Necessary and Sufficient Conditions for 1-adaptivity

Joffroy Beauquier !, Sylvie Delaét 2, Sammy Haddad *

'Université Paris-Sud

PCRI, LRI (CNRS UMR 8623),

INRIA Futurs
Orsay, France
jb@Iri.fr

2Université Paris-Sud
LRI (CNRS UMR 8623)
Orsay, France
delaet@]Iri.fr

3Université Paris-Sud
LRI (CNRS UMR 8623)
Orsay, France
haddad @Iri.fr

Abstract

A I-adaptive self-stabilizing system is a self-stabilizing
system that can correct any memory corruption of a single
process in one computation step. 1-adaptivity means that
if in a legitimate state the memory of a single process is
corrupted, then the next system transition will lead to a le-
gitimate state and the system will recover a correct behav-
ior. Thus I-adaptive self-stabilizing algorithms guarantee
the very strong property that a single fault is corrected im-
mediately and consequently that it cannot be propagated.
Our aim here is to study necessary and sufficient conditions
to obtain that property in order to design such algorithms.
In particular we show that this property can be obtained
even under the distributed demon and that it can also be
applied to probabilistic algorithms.

We provide two self-stabilizing 1-adaptive algorithms
that demonstrate how the conditions we present here can
be used to design and prove 1-adaptive algorithms.

1. Introduction

Self-stabilization was introduced by E. W. Dijkstra in
[7]. In this article he presents the three first self-stabilizing
algorithms for the problem of mutual exclusion on a ring.
Since, this notion has been proven to be one of the most im-
portant in the field of fault tolerance in distributed systems.

Indeed self-stabilization guarantees that regardless of its
initial state the system will eventually reach a legitimate

1-4244-0054-6/06/$20.00 ©2006 IEEE

state (a state from which the execution satisfies the desired
specification) in a finite bounded time. In particular, this
implies that no matter how bad the memory corruption that
hit the system are, the system will always regain a correct
behavior by itself, without any external intervention. The
only assumption made in self-stabilization is that the code
of the processors cannot be corrupted. That is why self-
stabilization is so useful for systems where some memory
spaces are safe (code executed from ROM memory) and
where the frequency of faults that hit the non safe memory
zone (RAM memory) occur regularly and with a frequency
not greater than a reasonable time of stabilization.

Self-stabilization is the best known solution, in terms of
fault tolerance, for large distributed systems, where failures
are a normal part of the behavior and where non systematic
corrections are not possible. But one drawback to the ap-
plication of self-stabilizing algorithms is that most of these
algorithms still have a stabilization time proportional to the
dimension of the system and not related to the actual num-
ber of failures.

Thus a small number of faults can force a majority of
processors in the system to participate in the stabilization
phase. In particular, non-faulty processors can start to
behave incorrectly, and this for quite a long time even
if, originally, their state was not corrupted. One known
solution to this problem is time adaptive stabilization.
Time adaptive stabilization guarantees a stabilization time
directly proportional to the number of memory corruption
that hit the system. For example, if only one processor
is corrupted, then the system will stabilize in a constant
time, whatever the network size is. But, as it appears in the

literature, this attractive notion is not obvious to obtain.

Related works. The first time adaptive algorithms,
as well as the notion of fault locality, where both presented
in [18] and [15]. They were introduced in the context of
non reactive problems. These articles present algorithms
for the task of the persistent bit. They both stabilize in a
time proportional to the number of corrupted nodes in the
initial state of the system if that number does not exceed
a predefined value. A first asynchronous fault containing
algorithm was introduced in [16]. This algorithm, based on
the same principle as the those presented in [18] and [15],
also solves the problem of the persistent bit.

General methods for transforming silent self-stabilizing
algorithms into time adaptive algorithms started to be stud-
ied in [11], [15] and [13]. In [11], the authors present
a transformation which has a stabilization time in 6(1) if
k = 1andin 6(ST.diam) for k > 2, where k is the number
of faults, ST the stabilization time of the non transformed
algorithm and diam is the diameter of the network. In [15],
the idea is to replicate data and to use a voting strategy to
repair data corrupted by transient faults. This transforma-
tion has an output stabilization time in 6(k) for a number
of corrupted nodes lower or equal to n/2 (where n is the
number of nodes in the system). Otherwise it stabilizes in
O(diam). [13] extends the idea of [15] to any number of
corrupted nodes.

