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Abstract

Nebulised unfractionated heparin (UFH) has a strong scientific and biological rationale and warrants urgent
investigation of its therapeutic potential, for COVID-19-induced acute respiratory distress syndrome (ARDS). COVID-
19 ARDS displays the typical features of diffuse alveolar damage with extensive pulmonary coagulation activation
resulting in fibrin deposition in the microvasculature and formation of hyaline membranes in the air sacs. Patients
infected with SARS-CoV-2 who manifest severe disease have high levels of inflammatory cytokines in plasma and
bronchoalveolar lavage fluid and significant coagulopathy. There is a strong association between the extent of the
coagulopathy and poor clinical outcomes.
The anti-coagulant actions of nebulised UFH limit fibrin deposition and microvascular thrombosis. Trials in patients
with acute lung injury and related conditions found inhaled UFH reduced pulmonary dead space, coagulation
activation, microvascular thrombosis and clinical deterioration, resulting in increased time free of ventilatory
support. In addition, UFH has anti-inflammatory, mucolytic and anti-viral properties and, specifically, has been
shown to inactivate the SARS-CoV-2 virus and prevent its entry into mammalian cells, thereby inhibiting pulmonary
infection by SARS-CoV-2. Furthermore, clinical studies have shown that inhaled UFH safely improves outcomes in
other inflammatory respiratory diseases and also acts as an effective mucolytic in sputum-producing respiratory
patients. UFH is widely available and inexpensive, which may make this treatment also accessible for low- and
middle-income countries.
These potentially important therapeutic properties of nebulised UFH underline the need for expedited large-scale
clinical trials to test its potential to reduce mortality in COVID-19 patients.
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Introduction
In December 2019, a novel coronavirus (severe acute re-

spiratory syndrome coronavirus 2, SARS-CoV-2)

emerged in China and has since spread globally. A large

proportion of patients admitted to hospital for

coronavirus disease 2019 (COVID-19) develop acute re-

spiratory distress syndrome (ARDS) criteria according to

the Berlin definition [1–3]. ARDS is an acute inflamma-

tory lung injury, associated with increased pulmonary

vascular permeability, increased lung weight and loss of

aerated lung tissue, affecting 23% of mechanically venti-

lated critically ill patients. The hospital mortality of

ARDS is estimated between 35 and 46% depending on

ARDS severity [4, 5]. However, the death rate in
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COVID-19 patients with ARDS appears to be higher, up

to 66% [2]. It has been suggested that COVID-19

pneumonia-associated ARDS is a specific disease or per-

haps a specific phenotype of ARDS, whose distinctive

features are severe hypoxaemia initially associated with

relatively well-preserved lung mechanics [6, 7]. A pos-

sible explanation for such severe hypoxaemia occurring

in compliant lungs is the loss of lung perfusion regula-

tion and hypoxic vasoconstriction. In addition, COVID-

19 ARDS patients have higher plasma markers of coagu-

lation, such as D-dimers, increased prothrombin time

and a lower platelet count [2, 8–12]. Endothelial dys-

function and microvascular thrombosis could therefore

also explain the specific pulmonary findings in severe

COVID-19—high dead space and impaired oxygenation

in the absence of significant decrease in pulmonary com-

pliance. Post-mortem studies and lung biopsies of

SARS-CoV-2 patients with ARDS indeed demonstrated

pulmonary fibrin deposition with hyaline membranes in

the alveolar spaces and extensive pulmonary micro-

vascular thrombi [13–15].

Pulmonary disease severity is also related to an aggres-

sive host inflammatory response to SARS-CoV-2 infec-

tion, with release of an uncontrolled cytokine storm

inflicting damage to other organs including the cardiac,

hepatic and renal systems [16].

In this focused review, we present the biological and sci-

entific rationale for the use of nebulised UFH for COVID-

19 pneumonia and ARDS in hospitalised patients and make

a call for an urgent, global approach to the investigation of

its therapeutic potential for this devastating condition.

