrm{g}}}$ wave shoaling.

The form of Equation (3.57) suggests a form of separation of variables where

$$
\begin{equation*}
H=H_{r}(\theta) H_{s h}\left(c_{g}\right) \tag{3.59}
\end{equation*}
$$

and substitution of (3.59) into (3.57) yields

$$
\begin{equation*}
\frac{1}{H_{s h}} \frac{D H_{s h}}{D_{s}}+\frac{1}{2 c_{g}} \frac{D_{g}}{D_{s}}+\frac{1}{H_{r}} \frac{D H_{r}}{D_{s}}+\frac{1}{2} \frac{D \theta}{D \eta}=0 \tag{3.60}
\end{equation*}
$$

Since H_{sh} is only a function of c_{g}, and $\mathrm{H}_{\mathbf{r}}$ only a function of θ, Equation (3.60) implies that

$$
\begin{equation*}
\frac{l}{H_{s h}} \frac{\mathrm{DH}_{s h}}{D s}+\frac{1}{2 c_{g}} \frac{\mathrm{Dc}_{g}}{D s}=\mathrm{C} \tag{3.6!}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\mathrm{H}_{r}} \frac{\mathrm{DH}}{\mathrm{D}_{\mathrm{s}}}+\frac{1}{2} \frac{\mathrm{D} \theta}{\mathrm{D} \tilde{n}}=-\mathrm{C} \tag{3.62}
\end{equation*}
$$

where C is a constant. Equation (3.61) can easily be integrated and yields a solution

$$
\begin{equation*}
H_{s h}=\frac{C_{1}}{\sqrt{c_{\mathrm{g}}}} \tag{3.63}
\end{equation*}
$$

where C_{1} is a new constant. The solution to Equation (3.62) is much more complicated. By considering the ray separation diagram shown in Figure 3. 2, Munk and Arthur (1951) have shown that

$$
\begin{equation*}
\frac{1}{\mathrm{~b}} \frac{\mathrm{Db}}{\mathrm{Ds}}=\frac{\mathrm{D} \theta}{\mathrm{D} \bar{n}} \tag{3.64}
\end{equation*}
$$

and defining $\beta=b / b_{d}$, the equation for ray separation (3.65) becomes

$$
\begin{equation*}
\frac{1}{\beta} \frac{D \beta}{D s}=\frac{D \theta}{D \bar{n}} \tag{3.65}
\end{equation*}
$$

Now substituting Equation (3.66) into (3.62) yields

$$
\begin{equation*}
\frac{1}{H_{r}} \frac{D_{r}}{D_{s}}+\frac{1}{2 \beta} \frac{D \beta}{D_{s}}=-C \tag{3,66}
\end{equation*}
$$

and integrating directly yields

$$
\begin{equation*}
H_{r}=\frac{C_{2}}{\sqrt{\beta}} \tag{3.67}
\end{equation*}
$$

where C_{2} is a constant.
Thus finally substituting back into Equation (3.59) produces

WAVE FRONTS

Figure 3. 2: Ray and Wave Front Terminology

$$
\begin{equation*}
H=\frac{\bar{C}}{\sqrt{c_{g}} \sqrt{\beta}} \tag{3.68}
\end{equation*}
$$

and in deep water $H=H_{d}, c_{g_{d}}=c_{g_{d}}$ and $\beta \rightarrow 1$ yields

$$
\begin{equation*}
\overline{\mathrm{C}}=\mathrm{H}_{\mathrm{o}} \quad \mathrm{c}_{\mathrm{g}} \tag{3.69}
\end{equation*}
$$

and finally,

$$
\begin{equation*}
H=H_{o}\left(\frac{{ }^{c} g_{d}}{\mathrm{C}_{\mathrm{g}}}\right)^{\frac{1}{2}} \frac{1}{\sqrt{\beta}} \tag{3.70}
\end{equation*}
$$

where Equations (3.50) and (3.51) give

$$
\begin{equation*}
\left(\frac{{ }^{c} g_{d}}{c_{g}}\right)^{\frac{1}{2}}=\left\{\frac{1}{\tanh (k d)\left[1+\frac{2 k d}{\sinh (2 k d)}\right]}\right\}^{\frac{1}{2}} \tag{3.71}
\end{equation*}
$$

Equation (3. 70) is the well known classic solution to waves undergoing transformation due to both shoaling and refraction.

The solution for H from Equation (3.70) is not fully complete since β is yet an unknown. Munk and Arthur (1951) have derived a differential equation for β, called the wave intensity

$$
\begin{equation*}
\frac{D^{2} \beta}{D s^{2}}+p(s) \frac{D \beta}{D s}+q(s) \beta=0 \tag{3,72}
\end{equation*}
$$

where

$$
\begin{equation*}
p(s)=-\cos \theta\left[\frac{1}{c} \frac{\partial c}{\partial x}\right]-\sin \theta\left[\frac{1}{c} \frac{\partial c}{\partial y}\right] \tag{3.73}
\end{equation*}
$$

and $q(s)=\sin ^{2} \theta\left[\frac{1}{c} \frac{\partial^{2} c}{\partial x^{2}}\right]-2 \sin \theta \cos \theta\left[\frac{1}{c} \frac{\partial^{2} c}{\partial x^{2}}\right]+\cos ^{2} \theta\left[\frac{1}{c} \frac{\partial^{2} c}{\partial y^{2}}\right]$
and solutions for β are shown in Noda (1972, 1973). In particular it can be shown that Equation (3.72) degererates to the Snell's Law solution when $d=d(x)$ only

$$
\begin{equation*}
\theta=\left[\frac{\cos \theta}{\cos \theta}\right]^{\frac{1}{2}} \tag{3.75}
\end{equation*}
$$

Returning back to the general equation (3.56), it is painfully evident that with wave-current intoraction, the simple concept that the local wave height can be represented by a product of wave shoaling and wave refraction factors as described by Equation (3.59) is no longer valid. The combined dependency of refraction on shoaling and vice versa necessitates the solution of Equation (3.49) directly.

As the wave propagates from relatively deep water into shallow water or into an area where mean current conditions exist, Equation (3.49) will govern the local wave height until an instability occurs. This instability is usually wave breaking due to the effects of skoaling, refraction and wave-current interaction. In order to determine when breaking occurs it is assumed that spatial variation in U and V are sufficiently gradual so that an empirical breaking criteria is imposed, developed from the non wave-current interaction observation. The theoretical limiting wave steepness condition from Miche (1944) is

$$
\begin{equation*}
\frac{H_{b}}{L_{b}}=0.142 \tanh \left(\frac{2 \pi d_{b}}{L_{b}}\right) \tag{3.76}
\end{equation*}
$$

where the subscript b indicates breaking conditions and the breaking wave length L_{b} is given by

$$
\begin{equation*}
L_{b}=\frac{2 \pi}{k_{b}} \tag{3.77}
\end{equation*}
$$

and k_{b} is derived for the transcendental Equation (3.20). An examination of experimental data of waves breaking over a horizontal bottom by Le Mehaute and Koh (1967) indicates a better limiting steepness criterion is

$$
\frac{H_{b}}{L_{b}}=0.12 \tanh \left(\frac{2 \pi d_{b}}{L_{b}}\right)
$$

Since the wave number k during wave-current interaction is obtained directly from Equation (3.20), then Equation (3.78) can be transformed to

$$
\begin{equation*}
H_{b}=\frac{(0.12) 2 \pi}{k_{b}} \tanh \left(\frac{d_{b}}{k_{b}}\right) \tag{3.79}
\end{equation*}
$$

During computation if the solution for the local wave height H from Equatior (3.49) is less than H_{b}, then the wave height is H. If computation indicates that

$$
\begin{equation*}
\mathrm{H} \geqslant \mathrm{H}_{\mathrm{b}} \tag{3.80}
\end{equation*}
$$

then the local wave is considered to have broken and the empirical relationship Equation (3.79) is imposed where $H=H_{b}$. Thus the effects of the mean current become critically important through the wave number k. In other words if the local mean current is in the same direction as the local wave direction then the local wave number k becomes smaller which requires a larger wave height for breaking to occur. On the other hand if the local mean current opposes the local wave direction then the local wave number k increases and the limiting local breaker height decreases. This phenomenon is easily seen at the entrances of river and estuaries when an outflowing current meets an incoming gravity wave system. The local limiting breaking wave height decreases so that even very small waves seem to "white cap" and break.

Application of the empirical breaking criterion Equation (3.79) is indeed crude. Recent studies of breaking waves by Divoky, Le Mehaute and Lin (1970) indicate that wave breaking is dependent on a "characteristic' bottom slope and the research effort of Galvin (1969) centers on different types of breaker characteristics as a function of bottom slope. Thus the breaking criterion expressed by Equation (3.79) hopefully indicates the major breaking process, sufficient to determine the merits of the concept of nearshore wave-induced circulation including wave-current interaction.

In the following theoretical formulation, the equations which describe the circulation pattern within the nearshore zone are derived. The formulation objective is to initially solve for the wave height and direction fields and subsequently for the wave-induced nearshore circulation pattern with no wave-current interaction [Noda (1972, 1973)]. The next step is to use this circulation pattern or more specifically the circulation velocity fields $U(x, y), V(x, y)$ as the mean current to be input into a new calculation of the wave height and direction fields and again obtain the solution for the new waveinduced circui ation pattern with wave-current interaction. In theory this iterative technique, which assumes a series of quasi-steady states, should hopefully in the limit, converge such that the circulation velocities are exactly equal to the previously imposed mean current.

The coordinate system is described in Figure 3. 1. Vertically intem grating the momentum and continuity equations and neglecting the nonlinear and time dependent terms yields

$$
\begin{align*}
& g \frac{\partial \eta}{\partial x}=-\frac{1}{\rho(\eta+d)}\left[\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}\right]-F_{x} \tag{3.81}\\
& g \frac{\partial \eta}{\partial y}=-\frac{1}{\rho(\eta+d)}\left[-\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \tau_{y x}}{\partial x}\right]-F_{y} \tag{3.82}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial x}[u(\eta+d)]+\frac{\partial}{\partial y}[v(\eta+d)]=0 \tag{3.83}
\end{equation*}
$$

where
and
η is the mean water surface
ρ is the fluid density
$F_{X^{\prime}} F_{y}$ are bottom friction terms

$$
u, v \text { are the new wave-induced circulation velocities. }
$$

The analysis of the bottom friction term is similar to that provided by Longuet-Higgins (1970) and a detailed formulation of this concept is given by Noda (1972) where

$$
\begin{equation*}
F_{x}=\frac{2 \bar{c} H_{u}}{(\eta+\bar{d}) \bar{T} \sinh k \bar{d}} \tag{3.84}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{y}=\frac{2 \bar{c} H y}{(\eta+d) T \sinh k d} \tag{3.85}
\end{equation*}
$$

where

$$
\overline{\mathrm{c}} \text { is a constant bottom friction coefficient, }
$$ usually $\overline{\mathbf{c}}=0.01$,

and I is the local wave period.

Assuming that

$$
\begin{equation*}
\eta+d \cong d \tag{3.86}
\end{equation*}
$$

and cross-differentiating Equations (3.81) and (3.82) and introducing a stream function ψ dafined by

$$
\begin{equation*}
\frac{\partial \psi}{\partial y} \equiv-u d \tag{3.87}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \psi}{\partial x} \equiv+v d \tag{3,88}
\end{equation*}
$$

automatically satisfies the continuity equation (3.83) and yields the nearshore circulation equation

$$
\begin{aligned}
& \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{1}{F} \frac{\partial F}{\partial y} \frac{\partial \psi}{\partial y}+\frac{1}{F} \frac{\partial F}{\partial x} \frac{\partial \psi}{\partial x}= \\
& \quad \frac{F}{F}\left\{\frac{\partial}{\partial y}\left[\frac{1}{d}\left(\frac{\partial \sigma_{x x}^{*}}{\partial x}+\frac{\partial \sigma^{*} x y}{\partial y}\right)-\frac{\partial}{\partial x}\left[\frac{1}{d}\left(\frac{\partial \sigma^{*} y y}{\partial y}+\frac{\partial \sigma^{*} y x}{\partial x}\right)\right]\right\}\right.
\end{aligned}
$$

where

$$
\begin{equation*}
F=\frac{2 \bar{c} H}{d^{2} T \sinh k d} \tag{3.89}
\end{equation*}
$$

$$
\begin{align*}
\sigma_{x x}^{*} & =\frac{H^{2}}{8}\left[\left(2 n-\frac{1}{2}\right) \cos ^{2} \theta+\left(n-\frac{1}{2}\right) \sin ^{2} \theta\right] \tag{3.91}\\
\sigma_{y y}^{*} & =\frac{H^{2}}{8}\left[\left(2 n-\frac{1}{2}\right) \sin ^{2} \theta+\left(n-\frac{1}{2}\right) \cos ^{2} \theta\right] \tag{3.92}\\
\tau_{x y}^{*}=\tau_{y x}^{*} & =\frac{H^{2}}{16} n \sin (2 \theta) \tag{3.93}
\end{align*}
$$

Typically since the nearshore coastal zone is of primary interest, the urge to utilize the so called "shallow water" approximation where the argument kd is considered small seems appropriate. Note the important concept distinction that vertically integrating the momentum and continuity equations is not identically synonymous to the shallow water approximation. As described in the previous section, while the water depth d may become small, the wave number k may become very large if the mean current opposes the wave ray direction and its magnitude approaches the energy propagating speed of the local wave; implying that the product kd may become very large. Thus the form of the circulation equation (3.84) should definitely consider this interactive concept. In particular the local wave period T in Equation (3. 90) is not invariant to a stationary "Eulerian" observer and its variation must be considered.

Since the local wave period ' T is defined by

$$
\begin{equation*}
T=\frac{2 \pi}{\omega} \tag{3.94}
\end{equation*}
$$

then substituting Equation (3.94) into (3.90) after noting that ω is defined by Equation (3.12) yields

$$
\begin{equation*}
F=\frac{\bar{c} \sqrt{2 g}}{\pi} \frac{H}{d^{2}}\left[\frac{k}{\sinh (2 k d)}\right]^{\frac{1}{2}} \tag{3.95}
\end{equation*}
$$

and consequently its x and y derivatives are

$$
\begin{align*}
\frac{\partial F}{\partial x}= & \frac{\bar{c} \sqrt{2 g}}{\pi}\left\{\frac{H}{2 d^{2}}\left[\frac{\sinh (2 k d)}{k}\right]^{\frac{1}{2}} \cdot\left[\frac{\sinh (2 k d) \frac{\partial k}{\partial x}-2 k\left(k \frac{\partial d}{\partial x}+d \frac{\partial k}{\partial x}\right) \cosh (2 k d)}{\sinh ^{2}(2 k d)}\right]\right. \\
& \left.+\left[\frac{k}{\sinh (2 k d)}\right]^{\frac{1}{2}}\left[\frac{d \frac{\partial H}{\partial x}-2 H \frac{\partial d}{\partial x}}{d^{3}}\right]\right\} \tag{3.96}\\
\frac{\partial F}{\partial y}= & \frac{\bar{c} \sqrt{2 g}}{\pi}\left\{\frac{H}{2 d^{2}}\left[\frac{\sinh (2 k d)}{k}\right]^{\frac{1}{2}} \cdot\left[\frac{\sinh (2 k d) \frac{\partial k}{\partial y}-2 k\left(k \frac{\partial d}{\partial y}+d \frac{\partial k}{\partial y}\right) \cosh (2 k d)}{\sinh ^{2}(2 k d)}\right]\right. \\
& \left.+\left[\frac{k}{\sinh (2 k d)}\right]^{\frac{1}{2}}\left[\frac{d \frac{\partial H}{\partial y}-2 H \frac{\partial d}{\partial y}}{d^{3}}\right]\right\} \tag{3.97}
\end{align*}
$$

and thus
$\frac{1}{F} \frac{\partial F}{\partial x}=\frac{1}{2 k}\left[\frac{\partial k}{\partial x}-\frac{2 k\left(k \frac{\partial d}{\partial x}+d \frac{\partial k}{\partial x}\right)}{\tanh (2 k d)}\right]+\frac{1}{H d}\left(d \frac{\partial H}{\partial x}-2 H \frac{\partial d}{\partial x}\right)$
and
$\frac{1}{F} \frac{\partial F}{\partial y}=\frac{1}{2 k}\left[\frac{\partial k}{\partial y}-\frac{2 k\left(k \frac{\partial d}{\partial y}+d \frac{\partial k}{\partial y}\right)}{\tanh (2 k d)}\right]+\frac{1}{H d}\left(d \frac{\partial H}{\partial y}-2 H \frac{\partial d}{\partial y}\right)$
where k is the solution to Equation (3.20).

Carrying through the derivatives of the RHS of the nearshore circulation equation (3.89) yields

$$
\begin{align*}
\text { RHS [Eq. (3.84)] }= & \frac{g}{F}\left\{\frac{1}{d}\left[\frac{\partial^{2} \sigma_{x x}^{*}}{\partial y \partial x}+\frac{\partial^{2} \tau_{x y}^{*}}{\partial y^{2}}-\frac{\partial^{2} \sigma_{y y}^{*}}{\partial x \partial y}-\frac{\partial^{2} \tau_{x y}^{*}}{\partial x^{2}}\right]\right. \\
& \left.-\frac{\frac{\partial d}{\partial y}}{d^{2}}\left[\frac{\partial \sigma_{x x}^{*}}{\partial x}+\frac{\partial \tau^{*} x y}{\partial y}\right]+\frac{\frac{\partial d}{\partial x}}{d^{2}}\left[\frac{\partial \sigma_{y y}^{*}}{\partial y}+\frac{\partial \tau_{x y}^{*}}{\partial x}\right]\right\} \tag{3.100}
\end{align*}
$$

and full computation of the derivatives in Equation (3.100) yields

$$
\begin{align*}
& \frac{\partial \sigma_{x x}^{*}}{\partial x}=\frac{H^{2}}{8}\left[-n \frac{\partial \theta}{\partial x} \sin (2 \theta)+\frac{\partial n}{\partial x}\left(1+\cos ^{2} \theta\right)\right]+\frac{2}{H} \frac{\partial H}{\partial x} \sigma_{x x}^{*} \tag{3.101}\\
& \frac{\partial \sigma_{y y}^{*}}{\partial y}=\frac{H^{2}}{8}\left[n \frac{\partial \theta}{\partial y} \sin (2 \theta)+\frac{\partial n}{\partial y}\left(1+\sin ^{2} \theta\right)\right]+\frac{2}{H} \frac{\partial H}{\partial y} \sigma_{y y}^{*} \tag{3.102}\\
& \frac{\partial \tau_{y x}^{*}}{\partial x}=\frac{H^{2}}{8}\left[n \frac{\partial \theta}{\partial x} \cos (2 \theta)+\frac{n}{H} \frac{\partial H}{\partial x} \sin (2 \theta)\right]+\frac{1}{n} \frac{\partial n}{\partial x} \tau_{y x}^{*} \tag{3.103}\\
& \frac{\partial \tau_{x y}^{*}}{\partial y}=\frac{H^{2}}{8}\left[n \frac{\partial \theta}{\partial y} \cos (2 \theta)+\frac{n}{H} \frac{\partial H}{\partial y} \sin (2 \theta)\right]+\frac{1}{n} \frac{\partial n}{\partial y} \tau_{x y}^{*} \tag{3.104}
\end{align*}
$$

where

$$
\begin{align*}
& \frac{\partial n}{\partial x}=\frac{\left(k \frac{\partial d}{\partial x}+d \frac{\partial k}{\partial x}\right)}{\sinh (2 k d)}\left[1-\frac{2 k d}{\tanh (2 k d)}\right] \tag{3.105}\\
& \frac{\partial n}{\partial y}=\frac{\left(k \frac{\partial d}{\partial y}+\frac{\partial k}{\partial y}\right)}{\sinh (2 k d)}\left[1-\frac{2 k d}{\tanh (2 k d)}\right] \tag{3.106}
\end{align*}
$$

and the second-order derivatives are

$$
\begin{align*}
\frac{\partial^{2} \sigma_{x x}^{*}}{\partial y \partial x}= & \frac{H^{2}}{8}\left\{-n \frac{\partial^{2} \theta}{\partial y \partial x} \sin (2 \theta)-2 n \frac{\partial \theta}{\partial x} \frac{\partial \theta}{\partial y} \cos (2 \theta)-\frac{\partial \theta}{\partial x} \frac{\partial n}{\partial y} \sin (2 \theta)\right. \\
& -\frac{\partial \theta}{\partial y} \frac{\partial n}{\partial x} \sin (2 \theta)+\left(1+\cos s^{i} \hat{z} \frac{\partial^{2} n}{r \partial x}\right\} \\
& \left.+\frac{H}{4} \frac{\partial H}{\partial y}\left[-n \frac{\partial \theta}{\partial x} \sin (2 \theta)+i l \cos ^{2} \theta\right) \frac{\partial^{2} n}{\partial x}\right] \\
& +\frac{2}{H} \frac{\partial H}{\partial x} \frac{\partial \sigma_{x x}^{*}}{\partial y}+2 \sigma_{x x}^{*}\left[\frac{1}{H} \frac{\partial^{2} H}{\partial y \partial x}-\frac{1}{H^{2}} \frac{\partial H}{\partial x} \frac{\partial H}{\partial y}\right] \tag{3.107}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial^{2 *} x y}{\partial y^{2}}=\frac{n}{8}\left\{H^{2}\left[\frac{\partial^{2} \theta}{\partial y^{2}} \cos (2 \theta)-2\left(\frac{\partial \theta}{\partial y}\right)^{2} \sin (2 \theta)\right]+4 H \frac{\partial \theta}{\partial y} \frac{\partial H}{\partial y} \cos (2 \theta)\right. \\
& \left.+\left[H \frac{\partial^{2} H}{\partial y^{2}}+\left(\frac{\partial H}{\partial y}\right)^{2}\right] \sin (2 \theta)\right\}+\frac{H}{8} \frac{\partial n}{\partial y}\left[H \frac{\partial \theta}{\partial y} \cos (2 \theta)+\frac{\partial H}{\partial y} \sin (2 \theta)\right] \\
& +\frac{1}{n} \frac{\partial n}{\partial y} \frac{\partial \tau^{*} x y}{\partial y}+\tau_{x y}^{*}\left[\frac{1}{n} \frac{\partial^{2} n}{\partial y^{2}}-\frac{1}{n^{2}}\left(\frac{\partial n}{\partial y}\right)^{2}\right] \tag{3.108}\\
& \frac{\partial^{2} \stackrel{\%}{\tilde{m}}}{\partial x \partial y}=\frac{H^{2}}{8}\left\{n \frac{\partial \theta}{\partial y} \frac{\partial \theta}{\partial x} \cos (2 \theta)+\frac{\partial^{2} \theta}{\partial x \partial y} \sin (2 \theta)\right]+\frac{\partial \theta}{\partial y} \frac{\partial n}{\partial x} \sin (2 \theta) \\
& \left.+\frac{\partial n}{\partial y} \frac{\partial \theta}{\partial x} \sin (2 \theta)+\left(1+\sin ^{2} 6\right) \frac{\partial^{2} n}{\partial x \partial y}\right\} \\
& +\frac{H}{4} \frac{\partial H}{\partial x}\left[n \frac{\partial H}{\partial y} \sin (2 \theta)+\frac{\partial n}{\partial y}\left(1+\sin ^{2} \theta\right)\right] \\
& +\frac{2}{H} \frac{\partial H}{\partial y} \frac{\partial \sigma_{y y}^{*}}{\partial x}+2 \sigma_{y y}^{*}\left[\frac{1}{H} \frac{\partial^{2} H}{\partial x \partial y}-\frac{1}{H^{2}} \frac{\partial H}{\partial y} \frac{\partial H}{\partial x}\right] \\
& \frac{\partial^{2} \tau_{y x}^{*}}{\partial x^{2}}=\frac{n}{8}\left\{H^{2}\left[\frac{\partial^{2} \theta}{\partial x^{2}} \cos (2 \theta)-2\left(\frac{\partial \theta}{\partial x}\right)^{2} \sin (2 \theta)\right]+4 H \frac{\partial \theta}{\partial x} \frac{\partial H}{\partial x} \cos (2 \theta)\right. \\
& \left.+\left[H \frac{\partial^{2} H}{\partial x^{2}}+\left(\frac{\partial H}{\partial x}\right)^{2}\right] \sin (2 \theta)\right\}+\frac{H}{8} \frac{\partial n}{\partial x}\left[H \frac{\partial \theta}{\partial x} \cos (2 \theta)+\frac{\partial H}{\partial x} \sin (2 \theta]\right. \\
& +\frac{1}{n} \frac{\partial n}{\partial x} \frac{\partial \tau^{*} y x}{\partial x}+\tau_{y x}^{*}\left[\frac{1}{n} \frac{\partial^{2} n}{\partial x^{2}}-\frac{1}{n^{2}}\left(\frac{\partial n}{\partial x}\right)^{2}\right] \tag{3.110}
\end{align*}
$$

where
$\frac{\partial \sigma_{x X x}^{*}}{\partial y}=\frac{H^{2}}{8}\left[-n \frac{\partial \theta}{\partial y} \sin (2 e)+\left(1+\cos ^{2} \theta\right) \frac{\partial n}{\partial y}\right]+\frac{2}{H} \frac{\partial H}{\partial y} \sigma_{x x}^{*}$
and
$\frac{\partial \dot{⿳}_{Y Y}^{*}}{\partial x}=\frac{H^{2}}{8}\left[n \frac{\partial \theta}{\partial x} \sin (2 \theta)+\left(1+\sin ^{2} \theta\right) \frac{\partial n}{\partial x}\right]+\frac{2}{H} \frac{\partial H}{\partial x} \sigma_{Y y}^{*}$.