In [6] appears the first time adaptive solution to a reactive
problem. This article presents a k-adaptive algorithm for the
problem of mutual exclusion. A k-adaptive algorithm is an
algorithm that stabilizes in a time proportional to the num-
ber of faults that hit the system if that number is smaller than
a fixed k. Otherwise the system may not converge to a le-
gitimate state. Two algorithms for the problem of broadcast
are presented in [17] and [4]. The algorithm of [17] is used
to prove that any non silent algorithm in synchronous sys-
tems has an adaptive solution. In [4] the measure of agility
which quantifies the strength of a reactive algorithm against
state corrupting faults is also defined and the broadcast algo-
rithm is proven to guarantee error confinement with optimal
agility within a constant factor.

Other approaches of fault containment can be found in
[2], [9], [14], [1] and [19]. In [2] and [14] the notion of
SuperStabilization is presented. A superstabilizing algo-
rithm is a self-stabilizing algorithm that satisfies a passage
predicate during recovery and thus restrains the effect of
the fault. In [2] algorithms for coloring and spanning tree
are given, and in [14] algorithms for the problem of mutual
exclusion. In [2] a local stabilizer transforming any algo-
rithm into a self-stabilizing algorithm that stabilizes in (k)
is presented. This transformation was the first to introduce
the use of snapshots in order to locally detect and correct in-
consistencies due to transient failures. The correction was

performed by a system of votes based on the snapshots. In
[1], the power supply technique is presented. It consists
of regularly broadcasting and consuming informations. The
corrupted information is then consumed whereas the correct
information keeps circulating since its power is supplied by
correct processors. The first algorithms for the problems
of graph coloring and the dining philosophers resistant to
Byzantine faults are presented in [19]. This algorithms are
locally tolerant to faults. That is, any processor far enough
from the faulty processors will behave correctly.

An interesting impossibility results can be found in [10].
In this article it is proven that a large class of reactive prob-
lems do not have an adaptive solution in asynchronous net-
works.

The first article to introduce the problem of correcting a
single failure in one computation step is [12]. The authors
present a transformer of self-stabilizing algorithm into
probabilistic 1-adaptive algorithm. To do that they enlarge
the processors states space with states that can only be
reached after a failure. Thus if a processor is corrupted and
reached one of those state. The system can easily detect the
error and correct it in just one computation step.

Our contribution. We start by formalizing our model and
the definition of 1-adaptive self-stabilizing algorithm.

Then we study the necessary and sufficient conditions
for a self-stabilizing algorithm to be 1-adaptive. We start
by studying these conditions for strictly 1-local algorithms
that works on networks without triangles. Those algorithms
are such that in case of a single fault in the system then at
least two processors have a view of the system that does not
correspond to a legitimate configuration. A network without
triangles is a network that does not contain two processors
with a common neighbor.

In the same section we also study what these conditions
become if we change the hypothesis to : the algorithm is
silent and it has its legitimate configurations 3-distant one
from the other. For this conditions there are no more as-
sumption made on the system topology neither on the local-
ity of the algorithm.

We finish by presenting two 1-adaptive self-stabilizing
algorithms. The first one is an election algorithm that works
under the weakly fair demon. Such a demon guarantees that
if a processor is continuously enabled then it will eventu-
ally be activated. This algorithm works on hypercubes and
illustrates how the first conditions we have stated can be in-
terpreted to get 1-adaptive algorithms. In the same way we
present a 1-adaptive self-stabilizing probabilistic algorithm
for the naming problem that works on complete graphs.

Finally we discuss how those principle can be general-
ized to get a transformer that makes some self-stabilizing
algorithms 1-adaptive.

2. Model

Our model of distributed systems refers to [3] and the
definitions of transition systems to [20]. A distributed
system is a set of processors connected by communica-
tion links. It is represented by a communication graph
G = (P, €) such that P is a set of processors and £ a set
of edges, I = (p;,p;), where (p;,p;) € P? and p; # pj.
Two processors p; and p; of G are said to be neighbors and
can communicate in G if and only if (p;,p;) € €. They
communicate via shared registers. We note V), the set of
p’s neighbors in G. We say that a communication graph G
has no triangle if for any pair , (p;,p;), of processors in
G.p; # pj there is no processor py, pr, 7# p; and p, # p;
such that (p;, pr) € € and (pj,pr) € €. A path of length
k in G is a set of processors noted ch = {p;...,pi} such
that Vi € {1...k — 1}, (p;, pi+1) € €. In a communication
graph the distance between two processors p; and p;, noted
dist(p;,pj). is the length of the shortest path from p; to p;
in P.