Biological rationale: pathophysiology of COVID-19
The pathophysiology of COVID-19 associated ARDS is

summarised in Fig. 1a and is characterised by diffuse al-

veolar damage, hyperinflammation, coagulopathy, DNA

neutrophil extracellular traps (NETS), hyaline mem-

branes and microvascular thrombosis.

Infection, inflammation and coagulopathy

SARS-CoV-2 binds to angiotensin-converting enzyme-2

(ACE-2) to gain cellular entry. ACE-2 is widely expressed

Fig. 1 a Lung injury in coronavirus disease 2019 (COVID-19). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-
converting enzyme 2 (ACE-2) primarily on type II alveolar cells. After endocytosis of the viral complex, surface ACE-2 is downregulated, resulting
in unopposed angiotensin II accumulation. SARS-CoV-2 further causes lung injury through activation of residential macrophages, lymphocyte
apoptosis and neutrophils. The macrophages produce cytokines and chemokines, resulting in a cytokine storm. Inflammatory exudate rich in
plasma-borne coagulation factors enters the alveolar space, followed by expression of tissue factor by alveolar epithelial cells and macrophages
and the formation of fibrin and the hyaline membrane. Neutrophils in the alveoli cause formation of NETs, composed of extracellular DNA,
cytotoxic histones and neutrophil elastase, which cause further lung injury. COVID-19 also induces microvascular endothelial damage leading to
increased permeability, expression of tissue factor with coagulation activation and thrombus formation. b Proposed effects of inhaled nebulised
unfractionated heparin (UFH) in COVID-19 lung injury. UFH prevents SARS-CoV-2 from binding to ACE-2 and from entering the alveolar cells. UFH
reduces formation of the hyaline membrane and microvascular thrombosis, counteracts the hyperinflammation and the formation of NETs,
increases NO release with vasodilation and also has mucolytic properties. NETs, neutrophil extracellular traps; SARS-CoV-2, severe acute respiratory
syndrome coronavirus 2; ACE-2, angiotensin-converting enzyme 2; COVID-19, coronavirus disease 2019. Permission was granted by © Beth Croce,
Bioperspective.com to reuse this figure
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in the lungs, predominantly on alveolar type II epithelial

cells, but also on bronchial epithelial cells and on arterial

and venous endothelial cells [17, 18]. ACE-2 hijacking pre-

vents angiotensin II degradation. Angiotensin II signals

through the type 1 angiotensin receptor, causing vasocon-

striction and lung injury, including endothelial injury lead-

ing to tissue factor expression and coagulation cascade

activation [19]. Widespread endothelial inflammation and

apoptosis leading to endothelial dysfunction in multiple

organs are associated with direct viral infection of endo-

thelial cells in COVID-19, as well as immune-mediated re-

sponses to infection of pulmonary alveolar cells, and a

pro-coagulant state [20].

Patients with SARS-CoV-2 who manifest severe dis-

ease, including ARDS, multi-organ failure, and death,

have higher plasma and BALF levels of inflammatory cy-

tokines (‘cytokine storm’); higher plasma markers of co-

agulation, such as D-dimers; and increased prothrombin

time and a lower platelet count [2, 8–11, 21–23]. An ag-

gressive dysfunctional inflammatory response following

pyroptosis of virus-infected cells is strongly implicated

in damage to the lungs [16]. For example, plasma con-

centrations of a range of pro-inflammatory cytokines

were higher in both ICU patients and non-ICU patients

infected with SARS-CoV-2 than in healthy adults, and

some of these agents were also higher in ICU patients

than non-ICU patients [9]. Furthermore, elevated plasma

IL-6 was reported to be a predictor of fatality, suggesting

that mortality might be driven by virally induced hyper-

inflammation [21, 22]. The expression of a large number

of cytokines is also elevated in BALF samples from

COVID-19 patients compared to control [23]. Finally,

intravascular DNA neutrophil extracellular traps (NETs)

have been reported in COVID-19 patients, where they

may contribute to cytokine release, coagulopathy and re-

spiratory failure [24, 25].