Notice all derivatives and parameters have been specified except for second-order derivatives in n, i. e. $\frac{\partial^{2} n}{\partial x^{2}}, \frac{\partial^{2} n}{\partial y^{2}}$ and $\frac{\partial^{2} n}{\partial x^{2} y}$. While algebraically feasible, these derivatives would contain 2nd order derivatives of k with respect to x and y and considering the complicated form of Equation (3.28) and (3.29), it was decided to use central differences of the first-order derivatives to compute the second-order derivatives of n.

Finally the RHS of Equation (3.89) and the variable coefficients of the first-order derivatives of are completely specified such that providing sufficient and necessary boundary conditions, the stream function can be found by utilizing an iterative relaxation technique.

3. 3 Numerical Analysis

This section deals with the numerical techniques developed to determine, first, the wave characteristics of direction and height due to wave-mean current interaction, and second, to utilize these results to determine the resulting wave-current induced circulation pattern in the nearshore coastal zone. Hence, essentially two separate programs exist--one to obtain the wave local height and direction, and the second to solve for the stream function once the wave height and direction fields are known.

In a previous study [Noda (1972, 1973)], the solution to wave-induced nearshore circulation was found excluding the effects of wave-current interaction. In that study, the wave height and direction fields were obtained by integrating along characteristic lines by utilizing a fourthorder Runge-Kutta scheme. As discussed previously, with wavecurrent interaction, characteristic lines no longer exist and thus a completely new numerical technique was developed. This technique first solves the kinematics problem directly on numerical grid points i, j and yields the ray directional field θ at all nodal points. Then the energy equation (3.49) is solved directly on the same numerical grid points i, j to obtain the wave height field.

The numerical technique discussed above to determine the wave characteristics for wave-current interaction makes important use of the fact that prototype data indicates a longshore periodicity of both the wave-induced circulation pattern and the bottom bathymetry such that

$$
\begin{equation*}
d(x, y)=d(x, y+m \lambda) \quad \text { where } \quad|m|=1,2,3 \tag{3,113}
\end{equation*}
$$

This longshore periodicity leads to the key boundary condition which emits the development of a highly efficient numerical algorithm for the solution of wave characteristics including wave-current interaction in the nearshore zone.

While longshore periodicity proved to be a valuable tool for the work herein, nevertheless, the method of integrating along characteristic lines is such a generally powerful method that continuing research efforts should be extended to be able to utilize this technique for wave-current interaction, even as an approximate approach.

3. 3. 1 Numerical Solution For Wave Characteristics With WaveCurrent Interaction on a Longshore Periodic Beach

Figure 3. 3 schematically describes a longshore periodic beach with wavelength λ. Equation 3.21 describes the variation of the wave direction field θ as a function of x, y, U, V, and T where the wave number k is defined by Eq. 3. 20. Rewrite Eq. 3.21 in the form

$$
\begin{equation*}
\cos \theta\left[\frac{\partial \theta}{\partial x}-\frac{1}{k} \frac{\partial k}{\partial y}\right]+\sin \theta\left[\frac{\partial \theta}{\partial y}+\frac{1}{k} \frac{\partial k}{\partial x}\right]=0 \tag{3.114}
\end{equation*}
$$

and rewrite the derivatives of k from Eqs. 3.28 and 3.29 as:

$$
\begin{align*}
& \frac{1}{k} \frac{\partial k}{\partial x}=\frac{\partial \theta}{\partial x} \frac{[U \sin \theta-V \cos \theta]}{A}+\frac{1}{k} \frac{\partial k}{\partial x} \tag{3.115}\\
& \frac{1}{k} \frac{\partial k}{\partial y}=\frac{\partial \theta}{\partial y} \frac{[U \sin \theta-V \cos \theta]}{A}+\frac{1}{k} \frac{\partial k}{\partial y} \tag{3.116}
\end{align*}
$$

where

$$
\begin{equation*}
A=U \cos \theta+V \sin \theta+\frac{1}{2}\left[1+\frac{2 k d}{\sinh (2 k d)}\right]\left[\frac{T_{0}}{k}-U \cos \theta-V \sin \theta\right] \tag{3.117}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\frac{1}{k} \frac{\partial k}{\partial x}}=\frac{-\left[\frac{\partial U}{\partial x} \cos \theta+\frac{\partial V}{\partial x} \sin \theta\right]-\frac{\left[T_{0}-U k \cos \theta-V k \sin \theta\right]}{\sinh (2 k d)} \frac{\partial d}{\partial x}}{A} \tag{3.118}
\end{equation*}
$$

$$
\overline{\frac{1}{k} \frac{\partial k}{\partial y}}=\frac{\left.-\left[\frac{\partial U}{\partial y} \cos \theta+\frac{\partial V}{\partial y} \sin \theta\right]-\frac{[T}{T}-U k \cos \theta-V_{k} \sin \theta\right] \frac{\partial d}{\partial y}}{A 8}
$$

Figure 3. 3: Schematic Illuatration of Periodic Beach Terminology

Now Eq. 3. 114 can be written:

$$
\begin{gather*}
\frac{\partial \theta}{\partial x}\left[\cos \theta+\frac{\sin \theta(U \sin \theta-V \cos \theta)}{A}\right]+\frac{\partial \theta}{\theta y}\left[\sin \theta-\frac{\cos \theta(U \sin \theta-V \cos \theta)}{A}\right]= \\
\overline{\frac{1}{k} \frac{\partial k}{\partial y}} \cos \theta-\overline{\frac{1}{k} \frac{\partial k}{\partial x}} \sin \theta \tag{3,120}
\end{gather*}
$$

Thus, at any grid point i, j utilize a forward difference derivative in x and a backward difference derivative in y and solving for $\theta_{i, j}$ yields

$$
\begin{align*}
\theta_{i, j}= & \frac{1}{B_{i, j}}\left\{\overline{\frac{1}{k} \frac{\partial k}{\partial y}} \cos \theta_{i, j}-\overline{\frac{1}{k} \frac{\partial k}{\partial x}} \sin \theta_{i, j}+\frac{\theta_{i, j-1}}{\Delta y}\left[\sin \theta_{i, j}-\frac{\cos \theta_{i, j}}{A_{i, j}}\right.\right. \\
& \left.\left.\left(U \sin \theta_{i, j}-V \cos \theta_{i, j}\right)\right]-\frac{\theta_{i+1, j}}{\Delta x}\left[\cos \theta_{i, j}\left(U \sin \theta_{i, j}-V \cos \theta_{i, j}\right)\right]\right\} \tag{3.121}
\end{align*}
$$

where

$$
\begin{equation*}
B_{i, j}=\frac{\sin \theta_{i_{2}, j}}{\Delta y}-\frac{\cos \theta_{i, j}}{\Delta x}-\frac{\left(U \sin \theta_{i_{2}, i}-V \cos \theta_{i} j\right)}{A}\left[\frac{\cos \theta_{i, j}}{\Delta y}+\frac{\sin \theta_{i, i}}{\Delta x}\right] \tag{3.122}
\end{equation*}
$$

and $\quad \overline{\frac{1}{k} \frac{\partial k}{\partial y}}$ and $\overline{\frac{1}{k} \frac{\partial k}{\partial x}}$ are evaluated at i, j.

The RHS of Eq. 3.121 contains terms $\cos \theta_{i, j}$ and $\sin \boldsymbol{e}_{i, j}$ and a variety of approximations for these terms can be utilized to update $\theta_{i, j}$. The simplest would be to use the previous value of $\theta_{i, j}$. A more sophisticated approach is to approximate these sinusoidal function at i, j in terms of the four surrounding grid point and going to 2nd order using Taylor series expansions yields

$$
\begin{align*}
\sin \theta_{i, j}= & \frac{1}{4}\left[\sin _{i+1, j}+\sin \theta_{i-1, j}+\sin \theta_{i, j+1}+\sin \theta_{i, j-1}\right] \\
+ & \frac{1}{8}\left[\left(\theta_{i+1, j}-\theta_{i-1, j}\right)\left(\cos \theta_{i-1, j}-\cos \theta_{i+1, j}\right)\right. \\
& \left.+\left(\theta_{i, j+1} \cdots \theta_{i, j-1}\right)\left(\cos \theta_{i, j-1}-\cos \theta_{i, j+1}\right)\right] \tag{3.123}
\end{align*}
$$

and

$$
\begin{align*}
\cos \theta_{i, j}= & \frac{1}{4}\left[\cos \theta_{i+1, j}+\cos \theta_{i-1, i}+\cos \theta_{i, j+1}+\cos \theta_{i, j-1}\right] \\
+ & \frac{1}{8}\left[\left(\theta_{i+1, j}-\theta_{i-1, j}\right)\left(\sin \theta_{i+1, j}-\sin \theta_{i-1, j}\right)\right. \\
& \left.+\left(\theta_{i, j+1}-\theta_{i-1, j}\right)\left(\sin \theta_{i, j+1}-\sin \theta_{i, j-1}\right)\right] \tag{3.124}
\end{align*}
$$

The need for the sophistication of Eqs. 3.123 and 3. 124 is questionable, although utilizing this scheme to iterate for $e_{i, j}$ yields amazing results. For instance, if $d=d(x)=m x$ (a plane beach), then starting with a boundary condition cifshore and setting the initial θ field equal to π, a solution using Eq. 3. 121 will converge to within 1% of the Snell's Law solution after only two iterations through the full field: Note that it is not necessary to relax over the whole field, but the solution could have been obtained by iterating row by row or along $i=$ constant , Figure 3. 4, working inward toward the beach. In this c. se, the approximation given in Eqs. 3.123 and 3. 124 for $\sin \theta_{i, j}$ and $\cos \theta_{j, j}$ should not contain values of θ on rowi-1. Nevertheless, the extremely rapid convagence of this technique is sufficient to justify the numerical algorithr-. The row by row technique w.ll be utilized to find the wave height field, shown later in this section.

Figure 3.4: Local Grid Description

Before further exploring the numerical techniques, the important longshore boundary conditions should be examined. Figure 3.5 is a grid description of the entire field of calculation. Notice that while the beach is periodic in λ or from $j=2$ to $j=r+1$, a column has been added on either side. Thus, computations for either θ, H or ψ, are only performed inside of the boundary lines from $i=2$ to $i=m-1$ and $j=2$ to $j=r+1$. To utilize the important longshore periodic boundary condition, for any computed variable f along each row i the following conditions are imposed as the computation proceeds toward the shore line in decreasing values of i :

$$
\begin{align*}
& f_{i, r}+l=f_{i, 2} \tag{3.125}\\
& f_{i, r}+2=f_{i, 3} \tag{3.126}\\
& f_{i, 1}=f_{i, r} \tag{3.127}
\end{align*}
$$

Imposing conditions 3.125 to 3.127 upon θ, H or ψ physically requires that the functions and moreover its derivatives are continuous and periodic in λ. Hence, iteration continues for $\theta_{i, j}$ until every updated vaiue of $\theta_{i, j}$ is less than a specified percent of $\theta_{i, j}$
itself. A typical run will converge in between 3 to 7 iterations with a maximum relative error for each $\theta_{i, j}$ of 0.1% of itself.

At this point, it should be noted that for each updated value of $\theta_{i, j}$ a transcendental relationship for k must be solved defined by Eq. 3. 20. To efficiently solve for k the Newton-Raphson method was utilized where

$$
e(k) \equiv g k \tanh \left(k d_{i, j}\right)-\left[T_{0}-U k \cos \theta_{i, j}-V k \sin \theta_{i, j}\right]^{2}(3.128)
$$

Figure 3. 5: Full Grid Description
and

$$
\begin{align*}
\frac{d e}{d k}= & e^{\prime}(k)=g\left[k d_{i, j} \operatorname{sech}^{2}\left(k d_{i, j}\right)+\tanh \left(k_{i, j}\right)\right] \\
& +2\left[U \cos \theta_{i, j}+V \sin \theta_{i, j}\right]\left[T_{0}-U k \cos \theta_{i, j}-V k \sin \theta_{i, j}\right] \tag{3.129}
\end{align*}
$$

Hence,

$$
\begin{equation*}
k_{\text {new }}=k_{\text {old }}-\frac{e\left(k_{\text {old }}\right)}{e^{\prime}\left(k_{\text {old }}\right)} \tag{3,130}
\end{equation*}
$$

and this iteration was performed until

$$
\begin{equation*}
\left|k_{\text {new }}-k_{\text {old }}\right| \leq 0.0001\left|k_{\text {new }}\right| \tag{3.131}
\end{equation*}
$$

Computation starts far offshore where the periodic beach $d(x, y)$ is defined to be a plane beach $d=d(x)=a x$ starting at $i=m$ and offshore from this row. On the row $i=m$, the local wave angle is specified in reference to a chosen deep water wave angle, using Snell's Law. From this point, computation imriediately begins with Eq. 3.121 and the output is the direction $\theta_{i, j}$ for a given rolative accuracy.

The next series of calculations solves for the wave height field. Rewrite Eq. 3.49 to yield

$$
\begin{gather*}
\left.\left(U+c_{g} \cos \theta\right) \frac{\partial H}{\partial x}+i V+c_{g} \sin \theta\right) \frac{\partial H}{\partial y}=\frac{H}{2} \cdot c_{g} \sin \theta \frac{\partial \theta}{\partial x}-c_{g} \cos \theta \frac{\partial \theta}{\partial y}- \\
\left.\left[\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}\right]-\cos \theta \frac{\partial c_{g}}{\partial x}-\sin \theta \frac{\partial c_{g}}{\partial y}-\bar{\sigma}\right\} \tag{3,132}
\end{gather*}
$$

Define

$$
\begin{align*}
& Q_{i, j}=\frac{1}{2}\left\{c_{g} \sin \theta \frac{\partial \theta}{\partial x}-c_{g} \cos \theta \frac{\partial \theta}{\partial y}-\left(\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}\right)\right. \\
&\left.-\cos \theta \frac{\partial c_{g}}{\partial x}-\sin \theta \frac{\partial c_{g}}{\partial y}-\sigma\right\}_{i, j} \tag{3.133}
\end{align*}
$$

where $\left(\frac{\partial \theta}{\partial x}\right)_{i, j}$ and $\left(\frac{\partial \theta}{\partial y}\right)_{i, j}$ are obtained by central differences, and taking a forward difference derivative in x and a backward difference in y and solving for $H_{i, j}$ yields:

$$
H_{i, j}=\frac{\frac{\left(V+c_{g} \sin \theta\right) H_{i, j-1}}{\Delta y}-\frac{(U+c g \cos \theta) H_{i+1, j}}{\Delta x}}{\frac{\left(V+c_{g} \sin \theta\right)}{\Delta y}-\frac{\left(U+c_{g} \cos \theta\right)}{\Delta x}-\frac{Q_{i_{2}, j}}{2}}
$$

In the computation for the wave height $H_{i, j}$, a row by row relaxation technique is utilized starting on row $i=m-1$, and proceeding inward to row $i=2$. On each row, the boundary conditions 3.125 and 3.127 are utilized and the solution is reached when

$$
\begin{equation*}
\left|H_{\text {new }}-H_{\text {old }}\right| \leq(0.001)\left|H_{\text {new }}\right| \tag{3.135}
\end{equation*}
$$

The convergence of this scheme is amazingly rapid for even the most complicated bottom bathymetry and mean velocity distribution. Usually, only 2 to 3 row iterations are required to meet the criterion defined by Eq. 3. 135.

Similar to the θ calculations, the wave height calculations start at row $i=m-1$ where values of the wave height on row $i=m$ are used, derived from the Snell's Law relati inship. During each update calculation of $H_{i, j}$, the breaking height i; also calculated, and if
$H_{i, j}$ exceeds this value, then the wave breaking height is automatically imposed and a flag is set to denote if the breaking height condition is being utilized at the point i, j. Computer outputs of this breaking index will be shown later.

Now that the H and θ field has been specified, the numerical algorithm proceeds to the computation of the stream function field ψ. The technique used to find the stream function is very similar to the technique used by [Noda (1972, 1973)]. Equation 3.89 is rewritten

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\left(\frac{1}{F} \frac{\partial F}{\partial x}\right) \frac{\partial \psi}{\partial y}+\left(\frac{1}{F} \frac{\partial F}{\partial y}\right) \frac{\partial \psi}{\partial y}=w \tag{3.136}
\end{equation*}
$$

where

$$
\begin{align*}
W= & \frac{g}{F}\left\{\frac{1}{d}\left[\frac{\partial^{2} \sigma_{x x}^{*}}{\partial y^{\partial x}}+\frac{\partial^{2} \tau^{*} x y}{\partial y^{2}}-\frac{\partial^{2} \sigma_{y y}^{*}}{\partial x^{2} y}-\frac{\partial^{2} \tau_{x y}^{*} x y}{\partial x^{2}}\right]\right. \\
& -\frac{\partial d}{\partial y}\left[\frac{\partial \sigma_{x x}^{*}}{\partial x}+\frac{\partial \tau_{x y}^{*}}{\partial y}\right]+\frac{\partial d}{\partial x} \\
d^{2} & {\left.\left[\frac{\partial \sigma^{*} y y}{\partial y}+\frac{\partial \tau^{*} x y}{\partial x}\right]\right\} }
\end{align*}
$$

Utilizing a central difference form for the ψ derivatives, and gathering terms of $\psi_{i, j}$ yields:

$$
\begin{align*}
\psi_{i, j}= & \frac{1}{2\left[1+\left(\frac{\Delta x}{\Delta y}\right)^{2}\right]}\left\{-W_{i, j}(\Delta x)^{2}+\psi_{i-1, j}\left[1-\frac{\left(\frac{1}{F} \frac{\partial F}{\partial x}\right)_{i, j} \Delta x}{2}\right]\right. \\
& +\psi_{i+1, j}\left[1+\frac{\left(\frac{1}{F} \frac{\partial F}{\partial x}\right)_{i, j} \Delta x}{2}\right] \\
& +(\Delta x)^{2} \psi_{i, j-1}\left[\frac{1}{(\Delta y)^{2}}-\frac{\left(\frac{1}{F} \frac{\partial F}{\partial y}\right)_{i, j}}{2 \Delta y}\right] \\
& \left.+(\Delta x)^{2} \psi_{i, j+1}\left[\frac{1}{(\Delta y)^{2}}+\frac{\left(\frac{1}{F} \frac{\partial F}{\partial y}\right)_{i, j}}{2 \Delta y}\right]\right\} \tag{3.138}
\end{align*}
$$

Note that before computation of ψ begins, the n field and its derivatives are first computed. Thus, the second-order derivatives for n can then be calculated from the first-order derivatives using central differences.

The longshore boundary conditions for ψ are given by Eqs. 3. 125 and 3. 127, and at the beachline ψ is defined to be $\psi=0$. The final boundary condition is to move the final offshore grid row sufficiently far from the nearshore zone so that its influence on the nearshore circulation pattern is small. At this finaloffshore boundary $:=\mathrm{mm}$, the stream function is again defined to be $\psi=0$. With these bcundary condition the iteration for ψ can begin using Eq. 3. 133, and the criderion of convergence is assumed when

$$
\begin{equation*}
\left|\psi_{\text {new }}-\psi_{\text {old }}\right| \leqslant 0.001\left|\psi_{\text {new }}\right| \tag{3. 138}
\end{equation*}
$$

In comparison to the numerical techniques for θ and H, the convergence of the ψ field requires more extensive iterating, usually 300 to 400 complete field relaxations before the solution converges as defined by Eq. 3. 138. Note that condition 3. 138 is not a completely sufficient condition to assure convergence since the solution may be asymptotically convergent or perhaps even divergent. Therefore, value of the relative error are varied to insure that Eq. 3. 138 does indeed provide an acceptable convergence criterion.

In the zone between $i=m$ and $i=m m$, a plane beach profile is assumed so that calculation for θ and H are explicitly determined from the Snell's Law relationships once deep-water wave characteristics are defined.

3. 3. 2 Verification of the Wave-Current Interaction Algorithms

To test the numerical algorithm for the determination of the wave characteristics, the degenerate crse of a wave propagating in the $-x$ direction in deep water over a variable current system $U(x)$ was utilized. The solution to this case was first given by Longuet-Higgins and Stewart (1961). For the case of a wave propagating in the $-x$ direction, $\theta=180^{\circ}$ and the analytic solution for the wave celerity is:

$$
\begin{equation*}
c=\frac{c_{0}}{2}\left[1+\left(1-\frac{4 U}{c_{0}}\right)\right] \tag{3.139}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{o}=\frac{T_{0}}{k_{o}}=\left(\frac{g}{k_{0}}\right)^{\frac{1}{2}} \tag{3.140}
\end{equation*}
$$

but since $k_{0}=\frac{w_{0}^{2}}{g}$

$$
\begin{equation*}
c_{0}=\frac{g}{T_{0}}=\frac{g T_{o}}{2 \pi} \tag{3.142}
\end{equation*}
$$

The wave height is given by:

$$
\begin{equation*}
H=\frac{H_{o} c_{0}}{[c(c-2 U)]^{1 / 2}} \tag{3.143}
\end{equation*}
$$

A simple form for the mean current velocity was chosen to be

$$
\begin{equation*}
U(x)=0.2 x+\bar{b} \tag{3,144}
\end{equation*}
$$

where $\quad \frac{d U}{d x}=0.2$.