A processor p is a state machine. Its state, noted e,
is the vector of all the values of its variables. A processor
has a set of guarded rules, noted r = {labely ..., label,, },
of the form < label >::< guard >—< action > where
label is the identifier of the rule, guard is a boolean ex-
pression over p’s and p’s neighbors’ variables and action
updates the values of p’s variables. A configuration C' € C
is a vector C' = (ep, ..., €,) of the processors’ states of .S.
We note C|p the restriction of the configuration C' for to a
set of processors P = {p;...,p;}, P € P and Dist(C,C"),
the distance between two configurations C' and C’such that
Dist(C,C") is equal to the number of processors which
have a different state in C and C’. We say that a guarded
rule is executable in a configuration C' if and only if p eval-
uates the guard of this rule to true in C'. We also say that a
processor is enabled in a configuration C if and only if it
has at least one of its guarded rule executable in C'.

A distributed system can be modeled as a transition sys-
tem. A transition system is a pair S = (C, 7), where C is
the set of all the possible configurations of the system, 7 is
the set of all the possible transitions of S. A transition of
T is atriple (C,t,C"), such that (C, C") € C? and t is a set
of guarded rules. The activation of the guarded rules in ¢,
where ¢ is a subset of the executable rules in C, brings the
system in the configuration C’. We also note C' ==, ¢
a transition where p;, ..., p; are the processors that execute
an action in C'. An execution FE,, of a system S is a maxi-
mum sequence of computation steps, e = (Cy, Ci..., C;...),
where Cy = « and such that for every ¢ > 0, there is a ¢
such that (C;,t,C;1) € T, otherwise C; is terminal (no
processor is enabled in ;). The set of the possible exe-
cutions of the system is restricted by the demon. The dis-
tributed demon (Cf [8]) chooses, for each transition, any

subset of the enabled processors in C' to apply at least one
of their executable rules. The weakly fair distributed de-
mon, is a distributed demon that guarantee that if a process
is continuously enable in a execution then it will eventually
be activated. With the synchronous demon, in a transi-
tion 7' € 7, all the enabled processors apply one of their
executable rules. In this article we use the definitions of
Ball and View presented in [5]. Let G be a communication
graph, d an integer and p a processor of GG, Ball(p, d) is the
set B of nodes b of P such that dist(p,b) < d. The view
VS(C) at distance d of the processor p in a configuration
C contains the state of the processors of Ball(p,d) in C,
V;f(C) = C\Bali(p,d)- We also use the term of Ball in a con-
figuration C' instead of view V; (C), also noted C|pun(p)-

The specification of a problem is a predicate over the
system executions. The specification of a static problem
is a predicate over the system configurations. We call out-
put variables of a system the set of variables which have
to verify the specification. Let S = (C,7T) be a transition
system and Spe be a specification of a problem. Then S
is self-stabilizing for Spe if and only if there is a subset
L of configurations of C, called legitimate configurations
of S such that: (i) Every execution that starts in a config-
uration of L satisfies Spe; (ii) Every execution reaches a
configuration of L. A silent self-stabilizing algorithm A is
a self-stabilizing algorithm such that all the legitimate con-
figurations are terminal.

A self-stabilizing algorithm A is 1-adaptive if and only
if for any pair of configurations (C, C”) such that C' € L,
C'" ¢ L and Dist(C,C") = 1, we have, for every C” such
that there exists 7' = (C’,t,C") € T,C" € L.

A correct view V! (C) for a self-stabilizing algorithm
A, in a transition system S, is a view such that there ex-
ists a legitimate configuration [€ L of .S in which there
is a processor p; such that Vgi(C) = ng(C). Let B be
the Ball(p, 1), we say that B is enabled in a configuration
C'if and only if p is enabled in C. We will also say that
V1(C) is enabled. A self-stabilizing algorithm is 1-local if
and only if every configuration C' that only contains correct
views at distance 1 is legitimate.A self-stabilizing algorithm
is strictly 1-local if it is 1-local and if for any configuration
C containing a processor p; whose view at distance 1 is not
correct, then there is a processor p;, neighbor of p;, whose
view is also incorrect.