Hyaline membrane formation

COVID-19 is associated with the development of ARDS

displaying the typical features of diffuse alveolar damage

[26–30]. The hallmark histological feature of ARDS is a

fibrin mesh in the air sacs, known as a hyaline mem-

brane, on which leucocytes attach and manifest the in-

flammatory responses that result in diffuse alveolar

damage. Hyaline membrane formation is a consistent

and early manifestation of the inflammatory response in

ARDS [27, 30–33]. Hyaline membrane formation results

from entry into the alveolar space of inflammatory exud-

ate that is rich in plasma-borne coagulation factors. The

subsequent expression of tissue factor by alveolar epithe-

lial cells and macrophages triggers the conversion of

these coagulation factors to fibrin and the formation of

the hyaline membrane [34]. In pro-inflammatory condi-

tions, alveolar epithelial cells and macrophages also

express plasminogen activator inhibitor-1, which pre-

vents the removal of this membrane through endogen-

ous fibrinolysis [32, 35]. Pulmonary coagulation is

evident in increased markers of thrombin generation,

soluble tissue factor and factor VIIa activity found in

bronchoalveolar lavage fluid (BALF) from ARDS pa-

tients, together with an increased release of plasmino-

gen activator inhibitor-1 [36].

Hyaline membrane formation may contribute to lung

injury through a number of mechanisms. The hyaline

membrane forms a physical barrier thereby limiting the

diffusion of gases. Alveolar compliance and the action of

surfactant are also limited by fibrin formation in the al-

veoli contributing to atelectasis, and finally, the laying

down of a fibrin matrix may promote subsequent lung

fibrosis [32, 37].

Microvascular thrombosis

Fibrin accumulation in pulmonary capillaries and ve-

nules, which leads to microvascular thrombosis, is an

early feature of ARDS and the extent of this fibrin accu-

mulation correlates with the severity of lung injury [38–

41]. In response to inflammatory cytokines, the pulmon-

ary capillary beds, venules and arterioles express tissue

factor on endothelial cells and this triggers the conver-

sion of plasma coagulation factors to fibrin [42]. Cyto-

kine activation of NETosis and the presence of

intravascular NETs are further associated with the initi-

ation of thrombosis in arteries and veins, and NETs cir-

culating at high levels in COVID-19 can trigger micro-

embolic occlusion of small blood vessels in the lungs,

heart and kidneys [24, 25].

Extensive microvascular thrombosis has been demon-

strated in histological studies of ARDS [39, 40]. Angio-

graphic studies showed the extent of microvascular

obstruction correlated with the severity of respiratory

failure and with mortality [38, 39]. Microvascular throm-

bosis increases lung dead space and the increase in dead

space or its bedside surrogate ventilatory ratio was

shown to be an independent marker of mortality in

ARDS [43, 44]. Microvascular thrombosis also causes in-

creased pulmonary vascular resistance, which may result

in right heart failure [45].

There is a strong association between the extent of the

coagulopathy and poor clinical outcomes. In a case series of

183 COVID-19 patients, those who died had markedly ele-

vated D-dimers, elevated fibrin degradation products, lon-

ger prothrombin time and activated partial thromboplastin

time compared to survivors on admission, often meeting

criteria for disseminated intravascular coagulation [46].

Similar coagulation abnormalities were described in other

case series and elevated D-dimer levels were associated with

clinical outcomes [2, 47, 48]. In a Dutch case series of 184

COVID-19 positive patients, all of which received
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pharmacological thromboprophylaxis, the cumulative inci-

dence of a composite outcome comprised of symptomatic

pulmonary embolism (PE), deep-vein thrombosis, ischemic

stroke, myocardial infarction, or systemic arterial embolism

was 49%. The majority of thromboembolic events were PE

(87%) [49]. Another recent case series showed that

COVID-19 ARDS patients developed significantly more

thrombotic complications than non-COVID-19 ARDS pa-

tients, mainly PE [12].