Essentially, two verification tests were performed. First, the energy equation 3 . 49 was degenerated into an ordinary differential equation given by:

$$
\begin{equation*}
\frac{d H}{d x}=\frac{H}{2} \frac{\left[-\frac{3}{2} \frac{d U}{d x}+\frac{d c}{d x}\right]}{U-c_{g}} \tag{3.145}
\end{equation*}
$$

and solved by a 4 th order Runge-Kutta technique. Second, the finite difference Eq. 3. 134 was utilized directly to obtain a solution for H. The final comparison was to check each solution directly with the analytic solution Eq. 3. 143. Table 3. 1 shows the analytic solutions for the wave celerity c and wave height H from Eqs. 3, 139 and 3. 143, respectively, for $T_{o}=4$ seconds.

An arbitrary offshore point was chosen so that $U(x)=0$ and $H_{o}=1.0$ and as the solution proceeded shoreward both the Runge-Kutta techni que and the finite difference scheme did not yield results comparable with the analytic solution. Table 3.2 describes the numerical solutions. While the difference between the Runge-Kutta solution with step size $d x=-0.1 m$ and the finite difference scheme may possibly be acceptable, comparison to Table 3. 1, the analytic solution was unacceptable. The problem is due to the unrealistic starting conditions imposed at $U(x)=0$ where $\frac{d H o}{d x}$ is assumed to be zero. But there is an obvious discontinuity in the derivative of $\frac{d U}{d x}$ at the point where $U(x)=0$ if $\frac{d H o}{d x}$ is set equal to zero. Thus, a second series of calculations were performed at a start point where $U(x)=-1.0$ $\mathrm{m} / \mathrm{sec}$. The Runge-Kutta program then computed its own starting derivative and the starting wave height was obtained from the analytic solution $H_{\text {start }}=0.77475$ meters. Table 3.3 describes the results. Comparison of the Runge-Kutta sclution with the analytic results of Table 3.1 show an exact correlation and the results of the finite difference solution compare very closely with the Runge-Kutta solutions. Appendix A contains the Runge-Kutta computer program for the above case.

TABLE 3. 1
Analytic Solution For Wave-Current Interaction: Check Case $T_{o}=4$ seconds, $g=9.80621, k_{o}=0.25161618, c_{o}=6.2428272$

H / H_{0} Eq. (3.143)	$c(\mathrm{~m} / \mathrm{sec})$ Eq. (3.139)	$\mathrm{U}(\mathrm{m} / \mathrm{sec})$
1.615187	4.992348	
3.761628	3.737028	1.0
6.417806	3.379949	1.5
13.424308	3.187839	1.55
1.0	6.242827	1.56
0.774750	7.119669	0.0
0.648222	7.836164	-1.0
0.564575	8.457301	-2.0
0.504132	9.013317	-3.0
0.457911	9.521207	-4.0
0.421147	9.991652	-5.0
		-6.0

TABLE 3.2
Numerical Results for the Wave Height H For the Test Case

Mean Current $\mathrm{U}(\mathrm{m} / \mathrm{sec})$	Runga-Kutta Solution $\frac{\mathrm{dHo}}{\mathrm{dx}}=0.0$	Finite Difference Solution	
	Step-Size $\mathrm{dx}=-1.0 \mathrm{~m}$	Step Size $\mathrm{dx}=-0.1 \mathrm{~m}$	Grid Size $\mathrm{dx}=0.01 \mathrm{~m}$
0	1.0	1.0	
-0.02		0.99471	1.0
-0.04		0.98848	0.99365
-0.06	0.78302	0.98232	0.98742
-1.0	0.65514	0.77558	0.98129
-2.0	0.57060	0.56518	
-3.0	0.50952	0.50467	
-4.0			

TABLE 3. 3
Numerical Results for the Wave Height H For the Test Case

Mean Current $U(\mathrm{~m} / \mathrm{sec})$	Runga-Kutta Solution $\frac{d H o}{d x}=0.0$		Finite Difference Solution
	Step-Size $\mathrm{dx}=-0.10 \mathrm{~m}$	Step-Size $\mathrm{dx}=0.01 \mathrm{~m}$	Grid Size $\mathrm{dx}=0.005 \mathrm{~m}$
-1.0	0.77475	0.77475	0.77475
-1.02	0.77156	0.77156	0.77156
-1.04	0.76840	0.76840	
-1.06	0.76527	0.76528	
-2	0.64822		
-3	0.56457		
-4	0.50413		
-5	0.45791		

3.3.3 Numerical Resulte for Wave-Current Interaction

The periodic bottom bathymetry used to test the influence of wavecurrent interaction is given by:

$$
d(x, y)=m x\left[1+a e^{\left(\frac{-x^{1 / 3}}{b}\right)} \sin ^{10} \frac{\pi}{\lambda}(y-x \tan \alpha)\right]
$$

where the first-order derivatives are given by:

$$
\begin{align*}
\frac{\partial d}{\partial x}= & m-\frac{10 \pi m a x}{\lambda} \tan a e^{\left(\frac{-x^{1 / 3}}{b}\right)} \sin 9 \frac{\pi}{\lambda}(y-x \tan \alpha) \cos \frac{\pi}{\lambda}(y-x \tan \alpha) \\
& +\operatorname{mae} e^{\left(\frac{-x^{1 / 3}}{b}\right)} \sin ^{10} \frac{\pi}{\lambda}(y-x \tan a)\left[1-\frac{x^{1 / 3}}{3 b}\right] \tag{3.147}
\end{align*}
$$

and

$$
\begin{equation*}
e^{\left(\frac{-x^{1 / 3}}{b}\right)} \sin ^{9} \frac{\pi}{\lambda}(y-x \tan \alpha) \cos \frac{\pi}{\lambda}(y-x \tan \alpha) \tag{3.148}
\end{equation*}
$$

where the constants are given by:

$$
\begin{aligned}
& \text { m }=0.025, \quad a=20 \text { meters, } \lambda=80 \text { meters } \\
& \alpha=30^{\circ}, \quad b=\frac{(20)^{1 / 3}}{3} \text { meters } 1 / ?
\end{aligned}
$$

The computation starts by first assuming no wave-current interaction exists such that initially $U=V=0$. The wave height H and θ fields are obtained and the stream function \downarrow solved for. The algorithm then computes the circulation velocities defined by Eqs. 3.87 and 3. 88, using central differences. These computed circulation velocities are now the mean current systern which must now interact with the original incoming wave system.

Attempts to directly impose this derived mean current system in ais interaction process with the incoming waves leads to failures of the technique because the mean current system ferived for no wavecurrent interaction is too large. fence, conditions arise where the local wave is no longer able to propagate into some areas and k passes through zero and becomes negative.

It is important to understand the specific processes involved in the numerical algorithm. In particular, ander prototype conditions as a constant wave system begins to attack a coastal area, an instantaneous interplay of wave characteristics, bottom sediment movement and wave-generated current effects exist simultaneously until some type of 'equilibrium" condition exists where the dynamic and kinematic requirements are all satisfied. The numerical model does not alluw changes in bottom sonifguation. Moreover, the nearshore circulation system may be sensitive to large changes in the wave height and direction field due to the instantaneous application of the fuli mean current system derived from the noninteractive case. Thus, attempis were made to proceed much more slowly by multiplying the noninteractive current field by a constant lesa than cise. This still pieserved the contiruity conditions of the mean flow, but yet allowed interaction to take place. This technique then envisioned some type of step by ster series uíquasi-steady circulation solutions until the full current system could be applied and the ineeractive results yields the input curient system.

Unfortunately, while seemingly a logical procedure, the wave-current interactive system is sensitive to the rate at which the mean current is applied. Presently, the maximum interactive current applicable to wave-current interaction is about 50% of the noninteractive circulation system.

Figure 3.6 graphically shows the stream function solution for the no wnve-current interaction case where $H_{d}=1.0$ meters, $T_{d}=4 \mathrm{sec}$., $\theta_{\mathrm{d}}=150^{\circ}$, and the depth is given by Eq. 3. 146. Tables 3.4 through 3. 8 provide the wave direction θ, wave height H, breaking index IB, u velocity and v velocity field for this rasc. Notice the existence of the counter eddy field defined where $\psi<0$, which is the degeneration of the normal incidence negative ψ field. Also, all above and following tables will only include the region of data where Eq. 3. 146 applies. Offshore from this row at $x=200$ meters, the Snell's Law region is utilized and the H and θ field are easily derived. For all cases herein, the maximum distance offshore is $x=345$ meters. The maximum meandering "rip-current" velocity is about 2.7 meters $/ \mathrm{sec}$.

Figure 3.7 is the solution for the stream function field with wavecurrent interaction where only 20% of the noninteractive current velocities from the solution in Figure 3. 6 were utilized. These noninteractive velocities are shown in Tables 3. 7 and 3.8. Notice that the counter eddy field has decreased a little but the general pattern of the circuiation pattern remains much the same as the noninteractive case. Tables 3.9 through 3.13 provide the values of $\theta, H, I B, u$ and v for this case. For this case, an examination of Tables 3. 12 and 3. 13 shows that the maximum meandering rip-current velocity has been reduced slightiy to a maximum value of about 2.5 meters $/ \mathrm{sec}$.

Figure 3.3 is the solution when for the stream function field ψ with wave-current interaction when 50% of the noninteractive current velocity field from Tables 3.7 and 3.8 are utilized directly. Tables 3. 14 through 3.18 provide the resulting data for the spacial fields $0, \mathrm{H}, \mathrm{IB}, \mathrm{u}$ and v .

The resulting stream function pattern from Figure 3.8 is indeed startling and unexpected. The counter eddy field has now become stronger, and while the outgoing meandering rip current is similar to the previous case, a very strong inflowing meandering current now exists. The maximum magnitude of this in rip-current is about 4. 1 meter/sec. Presently, it is unclear what is carising this sudden change in the circulation pattern, since the 20% interaction case produces no significant effects.

One possible influence could be the sensitivity of the circulation pattern to the imposed bottom topography. In reality, the interaction of the ability of the bottom to change form in accord with the current intensity may be as critical a factor of consideration when the full wave-current interaction problem is considered. Another possibility is that the stream function solution is sensitive to the magnitude of the mean current and too intense a current produces spurious results.

Figure 3.9 shows the stream function solution ψ when the wave height H_{d} has been reduced to $H_{d}=0.5$ meters for no wave-current interaction. The circulation pattern appears reasonable with respect to the bottom contours with a maximum outflowing velocity of about 1.6 meters/sec. Tables 3.19 through 3.23 describe the resulting spacial variables $\theta, H, I B, u$, and v field respectively.

Figure 3. 10 shows the stream function solution ψ with a wave-current interaction of 50% of the noninteraction case described in Figure 3. 9. For this case, 50% of the velocity field shown in Tables 3.22 and 3.23 were interacted with the original incoming wave system and the results for the variables $\theta, H, I B, u$, and v fields are given in Tables 3. 24 to 3.28, respectively. Again as in Figure 3. 8, the results show extreme changes in the circulation pattern from the noninteractive case. The maximum in rip-current velocity is about 2.6 meters/sec.

Figure 3.6: Stream Function Field $\$$ For No Wave-Current Interaction:

 -dix

名

0

TABLE 3.4

NO WAVE－CURRENT INTERACTION：

 x

 （x）

（5」こなって）

$H_{d}=1.0 \mathrm{~m}, \mathrm{~T}_{\mathrm{d}}=4 \mathrm{sec} ., \theta_{\mathrm{d}}=150^{\circ}$ WAVE HEIGHT FIELD H（meters）								
		0	y（maters）\longrightarrow					
	－5		5	10	15	20	25	30
$0-$								
20－					9：43740F－07	$9.57007 E-02$ insta ind		－1657？
	． 27434	． 27391	． 27391	－ 27391	－ 27391	－ 27598	． 27596	． 29175
	． 36355	－36191	－36137	． 36132	－ 36437	－ 36138	－36108	－36695
	－05511	－ 94747	－49482		． 044681	． 444681	－ 446604	－34310
40－	． 55329	． 53348	． 57054	－53n38	． 53038	.53038	． 53039	． 53058
	－hh240	－n？23n	－h1303	－61209	．6107	．61207	． 61207	－ A 2288
	－90994		－7RPM	－ 77114	．69107	．69187	．69147	－． 7999818
	． 93297	．93004	－bician	．f5093	．fabrb	． 84591	． 84590	－ 00590
60－	－9P931	．92718	． 03415	． 03447	－9P192	．92024	． 92016	.92016
	． 92910	．97055	．92208	．92441	．93398	．93807	． 94119	．94381
	．97948	－91909	.91415	． 91740	．92334	． 92644	－97966	．93248
	．9Paso	－917no	－90979	． 90910	．91265	． 91656	．91992	．92297
\％80－	．925hn	．9172\％	．9nelt	．90370	－9n990	．90nça	． 95159	． 01485
	－9P116	． 91597	．90774	，90097	－n09？	． 90150	．904AD	．90月07
\％	－ 915154	.91710 9.9093	． 907716	－90906	－89588	－ 0 A9627	－89911	$9 \cdot 00242$
E	－91953／	－90953	－97569	－ $\mathrm{Aq997}$	． 1942 c	． 89103		AR970R
$\times 100$	．9n085	．9007	． 90015	．R9799	． 89430	．8907？	－ 月9966 $^{\text {a }}$	－A9138
	－A07P号	－A969a	－ bobap $^{\text {a }}$	－ 80604	． 89404	－F3120	． 8 ¢9\％9	．A8976
120－	－ 80141	． A0336 $^{\text {a }}$	． 80377	－R9377	－ 19372	－89175	－ 18990	－68934
	－69211	．fitan	－ 09107		－ 19195	－ 19194	－A9098	－ $\mathrm{AmP9} \mathrm{\%}$
	－89027	－RAOSt	－Angnh	． 88941	－89054	－69168	－69192	－n9105
	－armap	－amank	－RATh3	－ARTOS	－ 9 acta	－ 49919	－A9745	－${ }^{\text {A9P34 }}$
	－8A774	－Abicia	－Rabra	－R8707	－ARAB45	－9905 ${ }^{\text {a }}$		． 299338
	－amatab		－Anctic	－AR671	－Rabsiz	－R9024	－69248	－ 893948
140－	．Ambst	．R8599	－batio	－R8679	－AR8\％at	－89026	，99237	． 89395
	－Anfl3	－n2503	－RR619	－AAPT ${ }^{\text {a }}$	－napas	－n9067	－n92ap	－ $\mathrm{P9} 97875$
	－ 8 RRGAT	－RA6ti	－ARA7n	－RAROL			－ 1039323	－R937 ${ }^{\text {R97 }}$
160－	－bafur	－Raps	－ RABG	－A9n35	－ 19 ？${ }^{\text {a }}$	； 1933 ？	－ 19391	：＊9406
	AAMHIA	－RAmit	－RR999	－Ratap	－99343	． 19439	．f9467	． 19453
	．amors	－RR997	－R9457	－A934，	－R944，	－ 108545	－ 805958	－R9512
	：Aanas	－ 89159	－A9332	－h9506	－R9616	．R9451	． 49635	． 89599
180－	． 89775	． 80347	－R9516	－R9hti	－ 89746	． 19756	－89730	． 80697
	－n950n	．R9561	． 09705	－$\frac{\square}{\text { OR Pa }}$	．8987i	．89964	－9903R	－89813
	－A97h7		－R9194	－ 8097 ？	－89994	－R998？	－A9962	－8994a
	．9n033	． 98038	．9n09？	．90116	．97123	．90125	． 90178	－90102
	．98271	． 90271	．91771	．9n274	．997271	． 90271	．9n271	．90371
200－								

TABLE 3.5

（CONTINUED）			，		
4550	55	60	65	70	75

\qquad
 8.
0
 N N
等

荌告 .873141
.964747
.5745 .53348 $\underset{\sim}{\sim}$ ～ 3
0
0
0
0号 O气会会 on为会 ：． 896989
范 ${ }^{\circ}$ B品 N Cn N No on
0
0
0
0 -80561
.89796

.8979 .90039 $\xrightarrow[c]{\sim}$.27433 -375911 | 8 |
| :---: |
| | ．78315 .90994 .97451

 8 .92116 シ .90085 .${ }^{-8944} 1$ ． 89087 －ARBR
 ．88633 －ARAC AR73
ABB1A －RBA1A － 19083 .89275
.89506 ． 89767
.98033
.90271 ．9027t

 .93711
.92419 a Eた そo
0
0
「

 ס
 $\stackrel{r}{r}$ N C

 ． ． o
$\frac{0}{9}$
\vdots
\vdots
0 ت
 $\stackrel{3}{a}$ $\stackrel{\alpha}{\infty}$ C
0
0
0荡

 $\stackrel{c}{c}$ $\stackrel{c}{5}$

 No $\stackrel{\rightharpoonup}{a}$令 ご ？ 2
$\frac{\alpha}{\alpha}$
σ
σ －角 $\stackrel{n}{n}$
 と

 －

 ${ }^{<}$
告 ${ }_{6}^{⿷}$
 45 （CONTINUED） NO WAVE－CURRENT INTERACTION： c

$-952095-0$?

0

$0.2046 R$
$0.91599 F=07$
$=.14747$
$=.27673$
$=.26514$
$=.27321$
$=.26917$
$=.26539$
$=.27727$
$=.30107$
$=.35019$
$=.43577$

 .31948
.71449

 ?

毕㤩 m
c
1
0
0
-

6

0
 m
c
i
n
\bar{n}
n
m
n
n
i - -1n? 3 h
 . 7 Ralat

$=.1 n 4 A 9-n ?$
$-4.30973 F=n ?$
$-n .07 R 40 F-02$ 204

 7al

\square ذ

$\stackrel{1}{8}$

40

d

200-
(5selow)x—m

NO WAVE－CURRENT INTERACTION：

（CONTINUED）
45

 a
5
0
5
0
0
0
0
0

 .19086
.57949
.77685
.74634
.51629
.14860
-.22706
. .78147
.32750
1.1998

 0ññ́n

.38968
.63319
57290
.10815
-.38998
.48724
-.45683
.42141
1.4735
$1.79 n 1$
1.4018

.72709

\qquad
 $63 E=0$

 c
4
0
2
n
0
i
i

 8
0
0
0
0 ， $\begin{array}{ll}1.1998 & .127558 \\ 1.4115 & i .0537 \\ .0584 & 10389\end{array}$.34471
.15801

空

气～n

 .29614
11618

～ | 3787 |
| :--- |
| 187 |

 $=.30385$
 $0061 F$
－ 1 $\stackrel{4}{6}$ 345
44
41 10
$n 75$ －1 1～

 c
c
4
4
4
c
c
\vdots
4

 n
c
c
1
4
u
c
c
\vdots
\vdots
i

m
c
1
c
n
c
m

Figure 3. 7: Stream Function Field ψ For 20\% Wave-Current Interaction:

 - 天ix \because

(51010世) x

$H_{d}=1.0 \mathrm{~m}, T_{d}=4 \mathrm{sec}, \theta_{d}=150^{\circ}$ WAVE HEIGHT FLELD H(meters)
20\% WAVE-CURRENT INTERACTION:

$$
\begin{aligned}
& 0
\end{aligned}
$$

y (me:ers)
10

0
 !

©

0
$H_{d}=1.0 \mathrm{~m}, T_{d}=48 \mathrm{ec} \cdot \theta_{d}=150^{\circ} \mathrm{WAVE} H E I G H T$ FIELD H（meters）

E二口
EN
EN
ENO
NO

 No -0
0
0
 .94909
.94364
.93772
 N
 0

-8.8
0.8 N
N
0
0
 3
0
0
0
 σ
σ_{c}°
0
0个
0.
0
0
0 t号 0.5
0
0
0
0
0 n
n
0

0号 ～ | N |
| :---: |
| 0 |
| 0 |
| 0 |
| 0 | N N $m-$

$-n$
0%
0% （CONTINUED） 45
 6 웅 8

$\underset{0}{\infty}$ 응 엉 | 0 |
| :--- |
| 0 |

（s」esow） 8 d
$\underline{\infty}$ 200－

0

 20\% WAVE-CURRENT INTERACTION:
$H_{d}=1.0 \mathrm{~m}, T_{d}=4 \mathrm{sec}, \theta_{d}=150^{\circ}$ u VELOCITY FIELD (meters/sec)

y (meters)

\section*{| 0 |
| :--- |}

$\stackrel{\square}{6}$
0.09000
.01243

., PR1 2606
$-\quad 19647$
$=.12005$
$=.04310$ -.08149
-.14110
 0
0
0
0 m

 5
5
5
5 ©
0
0
0
0
0
 Kx
0
5
0
0
0

\curvearrowleft

0			

$H_{d}=1.0 \mathrm{~m}, \mathrm{~T}_{\mathrm{d}}=4 \mathrm{sec} ., \theta_{\mathrm{d}}=150^{\circ} \mathrm{u}$ VELOCITY FIELD（meters $/ \mathrm{sec}$ ）

$$
y \text { (meters) }
$$

65

会

 or ${ }^{8}$
 5的苋～
 .07347
.06205
.068755 EN c
0
0
0

$$
P_{\theta} \cdot \cos t=P
$$

0.00000

 8
 들 N ： ： C
0
0
0
0
0 ： ． ？ $\stackrel{9}{\circ}$象

 and －

 － R
0
0

 옹 8 0
0
9 $\begin{array}{r}.06377 \\ .08004 \\ \hline\end{array}$.04637 .082551
.07246 $.077 R 0$
.07933 $\stackrel{\sigma}{5}$
 0
 ？ $\stackrel{i}{c}$

$$
1.0 \mathrm{~m}, \mathrm{~T}_{\mathrm{d}}
$$

๗

 .51988
.41748
.29492
.17535
. -17535
.10999
.10694 .10999
.06194菏 $=.00 n 56$
$=07065$
-031498
 に
象品

K
品
号

 ñ㤩品电 0
0
0
\vdots
\vdots n
c
c
c
c
 （03nNILNOD）

용

sq2Fy m吴资

 0
0
0 ～～
～
0 R号总象 C N N N先 n
n
0
0

 05200°

$$
N \Lambda V E
$$

TABLE 3.13
20% WAVE-CURRENT INTERACTION:
$\mathrm{H}_{\mathrm{d}}=1.0 \mathrm{~m}, \mathrm{~T}_{\mathrm{d}}=4 \mathrm{sec} ., \theta_{\mathrm{d}}=150^{\circ} \mathrm{u}$ VELOCITY FIELD (meters $/ \mathrm{sec}$)
$\stackrel{\bullet}{\mathbf{N}}$

-

$$
y \text { (meters) } \longrightarrow
$$

\%

4

$00040^{\circ} 0$
 A
$=2$
$=2$ 웅 8
0
0
0 $5=4$
$5=5$
508
 .02736
-.03134
 $\pi=0$
$=20$
$=08$
08

是

8

8
n．DOnnon

.$⿰ 亻 ⿱ 丶 ⿻ 工 二 十$ | 5 |
| :---: |
| 5 |
| 5 | c

8
6
6
i

年

 ：

 c
$\frac{c}{5}$
c $134 n$ n
 n
N
\vdots
\vdots

品 こ $\stackrel{a}{4}$
 －．nnarb
－．numar c
c
c
c
c
c
\vdots
 CAIAG nngit
AnC．n？ c 5
$=$
E
C
 $\mathbb{\pi}$
n
n
c
c
\vdots
i
 n？ 4×1
 N
品 n
n
n
n
n
n
i $10:-$ TABLE 3.13 $\begin{array}{ll}\text {（CONTINUED）} \\ 45 & 50\end{array}$

8

0

180.0nono

10

H $H_{d}=1.0 \mathrm{~m}, \mathrm{~T}_{\mathrm{d}}=4 \mathrm{sec}, \theta_{d}=150^{\circ}$ WAVE DIRECTION FIELD 日（degxees）
（CONTINUED）
45
\qquad 164.70150
167.50650