3. Necessary and Sufficient Conditions for 1-
adaptivity

The definition of 1-adaptivity states that 1-adaptive al-
gorithms guarantee the correction of a single transient fault
hitting a legitimate state in just one transition. Thus it
makes 1-adaptive self-stabilizing algorithms being optimal
in terms of fault containment for the distributed systems fac-

ing local faults. Indeed after the system reaches a legitimate
state, a single fault cannot be propagated because the sys-
tem regains immediately a legitimate state. We study in this
section the feasibility of such algorithms. For that, we start
by establishing some necessary and sufficient conditions for
a self-stabilizing algorithm to be 1-adaptive.

First we assume the distributed demon (contrary to the
large majority of the studies on fault containment which are
made under the synchronous demon). Our goal is to demon-
strate that even under a demon that seems hardly compatible
with the property of 1-adaptivity we still can get some pos-
itive results.

We first consider strictly 1-local self-stabilizing algo-
rithms, assuming the network is without triangle for which
the correction task will be easier. Then we consider self-
stabilizing algorithms whose legitimate configuration are
not too close one from the other.

3.1. Networks without triangle

The networks we consider in this section have no trian-
gles. We can notice that several common topologies have
this property (rings, trees, grid, hypercubes, etc.). This hy-
pothesis is made here for technical reason but it helps to
highlight the impact of the system topology on the property
of fault containment.

Definition 3.1 Let A be a strictly 1-local self-stabilizing
algorithm executed on a communication graph G without
triangle, with an associated transition system S, under the
distributed demon. For all p; € P,YC € L, C' & L such
that C\{pz’,} #* Cll{pz} and C\P\{Pi} = C\/P\{pi}‘ Let:
e Condition I (Locality) No processor p; with a
correct view V;j (C") is enabled in C'.
e Condition 2 (Correction) Any transition of S from
C" implying only processors p; located in
B = Ball(p;, 1) brings the system into a
configuration C" such that all the views V;j cn
are correct.

Proposition 3.1 (Condition I N\ Condition 2) is a necessary
and sufficient condition for A to be 1-adaptive.

Proof . First, let us prove Conditionl A Condition2 =
1-adaptive.

Let C and C” be two configurations of S such that C' €
L,C"¢ L, Dist(C,C") = 1and C,, # C"pi.

The view at distance 1 in C' and in C’ which are not cen-
tered on a processor of Ball(p;,1) are identical and thus
correct since C' is legitimate. From Conditionl, only the
balls centered on a processor of Ball(p;, 1) with an incor-
rect associated view in C” are possibly enabled. However as

A is self-stabilizing, then at least one processor is enabled
inC’.

Then Condition2 implies that any step taken by the al-
gorithm makes correct all the view centered in a processor
of Ball(p;, 1) and thus that any transition of the algorithm
starting from C” brings the system in a configuration C”’
where for all p € P,V}(C") is correct. C” is thus le-
gitimate since A is strictly 1-local. We can conclude that
Conditionl A Condition2 = I-adaptive.

Second, we prove that the reciprocal is also true and
that /-adaptive = Conditionl A Condition2. To do
that, we prove the following proposition =Conditionl V
=Condition2 = —1-adaptive.

If Conditionl is false, then there is at least one ball,
B = Ball(p;, 1), with a correct associated view V;j cn
that is enabled in C’. As C’ is illegitimate and the algo-
rithm is strictly 1-local then by definition we know that
there are two processors of the system p; and p;, such that
V;j (C") and V,, (C") are not correct. Since the system has
a topology without triangle then if p; € N (p) (respectively
pr € N(pi)) then pr & N (p;) (respectively p; & N (p:)).
The system can thus activate only B since we are under
the distributed demon. It then gets in a configuration C”’
where at least V (C") or V, (C") is not correct since
from what precedes we have either V, (C") = V, (C")
or V) (C") =V}, (C"). Moreover as A is strictly 1-local,
C" is illegitimate and the algorithm is not 1-adaptive. So
we have that ~Conditionl = —1-adaptive.

Now if Conditionl is true and Condition2 is false,
then there is again a transition of the system which pre-
serves an incorrect view and thus leads the system to an
illegitimate configuration. In this case the algorithm is
not 1-adaptive and we obtain the following implication
Conditionl A =Condition2 = —1-adaptive.