Mucus exudates and DNA NETs

Excessive sputum production is a feature of approxi-

mately 30% of COVID-19 patients and the bronchi be-

come filled with desquamated epithelial cells, mucus and

thick mucus plugs [9, 50, 51]. Diapedesis of neutrophils

into the alveolar space is proposed to be a source of ex-

cess NETs, composed of extracellular DNA and bound

basic proteins including cytotoxic histones and neutro-

phil elastase, which are involved in both the generation

of NETs and damage to pulmonary tissue [25]. Such

NETs may further impair gas exchange and facilitate

secondary infections. Intra-alveolar NETS are a feature

of pneumonia-associated ARDS [52] and are likely to be

present in the airways of COVID-19 patients with

ARDS.

Biological rationale: effects of nebulised UFH
The effects of nebulised UFH in COVID-19 are sum-

marised in Fig. 1b. Nebulised UFH has anti-viral, anti-

coagulant, anti-inflammatory and mucolytic effects.

Anti-viral effects

Heparin is a member of a family of glycosaminoglycan

molecules that include heparan sulphate, chondroitin

sulphate, keratan sulphate and hyaluronic acid. These

molecules are expressed throughout the body, with di-

verse biological roles, and are usually associated with re-

spiratory and endothelial cell surfaces, basement

membrane and extracellular matrices [53]. In humans,

heparin is produced solely by mast cells and is stored in

granules, where it makes up 30% of the dry weight of

mast cell granules [54]. There is evidence that heparin

plays a role in host defence. Firstly, mast cells are mostly

located along blood vessels and are particularly associ-

ated with capillaries and post-capillary venules [55]. Sec-

ondly, organs exposed to the external environment, such

as the lungs and gut contain a large proportion of the

body’s mast cells [56]. Thirdly, heparin is conserved

across a variety of different species, some of which do

not have a blood coagulation system like ours (e.g. mol-

luscs), suggesting heparin has significant biological roles

unrelated to coagulation [57].

A large number of bacterial and viral pathogens de-

pend upon interactions with proteoglycan molecules

such as heparan sulphate, which is expressed on a range

of human tissue surfaces, for adhesion and invasion of

host tissues [53]. Several studies found heparin competes

with heparan sulphate for bacterial and viral adhesion

and may therefore limit pathogen invasion [58, 59]. For

example, heparin limits adhesion of Pseudomonas aeru-

ginosa, Burkholderia cenocepacia, Burkholderia pseudo-

mallei, Legionella pneumophila, Staphylococcus aureus,

Streptococcus pyogenes, Streptococcus pneumoniae, re-

spiratory syncytial virus and influenza A [60–64]. Hu-

man and animal studies suggest these actions may

reduce the development of pneumonia and bacteraemia

[58, 65].

Previous studies demonstrated that UFH prevented

SARS-associated coronavirus and other enveloped vi-

ruses such as human immunodeficiency virus and herpes

simplex virus, from attaching to and invading mamma-

lian cells [66–72]. A recent study demonstrated that the

SARS-CoV-2 Spike S1 protein receptor-binding domain

attaches to UFH and undergoes conformational change

that may prevent it from binding ACE-2 as a result [73].

Importantly, the binding of heparin to the receptor-

binding domain of the SARS-CoV-2 Spike S1 protein is

orders of magnitude stronger for full-chain length hep-

arin than low-+molecular weight heparins (LMWHs)

[74]. This anti-viral effect of heparin has recently been

confirmed in initial studies performed by Public Health

England where an UFH preparation produced a

concentration-dependent inhibition of SARS-CoV-2 in-

fection of Vero E6 cells that was more active than

LMWH, further suggesting that UFH may prevent inva-

sion of pulmonary epithelium and vascular endothelium

(M Carroll and J Tree, personal communication from

Public Health England). The high concentration of

SARS-Cov2 in the upper airways of COVID-19 patients

and the above anti-viral properties of heparin makes the

nebulised route of administration a unique and possibly

effective treatment for COVID-19.