\qquad ㅎ
0
0
0
क 63.76680
61.12330 m
0
0
0
0
0
0
0

 41
0
0
0
0
0
0
0

 167.64055
167.76494 0
0
0
0
0
0
0
0
0 N
$\underset{N}{N}$
$=$
$=$

 E
2
0
0 m
$=0$
0
0
0
0
0 cn
0
0
0
 n
0
0
0.0
0.0
0 n
0
0
0

 $\vec{z} 00$
0
0
0
0
0
0

 $c \equiv 0$
5
0
0
0
0
0告
0
0
0

 8 O
8
0
0
0
0 No
0
0
0
0 en
0
0
0

 $=0$
0
0
0
N
\sim
\sim
 6
0
0
0
0
0
0

 m
0
0
0
空 m
0
0
0
0 n
0
0
0
0
0 o
0
0
0
0
0
 シ 5
5
0
0
0
0 0
0
0
0
0 $=\pi$
n
0
0

$8 x$
8
0
0
0
6
8 166.69357
 R

 0
0
\sim
\sim
\sim

 0
0
0
0
 N
品 5
5
5
4
5
5
 3
3
3
5
5
5
5
5 k
5
0
0
 N
E
0
0
0
0
0 166.97997
163.6×195 163.0 .8036 171.92111
179.35859䒨 180.29090
178.41590 169.11940 169.87125
171.78572 170.51692 0
5
0
0
0荡
 $\underset{\sim}{c}$
\sim
0
0
0

 c
5
5
5
5
玉

0
 An

号

C
C
0
0
0
$0 \pm$
0
0
0
0
0
0
\qquad
 m
0
0
0

等

 $=0$
0
0
0
0
0 N
0
0
0
0
0

 Bn
on
inn
in
in
 1月0．00000
\qquad品 0%
0
0
0
0
0
0

 n
5
5
5
5
5
 mo
0
0
0
0
0

「8 0
0
0
0
0
 0
0
0
0
0
0
0
 $\vec{~}$

60
0
0
0
0
0
0
0

 －
0
0
0
0
0
0 6
0
0
0
0

 n
n
0
0
0
0
0
0
 cu
No
0
0 $n \pi$
0
0
0
0

1A0．0n00n

 150．271912
58.25242

品
告 ∞
0
0
0
0
0 0
0
0
0
0

 .37415
$.98 A 45$

 c
c
x家
 N

¢

O \quad -

8

i

1

品
앙
$\stackrel{\sim}{\sim}$
\circ
y (moters)
TABLE 3.16
50% WAVE-CURRENT INTERACTION:
$=1.0 \mathrm{~m}, \mathrm{~T}_{\mathrm{d}}=4 \mathrm{sec} ., \theta_{d}=150^{\circ}$ BREAKING INDEX

\mathfrak{m}

n

0

Preceding page blank

1

50% WAVE－CURRENT INTERACTION：
$H_{d}=1.0 \mathrm{~m}, \mathrm{~T}_{\mathrm{d}}=4 \mathrm{sec}, \theta_{\mathrm{d}}=150^{\circ} \mathrm{u}$ VELOCITY FIELD（meters／sec）
$\infty$$\square$
ce
c
c
c
으
e
0
e
0
0
0

 $\pi \infty$
0
0
0

0 | 7 |
| :--- |
| 5 |
| 0 |
| 0 |

 0π
0
0
0

0y（meters）\longrightarrow
6

TABLE 3.17
TABLE 3.17

15e5
0
0
0
\square年号\underbrace{c}_{n}号告${ }^{\infty}$易品年$\stackrel{t}{n}$$n$
c
c

0$c \circ$
E
5
5
50
0_{0}^{2}
0
0$\frac{0}{2}$

 ㅋN
an
0 0
no
no
c
C
E
E^{2}
c

$$
\text { TABLE } 3.17
$$

0

8

$\stackrel{8}{\circ}$

y (meters)

15

4

 $\boldsymbol{\infty}$
 \bigcirc
TABLE 3.18

50% WAVE－CURRENT INTERACTION：

0

 （CONTINUEO：
45
＇

 츨

 \begin{tabular}{l}
$=5$

\multirow{2}{*}{}

$=2$

$=0$

\vdots

π

E

E

\hline
\end{tabular} \sim

5
2
2
 C E n

 $\underset{c}{c} \begin{gathered}\vec{c} \\ c \\ c\end{gathered}$ | \therefore | c |
| :--- | :--- |
| c | $=$ |
| c | 5 |
| c | c |
| i | 1 | c

$\underset{7}{5}$
c
c
c
i

（ssesou）x

TABLE 3.19
NO WAVE－CURRENT INTERACTION：
$H_{d}=0.5 \mathrm{~m}, \mathrm{~T}_{\mathrm{d}}=4 \mathrm{sec}, \theta_{\mathrm{d}}=150^{\circ}$ WAVE DIRECTION FIELD θ（degrees）荡告

 $=$
$=$
0 0
c
8
8
0
in
0
 E
0
8
0
0
0

 c
4
4
4

 153.60949
153.61857

9

\qquad
 180.46497
173.56398 n
3
3
0
0
0
0
0 0
08
08
0
0 08
5
0
5
0
0
 \circ
0
0
n
n
0 $* 0$
00
0
0
\vdots
4
4 c
O
m
0
8
8 0 N
0
0
0
0
0
 m
m
0
0
0
0
0 $N 0$
00
00
0
0
0

 8
0
0
0
0
0
0
0
 n
0
0
0
0
0
0
0
0些些

0哭品$=0$
5
5
070
0
0
0
0
0
0
0 a
0
0
0
0
0 a
0
0 0.
y_{n}
品
0
0 48
50
5
5 8
0
0
0
0
0 E要

 $0 \times$
0
0
0
0

 5
0
0
0
0
0
0
0
25
180.0000%
$181.4897:$ 170.72814
168.93866
167.61316
166.47534
165.50786
164.62139
163.81788
163.08388
162.90709
161.78100 161.78100
161.19088 $=0$
0
0
0
0
0
0

N
4

N

0 80.00000
75.2826 ？y（meters）A0．00000180.00000

74.10907| c |
| :---: |
| 8 |
| 4 |69.7054 A

18 P .1 7aN6AR． 17468
hh．R 7038164.70671
183.87697E
E
总
0
08
0
0
0$11 . ? 8970$
160.16479167．54989it 4.116571＋7．76537161．Ral16161.92278
161.179789
E
5
5
0
4

4| o |
| :---: |
| $\stackrel{0}{c}$ |
| |0

0
0
0
0r
k
0
0
0
0
0155.19676
155.41408
155.3497920
0
0
0
00
0
0
0
0
0

10
$180.0 n 010$
1723550177.31556
170.551991A5．5425！交

 57．94649

\because

TABLE 3． 19
NO WAVE－CURRENT INTERACTION：

 180.10000 100.00000
172.62020

 0
0
E
0
0
0
0

 c
$\frac{5}{0}$
0
0
0
0
0
 0
0
0
0
0
0
M
0
0 m
8
0
0
0
0 N
N_{0}
W_{n}
0
0
0
e
 M
2
0
0 50
08
0.
0.
0.
50
 n
\＃
0
0
0
0
en
n
n

 5
0
0
0
y 8
8
0
0
0 n
0
4
4
4
4
 c
क气
N．
nin
nn 0
0
0
0
0
0

 c
$=0$
$=0$
0

m

$H_{d}=0.5 \mathrm{~m}, \mathrm{~T}_{\mathrm{d}}=4 \mathrm{sec} ., \theta_{\mathrm{d}}=150^{\circ} \mathrm{WAVE}$ HEIGHT FIELD H（meters）

25

y（meters）

TABLE 3． 20

$\stackrel{O}{\circ}$

15

O

n

\square
 1

 o 6 m 0 mum 00 m-00000000000000006000000000000000

TABLE 3.22

∞

$\underset{\sim}{\mathbf{N}}$
2

10

0

$$
\begin{aligned}
& 0
\end{aligned}
$$

*:
c
0

\qquad
 1
 10

TABLE 3.22
NO WAVE-CUKRENT INTERACTION:
 \square
70
0.00000

$\stackrel{n}{2}$

y (meters)

 N $\stackrel{t}{5}$

 nen N

TABLE 3.23

$\stackrel{n}{4}$

 $i r$
\square
i
i㫛

 $\stackrel{-}{x}$ $\stackrel{c}{c}$ 0
0
0
0
 n
n
n
0
0
 N
0
0
0
0承 8 0
2
0

 m
5
5
5
5
\qquad

\qquad .94500

 No霊

 ぎシ 6
5
5 0
0
0
anc
c
c N

 5年号 | c |
| :---: |
| $\stackrel{c}{5}$ |
| $\stackrel{y}{3}$ | N 033797

03556
03327

c
C
C
8
0
\vdots
$=$

 $\stackrel{i n}{8}$
 ．04987的我
 $\stackrel{\rightharpoonup}{c}$
「こ゚
 $\stackrel{y}{c}$ $\stackrel{4}{4}$ an \＆ $\stackrel{r}{\text { r }}$号
年孚号方台
 $\underset{\sim}{\underset{\sim}{c}}$

TABLE 3.23
NO WAVE－CURRENT INTERACTION：
$H_{d}=0.5 \mathrm{~m}, \mathrm{~T}_{\mathrm{d}}=4 \mathrm{sec} ., \theta_{d}=150^{\circ} \mathrm{v}$ VELOCITY FIELD（meters $/ \mathrm{sec}$ ）

ジロ

y（meters）

4

E
e
c
c
c

5
$\frac{5}{6}$

 $\stackrel{5}{5}$ ${ }^{\alpha}$ （CONTINUED）
45
50 n．annon Na
No
N：

 nabyn
 an $=5$
n
n

 －＂spun ：

 C

 $\stackrel{r}{a}$ きf E | x |
| :---: |
| |
| | ${ }_{5}^{2}$ ${ }_{2}^{2}$

\therefore

$\underset{\infty}{\mathbf{o}}$

$\begin{aligned} & \text { ㅇ․ } \\ & 8 \% \\ & \text { EN } \\ & 0 N \\ & 0 N \\ & 0 \% N \end{aligned}$

1

\qquad
 $45859^{\circ} 55!$
$180.0007 n$
173.97779
171.02709足
 165.93729
164.43499 Li
0
0
0
0 0
0
0
0
0
0

 K
 in

 6
0
0
0
0
0
0
0

 180.00000

0
0
-

58
08
0 $=0$
0
0
0
0
0 U
0
0
ir
a
w
 0
m
in
0
n
 No
No
ñ

 n
n
n
n
n

告芯
180.070008 167．74609
 $167 . 月 4692$ 168.05549
167.30644 167．64531

年 5
F
$=$
0
0
告告
 E
R
0
0
0

 $0 n$
5
0
0
0
0

 $0 \times$
N
0
0
0
0

 c
0
0
0

65

\square
 \qquad

 0
5
5
4
4
4
4
4 0
0
0
0
0
0
0
0

6
 ¢菏

180.00000 180.00000
152.46635

 177.47848

 Kn
6
0
0
0
0
0

区
世
0
0 N
0
0
0
0
0
0

α
0
0
0
0
0
0
0

 $(51010 \mathrm{~m}) \mathrm{x} \rightarrow$
\qquad $\stackrel{\text { ® }}{\mathbf{8}}$ 웅

9

\boldsymbol{n}

15

0

Uくもカワ＂
ちく」ロが
をくり明＊
くりらリワ＊
リサワロロ＊
－リヒカヷ
－Lくもす＊
いいくカワ＊
ちら1ヵワ＊
6iton＊
＂ら1tn＊
voctro＊
らんくカワ＊
＊くと獏
－usto＂
サイゾザ
2Sゾロ＊
4YUS0＂
20¢50＊
－4S50＊
çくら＊＊
220500
10048＂
bulyo
－く140
を114\％
EuI4＊
¢ 1 140°
$20140{ }^{\text {c }}$
らリリア＊
9053\％＊
4くでが
15050°
いus 45.
\cdots－\quad Le
5¢00 ${ }^{\text {c }}$
4 C500
uousu＊

（ 5.12120 ）x

$200-$

TABLE 3． 25

 50% WAVE－CURRENT INTERACTION：| | $H_{d}=0.5 \mathrm{~m}, \mathrm{~T}_{\mathrm{d}}=4 \mathrm{sec} . \theta_{\mathrm{d}}=150^{\circ}$ WAVE HEIGHT FIELD H（meters） |
| :---: | :---: |
| （CONTINUED） | （meters） |

o

广 ठ \＆ஷ́

TABLE 3. 27

4550

'
ㅎ ゆ
宝 $\dot{\text { i }}$ i
-
옹
!

$\stackrel{9}{m}$

앙

$\underset{\sim}{\infty}$
 TABLE 3.28
$H_{d}=0.5 \mathrm{~m}, \mathrm{~T}_{\mathrm{d}}=4 \mathrm{sec} ., \theta_{\mathrm{d}}=150^{\circ} \mathrm{v}$ VELOCITY FIELD (meters $/ \mathrm{sec}$)
6

ω

TABLE 3.28

$H_{d}=0.5 \mathrm{~m}, T_{d}=4$ sec．$\theta_{d}=150^{\circ} \mathrm{v} V E O C I T Y$ FIELD（meters／sec）
6

Er
M
M

c
$\stackrel{c}{c}$
$\stackrel{y}{c}$

 C_{0}
in
0
0 $c \neq 1$
0
of
0 \circ
7
0
 N
N
M
0
0 $n=0$
N
0
0
0

 $N ⿱ 丷 ⿱ 一 ⿴ ⿻ 儿 口 一 寸$ 0.0
0
0.0 Mu
Mo
Mo
0 $n 0$
0%
00
00
00 n
m
n
n
0
0 $0 \quad \dot{1}$ ذ
（s」olou）x

The failure of the numerical program to compute wave-current inter actions greater than about 50% of the noninteractive case is the inclusion in the algorithm of a condition which stops the calculation in the event that $k \leq 0$. This physically implies that the local wave is unable to penetrate beyond this point due to the magnitude of the opposing mean current. One possibility to exterd computation is to assume that when $k \leq 0, H \equiv 0$. This will obyiously yield large changes in the spacial derivatives of the H iield. The effect of this change in the program is presently unknown, but if implemented wave diffraction effects should be considered due to possible sharp discontinuities in the wave height field.

3.4

 CONCLUSIONS1. When the process of wave-current interaction is important, the ability for the mean current to convect wave energy across orthogonal lines implies that the method of integrating along characteristic lines is zo longer valid. Furthermore the wave height can no longer be simply represented by the product of independent refraction and shoaling coefficients.
2. While only limited interaction results have been obtained thus far, it is clear that wave-current interaction is an important physical process which can greatly affect incoming wave characteristics within the nearshore coastal zone. This influence would be especially important if a strong circulation pattern exists within the nearshore zone.
3. Since the effects of wave-current interaction on the nearshore circulation pattern is so startling, other parallel areas of effort should be also considered such as the simultaneous movement of bottom material as the current bottom shear stress becomes large. A conclusion of a previous study [Noda (1972)] showed that the circulation pattern and especially the magnitudes of the circulation velocities were very sensitive to bottom configurations. The interplay of all these factors must be seriously considered.
4. The preceeding results have opened up interesting areas for future research effort. For the present numerical model some nonlinearity could be included either from the inertia term or through the bottom function term. Also as the wave number becomes $k \leq 0$, the numerical algorithm should have $\mathrm{H} \rightarrow 0$.

Future efforts should be expended on a perturbation expansion technique which would allow the use of integrating along characteristic lines to obtain approximate solutions for wave-current interaction.

O-: on the practical side, these technicues could be directed toward an axelytic quantification of such basic coastal engineering problems as groin spacing and design.

4. WAVE AND CURRENT

4.1 INTRODUCTION

The question of mass transport or current associated with wave propagation in the ocean as well as in channels or rivers has been investigated by numerous authors, Several types of problems arise in this connection but they can be roughy divided into two main classes. The first and most widely studied phenomenon is the mass transport due to gravity waves, the second is that of wave propagation in the presence of a current.

The mass transport due to gravity waves has been shown to be of second order with respect to wave height. M. L. Dubreil-Jacotin (1934) first proved the existence of waves associated with the rotational motion of a perfect inviscid fluid and determined that there are an infinity of such solutions associated with a more or less arbitrary distribution of vorticity. Since the motion is irrotational to the first order, Miche (1944) used the first order irrotational solution for a constant finite amplitude two dimensional motion and calculated the corresponding second order term; the results depend on an arbitrary function of depth which can be determined if the vorticity is specified. The effect of riscosity was first studied by Longuet-Higgins (1953 and 1960). He showed that the boundary layers near the surface and at the bottom were of very small extent and that the mass transport velocity above the bottom layer and its vertical gradient just below the free surface layer were independent of viscosity. His results confirmed the existence of vorticity in the mean flow and provided boundary conditions which may be used to definc the unknown function suggested by Dubreil-Jacotin and used by Miche. Further computations of mass transport in cnoidal waves were presented by Le Méhauté (1968) who showed that the mass transport is uniform in a vertical plane to the
second order of approximation. A further step in the theoretical study of mass transport in gravity wave was the study of a spectrum of random waves Ming-Shun Chang (1969 and 1970).

The problem of wave motion in the presence of a current has not been studied in the same systematic fashion. However, a number of particular solutions to the problem have been presented. For instance, Abdullah (1949) assumes an exponentional vorticity distribution, Biesel (1950), a constant vorticity and Eliasson and Engelund (1972) a hyperbolic distribution with depth.

Because of the importance of the latter type of motion, one obvious example being the interference of waves and rip current near shore, the as sumptions and equations used in the last three references will be reviewed, then results summarized and an extension of Biesel's solution (1950) to a discrete wave spectrum will be presented.

4. 2 BASIC EQUATIONS AND ASSUMPTIONS

The motion studied here is assumed two dimensional and the fluid is incornpressible.

The basic coordinate system consists in horizontal x axis laying along the mean water surface line, and a vertical y axis positive upwards. The following notation is used:

u, v	x and y components of a particle velocity
p	pressure
v	kinematic viscosity
p	fluid density
ψ	stream function
g	gravity constant

The basic equations of motion are

$$
\begin{align*}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{4.1}\\
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+\frac{1}{\rho} \frac{\partial p}{\partial x}=\left(v \nabla^{2} u\right) \tag{4.2}\\
& \frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+\frac{1}{\rho} \frac{\partial p}{\partial y}=-g+\left(v \nabla^{2} v\right) \tag{4,3}
\end{align*}
$$

The use of these equations imply that any density gradient or Coriolis effects have been neglected. Moreover, the terms in parenthesis which will eventually be dropped imply a laminar flow, but could be replaced by other functions of u or v to approximate turbulent shear stresses.

Equation (4.1) is identically verified by the introduction of the stream function Ψ such that

$$
\begin{align*}
& u=\frac{\partial \psi}{\partial y} \tag{4,4}\\
& v=-\frac{\partial \psi}{\partial x} \tag{4.5}
\end{align*}
$$

Differentiating (4.2) with respect to y and (4.3) with respect of x and subtracting and replacing u and v by their values in terms of Ψ yields the fundamental equation for the stream function

$$
\begin{equation*}
\frac{\partial}{\partial^{t}}\left(\nabla^{2} \psi\right)+\frac{\partial \psi}{\partial y} \frac{\partial}{\partial x}\left(\nabla^{2} \psi\right)-\frac{\partial \psi}{\partial x} \frac{\partial}{\partial y}\left(\nabla^{2} \psi\right)=\left(\nu \nabla{ }^{2}\left(\nabla^{2} \psi\right)\right. \tag{4.6}
\end{equation*}
$$

or in another familiar form with $\zeta=-\frac{1}{2} \nabla^{2} \Psi$

$$
\begin{equation*}
\frac{d \sigma}{d t}=\left(v \nabla^{2} \theta\right) \tag{4.7}
\end{equation*}
$$

For we like solutions of wave speed c, Ψ is a furction of the variables (x - ($)$) and (y). Assuming a wave spectrmm exists with wave numbers exte fing from k_{1} to k_{2}, the stream function can be written as

$$
\begin{equation*}
\Psi(x, y, t)=\int_{k_{1}}^{k_{2}} \Psi_{k}\left(x-c_{k} i, y\right) d k \tag{4.8}
\end{equation*}
$$

where

$$
c_{k} \text { and } \psi_{k} \text { are functions of } k
$$

Equat $\operatorname{ion}(4.6)$ is identically verified by the solution

$$
\nabla^{2} \Psi=\int_{k_{1}}^{k_{2}} \nabla_{\Psi_{k}}^{2} d k=\text { constant. }
$$

The "gual irrotational solution is obtained by setting the constant at zero. Wher hear stresses are negligible, that is outside some bottom and free surfgce boundary layer, the right hand side of (4.6) can be neglected. In this region, the stream function must satisfy the oft used equation:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\nabla^{2} \psi\right)+\frac{\partial \psi}{\partial y} \frac{\partial}{\partial x}\left(\nabla^{2} \psi\right)-\frac{\partial \psi}{\partial s} \frac{\partial}{\partial y}\left(\nabla^{2} \psi\right)=0 . \tag{4.9}
\end{equation*}
$$

Asswing that the main effect of shear is to ectablish initially a non-zero vortic ity tinrotghout the fluid but that it can be neglected thereafter, solutions of (4.9 will be sought. The order of magnitude of the neglected term in (4.6) will than be evaluated to verify the validity of this approach.

A sethes expansion of the stream function and water height in terms of a small parameter ε will be used. Here ε is a measure of the wave height
and it will be assumed that the surface equation $\eta(x, t)$ and the stream function $\Psi(x, y, t)$ can be written as

$$
\begin{align*}
& \eta=\sum_{m=1}^{N} e^{m} \eta_{m} \tag{4.10}\\
& \psi=\sum_{n=0}^{N} e^{n} \psi_{n} \tag{4.11}
\end{align*}
$$

where tive function ψ_{0} represents the main eifect of the currest, and will be assumed to depend on depth only. Note that herc the functiong η_{m} and Ψ_{n} are of the form (4.8) that is:

$$
\begin{array}{ll}
\eta_{m}=\int_{k_{1}}^{k_{2}} \eta_{k m}\left(x-c_{k}^{t}\right) d k & m \geq 1 \\
\Psi_{n}=\int_{k_{1}}^{k_{2}} \Psi_{k n}\left(x-c_{k} t, y\right) d k & n \geq 1 \tag{3b}
\end{array}
$$

Introducing expression (4.11) for Ψ into the defining equation (고. 9), grouping terms in various powers of ϵ, and recalling that by hypothesis Ψ_{0} is a function of y only (4.9) becomes

$$
\varepsilon\left[\frac{\partial}{\partial t}\left(\nabla^{2} \Psi_{1}\right)+\frac{d \Psi_{0}}{d y} \frac{\partial}{\partial x}\left(\nabla^{2} \Psi_{1}\right)-\frac{\partial \Psi_{1}}{\partial x} \frac{d^{3} \Psi_{0}}{d y^{3}}\right]+0\left(\delta^{2}\right)=0 .
$$

Hence the zeroth and first order terms of Ψ are defined by the equations

$$
\begin{align*}
& z_{0}=\Psi_{0}(y) \tag{4.12}\\
& \frac{\partial}{\partial t}\left(\nabla^{2} \Psi_{1}\right)+\frac{d \Psi_{0}}{d y} \frac{\partial}{\partial x}\left(\nabla^{2} \Psi_{1}\right)-\frac{\partial \Psi_{1}}{\partial x} \frac{d^{3} \Psi_{0}}{\partial y^{3}}=0 \tag{4.13}
\end{align*}
$$

But irom (4.8b)

$$
\begin{equation*}
\Psi_{1}=\int_{k_{1}}^{k_{2}}{ }_{w_{k_{1}}}\left(x-c_{k} t, y\right) d k \tag{4.14}
\end{equation*}
$$

An additional assumption is now made concerning the functional expression of $\Psi_{k_{1}}$, that is:

$$
\psi_{k_{1}}\left(x-c_{k} t, y\right)=\tilde{Y}_{k}(y) \cos \left[k\left(x-c_{k} t\right)\right] .
$$

Hence,

$$
\begin{align*}
& \Psi_{1}=\int_{k_{1}}^{k_{2}} \tilde{\Psi}_{k}(y) \cos \left[k\left(x-c_{k} t\right)\right] d k \tag{4.14a}\\
& \nabla^{2} \Psi_{1}=\int_{k_{1}}^{k_{2}}\left[\frac{d^{2} \widetilde{\Psi}_{k}}{d y^{2}}-k^{2} \widetilde{\Psi}_{k}\right] \cos \left[k\left(x-c_{k} t\right)\right] d k \tag{4.14b}
\end{align*}
$$

Introducing (4.14a) and (4.14b) in equation (4.13), we get

$$
\int_{k_{1}}^{k}\left[\left(\frac{d^{2} \widetilde{\Psi}_{k}}{d y^{2}}-k^{2} \widetilde{\psi}_{k}\right)\left(c_{k}-\frac{d \Psi_{0}}{d y}\right)+\Psi_{k} \frac{d^{3} \Psi_{0}}{d y^{3}}\right] d k=0
$$

This equation will be verified in particular if for all k 's in the interval $k_{1} \leq k \leq k_{2}$

$$
\begin{equation*}
\left(\frac{d \Psi_{0}}{d y}-c_{k}\right)\left(\frac{d^{2} \bar{\psi}_{k}}{d y^{2}}-k^{2} \tilde{\Psi}_{k}\right)=\frac{d^{3} \Psi_{0}}{d y^{3}} \Psi_{k} \tag{4.15}
\end{equation*}
$$

Hence, given an arbitrary function $\Psi_{0}(y)$ defining the zeroth order stream function due to depth dependent current, the components of the first order associated wave stream function are given by equation (4.15).