We can now conclude that —Conditionl V
=Condition2 = —1-adaptive.O]

These conditions put forward the fact that the correction
of a single fault must only imply processors in the neighbor-
hood of the faulty processor. It shows that in case of a single
fault, a processor must be able to recognize whether it is in
the neighborhood of a corrupted process. It also highlights
the necessity for the algorithm to be silent if the network
contains no triangle. In particular we can derive from this
conditions the following propositions.

Proposition 3.2 Let A be a I-adaptive self-stabilizing al-
gorithm, strictly 1-local, executed on a network without tri-
angle, under the distributed demon. If in a given legitimate
configuration, there exists two processors p1 and ps such
that dist(p1,p2) > 3 and whose corruption can lead to an
illegitimate configuration, then this configuration is silent.

Proof. Let C € L, p; and ps be two processors,
dist(p1,p2) > 3, such that there exist C' and C? such
that for ¢ G.{LQ}, C? Q L, C|73\{Pi} = Clip\{pi} and
Cipiy # Cr{Pi}' By definition of C", for all p such that
dist(p,p;) > 2, we have V}(C") = V}(C). Since C is
legitimate V; (C*) and V;(C) are correct. Since the algo-
rithm verifies condition 1 of proposition 3.1, V; (C%) is cor-
rect and enabled and thus V; (C) is enabled. Then for every
pand every i € {1,2}such that dist(p,p;) > 2,V1(C) is
enabled.

By the triangular inequality, and by the choice of p; and
po we have, for all p € P, dist(p,p1) + dist(p,p2) >
dist(p1,p2) > 2. As the distances are positive integers
and by virtue of the inequality we obtain that, for all p € P
there exists ¢ € {1,2} such that dist(p,p;) > 2. But for
every p there exist i € {1,2} such that dist(p,p;) > 2.
Then V}(C) is not enabled and we obtain that no rule is
applicable in C. Thus C'is a silent configuration. O

We get the following corollary :

Corollary 1 An algorithm that verifies proposition 3.2 for
all its legitimate configurations is silent.

As the corruption of any single processor usually suffices
to put a distributed system in an illegitimate configuration.
We get from corollary 1 that a self-stabilizing algorithm un-
der the distributed demon has to be silent to be 1-adaptive.

3.2. Restriction on the legitimate configu-
ration density

Corollary 1 connects 1-adaptivity with the fact that no
correct processor can be activated. In particular conditions
3.1 proves that only a processor in the neighborhood of the
corrupted one can take a step. That is why we study in this
section the conditions for a silent self-stabilizing algorithm
to be 1-adaptive.

Moreover our aim here is to study if the same principle
as in [2] can be applied to get 1-adaptivity. What we want
to do is to see how the replication of every processor state
in its neighbors can help for 1-adaptivity.

That is why we assume that the algorithms we consider
here have legitimate configurations at distance at least 3
from each other. In fact if every processor has its state
replicated in its neighbors snapshots then if one processor
changes its state, at least two processors (itself and it(s)
neighbor(s)) have a different state.

Moreover we can note that this assumption is verified
by all algorithms solving problems with only one legiti-
mate configuration, such that the computation of the net-
work size, the topology learning, some leader election, etc.

Definition 3.2 Let A be a silent self-stabilizing algorithm
and L its legitimate configurations, such that for all (1,1') €
L2, Dist(1,1') > 3. Forallp; € P,YC € L, C' € L such
that C‘{m} # Oll{pi} and CIP\{pi} = CIIP\{pi}' Let:
e Condition I (Locality) The only enabled processor
in Ball(p;, 1) is the processor p;.
e Condition 2 (Correction) The activation of
Ball(pi, 1) in C" brings p; back in the state Cy,.

Proposition 3.3 (Condition I N\ Condition 2) is a necessary
and sufficient conditions for A to be 1-adaptive.

Proof. First we prove the implication Condition 1 A
Condition 2 = 1 — adaptive.

In C” all the view V) (C") such that p € P\ {p; } UN (p;)
are correct since V) (C’) = VI(C) and C is legitimate.
Since A is silent any processor with a correct view at dis-
tance 1 is not enabled. We obtain that in C’ only the
processors with an incorrect view are potentially enabled.
Thus only the processors of Ball(p;,1) may be enabled.
According to Condition 1 the only enabled ball in C” is
Ball(p;,1). Moreover according to Condition2 the acti-
vation of this ball puts p; in the same state as in C. So the
only possible transition from C" is the transition C’ 2%
where by assumption C' € £ and thus A is 1-adaptive.