Anti-inflammatory effects

Heparin also has other pharmacological actions of po-

tential benefit including inhibition of inflammatory cyto-

kines implicated in COVID-19 and the inhibition of

inflammatory cell recruitment into tissues via blocking

many of the key adhesion molecules expressed on vascu-

lar endothelium, improvement in lung function and in-

creased nitric oxide release [60, 75–78]. Heparin has

been shown to reduce the expression of pro-

inflammatory mediators in human alveolar macrophages

injured by lipopolysaccharide and to decrease the NF-kB

pathway in alveolar cells [79]. Furthermore, nebulised

heparin decreases pro-inflammatory cytokines in lung

tissue and the expression of NF-kB and TGF-β effectors

in alveolar macrophages [79, 80]. Heparin, through
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multiple actions including inhibition of adhesion mole-

cules and heparanase activity, has also been shown to re-

duce the infiltration of inflammatory cells into a range

of tissues, including the lung, activities that are inde-

pendent of its anti-coagulant properties [78]. Addition-

ally, heparin is known to have important inhibitory

effects on the complement cascade that has also been

implicated in the vascular injury associated with

COVID-19 [78]. In pre-clinical animal models, UFH was

a more effective anti-inflammatory agent than LMWHs,

which may be an important additional pharmacological

property of this drug in the context of the hyperinflam-

matory state associated with COVID-19 [78, 81].

Overall, the multiple pharmacological properties of

UFH may be important in the context of treating the

hyperinflammatory state associated with COVID-19,

particularly in the absence of clear evidence of the effi-

cacy of other anti-inflammatory therapies [82].

Anti-coagulant effects

Heparin’s anti-coagulant properties have been used in

clinical practice to limit systemic fibrin deposition since

1935 [83]. Heparin inhibits coagulation activation

through a range of mechanisms, including catalysing the

action of antithrombin, promoting tissue factor pathway

inhibitor expression, reducing tissue factor expression

and increasing endothelial expression of heparan

sulphate, and through release of tissue plasminogen acti-

vator by the endothelium.

Nebulised UFH targets pulmonary fibrin deposition

and inflammation, and local administration to the lungs

allows higher dosages and increases local efficacy, re-

duces the risk of systemic bleeding and is more effective

than intravenous administration [84, 85]. Importantly,

previous studies have shown that following nebulisation,

UFH does not enter the systemic circulation significantly

which means it can be used in addition to systemic

therapeutic or prophylactic anti-coagulation without

concerns of furthering systemic anti-coagulation. The

use of nebulised UFH in other respiratory settings was

not associated with local side effects in the lung includ-

ing bleeding [85–89].

Mucolytic effects

Mucus obstruction of the airways is compounded by the

presence of DNA NETs in inflammatory lung diseases

such as cystic fibrosis (CF), asthma, COPD and ARDS

[90]. DNA contributes to sputum elasticity and reduced

cough clearance, and in CF sputum, heparin disaggre-

gated DNA/actin bundles and activated endogenous

DNase to reduce sputum elasticity [91]. When DNA

NETS are broken down, the potential for the release of

cytotoxic histones, neutrophil elastase and IL-8

encrypted by the DNA is mitigated by the ability of

heparin to neutralise these basic proteins [90]. Inde-

pendently of the presence of DNA NETs, electrostatic

mucin interactions and viscosity are increased by a low

pH in airway surface liquid, as seen in cystic fibrosis

(CF), asthma, COPD and ARDS and these effects are

also reversed by heparin [92, 93]. The mucolytic proper-

ties of heparin have been utilised in the treatment of CF

patients with no safety issues and in particular inhaled

nebulised UFH has been used safely in patients who are

also receiving system anti-coagulation [94].