The assumptions leading to the equation are summarized below:
(1) There is no density gradient in the fluid.
(2) Coyiolis forces are neglected.
(3) Sbear stresses are neglected. The validity of this assumption will be tested for each case considered.
(4) Ware like solutions only are considered.
(5) The principal particle velocity component is due to the current ard depends on depth only.
(6) The wave height is small compared to the characteristic length defining the depth variation of the current.

4. 3 BOUNDARY CONDITIONS

Note that by definition (equations (4.4) and (4.5)) the stream function is known to within an arbitiary function of time. Hence, without loss of generality this arbitrary function can be set to zero.

1. The bottom is a line of current.

Assuming the bottom is defined by
$y=-h(x)$
$-\frac{\partial \psi}{\partial x}(x, t,-h)=-\frac{d h}{d x} \frac{\partial \psi}{\partial y}(x, t,-h)$.

For h constant this becomes

$$
\Psi(x, t,-h)=\Psi_{0}
$$

where ψ_{b} is a constant.

Replacing by (4.11) yields the condition

$$
\begin{align*}
& \psi_{0}(-h)=\psi_{b} \tag{4.16}\\
& \psi_{n}(x, t,-h)=0 \quad n \geq 1 . \tag{4.17}
\end{align*}
$$

2. The free surface is a line of currer:

Since the free surface is defined by

$$
y=\eta(x, t)
$$

$$
-\frac{\partial \psi}{\partial x}(x, t, \eta)=\frac{\partial \eta}{\partial t}+\frac{\partial \eta}{\partial x} \frac{\partial \psi}{\partial y}(x, t, \eta)
$$

Replacing y and Ψ by (4.10) and (4.11) and grouping terms in power of ε.

$$
\varepsilon\left[\frac{\partial \psi_{1}}{\partial x}(x, t, 0)+\frac{\partial \eta_{1}}{\partial t}(x, t)+\frac{\partial \eta_{1}}{\partial x}(x, t) \frac{d \Psi_{0}}{d y}(0)\right]+0\left(\varepsilon^{2}\right)=0 .
$$

Since Ψ_{0} is a function of y only, $\Psi_{0}(0)$ is a constant. Since, moreover, Ψ is defined within an arbitrary constant, it is always possible to choose $\Psi_{0}(0)=0$ in which case the value of Ψ_{b} is defined by other boundary conditions. Note that alternately Ψ_{b} could have been taken as zero and $\Psi_{0}(0)=\Psi_{s}$ determined subsequently.

The free surface condition hence becomes to first order:

$$
\begin{equation*}
\Psi_{0}(0)=0 . \tag{4.18}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \Psi_{1}}{\partial x}+\frac{\partial \eta_{1}}{\partial t}+\frac{\partial \eta_{1}}{\partial x} \frac{d \bar{Y}_{0}}{\partial y}=0 \text { at } y=0 . \tag{4.19}
\end{equation*}
$$

3. The pressure is known at the surface and is usually assumed constant

From equation (4.2) and (4.7)

$$
\frac{\partial^{2} \Psi}{\partial t \partial y}+\frac{\partial \psi}{\partial y} \frac{\partial^{2} \psi}{\partial x \partial y}-\frac{\partial \Psi}{\partial x} \frac{\partial^{2} \psi}{\partial y^{2}}+\frac{1}{\rho} \frac{\partial p}{\partial x}=0
$$

and

$$
-\frac{\partial^{2} \Psi}{\partial t \partial x}-\frac{\partial \Psi}{\partial y} \frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial \Psi}{\partial x} \frac{\partial^{2} \Psi}{\partial x \partial y}+\frac{1}{\rho} \frac{\partial p}{\partial y}=-g .
$$

Hence,

$$
\begin{aligned}
& \frac{\partial^{2} \psi}{\partial t \partial y}-\frac{\partial \eta}{\partial x} \frac{\partial^{2} \psi}{\partial t \partial x}+\frac{\partial \Psi}{\partial y}\left[\frac{\partial^{2} \psi}{\partial x \partial y}-\frac{\partial \eta}{\partial x} \frac{\partial^{2} \Psi}{\partial x^{2}}\right] \\
& -\frac{\partial \Psi}{\partial x}\left[\frac{\partial^{2} \Psi}{\partial y^{2}}-\frac{\partial \eta}{\partial x} \cdot \frac{\partial^{2} \psi}{\partial x \partial y}\right]+g \frac{\partial \eta}{\partial x} \\
& \quad+\frac{1}{p}\left[\frac{\partial p}{\partial x}+\frac{\partial \eta}{\partial x} \frac{\partial p}{\partial y}\right]=0 .
\end{aligned}
$$

Replacing γ_{1} and Ψ by (4.10) and (4.11), at $y=0$:

$$
\varepsilon\left[\frac{\partial^{2} \Psi_{1}}{\partial t \partial y}+\frac{\partial \Psi_{0}}{\partial y} \frac{\partial^{2} \Psi_{1}}{\partial x \partial y}-\frac{\partial \Psi_{1}}{\partial x} \frac{\partial^{2} \Psi_{0}}{\partial y^{2}}+g \frac{\partial \eta_{1}}{\partial x}\right]+0\left(\epsilon^{2}\right)=0
$$

if $p(x, \eta)=p_{0}$ a constant.
Introducing expression (4.19)

$$
\begin{equation*}
\frac{\partial^{2} \Psi_{1}}{\partial t \partial y}+\frac{d \Psi_{0}}{d y}\left[\frac{\partial^{2} \Psi_{1}}{\partial x \partial y}+\frac{d^{2} \Psi_{0}}{d y^{2}} \frac{\partial \eta_{1}}{\partial x}\right]+\frac{\partial \eta_{1}}{\partial t} \frac{d^{2} \Psi_{0}}{d y^{2}}+g \frac{\partial \eta_{1}}{\partial x}=0 a t y=0 \tag{4;20}
\end{equation*}
$$

Now from (4.8a)

$$
\eta_{1}=\int_{k_{1}}^{k_{2}} \eta_{k_{1}}\left(x-c_{k} t\right) d k
$$

Assuming as for ${ }_{1}$ (equation (4.14a) that

$$
\begin{equation*}
\eta_{1}=\int_{k_{1}}^{k_{2}} \tilde{\eta}_{k} \cos \left[k\left(x-c_{k} t\right)\right] d k \tag{4.21}
\end{equation*}
$$

The above boundary conditions will be satisfied if:
from (4.17)
$\Psi_{k}(-h)=0$
from (4.19)

$$
\begin{equation*}
\tilde{\psi}_{k}+\left[\frac{\alpha \psi_{0}}{d y}-c_{k}\right] \tilde{\eta}_{k}=0 \text { at } y=0 \tag{4,23}
\end{equation*}
$$

from (4.20)

$$
\begin{equation*}
\left[\frac{d \psi_{0}}{d y}-c_{k}\right] \frac{d \tilde{\psi}_{k}}{d y}+\left\{\left.\frac{d^{2} \psi_{0}}{d y^{2}}\left[\frac{d \psi_{0}}{d y}-c_{k}\right]+g \right\rvert\, \tilde{\eta}_{k}=0 \text { at } y=0 .\right. \tag{4,24}
\end{equation*}
$$

In summary, given a function $\Psi_{0}(y)$ which describes the effect of a current and such that $\psi_{0}(0)=0$ the first order correction to ψ_{0} describing the effect of waves on the stream function is defined as ${ }_{\gamma_{1}}(x, y, t)$ by equation (4.14a). This function must satisfy the differential equation (4.15) with boundary conditions described by equations (4.22) through (4.24).

For each function $\tilde{\Psi}_{k}$ a change in variabies such that

$$
\begin{align*}
\Psi_{r k} & =\mathbf{y}_{\rho}-c_{k} y \tag{4.25a}\\
u_{k} & =u-c_{k} \tag{4.25b}\\
x_{k} & =x-c_{k} t \tag{4.25c}\\
y_{k} & =y \tag{4.25d}\\
v_{k} & =v \tag{4.25e}
\end{align*}
$$

yields the following system of equations:

$$
\begin{align*}
& \frac{d \Psi_{r k}}{d y_{k}} \frac{d^{2} \tilde{\Psi}_{k}}{d y_{k}^{2}}-\left[k^{2} \frac{d \Psi_{r k}}{d y_{k}}+\frac{d^{3} \Psi_{r k}}{d y_{k}{ }^{3}}\right] \widetilde{\Psi}_{k}=0 . \tag{4.26}\\
& \tilde{\Psi}_{k}(-h)=0 . \tag{4.27}\\
& \tilde{\Psi}_{k}+\frac{d \Psi_{r k}}{d y_{k}} \tilde{\eta}_{k}=0 \text { at } y=0 . \tag{4.28}\\
& \frac{d \Psi_{r k}}{d y_{k}} \frac{d \Psi_{k}}{d y}+\left[\frac{d^{2} \Psi_{r k}}{d y_{k}{ }^{2}} \frac{d \Psi_{r k}}{d y_{k}}+g\right] \tilde{\eta}_{k}=0 \text { at } y=0 . \tag{4.29}
\end{align*}
$$

Special solutions of the set of equations (4.15, 4.22, 4. 23 and 4.24) or (4. 26 through 4.29) have been obtained for a single frequency component. These solutions are discussed in paragraphs 4.4 through 4.7 where the subscript k has been dropped. In paragraph 4.8, the extension of these cases to a finite wave spectrum will be discussed.

4. 4 EXPONENTIAL DISTRIBUTION OF VORTICITY (Abdullah (1949))

Take

$$
\zeta_{0}=\nabla^{2} \psi_{0}=\alpha u_{w} e^{\alpha y}
$$

corresponding to

$$
\begin{aligned}
& u_{0}=u_{w} e^{\alpha y} \\
& \Psi_{0}=\frac{u_{w}}{\alpha}\left(e^{\alpha y}-1\right)
\end{aligned}
$$

or from equation (4.25a)

$$
\psi_{r}=\frac{u_{w}}{\alpha}\left(e^{\alpha y}-1\right)-c y .
$$

Note that α is related to Ψ_{b} (equation (4.16)) by

$$
\Psi_{b}=\frac{u_{w}}{a}\left(e^{-\alpha h}-1\right)
$$

The first order solution is given by equation (4.25)

$$
\frac{d^{2} \tilde{w_{k}}}{d y^{2}}=\left[k^{2}+\frac{\alpha^{2} u_{w} e^{\alpha y}}{u_{w}^{\alpha} y_{-c}}\right] \tilde{\Psi}=\left(k^{2}+\frac{\alpha^{2} u_{o}}{u_{o}-c}\right) \tilde{\psi} .
$$

This equation is Abdullah's equation 11. He gives a solution in terms of a power series in ku for an infinite fluid. The dispersion relation for this case is shown to be:

$$
\begin{equation*}
c=u_{w}-\frac{1}{2} u_{w} \frac{S_{01}}{S_{02}} \pm \sqrt{\left(\frac{1}{2} u_{w} \frac{S_{01}}{S_{02}}\right)^{2}}+\frac{g}{a} \frac{S_{01}}{S_{02}} \tag{4.30}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{01}=\frac{\int^{k u_{w}}{ }^{n}}{k c(2 n+1)}\left[1+\frac{n}{2!(n+1)}\left(\frac{u_{w}}{c}\right)+\frac{n(4 n+3)}{3!(n+1)(2 n+3)}\left(\frac{u_{w}}{c}\right)^{2}+.\right] \\
& S_{02}=\frac{\left.r^{k u_{w}}\right)^{n}}{k c(2 n+1)}\left[n+\frac{n(n+1)}{2!(n+1)}\left(\frac{u_{w}}{c}\right)+\frac{n(n+2)(4 n+3)}{3!(n+1)(2 n+3)}\left(\frac{u_{w}}{c}\right)^{2}+. .\right]
\end{aligned}
$$

Equation (4.30) is an implicit relation b tween c and k. It was shown by Abdullah (1949), that the effect of the current is to lower the wave propagation speed for a fixed frequency.

Numerical solutions of equation (4.19) ficr small values of $\frac{u_{w}}{c}$ (smaller than . 15) are pressnted in the cited reference.

Returning to equation (4.6), the solution given above verifies to order ε that the left hand side of the equation is zero. The right hand side is evaluated as

$$
\nu \nabla^{2}\left(\nabla^{2} \Psi\right) \sim 0\left[\nu \nabla^{2}\left(\nabla^{2} \Psi_{0}\right)\right] \sim\left[\nu \alpha^{3} u_{w}\right] .
$$

Hence, neglecting the right hand side of equation (4.6) to order ε is only consistent if $v \alpha^{3} u_{w}$ is of same order as the terms in ε^{2}, that is of erder

$$
\left[\begin{array}{llll}
\varepsilon^{2} y_{l y} & \frac{\partial}{\partial x} & \nabla^{2} \psi_{1}
\end{array}\right]
$$

But since $\Psi_{1}=\widetilde{Y} \cos k(x-c t)=\widetilde{\Psi} \cos k X \quad$ for a single frequency

$$
\nabla^{2} \Psi_{1}=\left[\frac{d^{2} \Psi}{d y^{2}}-k^{2} \Psi\right] \cos k X=\frac{\alpha^{2} u_{w} e^{\alpha y}}{u_{w} e^{\alpha y}-c} \Psi
$$

From (4.28) and (4.29)

$$
\bar{\Psi}=0\left(\frac{\mathrm{~d} \Psi}{\mathbf{r}} \mathrm{r}\right)
$$

$$
\begin{aligned}
& \frac{d \Psi}{d y}=0\left(\frac{d^{2} \Psi}{d y^{2}}\right) \\
& \therefore\left(\epsilon^{2} \Psi_{1 y} \frac{\partial}{\partial x} \nabla^{2} \Psi_{1}\right)
\end{aligned}=0\left[\epsilon^{2} v_{w} \alpha k \frac{\alpha^{2} u_{w}}{u_{w}-c}\left(u_{w}-c\right)\right] .
$$

To relate s to known quantities, note that

$$
u_{k}=\frac{d \Psi_{r}}{d y}+\varepsilon \frac{d \Psi_{1}}{d y}
$$

and the basic assumption is

$$
\varepsilon \frac{d \Psi_{1}}{d y} \ll \frac{d \Psi_{0}}{d y}
$$

In order of magnitude

$$
\varepsilon \alpha u_{w} \ll u_{w}
$$

Hence, ε is a small parameter for this problem provided $\varepsilon \alpha \ll 1$.
From the data presented by Abdullah (1949), for $u_{w}=15 \mathrm{~cm} / \mathrm{s}, \alpha=10^{-3} \mathrm{~cm}^{-1}$

$$
\begin{aligned}
& \varepsilon \ll 10^{3} \mathrm{~cm} \quad \text { say } \epsilon=10 \mathrm{~cm} \\
& v \alpha^{3} v_{w}=0\left(10^{-2} \times 10^{-9} \times 10\right)=0\left(10^{-10}\right) \mathrm{sec}^{-2}
\end{aligned}
$$

By comparison

$$
\begin{aligned}
\varepsilon^{2} \alpha^{3}{\underset{u}{w}}^{2} k & =0\left(10^{2} \times 10^{-9} \times 10^{2} \mathrm{k}\right) \mathrm{sec}^{-2} \\
& =0\left(10^{-5} \mathrm{k}\right) \sec ^{-2}
\end{aligned}
$$

Hence, $0\left(\nu \alpha^{3} u_{w}\right) \leq 0\left(\varepsilon^{2} \alpha^{3} u_{w} 2_{k}\right)$ for wave lengths up to 600 m , and the assumption that the right hand side of (4.6) can be neglected is justified.

4.5 CONSTANT VORTICITY DISTRIBUTION (Biesel, 1950)

Take

$$
\zeta_{0}=\nabla^{2} \Psi_{0}=A \text { a constant. }
$$

Corresponding to

$$
u_{0}=A y+u_{w}
$$

or

$$
\begin{aligned}
& u_{\mathbf{r}}=A y+u_{w}-c=A y+K \\
& \Psi_{\mathbf{r}}=\frac{A}{2} y^{2}+K y
\end{aligned}
$$

so that Ψ_{b} and A are related by

$$
\psi_{b}=\frac{A h^{2}}{2}-u_{w} h
$$

or calling u_{b} the bottom velocity.

$$
\begin{aligned}
& u_{b}=A(-h)+u_{w} \cdot \\
& A=\frac{u_{w}-u_{b}}{h}
\end{aligned}
$$

The first order solution is obtained from

$$
\frac{d \widetilde{\Psi}}{d y^{2}}=k^{2} \widetilde{\Psi}
$$

with the boundary conditions (4.27) and (4.28)

$$
\tilde{\Psi}=-K \eta_{1} \frac{\sinh k(y+h)}{\sinh k h}
$$

Hence, for a single frequency component

$$
\tilde{\Psi}=\frac{A y^{2}}{2}+u_{w} y-\varepsilon \tilde{\eta}_{1} k \frac{\sinh k(y+h)}{\sinh k h} \cos k(x-c t)+0\left(\epsilon^{2}\right)
$$

The velocity components hence become

$$
\begin{aligned}
& u=u_{w}+A y+\varepsilon \tilde{\eta}_{l} K k \frac{\cosh k(y+h)}{\sinh k h} \operatorname{cosk}(x-c t)+0\left(\epsilon^{2}\right) \\
& v=\epsilon \tilde{\eta}_{1} K k \frac{\sinh k(y+h)}{\sinh k h} \sin k(x-c t)+0\left(\epsilon^{2}\right) .
\end{aligned}
$$

Introducing the expression for $\widetilde{\Psi}$ in (4.25)

$$
\begin{equation*}
K^{2}\left[k \frac{\cosh k h}{\sinh k h}-\frac{A}{K}\right]=g \tag{4.31}
\end{equation*}
$$

which is the dispersion relation found by Biesel (1950).

Since $c=\frac{\omega}{k}$ where $\frac{2 \pi}{\omega}$ is the wave period, Stokes dispersion relation $\omega^{2}=g k \tanh k h$ is found for the special case where the vorticity vanishes $(A=0)$ and there is no current $\left(u_{w}=0\right)$.

For the case of no vorticity but a constant current, the relationship becomes

$$
w^{\prime 2}=g k \tanh k h
$$

where $\frac{2 \pi}{\omega^{\prime}}$ is an equivalent wave period defined by

$$
w^{\prime}=w-\frac{u_{w}}{k}
$$

In the general case where the vorticity is given as well as the surface currents,
equation (4.31) gives the value of the wave propagation speed as a function of wave length. Equation (4, 31) can be re-written:

$$
\left(c-u_{w}\right)^{2}\left[\frac{k h}{\tanh k h}-\frac{\left(c-u_{w}\right)-\left(c-u_{b}\right)}{\left(u_{w}-c\right) h}\right]=g
$$

$0 r$

$$
\left.\left(c-u_{w}\right)^{2} \left\lvert\, \frac{k h}{\tanh k h}-\frac{\left(c-u_{w}\right)-\left(c-u_{b}\right)}{c-u_{w}}\right.\right]=g h
$$

Solutions only exist if

$$
\left(c-u_{w}\right) \quad\left[1-\frac{\left(c-u_{w}\right)-\left(c-u_{b}\right)}{\left(c-u_{w}\right)}\right] \leq g h
$$

that is

$$
\left(c-u_{w}\right)\left(c-v_{b}\right) \leq g h
$$

where u_{b} is the bottom (absolute) velocity.

For a uniform current of speed u_{w} (that is $A=0$) equation (4.31) yields

$$
\left(c_{u}-u_{w}\right)^{2} \frac{k h}{\tanh k h}=g h .
$$

Comparing with

$$
\left(c-u_{w}\right)^{2}\left[\frac{k h}{\tanh k h}+\frac{u_{w}-u_{b}}{c-u_{w}}\right]=g h
$$

and assuming a realistic wind generated wave where $c>u_{w}$ (Wiegel, 1964) and $u_{b}<u_{w}$

$$
c_{u}-u_{w}>c-u_{w}
$$

$$
c<c_{u}
$$

so that when there is a vertical velocity gradient the wave speed is lower than for a constant current of sarme surface speed (but not necessarily lower than for a constant current at the average current speed). In this case $\nabla^{2}\left(\nabla^{2} \psi_{0}\right) \equiv 0$ and

$$
\nabla^{2}\left(\nabla^{2} \Psi_{1}\right)=\nabla^{2}\left[\left(\frac{d^{2} \Psi_{k}}{d y^{2}}-k^{2} \Psi_{k}\right) \cos k(x-c t)\right]=0
$$

so that the left hand side of (4.6) is irrelevant for zeroth and first order solutions.