Let us prove now the reciprocal. As for the pre-
ceding conditions, we will prove that =Condition 1 V
—Condition 2 = —1 — adaptive. Let us suppose that
Condition 1 is false. We get that, in C’ all the views
V(C') such that p € P\ {p;} UN(p;) are correct since
VI(C') = V}(C) and C is legitimate. Thus ~C'ondition 1
implies that there exists a processor p; different from p;
such that V;J_ (C”) is not correct and Ball(p;,1) is en-
abled in C’. Since we are under the distributed demon
the system may perform the transition ¢’ 2% C”, where
Dist(C',C") = 1 and Cllpj # C\lzlvj' We thus obtain that
Dist(C,C") = 2. However by assumption C' is legitimate
and all the legitimate configurations are separated by a dis-
tance of at least 3. Thus C” is not legitimate and we have
a transition from C” which brings the system into a legit-
imate configuration. Finally we have ~Condition 1 =
=1 — adaptive.

Let us consider now that Conditionl is true and
Condition 2 is false. Then we know that the only en-
abled ball is Ball(p;,1) and that ¢’ 25 7 with C”
such that C"I’) # C)p, and CI,;?\pl = C"P\pi = Cip\p,-
Thus Dist(C,C"”) = 1, and by assumption C' is legit-
imate. Because the legitimate configurations are at least
at distance 3 from each other, C” is not legitimate and
then Condition 1 N\ Condition 2— = —1 — adaptive.
We conclude that ~Condition 1 V —Condition 2 =
-1 — adaptive and that by consequence 1 — adaptive =
Condition 1 A Condition 2. O

The results of this section point out the fact that, if the
legitimate configurations (of a silent self-stabilizing algo-
rithm) are all at distance at least 3 from each other, then the
only way to be 1-adaptive is to be able to go back to the
previous legitimate configuration.

4. Examples

4.1. Deterministic 1-adaptive election al-
gorithm for hypercubes

The first algorithm is an election algorithm for hyper-
cubes with identifiers, under the weakly fair demon. This
algorithm uses the specificity of hypercubes in two ways.
First a processor knows the diameter of the of the system
by the degree. Then an upper bound for the distance to the
leader is known. This information is used for avoiding an
infinite circulation of fake Ids.

Second, the network has no triangle. Moreover, for any
pair of nodes (p;, p;) there exists at least two processor py
and p; such that p, € Ny, p1 € N, and dist(py,p;) =
dist(p;,pj) = dist(p;,pj) — 1. Then in case of a single
corruption there is locally a majority of processors holding
a correct information.

4.2. Algorithm description

The algorithm consists in maintaining in each node a
variable Leader that contains the smallest Id in the net-
work and a variable DistanceT oT heLeader, that contains
the corresponding distance. The basic idea is that a new
Leader is chosen when a neighbor proposes a smaller iden-
tifier together with a distance inferior to the diameter (ac-
tion A3). When a processor detects an inconsistency (no
neighbors has the same Leader or the distances are incon-
sistent) it becomes its own Leader (action A2). Then a fake
Leader (resulting from the initial corruption) is eliminated.

The property of 1-adaptivity is obtained by adding an
action that is executed if in a configuration a processor can
see that all its neighbors have the same Leader and that
their distance to this Leader are mutually consistent with
each other. Then this processor chooses this Leader and
the smallest associated distance incremented by one (action
Al). The neighbors of the apparently faulty processor are
blocked and cannot execute any action. This is obtained
thanks to the function F'reeze that freezes processors if they
agree with each of their neighbors but one. As a matter of
fact this function freezes every correct neighbor of a faulty
processors in the case of a single fault and does not block the
stabilization of the system otherwise. Note that, for every
fake Leader, the processors with the smallest distance to
that Leader always correct themselves. Because they do

not have any neighbor with the same Leader and a smaller
distance to it. So they evaluate the guard of action A3 to
true and since the demon is weakly fair they will eventually
execute this action. By induction on the distance to the fake
Leader, we prove that every processor with that fake I'd
will become its own Leader.

Moreover if every processor has a Leader that is a real
1d of a processor, then the smallest Id will be propagated
normally. That is proven again by induction on the distance
to the true Leader.