Pre-clinical and clinical evidence in lung injury
Animal studies of nebulised UFH in different acute lung

injury models have consistently shown a positive effect

on pulmonary coagulation, inflammation and oxygen-

ation (Table 1). Small human studies indicate that nebu-

lised heparin limits pulmonary fibrin deposition,

attenuates progression of acute lung injury and hastens

recovery (Table 2) [95, 96]. In smoke inhalation-related

lung injury, pre-clinical and clinical studies have sug-

gested that administration of inhaled anti-coagulants im-

proves oxygenation, reduces lung injury severity and

improves survival without altering systemic markers of

clotting and anti-coagulation [97].

Early-phase trials in patients with acute lung injury

and related conditions found that nebulised heparin re-

duced pulmonary dead space, coagulation activation,

microvascular thrombosis and deterioration in the Mur-

ray Lung Injury Score and increased time free of ventila-

tory support (Table 2) [98–102]. A multi-centre

randomised double-blind placebo-controlled trial of neb-

ulised heparin in 256 patients with or at risk of develop-

ing ARDS, investigated whether UFH accelerated

recovery and has been completed (B Dixon personal

communication, submitted for publication).

Clinical evidence in SARS-CoV-2
Published data suggest that patients with SARS-CoV-2

treated with systemic UFH or LMWH had better clinical

outcomes. For example, a non-randomised study found

patients with sepsis-induced coagulopathy and D-dimer

levels that were greater than 6-fold the upper limit of

normal, were more likely to survive if administered hep-

arin or LMWH [11]. In another observational study in

2773 patients hospitalised with COVID-19, mechanically

ventilated patients who received systemic anti-

coagulation during their hospital course had a lower

hospital mortality (adjusted HR of 0.86 per day, 95%

confidence interval 0.82–0.89, p < 0.001) [103]. This dif-

ference was not seen in all COVID-19 patients, suggest-

ing that the beneficial effects may be more pronounced

in patients with severe disease.

There are currently no published studies of nebulised

heparin in COVID-19 patients, but there are several in
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preparation or being conducted (Table 2). In the UK, a

study of nebulised UFH has been started under the na-

tional ACCORD programme (ACCORD 2: A Multicen-

tre, Seamless, Phase 2 Adaptive Randomisation Platform

Study to Assess the Efficacy and Safety of Multiple Can-

didate Agents for the Treatment of COVID 19 in Hospi-

talised Patients, EudraCT number 2020-001736-95).

This study is investigating the effects of nebulised UFH

administered 4 times daily in hospitalised patients test-

ing positive for SARS-CoV-2, but before patients require

ICU admission, on top of standard of care (Singh et al.,

personal communication). A multinational multi-centre

randomised open-label clinical trial to determine if treat-

ment with standard care and nebulised UFH, compared

to standard care alone, reduces the duration of invasive

mechanical ventilation in ICU patients with SARS-CoV-

2 study is currently in preparation (Dixon and van

Haren personal communication, ACTR

N12620000517976).

There is an urgent need for more large-scale clinical

trials to test whether nebulised UFH improves mortality

in COVID-19 patients. Ideally, these studies should be

Table 1 Pre-clinical studies of nebulised heparin treatment for acute lung injury

Dosage (Timing) Species Model (Sacrifice) Nebulizer Outcomes Side
effects

Reference

Animal models of acute lung injury treated with nebulised heparin

1000 IU/kg
(30min before injury and every 6h)

Rat it. Streptococcus
pneumoniae (40h)

Aeroneb
Pro
Nebulizer

↓ Pulmonary
coagulation

NR Hofstra et al,
2009 [104]

1000 IU/kg
(30min before, 6h and 12h after injury)

Rat iv. LPS (7.5 mg/kg)
(16h)

Aeroneb
Pro
Nebulizer

↓ Coagulation NR Hofstra et al,
2010 [105]

1000 IU/kg
(30min before injury and every 6h)

Rat it. Pseudomonas
aeruginosa (16h)

Aeroneb
Pro
Nebulizer

= NR Cornet et al,
2011 [106]

Dose NR
(5 min after injury)

Mouse inh. Chlorine (400
ppm for 30min) (6h)

AirLife
Brand
Misty Max
10

↓ Decreased
inflammation

No
side
effects

Zarogiannis
et al, 2014
[107]