4. 6 HYPERBOLIC VORTICITY DISTRIBUTION (Eliasson and Engelund, 1972)

Here a single frequency component is considered and the following relationship is assumed

$$
\zeta_{0}=\nabla^{2} \Psi_{0}=\nabla^{2} \Psi_{r}=\beta^{2} \Psi_{r}
$$

and with boundary conditiors (4.27) and (4.28)

$$
\psi_{r}=-\psi_{b} \frac{\sinh \beta y}{\sinh \beta h}
$$

or

$$
\psi_{0}=-\psi_{b} \frac{\sinh \beta y}{\sinh \beta h}+c y .
$$

Hence,

$$
\begin{aligned}
& u_{0}=-\beta \psi_{b} \frac{\cosh \beta y}{\sinh \beta h}+c \\
& u_{0}(0)=u_{w}
\end{aligned}
$$

or

$$
K=u_{w^{\prime}}-c=-\beta \frac{\Psi_{b}}{\sinh \beta h}
$$

Hence,

$$
\psi_{r}=\frac{K}{\beta} \sinh \beta y
$$

with

$$
u_{0}=K \sinh \beta y
$$

The first order solution is obtained by solving (4.6) which becomes

$$
\frac{d^{2} \tilde{\Psi}}{d y^{2}}=\left(k^{2}+\beta^{2}\right) \tilde{Y}
$$

with boundary condition (4.27) and (4.28)

$$
\Psi=-K \bar{\eta}_{1} \frac{\sinh \sqrt{k^{2}+\beta^{2}}(y+h)}{\sinh \sqrt{k^{2}+\beta^{2}} h}
$$

Hence,

$$
\Psi=c y+\frac{k}{\beta} \sinh \beta y-\varepsilon \pi_{1} K \frac{\sinh \sqrt{k^{2}+\beta^{2}}(y+h)}{\sinh \sqrt{k^{2}+\beta^{2}} h} \operatorname{cosk}(x-c t)+0\left(\varepsilon^{2}\right)
$$

and

$$
\begin{aligned}
& u=c+\left(u_{w}-c\right) \cosh \beta y-\varepsilon \tilde{\eta}_{1} K \sqrt{k^{2}+\beta^{2}} \frac{\cosh \sqrt{k^{2}+\beta^{2}}(y+h)}{\sinh \sqrt{k^{2}+\beta^{2}}(h)} \operatorname{cosk(x-ct)} \\
& v=-\varepsilon \tilde{\eta}_{1} K k \frac{\sinh \sqrt{k^{2}+\beta^{2}}(y+h)}{\sinh \sqrt{k^{2}+\beta^{2}} h} \sin k(x-c t)+0\left(\varepsilon^{2}\right)
\end{aligned}
$$

Boundary condition (4.29) gives the following dispersion relation

$$
K^{2} \sqrt{k^{2}+\beta^{2}} \quad \frac{\cosh \sqrt{k^{2}+\beta^{2}} h}{\sinh \sqrt{k^{2}+\beta^{2}} h}=g \quad \text { (Eliasson and Engelund, 1972) }
$$

Once again for zeio vorticity ($\beta=0$) and no current, this relation reduces to Stokes value where $K_{s}=c_{s}=\frac{\omega}{k}$

$$
\frac{\omega^{2}}{k^{2}} k \frac{1}{\tanh k h}=g \text { or } \omega^{2}=g k \tanh k h .
$$

For non zero vorticity

$$
\begin{align*}
& \left(c-u_{w}\right)^{2}=\frac{g}{\sqrt{k^{2}+\beta^{2}} \tanh \sqrt{k^{2}+\beta^{2}} h} \tag{4,32}\\
& \left(\frac{c-u_{w}}{c_{s}}\right)^{2}=\frac{\tanh \sqrt{k^{2}+\beta^{2}} h}{\sqrt{k^{2}+\beta^{2} h}} \frac{k h}{\tanh k d}<1 .
\end{align*}
$$

Hence, the speed of the waves relative to the current is lower than their speed in the absence of current.

In order to evaluate the impact of the viscous terms, consider first the expression for u. The small parameter ε is defined by

$$
\left|\epsilon\left(u_{w}-c\right) \sqrt{k^{2}+\beta^{2}}\right| \ll\left|u_{w}\right|
$$

or

$$
\epsilon \sqrt{\mathrm{k}^{2}+\beta^{2}} \ll 1 .
$$

Then

$$
\nu \nabla^{2}\left(\nabla^{2} \Psi_{0}\right)=0\left(\nu K \beta^{3}\right)=0\left[\nu\left(u_{w}-c\right) \beta^{3}\right]
$$

which needs to be compared to

$$
\begin{aligned}
{\left[\epsilon^{2} \Psi_{1} y \frac{\partial}{\partial x} \nabla^{2} \Psi_{1}\right] } & =0\left[\epsilon^{2} K^{2} \sqrt{k^{2}+\beta^{2}} k \beta^{2}\right] \\
& =0\left[\epsilon^{2} \sqrt{k^{2}+\beta^{2}} k \beta^{2}\left(u_{w}-c\right)^{2}\right]
\end{aligned}
$$

Hence, viscous term can be neglected if

$$
\nu \beta \leq \varepsilon^{2} \sqrt{k^{2}+\beta^{2}} k \|_{w}-c \mid
$$

Taking the dispersion relation into account

$$
\begin{align*}
& \nu \beta \leq \epsilon^{2} \sqrt{k^{2}+\beta^{2}} k \sqrt{g} \sqrt{\frac{\tan h \frac{h^{2}+\beta^{2}}{\sqrt{k^{2}+\beta^{2}}}}{}} \\
& \nu \beta \leq \epsilon^{2}\left(k^{2}+\beta^{2}\right) \sqrt{g h} \sqrt{\frac{k^{2}}{k^{2}+\beta^{2}}} \sqrt{\frac{\tanh \sqrt{k^{2}+\beta^{2}} h}{\sqrt{k^{2}+\beta^{2} h}}} . \tag{4.33}
\end{align*}
$$

In most real cases β will be relatively small, and for discussing equation (4.33), it will be assumed to be at most of order k. Then (4.33) can be approximated by

$$
\nu \beta \leq \epsilon^{2} k^{2} \sqrt{g h} \sqrt{\frac{\operatorname{tanhkb}}{k h}}
$$

For shallow water $k h<l$ this becomes

$$
\nu \beta \leq \varepsilon^{2} k^{2} \sqrt{g h} .
$$

For example, assuming $\varepsilon k=10^{-2} \mathrm{kd}=10^{-1}$

$$
\begin{aligned}
& 10^{-2} \beta \leq 10^{-4} \sqrt{10^{3} \mathrm{~h}} \quad \mathrm{~h} \text { and } \beta^{-1} \text { in centimeters } \\
& \beta \leq \sqrt{10^{-1} \mathrm{~h}} \text { or } \beta \sqrt{\mathrm{k}} \leq 10^{-1} .
\end{aligned}
$$

Assuming β is of the same order as k, v 'sos iv can be neglected for waves length larger than about 5 cm .

[^3]\[

$$
\begin{aligned}
& v \beta \leq \varepsilon^{2} k^{2} \sqrt{\frac{g}{k}} \\
& 10^{-2} \beta \leq 10^{-4} \sqrt{\frac{10^{3}}{k}} \quad \therefore \beta \sqrt{k} \leq 10^{-\frac{1}{2}}
\end{aligned}
$$
\]

so that the same order of magnitude as found above is still valid.

Hence, viscosity can reasonably be neglected for most of the expected wave spectra. It is interesting to compare this case with the case presented in paragraph 4.4.

In both cases the vorticity distribution is exponential in character. The main difference is that in the previous case, the solution which was obtained was sucl. that the vorticity was a linear function of the stream function whereas here it is a linear function of the stream function relative to axes moving at the wave speed. The latter approach was used by Eliasson and Engelund (1972) for a single frequency as it yields a closed form solution for the velocity components and a fairly simple dispersion relation. However, if a wave spectrum is to be analyzed, individual solutions are obtained with respect to axes moving at different speeds and the combined solution may be difficult to obtain.

4.7 GENERAL SOLUTION

For any given absolute velocity distribution

$$
\begin{aligned}
& x_{0}=u(y) \\
& \Psi_{0}=\int_{0}^{y} u(t) d t \\
& \Psi_{r}=\int_{0}^{y} u(t) d t-c y .
\end{aligned}
$$

The first order solution is given by

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \tilde{\psi}_{r}}{d y^{2}}=k^{2}+\left(\frac{1}{u_{0}-c} \frac{d^{2} u_{0}}{d y^{2}}\right) \quad \tilde{\psi}_{r} \tag{4.34}
\end{equation*}
$$

Boundary conditions (4.27) and (4.28) dc ine the two unknown constants of the second order differential equation.

The dispersion relation is then obtained from (4.29).

Equation (4.34) is singular for $u_{0}=c$ or $\pm \infty$
and for

$$
\frac{d^{2} u_{0}}{d y^{2}}=-k^{2}\left(u_{0}-c\right) .
$$

Since $\left|u_{0}\right| \rightarrow \infty$ is not a realistic assumption, the possible motions can be obtained either by direct integration of (4.34) as was done in paragraphs 4.5 and 4.6 or by power series approximation around the two other singular points as was done by Abdullah (1949). The dispersion relation in the latter case must be solved numerically by succ.ssive approximation.

It should be noted that in paragraphs 4.4, 4.5 and 4.6 the analyses have assumed a single wave length. Because of the non linearity of the basic equations, superposition of results cannot be readily performed. Some method of obtaining solutions for a wave spectrum may then be more valuable to the problem of estimating forces due to waves than determining a single component response in the presence of complex current distribution. The general discussion of paragraphs 4.2 and 4.3 will provide the means of obtaining this extension.

4. 8 SOLUTIONS FOR A WAVE SPECTRUM

1. Consider first the exponencial vorticity distribution. Since ψ_{0} is independent of k, as in paragraph 4.4

$$
\Psi_{0}=\frac{u_{w}}{\alpha}\left(e^{\alpha y}-1\right)
$$

and the equation for ψ_{k} is from (4.15)

$$
\begin{equation*}
\frac{d^{2} \psi_{k}}{d y^{2}}=k^{2}+\left(\frac{\alpha^{2} u_{w} e^{\alpha y}}{u_{w} e^{\alpha y}-c_{k}}\right) \quad \Psi_{k} \tag{4.35}
\end{equation*}
$$

which is the equation solved by Abdullah (1949). The discussion of paragraph 4.4 applies for any wave number k.

This case corresponds to a wind induced current. Given the wind speed, the value u_{w} can be determined from Wiegel (1964). For each significant frequency in the wave spectrum, equations such as (4.30) can be numerically solved for or nomograms could be prepared to obtain $c_{k}(k)$. Numerical integration of equation (4.35), then (4.14a) would yield the necessary information to compute forces due to the combined action of waves and current.

2. Constant vorticity

In this case

$$
\Psi_{0}=\frac{A^{2}}{2}+u_{w} y .
$$

Equation (4.26) gives

$$
\frac{d^{2} \widetilde{q}_{k}}{d y^{2}}=k^{2} \tilde{\psi}_{k} .
$$

Hence, as in paragraph 4.5

$$
\tilde{w}_{k}=-\left(c_{k}-u_{w}\right) \tilde{\eta}_{k} \frac{\sinh k(y+h)}{\sinh k h}
$$

and

$$
\left(u_{w}-c_{k}\right)^{2}\left[k \frac{\cosh k h}{\sinh k h}-\frac{A}{u_{w} \cdot c_{k}}\right]=g
$$

which can readily be solved for.

Computing the velocity components from Ψ_{1} (equation (4.14a)) and integrating over a fixed period, the average velocity components at a given fetch and depth are then obtained by a simple numerical quadrative in k.
3. Hyperbolic vorticity distribution

For a single frequency it was found that

$$
\psi_{0}=\frac{u_{w}-c}{\beta} \sinh \beta y+c
$$

where c depended on k according to equation (4.32). Hence, in this case ψ_{0} depends on k, and it is nut possible to use the above expression for ψ_{0} where a wave spectrum is considered.

A possible extension of this solution can be obtained by first defining an average velocity \bar{c} by

$$
\bar{c}=\frac{1}{k_{2}-k_{1}} \int_{k_{1}}^{k_{2}} c(k) d k
$$

and taking

$$
\psi_{0}=\frac{u_{w}-\vec{c}}{\beta} \sinh \beta y+\bar{c} y .
$$

Then from (4.15)

$$
\left[\left(u_{w}-\vec{c}\right) \cosh \beta y+\bar{c}-c_{k}\right]\left[\frac{d^{2} \widetilde{y}_{k}}{d y^{2}}-k^{2} \tilde{w}_{k}\right]=\beta^{2}\left(u_{w}-\bar{c}\right) \cosh \beta y \tilde{\psi}_{k} .
$$

As mentioned in paragraph 4.6, the simple equation which is obtained when $\bar{c}=c_{k}$ occurs here at most for one wave number. In general the equation to be solved is

$$
\frac{d^{2} \widetilde{\Psi}_{k}}{d y^{2}}=k^{2}+\left[\frac{\beta^{2}\left(u_{w}-\bar{c}\right) \cosh \beta y}{\left(u_{w}-\bar{c}\right) \cosh \beta y+\bar{c}-c_{k}}\right] \bar{\psi}_{k}
$$

which is of the form of the equation solved for numericaliy by Abdullah (1949).

4. General distribution

In order to obtain forces and moments on structures placed in a current in the presence of waves, it is necessary to compute the velocity components or stream function Ψ. For a first order solution, given the wave current effect ψ_{0}, the stream function Ψ_{1} is obtained by evaluating the integral (4.14a) when $\widetilde{Y}_{k}(y)$ is a solution of equation (4.15) and when the functional relationship between c and k is usually given by boundary condition (4.24). The process is, therefore, usually a lengthy one even with the use of high speed digital computers.

Results are simplified if $\overleftarrow{\xi}_{k}(y)$ can be evaluated in closed form.
From (4.15) it can be seen that

$$
\frac{d^{2} z_{k}}{d y^{2}}-\left(k^{2}+\frac{d^{3} y_{0} / d y^{3}}{\frac{d y_{0}}{d y}-c_{k}}\right) \tilde{s}_{k}=0
$$

$0 x$

$$
\frac{d^{2} \Psi_{k}}{d y^{2}}+f(y) \widetilde{\psi}_{k}=0
$$

Known solutions of such an equation can be obtained for
a) $f(y)=0$
$\tilde{\psi}_{k}=a y+b$
b) $f(y)=-\lambda^{2} \quad \tilde{\Psi}_{k}=a e^{\lambda y}+b e^{-\lambda y}$
c) $f(y)=2 n+1-y^{2} \tilde{\psi}_{k}=e^{-y^{2 / 2}} H_{n}(y)$ when n is an integer and H_{n} is a Hermite Polynomial
d) $f(y)=1+\frac{.25-\lambda^{2}}{y^{2}} \tilde{w}_{k}=\sqrt{y}\left[a J_{\lambda}(y)+b J_{\lambda}(y)\right]$
$J_{\lambda}(y)$ is a Bessel function and λ is not an integer
or $\tilde{X}_{k}=\sqrt{y}\left[a J_{n}(y)+b X_{n}(y)\right]$ if $\lambda=n$ is a integer.

Cases c) and d) already involve functions which must be evaluated numerically using a series representation.

The only fairly simple cases arc cases a) and b).

For b)

$$
k^{2}+\frac{d^{3} \Psi_{0} / d y_{3}}{d \Psi_{0} / d y-c_{k}}=\lambda^{2}
$$

$$
\frac{d^{3} \Psi_{0}}{d y^{3}}=0 y_{0}=a y^{2}+b y \operatorname{since} \Psi_{0}(0)=0
$$

or

$$
\begin{aligned}
& \frac{d^{3} \Psi_{0}}{d y^{3}}=\left(\lambda^{2}-k^{2}\right)\left[\frac{d \Psi_{0}}{d y}-c_{k}\right] \\
& \Psi_{0}=C_{k} y+a\left[e^{\mu y}-e^{-\mu y}\right] \mu^{2}=\lambda^{2}-k^{2}
\end{aligned}
$$

Both cases have been studied previously and it was shown that the first one only with Ψ_{0} independent of k could be extended to a wave spectrum without undue complication of the computations.

4. 9 CONCLUSION

Although the equations required to solve at least up to the first order the problem of small amplitude wave propagation in the presence of an arbitrary current for an arbitrary wave spectrum have been presented, and a review of the epecial solutions previously obtained for a single wave length has been made, the problem in general requires lengthy numerical computations. However, for a current whose velocity distribution can be approximated by a linear dopth dependence, it has been shown that, at most, a single numerical quadrature wes required to obtain the average velocity components. This nethod may then be used to estimate the forces due to wave action in the presence of a current. An experimental ${ }^{1-n o w l e d g e ~ o f ~ t h e ~ c u r r e n t ~ v e l o c i t y ~ a t ~}$ but a few depths (two minimum) will define the parameters necessary to completely solve this problem.

REFERENCES

Abdullah, A.J. (1949) "Wave Motion at the Surface of a Current which has an Exponential Distribution of Vorticity", Annals of the New York Academy of Sciences, Vol. 5l, Art. 3, May.

Arthur, R. S. (1950), "Refraction of Shallow Water Waves: The Combined Effect of Currents and Underwater Topography," Transactions, American Geophysical Union, Volume 31, No. 4, August, pp. 549-552.

Biesel, F. (1950), "Etude Theorique de la Houle en Eau Courante", La Houille Blanche, Numero Special A, May.

Bruun, Per (1973), "Port Engineering", Gulf Publishing Co., Houston, Texas, pp. 436.

Chang, M. S. (1969), 'Mass Transport in Deep-Water Long Crested Random Gravity Waves", J. of Geo. Res., Vol. 74, No. 6, March.

Collins, J. I. (1971), "Longshore Currents and Wave Statistics in the Surf Zone," Tetra Tech, Inc. Report No. TC-149.2, for the Office of Naval Research, Geography Branch, N00014-69-C-0107.

Collins, J.I. ard T. W. Wier (1969), "Probabilities of Waves in the Surf Zone," Tetra Tech, Inc. Report No. TC-149, Office of Naval Research, Geography Branch, N00014-69-C-0107.

Davis, R. A., Jr. and W. T. Fox (1971), 'Beach and Nearshore Dynamics in Eastern Lake Michigan'. Tech. Report No. 4, O. N. R. Contract 388-092, 145 p.

Davis, R.A., Jr. and W. T. Fox (1972). "Coastal Processes and Nearshore Sand Bars". Journ. Sed. Petrology. Vol. 42, pp. 401-412.

Divcky, D., B. Le Méhauté and A. Lin (1970), 'Breaking Waves on Gentle Slopes," Journal of Geophysical Research, Vol. 75, No. 9, March 20, pp. 1681-1692.

Dubieil-Jacotin, M. L. (1934), 'Sur 1a determination regoureuse des ondes permanent ss periodipues d'amplitude finie". Journal de Math. tome XlII, Fasc. III.

Eliasson, J and Engelund, F. (1972), "Gravity Waves in Rotational Flow", Institute of Hydrodynamics and Hydraulic Enginecring, Technical University of Denmark, Progress Report No. 26, August.

Evans, O. F. (193)), "Mass Transportation of Sediments on Subaqueous Terraces". Journ. Geology, Vol. 47, pp. 325-334.

Evans, J.T. (1955), "Pneumatic and Similar ureakwaters," Proceedings of the Royal Society, A, Vol. 231, pp. 457-66.

Galvin, C.J. Jr. (1969), "Breaker Travel and Choice oi Design Wave Height, " Journal of the Waterways and Harbors Division, Proceedings of the American Society of Civil Engineers, WW 2, May, pp. 175-200.

Huang, N. E. (1970), "Discussion of ${ }^{-3}$ aper by Ming-Shun Chang, The Mass Transport in Deep-Water Long Crested Random Gravity Waves", J. of Geo. Res., Vol. 75, No. 12, April with Reply by Ming-Shun Chang.

Hughes, B. A. and R. W. Stewart (1961), "Interaction between Gravity Waves and a Shear Flow, "Journal of Fluid Mechanics, Vol. 10, pp. 385-400.

Hwang, L-S. and D. Divoky (1970), "Breaking Wave Set-up and Decay on Gentle Slopes" Proc. XII Conf. on Coastal Engineering, A. S. C. E., pp. 377-389.

Johnson, J. W. (1947), "The Refraction of Surface Waves by Currents," Transactions, American Geophysical Union, Vol. 28, No. 6, December, pp. 867-874.

Jonsson, I. G., C. Skougaard, J. Wang (1970), "Interaction between Waves and Currents," Proc. Twelfth Coastal Engineering Conference, Chap. 30, September, pp. 489-507.

Kenyon, K. E. (J971), "Wave Refraction in Ocean Currents," Neep-Sca Research, Vol. 18, pp. 1023-1034.

Lamb, H. (1932), "Hydrodynamics," 6th., Cambridge University Press.

LeMehaute, B. and R.C. Y. Koh (1967), "On the Breaking of Waves Arriving at an Angle to the Shore, "Journal of Hycraulic Research, Vol. 5, No. 1, pp. 67-88.

LeMehaute, B. (1968), "Mass Transport in Cnoidal Waves", J. of Geo. Res. . Vol. 73, No. 18, September.

Longuet-Higgins, M. S. and R. W. Stewart (1960), "Changes in the form of Short Gravity Waves on Long Waves and Tidat Currents,' Journal of Fluid Mechanics, Vol. 8, pp. 565~583.

Longuet-Higgins, M. S. and R.W. Stewart (1961), "The Changes in Amplitude of Short Gravity Waves on Steady Non-Uniform Currents," Journal of Fluid Mechanics, Vol. 10, pp. 529-549.

Longuet-Higgins, M. S. and R. W. Stewart (1962), "Radiation Stress and Mass Transport in Gravity Waves, with Application to 'Surf Beats',' Journal of Fluid Mechanics, Vol. 13, pp. 481-504.

Longuet-Higgins, M. S. (1970), "Longshore Currents Generated by Obliquely Incident Sea Waves," Journal of Geophysical Research, Vol. 75, No. 33.

Longuet-Higgins, M. S. and R. W. Stewart (1964), "Radiation Stress in Watir Waves, a Physical Discussion with Applications," Deep-Sea Research, Vol. II, No. 4, pp. 529-563.

Longuet-Figgins, M. S. (1960), 'Mass transport irı the Boundary Layer at a Free Oscillating Surface ${ }^{11}$, J. of Fluid Mech., Vol. 8.

Longuet-Higgins, M. S. (1953), "Mass Transport in Water Waves", Phil. Trans, A, 245.

McKenzie, R. (1958), "Rip Current System", Journ. Geology, 66(2), pp. 103-113.

Miche, R. (1944), "Mouvements Ondulatoires de la Mer en Profondeur Constante ou Décroissante," Ann. des Ponts et. Chaussées.

Morse, P. M. and IH. Feshbach, (1953), "Methods of Theorecical Physics," McGraw-Hill Book Company Inc.
Munk, W.H. ard R. S. Arthur (1952), "Wave Intensity along a Refracted Ray", in Gravity Waves, Chap. 13, NBS Circ. 521, pp. 95-108.
Noda, E. K. (1972), "Wave-Induced Circulation and Longshore Current Patterns in the Coastal Zone', Tetra Tech Report TETRAT-P-72-149-3, pp. 1-120.
Noda, E.K. (1973), "Rip Currents," Proc. Thirteenth Coastal Engineering Conference, Chap. 35, pp. 653-668.
Phillips, O. M. (1966), "The Dynamics of the Upper Ocean," Cambridge University Press, pp. 1-26l.
Shadrin, L. F. (1961), "Longshore Currents and Compensating Currents on the Shallow Accretive Beach. "Trudy, Oceanog. Comm, Akad. Nauk, USSR, Vol. 8, pp. 158-169. (in Russian)
Sonu, C.J. (1972), 'Field Observation of Nearshore Circulation and Meandering Currents." Journ. Geophys. Res. 77 (18), pp. 3232-3247.
Sonu, C. J. (1973), "Three-Dimensional Beach Changes." Journ. Geology. 81 (1), pp. 42-64.
Sonu, C. J., S. P. Muxray, S. A. Hsu, J. N. Suhayda, and E. Waddell. (1973), "Sea Breeze and Coastal Processes." EOS, Trans. A. G. U. 54 (9), pp. 820-833.
Stoker, J. J. (1957), "Water Waves," Interscience, New York.
Sverdrup, H. U. (1944), "On Wave Height. in Straits and Sounds Where incoming Waves Meet a Strong Tidal Current," (Unpublished Manuscript.) Scripps Inst. Ocean. Wave Report No. 11, pp. 4.
Taylor, G. L (1955), "The Action of a Surface Current Used as a Breakwater, " Proc. Royal Society A, Vol. 231, pp. 466-478.
Taylor, G. I. (1962), "Standing Waves or a Contracting or Expanding Current:"Journal of Fluid Mechanics, Vol. 13. pp. 182-19i.