4.3. Probabilistic 1-adaptive naming algo-
rithm

In this section we describe a probabilistic 1-adaptive
self-stabilizing algorithm for the naming problem on a com-
plete network of size N. This algorithm has legitimate
configurations at distance N from each other. It is well
known that naming cannot be achieved in a deterministic
way. Thus the only known solutions are probabilistic. That
is the case for the algorithm we present here, which is also
1-adaptive.

This algorithm works on complete networks. We assume
that each processor has previously numbered its registers
1,2,..N — 1. We note Reg,[i] (or Reg[i] if we are clearly
talking about processor p) the value of the i** register of
the processor p. Then for two processors p and g of the
system, if we have Reg,[i] corresponding to g and Reg,|[j]
corresponding to p then the function GetOrder returns j
for GetOrder(Regy[i]) and i for GetOrder(Reg,[j]). The
numbering of registers cannot be corrupted.

It can be noted that there exists 1-adaptive deterministic
algorithms for other problems (such that the renaming prob-
lem). But we chose here to present a probabilistic algorithm
to illustrate that conditions 3.1 also works for probabilistic
algorithms and how they can be used to design 1-adaptive
algorithms.

4.4. Algorithm description

This algorithm solves the naming problem in anonymous
complete graph. For a complete graph the naming problem
is equivalent to the coloration problem.

Each processor executing this algorithm has four vari-
ables, Name, Names, Snapshot and Reg. The variable
Name represents the name of the processor, the variable
Names is an array used to collect the Name of the neigh-
bors of the processor. The i entry in Names corresponds
to the register numbered ¢. The variable Snapshot is an
array containing a view of the system. Finally Reg is an
array and it contains at the index ¢ the variable values of
the neighbor corresponding to the ‘" register. Reg is com-
pletely updated before the evaluation of the guarded actions.

Algorithm 1 Election Algorithm for hypercubes

Variables :

Id : positive integer, id of the processor p; ;

Leader : integer, id of the current leader for p;;

DTTL : integer, distance to the leader (i.e, length of the shortest from path p; to the leader);

Fonctions :

MinLeader: returns (p;. Leader | p; € N, ,Vpy, € Ny, p.-Leader < p;.Leader);

MinDistance(leader): returns (p;. DTTL | p; € N,,,pj.Leader = leader,Vpy, € N, pi.Leader = leader, pi, DTTL <
p;. DTTL),

Freeze :

returns(

(Leader, DTTL) = (1d,0)

A Vp; € N, Leader > p;.Id,

A 3pbad € Nyp,, (Pvada-Leader, pyag. DTTL) # (1d,1)

[

\

[

V

[

)

A vpok: € Npi \ {pbad}7 (pok~LeadeT; pok~DTTL) = (Id7 1)]

Vp; € Ny, U{pi}, Leader < p;.Id
A 3p € N, (pi.Leader, p,. DTTL) = (Leader, DTTL — 1)
A Ipbad € Ny, (Pvaa-Leader # Leader NV |DTTL — ppaq. DTTL| > 1)

A Vpor € Np, \ {Pvaa}, Leader = poi,.Leader A |DTTL — po. DTTL| =1)]

Vp; € N, U{p;}, Leader < p;.Id
A Ipbad € Np,,

(Leader = ppaq-Id N (ppaa-Leader, ppaqa. DTTL) # (Leader, 0)
A Vpok € Ny, \ {Pbad}, Leader = poi.Leader A po,. DTTL =2)]

Actions :

Al:

A2:

A3:

- (3pj €Np,,p;.Id= Leader, DITTL =1

A Vpp € Np, \ {p;},pi-Leader = Leader, p, DTTL = 2

A (pj.Leader,p; DTTL) # (p;.1d,0))
A MinLeader # Id
A (Leader, DTTL) # (MinLeader, MinDistance(MinLeader) + 1)
A ij GNp“vpk GNi

pj.Leader = py.Leader N p;. DTTL <6

A |p;.DTTL — p.DTTL| < 2
— Leader := MinLeader, DTTL := MinDistance(MinLeader) + 1;

—(A1V Freeze)
AN —Freeze
A (Leader, DTTL) # (Id,0)
A (Vp; € Np,, Leader.p; > Id
V. Vp; € Ny, (pj.Leader,p;. DTTL) # (Leader, DTTL — 1))
— Leader := Id, DTTL := 0;