1000 IU/kg
(4h and 8h after injury
or 30min before, 4h and 8h after injury)

Rat it. LPS (10μg/g)
(24h)

Aeroneb
Pro
Nebulizer

↓ Pulmonary
coagulation and
inflammation

NR Chimenti et
al, 2017 [80]

Animal models of acute lung injury treated with nebulised heparin and combined with another treatment

10000 IU (1h after injury, every 4h) Sheep Smoke inh. and it.
Pseudomonas
aeruginosa (24h)

AirLife
Brand
Misty Max
10

↓ Lung injury and
airways obstruction
↑ PaO2

No
side
effects

Murakami et
al, 2002 [108]

10000 IU (30min after injury, every 4h for 24h) or
combined with intravenous 10 mg/kg/h lisofylline

Sheep Smoke inh. (48h) AirLife
Brand
Misty Max
10

↓ Need for MV
↑ PaO2

No
side
effects

Tasaki et al,
2002 [109]

10000 IU (2h after injury, every 4h) or combined with
nebulized 290 IU recombinant antithrombin

Sheep Cutaneous burn
and smoke inh.
(48h)

AirLife
Brand
Misty Max
10

Combination:
↓ Pulmonary
inflammation and
airways obstruction
↑ PaO2

No
side
effects

Enkhbataar et
al, 2007 [110]

10000 IU (1h after injury, every 4h) combined with
intravenous 0.34 mg/kg/h recombinant antithrombin

Sheep Cutaneous burn
and smoke inh.
(48h)

AirLife
Brand
Misty Max
10

↓ Inflammation,
oedema, airways
obstruction
↑ PaO2

No
side
effects

Enkhbataar et
al, 2008 [111]

10000 IU (2h after injury, every 4h) combined with
intravenous 6 IU/kg/h recombinant antithrombin (from
1h after injury until the end of the study) and nebulized
2 mg tissue plasminogen inhibitor (4h after injury, every
4h)

Sheep Cutaneous burn
and smoke inh.
(48h)

AirLife
Brand
Misty Max
10

↓ Lung injury,
oedema and airways
obstruction
↑ PaO2

No
side
effects

Rehberg et al,
2014 [112]

1000 IU/kg (4h, 12h and 28h after injury) combined
with nebulized 500 IU/kg antithrombin (4h and 28h
after injury)

Rat it. HCl and LPS (30
μg/g) (72h)

Aeroneb
Pro
Nebulizer

↓ Pulmonary
coagulation and
inflammation

No
side
effects

Camprubí-
Rimblas et al,
2020 [113]

↓: reduced, ↑: increased, =: equal, inh inhalation, it. intratracheal, iv. intravenous, LPS lipopolysaccharide, MV mechanical ventilation, NR not reported
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Table 2 Clinical studies of nebulised heparin treatment for acute lung injury

Dosage (Timing) Patients n Nebulizer Outcomes Reference

Clinical studies of acute respiratory distress syndrome with nebulised heparin

50000-400000 IU/day (two
days)

MV ARDS
Open-label phase 1 trial

16 Aeroneb
Pro
Nebulizer

↓systemic
coagulation
(↓ pulmonary
coagulation,
400000 IU)

Dixon et al,
2008 [114]

25000 IU (every 4h or 6h, max
14 days)

> 48h MV
RCT

50 Aeroneb
Pro
Nebulizer

↓systemic
coagulation
↑ Free days MV

Dixon et al,
2010 [100]

5000 IU (four times a day
until cease MV or discharge
from the UCI)

> 48h MV
Phase 2 RCT

214 Aeroneb
Pro
Nebulizer

= Bandeshe
et al, 2016
[115]

50000 IU (one day) Elective cardiac surgery
RCT

40 Aeroneb
Pro
Nebulizer

↓ alveolar dead
space fraction and
tidal volumes

Dixon et al,
2016 [101]