Thornton, E. B. (1969), "Longshore Current and Sediment Transport," College of Engineering, University of Elorida, Technical Report No. 5, December.

Unna, P.J. H. (1942), 'Waves and Tidal Streams," Nature, London, Vol. 149, pp. 219-220.

Ursell, F. (1960), "Steady Wave Patterns on a Non-Uniform Steady Fluid Flow, ' Journal of Fluid Mechanics, Vol. 9, pp. 333-346.

Whitham, G. B. (1960), "A Note on Group Velocity," Journal of Fluid Mechanics, Vol. 9, pp. 347-352.

Whitham, G. B. (1962), "Mass, Momentum and Energy Flux in Water Waves," Journal of Fluid Mechanics, Vol. 12, pp. 135-147.

Wiegel, R. L. (1964), "Oceanographical Engineering," Prentice-Hall, Inc.

APPENDIX A

NOTE ON THE BOTTOM FRICTION APPROXIMATION

APPENDIX A: NOTE ON THE BOTTOM FRICTION APPROXIMATION

A dissipative effect imposed by bottom friction comprises an important term in the momentum equations. The bottom friction is non-linear in nature, and the coexistence of wave orbital motion and circulation renders mathematical formulation of this effect even more complex in the surf zone.

The tangential bottom stress \vec{B} of a quadratic form is given by

$$
\vec{B}=\vec{c} \rho|\vec{V}| \vec{V}
$$

in which \bar{c} is the friction coefficient, ρ the water densify, the resultant velocity vector combining wave orbital and circulatic velocities, egg.

$$
\vec{V}=\vec{U}_{0}+(u, v)
$$

in which \vec{U}_{o} is the wave orbital velocity vector, whose x and y components are, respectively;

$$
\overrightarrow{\mathrm{U}}_{0} \cos \theta \text { and }-\overrightarrow{\mathrm{U}}_{0} \sin \theta
$$

and (u, v) is the circulation velocity vector whose x and y components are, respectively, u and v.

A full expression for $|\vec{V}|$ is then,

$$
\begin{aligned}
|\vec{v}| & =\left[\left(U_{0} \cos \theta+u\right)^{2}+\left(v-U_{0} \sin \theta\right)^{2}\right]^{1 / 2} \\
& =\left[u^{2}+v^{2}+2 U_{o} u \cos \theta-2 U_{0} v \sin \theta+U_{0}^{2}\right]^{1 / 2} A-4
\end{aligned}
$$

Several methods can be used to simplify Eq. A-4. In the previous inestigation (Nodal, 1972; also Thornton, 1969), two assumptions were made.

One was to consider the circulation velocity components u, v to be small as compared with the wave orbital motion, e.g.

$$
\left|\vec{U}_{0}\right| \gg u, v \quad A-5
$$

such that Eq. A-4 reduces to

$$
|\vec{v}| \cong U_{o}
$$

Eq. A-1 is then rewritten

$$
\vec{B}=\bar{c} \hat{p} U_{o}\left[\vec{U}_{o}+(u, v)\right]
$$

Tine time average of the bottom stress is

$$
\left.\langle\vec{B}\rangle=\bar{c} p<U_{0}\right\rangle\left\langle\left[\vec{U}_{0}+(u, v)\right]\right\rangle
$$

Using the linear theory, the term $\left.<U_{0}\right\rangle$ is written as

$$
\left\langle U_{0}\right\rangle=\frac{2 H}{T \sinh k d}
$$

It was also assumed that the term $\left\langle\left[\vec{U}_{0}+(u, v)\right]\right\rangle$ may be approximated by

$$
\left\langle\left[\vec{U}_{0}+(u, v)\right]\right\rangle \equiv\left\langle\vec{U}_{0}\right\rangle+\langle(u, v)\rangle
$$

Since $\left\langle\vec{U}_{0}\right\rangle$ will vanish over a wave cycle, Eq. A-10 now reduces to

$$
\left\langle\left[\overrightarrow{\mathrm{U}}_{0}+(u, v)\right]\right\rangle=\langle(u, v)\rangle
$$

Combining Eq. A-8 and A-11, the time-averaged bottom stress takes the form

$$
\langle\vec{B}\rangle=\bar{c} \rho\left\langle U_{0}\right\rangle\langle(u, v)\rangle
$$

Noting that the friction terms in the momentum equations are defined by

$$
\vec{F}=\frac{\langle\vec{B}\rangle}{\rho(\eta+d)} \equiv \frac{\langle\vec{B}\rangle}{\rho d}
$$

then

$$
\begin{aligned}
& F_{X}=\frac{2 \bar{c} U_{o}}{\pi \cdot d} \cdot u \\
& F_{Y}=\frac{2 \bar{c} U_{o}}{\pi \cdot \frac{d}{d} \cdot v}
\end{aligned}
$$

In the present investigation, an attempt was made to carry out a more rigorous evaluation of these assumptions. Instead of Eq. A-5, we may assume

$$
\left|\overrightarrow{\mathrm{U}}_{0}\right|, u \gg v
$$

In other words, we assume that a nearshore circulation contains on- and offshore velocity component u which is much longer than the longshore component and is not negligible as compared with wave orbital motion. This assumption is obviously borne out in a circulation containing a strong outflow. Since, because of the refraction, the incidence wave angle in the surf zone is generally small, we may further assume

$$
\theta \approx 0
$$

Using Eqs. A-16 and A-17, Eq. A-4 is simplified as

$$
|\overrightarrow{\mathrm{V}}|=\left[u^{2}+2 u_{0}+U_{0}^{2}\right]^{1 / 2}=u+U_{0}
$$

Using unit vectors \vec{i} and \vec{j} in the x and y directions, the bottom friction is now rewritten as

$$
\begin{align*}
\vec{B} & =\bar{c} \rho\left(u+U_{0}\right)\left[\vec{U}_{0}+(u, v)\right] \\
& =\vec{i}\left[\bar{c} \rho\left(u+U_{o}\right)\left(u+U_{0} \cos \theta\right)\right] \\
& +\vec{j}\left[\bar{c} \rho\left(u+U_{o}\right)\left(v-U_{0} \sin \theta\right)\right]
\end{align*}
$$

The time average of Eq. A-19 is evaluated separately for \vec{i} and \vec{j} components, e.g.

$$
\begin{aligned}
\langle\vec{B}\rangle & =\vec{i} \cdot \bar{c} \rho\left[u^{2}+\frac{4 u U_{o}}{\pi}+\frac{1}{2} U_{o}^{2}\right] \\
& +\vec{j} \cdot \bar{c} \rho\left[u v+\frac{2 U_{o}}{\pi} v\right]
\end{aligned}
$$

Consequently, the friction terms in the momentum equations are rewriten as

$$
\begin{align*}
& F_{x}=\frac{\dot{c}}{d}\left[u^{2}+\frac{4 U_{0}}{\pi} u+\frac{1}{2} U_{o}^{2}\right] \\
& F_{y}=\frac{\bar{c}}{d}\left[u+\frac{2}{\pi} U_{0}\right] \cdot v
\end{align*}
$$

where

$$
U_{o}=\frac{\pi H}{T \sinh k d}
$$

The equation to solve to obtain stream function ψ is of the form [see Eq. (2.13) in the text

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+f_{1} \frac{\partial \psi}{\partial x}+f_{2} \frac{\partial \psi}{\partial y}=f_{3}
$$

The choice of the simple friction terms, Eqs. A-14 and A-15, give f_{1}, f_{2} aud f_{3} as functions of x and y only, hence the problem reduces to solving a linear differential equation, [see Eq. (2.13) in the text]. The present computation has used this linear case.

On the other hand, the choice of the more complex friction terms, Eqs. A-21 and A-22, yields f_{1}, f_{2} and f_{3} as functions of x, y and ψ, thus the problem becomes non-linear. Numerical calculation of this non-linear case was attempted, but the result exhibited extreme instability, hence the lack of convergence. The form of our non-linear equation is more complex than any known equations for which the conditions for stable solution have been well explored. Further investigation of this problem is apparently outside the scope of the present investigation and should be reserved for a future study.

APPENDIX B
COMPUTER PROGRAMS FOR
WAVE--CURRENT INTERACTION

PRIGRAM MATHKINPUT＝256，ПHTPUT．TAPESEINPUT，TAPEG＝OUTPUT，TAPI7：512． ＊TAPFR＝512，TAPF9＝51？，TAPF10＝512）

PROGRAM CIMPUTFS WAVF KINFMAYIC AND DYNAMIES RY FIFITE DTFFFRFNCF INSTFAN OF RY CHARACIFWISTITS FOR THE CENFRAL RASE GF WAVF－CHORENT IMIFNACIITH

 2nחny 70,20 ），PST $(70,2 n), F x(70,20), F y(70,20), w(7 n, 20), 1 H 110(70,20)$.

RHAD AND WRITH INPUT

 1TSTRHA
－figmat（htio）
 1．1STHHF
10 FीPMAT（10x．M110／）

rOMPITF ANU DFFIMF CDNSTANIC

rこの．80のア1
が＝3．14159つh53n
P！P＝PI＊？（1）

nx $P=0 x * ? .0$
$n y>=n y * 2.0$
STGMA＝PTP／T
$M M I=N M-1$

$\vec{H}=\mu=1$
$\because ア=M-2$
${ }^{11}$ ！$=1+1$
いアニト・て

TMFIAC＝IHF TAM／PAC
WमITF rilnstan I


```
    XMAX=0X&FLINAT(M-1)
    NSTADT=AM*XMAX
    Call mVNIMM(DSTART,0,0,0,0,0,0,0,0,RKSTARP,A)
    AHF=OSTART*HKSTART
    TSTART=ASIN(SIN(THFTACI)*TANH(ARG))
    TSTAOI=P\-YSTART
    ARF,ア=ARG*).0
    HSHIMAI=SOR\(1.0/(TANH(ARG)*(1.0+ARG?/SINH(ARG,Z))))
    HSTART=HH*SORT(CIS(THFTAN)/COS(TSIART))
    HSTAAT=HSTANT*HSHIIAL
            INIITALT/F FIFLNS
    On 50 I=1.MM
    72#P1 +(TSYAR1-PT)*FLHAT(T*I)/FLOAY(M1)
    HHH= HSTAHT*FLMAT(T-1)/FL\capAT(MI)
    X= nX*FI\capAT(T=1)
    STNZ=SIN(77)
    r!1S7=:MS(2!)
    00 50 J=1.N2
    |(1,J)=0.0
    V(T,J)=0.0
    H(I,J)=HHI
    7(1,1)=22
    SI!!,J)=STNZ
    ri(t,j)=cosl
SO CONTINHL
    nO 55 !=2,M
    nM 55, J=1,N
    CALL DEPTH(I,J)
55 CIINTINUF
    NO 51 I=MMJA.MM
    nC= AM*חX*FLDAT(T-1)
    nO 51 ]=1,N
    D(1,J)=00
51 CONTYNUF
    REA\cap(10) ((PSI(I,J),J=1,N2),I=1,MM)
    Tn 1n 300
    D| 3n 1=1,MM
    PST(I,1)= PSI(I,N)
    PSI(I,NO)= PSI(I,3)
    30 CONTINIUE
    30O rINTTNIIE
    CAIL SPIFN
            FNO TNTTIALIZTNG rIFLOS
            RFAD |l AND V FROM PFRMANENT FTIFS IF INTER=1
    IF (TNTFR .F[J.0) GO Tत HO
    RFAO(T) ((11(I,J),J=1,N2),I=1,MM)
    R(A\cap(7) ({V(I,J),J=1,NP),i=1,MM)
    HEWINO T
    RO CONTINIIT
    GO lח PG
    WRYTF(6,14) ((11(T,J),J=1,10), I=1,M)
14 F(ORMAT(//,(10F13.5))
    WRTTF(6,1\zeta) ((1)(1,J).,J=11,NP),I=1,M)
15 FINMAI(/f,(OF13.5))
    WRTTF!6,14) ((V(T,J),J=1,10),I=1,M)
    WRITF(G,15) ((V(Y,J),J=11,N2),Y=1,M)
    WR!TF(h,14) ((H(I,J),J=1,1n).l=1,M)
    WHITF(H,15) ((H(T,Jj,J=11,NZ),I=1,M)
```

```
    Wत\TF(6,14) ((2(1, J),|={, 10), I=1,M)
    wilTF(6,15) ((7)(T,J),j=11,N2),T=1,M)
    WHTTF(A,14)({ST(T,I),J=1,10), (&1,4)
    WHTTf(6,亡S)((ST(T,I),J=11,N2),T=1,M)
    WHTIF(A,14)((CO(T,j),J=1,10),I=1,N)
```



```
3) CNATINH!
    WFTTF(6,*S) XMAX,DSTAHT,GNSTAHT,AFF,TSTART,HSIACT
13 Fпрмаr(1\capx,eg:13.4)
    MMAX=S
    n^ on k=1, kNAX
    &N!TF(A,O!)k
```



```
    AH 7f I=1,MA:
    fi, 7h J=1,!己
    Tf (K .i.1. I) 6:1 rn 77
    |if n(I,.j]= !il!,j)
    v!if(T,J)= v(I.J)
    ril I| 7%
7% rIH!TNNH
```



```
    vn! \cap(!.j)= V!AST(I.J)
```



```
    HAST(7,.1)= H(1,J)
    V|ASl(1, !)= V(I,J)
```



```
    V(1,d)=0.>4*(VI| ()(i.j) +VLAST(T,J))
7* riNiT!m|lf
    Tr! \Deltaris=1
```



```
    +PS!I= 0.na
    \ी 3? 1=1, 4M
    \capก 3T,J=1,N2
```



```
}? r|ait!ullt
    If (IFLAG .tO. O) GO TO 35
    wNTIF(h,3a) &PSU
```



```
    |F7.a|
    CAl f XTT
37 r|NT|P!lf
35 rINNTMNHF
```



```
    WHTVF(n,14) ((V(T,.J),J=1,1n),1=1,M)
```



```
    OFA\cap(&) ((7(V,J),J=1,VP),I=1,MM)
    HFWINR &
    w!广TF(A,R7)
```



```
    ク| <R T=1.M
    D| HR !?=1.N:?
```



```
    C"(J, リ= (п¢(AP!;)
HA r|P!Tt:|IF
    r.l' T| Mh
```

```
MOw SO&VE Fח\ THFTA
```

rall ANGUf（1才Max7）
CAI HFTGHY（ITMAXH）
Bo rINTTNILE
CAII SNFLI（THETAO，HH，AM）
WRITE IUTPUT
Gil TH 79
WRTIF（ $6, b 0$ ）（（ $\cap(1, J), J=1,10), I=1, M)$
b）FOMMAT（1OX，＊WATER DFPTMS ARF＊／＊（1OF13．5）

61 FIMRMA：（／／／，（9F13．5））
70 CRNTINH4
WRTTE（6，62）（（H（T，J），J＝1，10）， $1=1,0$ ）
GZ FIRMAT（／／10X，＊VAIIIES IIF THF WAVE HFITBT ARF＊／，（IOF13．5））
WRTTF（6，61）（（H（1，J），J＝11，N2），T¥1，M）
WRITE（ 6,63 ）（（IB（I，J），I＝1，Nア），T＝1，M）
63 FIIRMAT（ffinX，＊VALUFS IIF THF RREAKING INDFX $1 R=-$ IB＝I NIJ BRFAKING A
IND IR＝0 RREAKING：／（19I6））
WRYTF（G，6a）（（MGREAK $(1, J), J=1,10), I=1, M)$
64 FITRMAT（／／IOX，＊RRFAKING WAVF HETGHY＊／＊（10F13．5））
WRTTF（G，G1）（（HBREAK（I，J），J＝11，N2），I＝1，M）
WRITE VALIES MF GFPTH．H AND THETA FOK SNELL 4 S LAW REGIUN
61 In 26
WRITF（6，70）（（ $1,(1, J), J=1,10), I=M M I N, M M)$
70 FOPMAT（／／IOX，＊WATER DEPTHS FIN THE SNELLTS LAW RFGIGN＊／，（10F13．5））

71 FПमMAT（／／／：（9F13．5））
WRITE（6．72）（（H（I，J），J＝1，10），I＝MMIN，MM）
72 FIRMAT（／／IOX，＊WAVF HFIGHTS FOR THE SNELLTS LAW RFGION＊／E（1OFI3．S）） WRITE（6， 71$)((H(1, J), J=11, N 2), I=M M I N, M M)$
WRITE（6，73）（（2（I，J），J＝1， 10$), I=M M I N, M M)$
73 FIRMAT（／／IOX，＊THFTA VALUFS FPIR THE SNELLTS LAW KFGTON＊／．（IGF13．5）） WRITF $(6,71)((Z(T, J), J=1\{, N 己), I \leq M M T N, M M)$
26 RINTINUE
IF（ISTORH of（N．n ）GT TA 8
WPTTF（R）（（H（I，J），J＝1，N2），I＝1，MM）
WPTIE（R）（ $(7(1, J), J=1, N 2), T=1, M M)$
RFWIND B
8？EINTINUF

INITIALIZE THF PST FIFID

IF（K GE．2）GU Tit 9R
CALI PSIINT（PSIMAX）
98 RIONTTNUE
SILIV FIIR PSI BY ITFRATIUN
CALI STRFAM（ITMAXP，FRICT）
IF（TSTGRP FR．ח）GU Tח 9 （
WRTTF（Q）（（PSI（I，J），J＝1，N2），T＝1，MM）
RFWTND 9
96 RONTINUE

```
    CALI SPEEN
    TF (TSTORV .tQ. n) GO IN R1
    WRTTF(7) ((U(J,J),j=1,N2),1=1,MM)
    WP1TE(T) ((V(1,J),J=1,N2),1=1,M:A)
    PEWIND7
aq reinitmit
go rimitimuE
sinu
```

SIIRROUTINT COMPIIFS TMF STAEAMI.INFS GTVFN THE H AND THFTA FIELDS RY GAJSS-SEIDFI RELAXATITN TFCHNTOLIF HITH FOR wave ant no walf-cuprfat pntfracitinm

SIMENSY(IN DNOX(7n, 20), DNOY(70,20)
CIMMNN $11(70,20), V(70,20), 2(70,20), S I(70,20), C 0(70,20), H(70,20)$,
 2ПONY(70,20),PST(70, P0),FX(70,20),FY(70,20),W(70,20)

STATEMENT FIINCTIUN
HPPSI(I,J)=(-DXSG*W(I,J) $+(1.0-F \times(1, J) * 0 X / 2.0) * P S T(I-1, J)+$ $1(1.0+F X(T, J) * D X / 2,0) * P S T(1+1, J)+D X S 0 *(1,0 / 0 Y S Q-F Y(1, J) / D Y 2) *$ CPSI(I,J-1) + DXSA* (1. N/OYSO + +Y(I, J)/OYZ;*PSI(I,J+1)J/CIN FND STATEMFNT finctitins
$M M 1=N M-1$
$\mathrm{N}:=\mathrm{N}+1$
$M P=N+?$
nxSQ=DX**2
AYSOEDY**?
ROXOY=DXSO/CYSO
C.ПN=?.0*(1.0 + RnXñ)

EITHT $=1.0 / 8.0$
SIXTNT=1.0/16.0

CALCULATE DNDX AND MADY-E-NOTF THAT K, DKOX AND OKDY ARE WחI STORFD DUF YO CORE SPACE PROBLEMS
no 315 Jxi.N?
nNOX($1 . j, j)=0.0$
DNDY(1.j) $=0.0$
315
तथ $316 \quad J=2 . M M$
no 310 JI2.N1
$J J=J=1$
nn=n(I,JJ)
SSESI(T,J)
$C C=C \cap(1, J)$
CAIL WVNUM (DD,CC,SS,U(T,J),V(I,J),RK,A)
$A R F ?=2 . O * R K A D$
STNH? $=$ SINH (ARGZ)
TTア= TANH(ARGZ)
munx $=(U(I+1, J)-11(I-1, J)) / n \times 2$
nuny $=(u(1, J+1)=11(\mathrm{r}, \mathrm{J}-1)) / n \mathrm{n}$?
nレnx $=(V(I+1, J)-V(I-1, J)) / n x ?$
DVחY= $(V(T, J+1)=V(I, J-1)) / ח Y$?
nTnX $=(Z(I+1, J)-7(I-1, J)) / n x ?$

FAC= $H(I \cdot J) * S S=V(I, J) * C C$

$F F=(1.0-a R G ? / T T Z) / 5 T A 1 A Z$
DNDX $(I, J)=F F *(R K * D D \cap X(!, J J)$ • $D D * \cap K D X)$
DNDY(T,J) $=F F *(R K * \operatorname{DDCY}(I, J J)+$ DD*OKDY)
316 CONTINUF
กก $3171=2 . \mu M$

```
    NNDX(1, 1)= [, W%(T,N)
    ONOY(?,1)= %N! Y: Y:N!
    n*!X(1,N>)= ONOX(i,3:
    \capN\capY(I,NP)= ONOY(I,3:
    317 rINITNIIF
    FNO CALCUIATION FO DNOX GNO DNOY
        POFROMPIHTE DFDX/F, DFWY/F AND W
    n\cap 300 IF2,Mm1
    nn 30n Jz?,N1
    JJ#j-1
    rr:=n(I;JJ)
    mnx=nnnx(1,J,\)
    nny=nnny(T,JJ)
    nH?=nn**?
    H1=H(1, 1)
    H2=H1**?
    nunx=(H(I+1.j)-4(1-1.j))/n)
    nHOY=("(I,N+1)-4(1,J-I)
```



```
    nHn\timesX=(H(I-I,J)-2.n*H(T,J)+H(I*1,J))/I:XSO
    nH\capYY=(!1(1,J=1)=?.n*W(1,N)+W(I,J+1))/rySO
    \cap\\capx=(7(1+1,j)= 2(i-1,1))/\capY?
    n!\capY=(\geqslant(I,.I+1)-2(I,I-1))/1)YZ
```



```
    nTDYY=(7(1,J-1)-P.A;7(1,J)+7(T,J+{))/nYS@
    }S=SI(T,I)
    rc=(f)(1,J)
    SKP=SS**?
    rCP=re**2
    Sl+1>=STN(2.0*<(I.J))
    r!SP=[!S(子.0*7(InJ))
    CAlL nVF:IMM(OD,CC,SS,H(T,.I),V(I,J),WK,A)
    AHr.P= ?.0*RK*On
    SI|m?=SINH(AR(;?)
    aRCI= Pk*IO
    TT=TANH(AFC:1)
    TTP= YAAH(AHC,P)
    n|nx=(11(I+1,j)-(|(I-1,N)}/nx?
    n|ny=(11(T,.I+1)-(J)I.J=1))/Nyp
    \cap\vee\capY=(V (I+{,J)-V(I-1,J))/nxp
    nv\capv=(V(1, I+1)-V(1,1-1))/ПYק
    FAr=|(T,J)*SS-v(T,j)*rr.
```



```
    N\capTF=-FX(I,J)=ח&Nx/f arin fY(I,J)=|F|Y/F
    H!こH!*N!
    PKJ= WK&P=0
    \capk\capחX= सk*D|Y * N!*|K|y
```



```
rorl= 3.0*FA - 0. S
r(iFr= F# - 0.ち
H=HT(NTHH)
```

```
    FS= FM=SIN?
    Fr= FM*COS?
    rrre 1.0 + Cre
    5s5=1.0 + ssz
    Sx= R*(CIFF1*CC? + CfF2*Ss2)
    Sy= R*(c!rti*SS? + CnF ?*Cr?)
    TAl:= STXTNT*HZ#FN*SIN?
    nSXDX= R*(-FS*DTNX + DNDX(I,J)*CCC) + %.OANHDX*SX/HI
    nSX\capY= R*(-FS*OTDY + DNחY(I,J)*CCC) + 2.O*DHDY*SK/HI
    nSYRY= &*(FS*DTDY & ONCY(I,J)*SSS) * ?.0*DHDY*SY/HI
```



```
    OTAUX= A*(FC*OTOX + FS*DHDX/HI) + TNDX(I.J)*TAII/FN
    DTAlIY= R*(FC*DTDY & FS*OHDY/HI) * DADY(I.J)*TAl/FFN
    DNNXX= (DNOX(1+1,J)-DNnX(I-1,J)]/OXC
    nNRYY= (ONDY(I,J+1)=ПNDY(I,J-1))/0Y(2
    ONOXY= (nNOY(I+1,J)-DNnY(1-I,J))/DXZ
C
            SFCIIND ORDFR NERIVITIVFS
        DSXDYX= R* (-FS*DTDXY=2.0*Fr*DTDX*OTDY-SINZ*DIDX*DNDY(I,J)=5INZ*
        IOTDY&DNDX(I,J)+C(C*ONDXY) + O.25*H!#DHDY#(*FS*DTDX+CCC&DNDX(I,J))
        2+ 2.0*DHDX*DSXDY/H1 * 2. n*SX*(OHDXY/H1-DHOX*UHNY/HZ)
        OTAl'TY= R*(FC*#TDYY-?.n*FSADTDY**?) + O.f*FC*H!*#TDY*DHDY + 0.125*
        1FS*(HI*DHNYY+DHDY**2) + B*DNDY(I&J)*(COS2*DIDY&SIN2*OHDY/HI) &
        2DNOY(I,J)*nTAUY/FN + TAU*(DNDYY/FN - (ONDY(I,J!/FN)**2)
        nSYDXY= R*((2.0*FC*DTOY*חTnX+FS*DYnXY) + STNP*NTOY*ONDX(I.J)&SIN2*
        1DN\capY(I,J)*DTחX+SSS*DNDXY) + 0. 25*HI*DHDX*(FS*DTDY + SSS*DNDY(I,J))
        2+ 2.0*DHOY*DSYDX/H1 + ?.0*SY*(DHDXY/HI - DHDY*OMRIX;H2)
```



```
    1FS*(H1*DHNXX+DHDX**2) + H*DNDX(1,J)*(COST*DTDX * DHDX*SINZ/HI) & 
    PnNOX(I,J)*DlaUX/FN + TA|*(RNDXX/FN = (DNDX(I,J)/FN)**Z)
        F=FCON*HI*SORT(RK/SINHP)/ON2
        W(T,J)= G*((DSXDYX + DTAUYY - OSYDXY - DTAUYX)/DD - DDY*(DSXDX +
    IDTA|Y)/DD2 + DNX*(OSYDY * DTAUX)/DN2)/F
300 RONTINIE
    CO 10 360
    WRTTF(6,390) ((FX(I,J),J=1,10),I=1,MM)
    300 FORMAT(//10X,*DFNX/F*/,(10G13.5))
    WRTTF(6,30!) ((FX(T,J),J=11,N2),1=1,MM)
    391 FORMAT(///.(9G13.5))
    WRITF(6,392) (IFY(I,J),J=1,10),I=1,MM)
    392 FORMAT(//10X,*DFOY/F*/,(10(113.5))
    WRTTF(6,3a1) ((FY(I,J),J=11,NR),I=1,MM)
    WR!TE(6,303) ((W(I,J),J=1,10),1=1,MM)
393 FORMAT(//10x,*W(T,J)*/,(10r.13.5))
    WRITE(6,391) ((W(I,J),I=!1,NP),I=1,MM)
    36O CONTINUF
C
C
        PERFGNM ITFRATION FIR PSY
    nO 310 IT=1. ITMAXP
    IFLAG=1
    nO 320 I=2,MM1
    PSINEWEUPPSI(I,?)
    TF (ARS(PSTNFW-PSI(I,R)).r,T. (FPS*ARS'PSINFW))) TF|AG:0
    PST(T, P)=PG!NFW
    PSI(I,NI)=PSI(T,P)
    PSTNFW:|PPSI(I,3)
    IF (ABS(PGTAFH=PGI(I,3)).(FT. (FPS*ABS(PSINFW))) IFLAT=0
    PST(T,3)=PSTNFW
    PST(I,N2)=PST(T,\)
    DO 350 J=4,N
```

```
    PSINFma(fPPSI(1,J)
```



```
    FST(1.J)=PSIHEW
350 ramitimie
    PSI(1,1)=PST(1,V)
320 rimyTMNF
        f% (trlag .to. i) fullo 3HO
310 ROMTPNHF
    wNTYF(t.330) ITMAXP,FPS,K
```



```
    ITTH A HETH?PfR +WROR IFF,FIO,t,10x,PHK=,14)
        wHITF(A,331) ((PSI(I,J),J=1,10),[=1,MM)
```



```
अ3> H{lOmal(/1/,(9F43.4))
        f.: in 300
3an whlif(t.334) 11,FPS
```



```
300 0% fllat
```


SHBROUYTNF SOLVFS FOR THETA RY REIAXATION INCLUAYBE

 PODOY(70, 20), PSI(70,20), FX(70, 20), FY(70,20), w(70,20)

```
C. PFRFIRM ITERAITON
```

N1 $=N+1$
$N 2=N+2$
M1ZMー1
$M ?=M-$?
OO $20 \cap$ ITE1, ITMAX
TFLAGE:
nn ? 10 1I=1, M2
$I=M-1 I$
no $210 \quad J=2, N 1$
CAl.I NFWANG(T,J,IFlAG)
210 rOMITATHF IF (TFLAG .fO. 11 GU TH 250
?OO CGNTTNUE
WRIIF(t, ?20) ITMAX
 19/1)
WRTTF($6, ? 21)((2(1, J), J=1,10), T=1, \mathrm{M})$

2? 2 FIRMAT(///,(9F13.5))
rAIL EXIT
250 WRIIF(O.7.51) IT,EPS
 IFRATIONS WITH A MAXIMUN RFIATIVE FRRITR OF, $3 X, F 10.51$
WRITF(h,252) ((Z (I,J), JE1, IG), T=1, M)
252 FORMAT(IGX, 23 HSULUTIINS FUR THFTA ARF//.(INF13.5))

253 FGRMA1(///.(9F:3.5))
c

WPITF THETA IN DFGRFFS

nol 260 I $=1 \& \mathrm{M}$
กก $260 \mathrm{~J}=1, \mathrm{~N}$?
7(1, J)=7(I,J)*RAD
P60 CONTINUF
WRTTF (6, P51) IT,FPS
WRTTE(6,252) ((7(I, J), J=1,10), I=1, M)
W中ITF(6,253) ((LII,J), J=11,N2), $I=1, M)$
no 270 1 $=1, \mathrm{M}$
Mก $270 \mathrm{~J}=1 . \mathrm{N}$?
?(T,J)=2(I.J)/PAn
270 ENNTTNLIE
TFTINA


```
r
r
r
r
r
r
```



``` TFiCHilisth
```



```
        ST:TfMF\| F{lir!If:%S
```



```
    z,+1)-s({(1,1-1)i)
```



```
    zf-1)-['(1,I+1)})
```



```
    niny([,.j)=(i(1,J+1)-11(1,f-1))/n`?
```



```
    nvor(1,J)=(vil,J+1)-v(T,I-1)!/n%)
```



```
    1<|*N.う!/!
```



```
    (&)"..>)/ff
```



```
    rnsi= r(1,1)
    s!H!= SS(I.a)
    |J=,I-!
```



```
    FF=1(1,j)
```



```
    110x,215,1%13.51
    Call +x|t
_'今\mp@code{arterac(T,J)}
```



```
    7(1,J)=7^!+
    ric(T.J)=rac(l(1,.l))
    c!(r,|)=5ra(<(1, l))
```



```
    * 1 =* +1
    7(!:!1)=7(1, )
```



```
    c!(9,t|l=5\(1.l)
    のい リ!1 は心の
```

```
    40n IF (J *NE. 3) GO In 40:
        N2#N+2
        7(1,N2)=7(%,J)
        C0(I,N2)=[n(1,J)
        ST(T,V2)=ST(I,N)
        r.% 10 409
    401 iF (J NF.N} GO TO 40?
        7(1,1)=2(1,N)
        rn(7,1)=C(I(1,N)
        SI[1.1)=S!(I,N)
        ratin 499
    4n? M1=N+1
        IF (J.NF. A1) Gח 10 409
        Z(7,2)=[(1,3)
        Cい(1,2)=C\cap(1,J)
        sT(I,?)=s1(1,J)
    4QQ RETURN
    Fi!?
vv
```



```
    FFSK=0.0n:
    0*=P!2/(T*S(%HT(G*O))
```



```
    Aア=A**?
    AHC=UK*I
    F!=FXp(AGG)
    FP=1.0/F1
```



```
    &FCH?=Cf(r)**?
    T=TAA,H(AGC:)
```



```
    HKPFN=LK - F*/Frk
```



```
    |5f;13.5)
    rall +XIT
```



```
    110x,7r,13.51
    rall & XIT
1>N PFTIGNA.
    FrN
v
```

$J J=J-1$
$D F P=B(I, J J)$
COSTECO（T．J）
SINTㅍST（I，I）
CAIL WVNIM（DFP，CIST，SINT，U（T．J），V（I，J），RK，A）
NFXT IPERATTINS CTMPUTE THE WAVF ARFAKING HEIGHT
TA＝TANH（RK由DEP）
HHRFAK（J．J）＝0．12＊PTこ＊TA／PK
C
CRSH1＝CHSH（RK＊DEP）
SECHSO＝1． $0 /(C \cap S H I * * 2)$
ARG2＝2．0＊RK＊ПEP
SINHZ＝S；NH（ARET）
COSHP＝C．OSH（AR（； C$)$
SINHSO＝SJNHP＊＊？
FFEF（T，J）
C＝S日RT（G＊TA／RK）
FF＝ $0.5(1.0$＋ARGP／SINHP）
CG（I，J）$=F F \in C$
$P=C *(S I N H P$－ARCR＊COSH？）／SINHSG

ค $=0.5 * G /(C * R K * * 2)$
DCDX＝O＊（RK＊SECHSQ＊OKDDX－TA＊RKDX（I．J））
ПCDYF O＊（RK＊SFCHSO＊DKDCY－TA＊OKDY（I，J））
กCGDX：P＊DKDTX＋FF ACDX
OCGDY F PANKDNY＋FFADCDY
gntn 1001
WRITF（ 6,10 OO）T，J，HK，A，C，DEDX，DCDY，DKDNX，DKDOY
1000 FIMMATVIOXz？ISz7C15，5？
$100!$ CTINTTANE
RFTURN
$\because \mathrm{NH}$

SURHOUTINE DFPTH(I.J)
rimmin $11(70,20), V(70,20), 7(70,20), S 1(70,20), r 1770,20), 4(70,20)$,

annny(70.20),PSI(70.20),FX(70,20),FY(70.20),w(10.20)

$A!=0.024$
अMGN=1. $n / 3.0$
$n=(2 \cap, n+* 1+1+n) / 3 . n$
F1 AMnA=80.
$A=? 0 . a$
$A \mu_{1} A=30$.
41. DHA =A! DHA/HAD
$x=n x \in F i n A T(;-1)$
$y=n y * F 1.114$ ($3-1$)

$A \sim f=f Y-x * T A(P H A) \star P T / F L A M \cap A$
S=SIN(AHI)
50-c**O
$510=59 * S$

FF=F×P(AHC.F)
riminion $0 * A M * A * P i * x / F I A N M A$
$r=r n ¢(A \omega r)$

SIIRRTITINF CGMPUTFS THF UPDATFD WAVE HEIGHT AND CHECKS FOR

 GREAKING
 20DOY(70,20),PSI(70,20),FX(70,20),FY(70,20),W(70.70) COMMIN /CIN/ G,PI,PIZ,HAN,FPS, DX,DY, OXZ, DYZ, T,SIGMA,M,N

```
    RUMPIITE NEW WAVE HFIGHT
```

 In(1, J) \(=1\)
 \(N 1=M+1\)
 N2 \(2 N+2\)
 CCl:(V(T,J) + CG(1,J)*ST(I,J))/DY
 CC.P=(11(I.J) + CG(1,J)*CH(T,J))/DX
 HNFW=(CC1*H(I,J-1)-CC2AH(I+1,J))/(CCI-CC2-s(T,J)/2,0)

HNEW= HRPEAK(1,J)
IB(I, J) $=0$
A50 CONTINIF
TF (ARS(HNFWOH(I,J)) .GT. (EPS*ARS(HNFW))) IHLAG=O
$H(T, J)=$ HNEW
IF (J AN. ?) no TO AOO
$H(I, N 1)=H(I, J)$
$I A(I, N 1)=I R(1, J)$
GO Y 1809
800 TF (J.NF. 5) GU Tח 801
$H(T, N\rangle)=H(I, J)$
IR(I,NP)=IR(T,J)
G1) 101899
ROI TF (J NE.N GO IU ROP
$H(1,1)=H(I, J)$
$T H(T, 1)=T B(I, J)$
Gin in 899
A02 IF (J. .NF. NI) GO TU 899
$H(7,2)=H(J, J)$
TB(I, 2$)=I B(I, J)$
A99 PFTURN
END
$v v$

SIPROUTYNF COMPIITFS THF SNEILTS LAW hAVE HEIGHT, MFPTH AND

COMMTIN/TON/ G,PI,PTZ,HAD,FPS,DX,HY,DXZ, OYZ, T, STGNA,M,N,MM

 $\rightarrow M 1 N=M+1$
$\mathrm{N} \boldsymbol{\mathrm { Cl }}=\mathrm{N}+$?
กП $h \cap 0 I=4 \mathrm{mIN}, \mathrm{Mm}$

ratl wValm(1)H, 0, n, 0, 0, n, n, 0, 0, OK, a) AA=RK*D ANCOASTAT(STA (THETAM) TANH (AA)) akrapl * amid AKG二2. $0 *$ AA
 OFFFSOPT(COS (THETAII)/(COSTANG)) WVमT =HH*SHMal*RFF
SS=STM(AN:C) rrerfic (A* r_{i}) nい $\operatorname{HOn} J=1, N$? 0(1.J)
 $7(T, 1)=\perp+1 \mathrm{f}$ ST(1, 1)=55 rifl, J) $=$ C
 mony($[$. J) $=$ n. n
hon rilntymllf
DFTIH:
FNH

SUARIUTINF PSIINT(PSIMAX)

SHRRUUTINF INTYTALIZES PSt

CПMMON/CON/ F,PI,PIZ,PAN,FPS, DX,DY,DYZ,DYZ.I,STGMA,M,N,MM

 >nnny(70,20),PSI(70,20), FX(70,20),FY(70,20),W(70,20)

$N N 1=M M=1$
$F M=F I$ OAT($M M 1)$
M! 650 $J=4, N$
PST(1,J)=0.0
DST(MM,J)=0. 0
6GO rINTINUE
Drt $6601=2, \mathrm{MMI}$
USTI=PSIMAXASIN(PI*FLHAT(I=1)/FM)
กn 6ho Jxi, N2
PSI(I, J) FPSII
660 CONTINIIF
RETIIRN
FND

```
    SURROUYINF HEIGHT(TGMAX)
```



```
    FFFFEIS GF WGVE-CIHFENT INTFRMCIIIN
```



```
        <nOnY(70.20),PSI(70.20),FX(70,20),FY(70,20),w(70,20)
    CIHMIWN/CIN/ G,PI,PIP,NAN,EPS,NX,OY,NXP,NYZ,T,SIGMA,M,M
    M1=M-1
    N!=N+!
        COMPult valuFs fif S(InJ)
    nit 500 I=2.M1
    ni) 500 J=2,N
```



```
    nvNx=(V(T+1,N)-v(I-1,J))/Ny2
```



```
    n\Nx=(7(1+1,|)=<(I-1,|))/nצ%
```



```
    SSP= SI(T0.J)**?
    rrp= rn(t.J)**)
    STrxy= (?.n#FF - 0.5)*rf? + (FF - n.5)*SS>
    SIGYYF (?.n*FF - 0.5)*SST + (fF - 0.5)*(r)
    TAlyY= FF*ST(1.,l)*CH(I,J)
```



```
    2Tsilxy*!unx & STgyy*nvoy)
    fri in 5%a
```



```
    59n FIHNAI(IX.PI5,7(15.5)
    595 rIF!TINH!
    5 0 0 ~ C O N T I T A I F ~
        -j?=A+?
    m?=m=?
            HFGFCOM ITIDATIIN FING THF WAVF HFII.HI FIIIU
    Ni)&|n IT=1,M2
    T=M-\!
    ~Nち&त It=1, FTMAY
    Tf! Ar:=1
    CHF?O, |=?,N1
    CAI! MFHHTCIfJ.TFLA(;)
    LPO rIMNTINILE
    if fIFLAF, rQ. 11 f,11 I| 57n
    G&N rINTINUF
    aHTIF(6.G40) 1.1T
```



```
    WWYFF(h,54!) (H(I,N).J=1,N%)
```



```
    CA{, &Y|\
    sTn whllf(t,54>) 1,It
```



```
    G10 「|N||N|E
    RF「|んN
    FFN
v
```



```
VFEOCTTTFS IN THF PSI FTFID
```

COMmfin $11(70,20), V(70,20), 7(7 n, 20), 51(70,20), C 1(70,20), 4(70,20)$,

2nnny (70,20), PS $(70,20), f x(70,20), F Y(70,20), W(10,20)$

$M M \dagger=M M-1$
$11 P=N+$?
$M 1=N+1$
n(1) 750 J $=2: N 1$
$\|(1, J)=0.0$
$V(1, J)=0.0$
$\|(M M, J)=0.0$
$V(M M, J)=\operatorname{Ci} I(M+1, J) /(D X * \Gamma(M M, J=1))$
กf $7501=P, M M 1$
$1(1, J)=-(\operatorname{PSI}(1,1+1)-\operatorname{PSI}(1, J-1)) /(n(1, J-1) * 0 Y 2)$
$V(T, J)=(P S I(I+1, J) \quad P S I(I=1, J) /(D(I, J-1) * n \times 2)$
750 rinntynlle
DO $760 \quad I=1, \mathrm{Mm}$
$\|(1,1)=11(1, N)$
$H(T, N 己)=H(I, 3)$
$V(I, 1)=V(I, N)$
$V(I, N 2)=V(I, 3)$
76O CONTINHE
WHTTF (6,751) ((U(I, J), J=1,10),I=1,MM)

WRTTF (6,75?) ((U) (I,J).ITII,N2),I=1, MM)
75) FIIRMAT(///, (9F13.5))

753 FORMAI(//10X, *V VFI UCITIFS*/A(IOF13.5))
WRYTF (6, 75P) ((V (I,J), J=11,NP),I=1,MM)
RFIURN
FND
FINCTIIN STNH(A)
$F=F X P(A)$
SINH= (E-1.0/E)/2.0
DFTIDA
FNN
FUNCTITN CISH(A)
$F=F \times P(A)$
COSHE (F + $1.0 / E$ //つ.
PFTURN
ENO

41	17	300	50	400	70	0	1
150.00	0.50	5.00	5.00	4.00	0.001	0.025	0.01

PRRGRAM MAIN(INPUT, UUTPUT, TAPFSEINPUT, TAPFGEOUTPUT)
PRIGRAM CIMPUTES H(X) FROM THF DIFFFRENTIAL FOUIAIUN FOR ENERGY FITR A WAVE SYSTEM PRIPAGATING WITH A CURRFNT hy Runt:A=KUTTA

DIMENSIUN Y(I).YP(I)
COMMIN CFL
hath(5, 1) NOX, T, DX
1 FORMAT(I10.PF10.?) WKITE (h,10) NDX, T, DK

$\mathrm{G}=\mathrm{a}$. R 0621
$P I=3.1415926536$
Pl? $=\mathrm{PT}$ *?.
CEL= F*T/PIZ
tMITIALIZF Y AND YP
$Y(1)=0.774750$
$x=40.0$
INAX=0 CALL HIINTS $(X, D X, I, Y, Y D, I N D X)$ WRITF(G, 2n) $X, Y(1), Y P(1)$
 nत $100 \quad x=1$, NOX CALL KUNGS(X,DX,I,Y,YP,INDX) WRTfF(h.21) X.Y(1).YP(1)
21 FIDMAT(12x,F5.1,7x, G15.5,10x, G15.5)
100 CONTINLIT STOP
FNA

DIMENSTHNS MHST MF SEI FOP FAEH PRIGRAM
x INDEPFNDFNT VADIAMIF

＊）Nimafik if Frolations

Dulfs fhr nfeivatives anin sinfos itrm
THF AHGUMFPIT IIST IS SIISFOUTIAF DERTVI（X，H，Y，YFGINF）
If（TADEX）5， 5,1
1 กn ？ $1=1, a$ ．
W！（I）＝faypwTmf（I）
$\geqslant l(T)=Y(I)+(V .1(1) * .5)$
$A=\mathrm{Y}+\mathrm{H} / \mathrm{P}$ 。
rAtI DFFIUF（A，D，Z，YPRIMF）
（1） $1=1,0$
WZ（1）＝H＊YOQ！MF（I）

$A=Y+H /$ ？

べ $4 \quad 1=1,4$
w（ $\mathrm{f}(\mathrm{T})=\hbar \pm \forall \mathrm{HRIMF}$（1）
$47(T)=Y(1)+w$（ 11$)$
$A=X+H$

nu 7 J＝1．

$\mathrm{Y}=\mathrm{Y}+\mathrm{H}$
rali DFwivf（x，＂y，y，yTnime）
rir Tr＇h
5 CAII JFNIVA（X，N，Y，YOHTNF）
if $\cap \Gamma X=1$
A of 1110：
「\％

SIMARNUTINE DFRIVF $(X, N, Y, Y P)$

SUFRRITINF CUMPITFS DFRIVITIVFS DYDX WHFRE YEFCT(X)

OIMFNSTIN Y(1),YP(1)

CIMMMAM TFL
$15-9.0+0.7+x$
$n \tan x=0.2$
HAN=SO日T(1.0-4.0*U/CFL)
$r=C F L *(0.5+0.5 * R A \cap)$
$r r=0.5 * C$.
nrnx=-ninx/Ran
Actonx=0.5*1)CD:
$Y P(1)=Y(1) *(-1.5 * \cap \| \cap x * \operatorname{DCOX}) /(? .0 *(\|=C G))$ LHFIURN
FNO

$$
\begin{array}{ccc}
200 & 0.00 & 0.10
\end{array}
$$

[^0]: Figure 1. 2: Distribution of Streamlines and Depth Contours in a Circulation Cell Under Normal Wave Incidence [From Sonu, 1972]

[^1]: Ball Trajectories and Bottom Contours for Oblique Wave Inciderce
 $[$ From Sonu, 1972]

 Figure 1.3:

[^2]: Figure 2. 1: Rhythmic Surf Zone Structures as Reported by Various Investigators

[^3]: For deep water k h $\gg 1$