25000 IU (every 6h, 10 days) MV ARDS
RCT

256 Aeroneb
Pro
Nebulizer

↓Lung injury
↑ 60 day survivors
at home

Dixon et al,
2020
(submitted
for
publication)

Clinical studies of acute respiratory distress syndrome with nebulised heparin and combined with another treatment

5000 IU combined with N-
acetylcysteine and
bronchodilator (every 4h for 7
days)

Burn patients paediatric
Retrospective

90 (children) NR ↓atelectasis,
reintubation and
mortality

Desai et al,
1999 [116]

5000 IU combined N-
acetylcystine and
bronchodilator (every 4h for 7
days)

Burn patients
Retrospective

150 (children/
adults)

NR = Holt et al,
2008 [117]

10000 IU combined N-
acetylcystine and
bronchodilator (every 4h for 7
days)

Burn patients
Retrospective

30 NR ↓ lung injury
↓ mortality
↑ oxygenation

Miller et al,
2009 [118]

5000 IU combined N-
acetylcystine and
bronchodilator (every 4h for 7
days)

Burn patients
Retrospective

63 NR = Yip et al,
2011 [119]

5000 IU combined N-
acetylcystine and
bronchodilator (every 4h for 7
days)

Burn patients
Retrospective

40 NR = Kashefi et
al, 2014
[120]

10000 IU combined N-
acetylcystine and
bronchodilator (every 4h for 7
days)

Burn patients
Retrospective

72 NR ↑ free days MV McIntire et
al, 2017
[121]

25000 IU (every 4h for 14
days)

Burn patients
RCT (terminated, insufficient recruitment of
patients and high costs associated with the
purchase and blinding of study medication)

160 Aeroneb
Pro
Nebulizer

Not available Glas et al,
2014 [122]

Clinical studies of COVID-19 with nebulised heparin

25000 IU (every 6h for 10
days)

SARS CoV 2 infection, on MV RCT
ACTRN:
12620000517976

Aeroneb
Pro
Nebulizer

On-going Dixon et al,
2020 [123]

25000 IU (every 6h up to 21
days)

SARS CoV 2 infection, pre-ICU RCT
EudraCT: 2020-
001736-95

Aeroneb
Pro
Nebulizer

On-going ACCORD-2
(NHS UK)

↓: reduced, ↑: increased, =: equal, MV mechanical ventilation, RCT randomized controlled trial, NR not reported
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linked together by a global network with the objective of

standardising key outcomes, so a prospective individual

patient meta-analysis (so called ‘meta-trial’) can be per-

formed, to provide a rapid more generalisable answer to

the question.

Conclusion
Severe COVID-19 is characterised by diffuse alveolar

damage, hyperinflammation, coagulopathy, DNA neutro-

phil extracellular traps (NETS) and microvascular

thrombosis. There is a strong scientific and biological

basis to test the use of nebulised UFH as a therapy for

COVID-19 pneumonia and ARDS. UFH prevents SARS-

CoV-2 from binding to ACE-2 and infecting cells and

has relevant anti-coagulant, anti-inflammatory and mu-

colytic effects. Because of these multiple modes of ac-

tion, inhaled UFH may offer clinical benefit across the

time course of the disease. As an anti-viral, delivered via

inhalation to the upper airways, the major point of entry

of the virus, UHF may prevent infection and be a

prophylactic treatment. If administered via nebulisation

at the development of symptoms, its multiple properties

may attenuate disease progression. As the disease pro-

gresses, UFH’s anti-inflammatory and anti-coagulant

properties may be used to treat COVID-19-associated

ARDS. In the pneumonic phase of COVID-19, which is

typified by excess production of mucus, nebulised UFH’s

known mucolytic effect can be used to aid recovery.

UFH is an inexpensive drug and widely available and

its use as a potentially effective treatment for COVID-19

may have important humanitarian and economic impli-

cations especially for low- and middle-income countries.

The potential therapeutic properties underline the

need for expedited large-scale clinical trials of nebulised

UFH to test its potential to reduce mortality in COVID-

19 patients.
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