—(AlV A2V Freeze)
A 3p; € N, (Leader.p;, p;. DTTL) < (Leader, DTTL — 1),
Leader.p; < Id,p; DTTL < §
— Leader := MinLeader, DTTL := MinDistance(MinLeader) + 1;

Algorithm 2 Naming Algorithm for complete networks
Variables

Name : integer € {0...N-1};

Snapshot : array of (Name, Names) of size N-1;
Names: integer array of size /V-1;

Functions

TakeSnapshot : Vi € {0...N-1}, Snapshot[i] := (Reg[i]. Name, Reg[i]. Names);

GetNewName : returns (random({0...N-1} \ {Reg[i]. Nameli € {1..N-1},Vk € {1...N-1},

Reg[i]. Name # Reglk].Name});)

ConsistentSnapshot : returns (Vi € {0...N-1}, Snapshot[i]| = (Regli]. Name, Reg[i]. Names));
(N-1)ConsistentSnapshots :

if the Snapshot of p is consistent with the Snapshot of (N-2) of its neighbors and these Snapshot represent a legitimate
configuration returns true else false;

Consensus :

if the Snapshot of the (N-1) neighbors of p are mutually consistent and these Snapshots represent a legitimate
configuration where (p.Name,p.Names) # Regli].Snapshot|GetOrder(Reg[i])] for all i € {0..N-1} returns
Snapshot|GetOrder(Reg[1])] else 0;

Actions

Al: 3(i,j,k) € {1..N-1}3,j # k, (Name = Regli]. Name A Reg[j].Name = Reglk].Name)
— GetNewName

A2: V(i,j) € {1..N-1}%, Reg[i]. Name # Reg[j].Name
Jk € {1...N-1}, Name = Reg[k].Name
—(N-1)ConsistentSnapshots

GetNewName;

| >>

A3: V(i,j) € {1..N-1}2,i # j, Regli]. Name # Name A Reg[j].Name # Reg[i]. Name
dk € {1..N-1}, Names[k] # Reg[k].Name
Vi € {1...N-1}, Names][i] := Regli]. Name, TakeSnapshot;

1>

Ad: Y(i,j) € {1..N-1}2,i # j, Reg[i]. Name # Name A Reg[j].Name # Regli]. Name
Vk € {1...N-1}, Names[k] = Reg[k].Name N =ConsistentSnapshot
—(N-1)ConsistentSnapshots

TakeSnapshot;

| >>

A5: Y(i,j) € {1...N-1}2, Reg[i]. Name # Reg[j].Name

Jk € {1...N-1}, Name = Reglk].Name

Consensus # 0

Consensus # (Name, Names)

Name = Consensus.Name, Names = Consensus.Names, TakeSnapshot ;

| >>>

A legitimate state is defined as follows. Every pair of
processors (p, q) where ¢ corresponds to the i register
of p, is such that p.Name # q.Name, p.Names[i] =
q.-Name and p.Snapshots[i]| = (¢.Name, ¢.Names).

The principles used for this algorithm are inspired by the
local stabilizer of [2]. Our goal is to enlarge the system
state with copies of each processor state on each node of
the network thanks to the variables Names and Snapshot,
in order to get the property of N-distant legitimate configu-
rations. Then, after the corruption of a single processor, the
nearest legitimate state is uniquely determined. This exam-
ple illustrates how the necessary and sufficient conditions
we gave can be used for designing 1-adaptive algorithms.

Stabilization is in two phases. The first one is proba-
bilistic, and put the system either into a correctly named
configuration (the Name variables are all different but the
Names and Snapshots variables are not necessary consis-
tent) or into an illegitimate configuration at distance 1 from
a legitimate one. To do this, every processor that has at
least one neighbor with the same Name picks up a random
Name (action Al or A2), among the set of names not yet
attributed. These probabilistic actions lead with probabil-
ity 1 to a configuration where only deterministic actions are
possible.

The second phase is deterministic. It either corrects in
one action the state of a single faulty processor (action AS),
or it updates the variables Names and Snapshot (action
A3 and A4).

The 1-adaptive property is obtained by ensuring that
in the case of a single corruption there is only one en-
abled action (only the faulty processor is enabled). A sin-
gle corruption leads the system into a configuration where
only deterministic actions are possible. If the single fault
does not corrupt the Name variable of the faulty proces-
sor only actions A3 or A4 are possible and the faulty pro-
cess returns in the correct configuration by updating the
Names and Snapshot variables. If the single fault cor-
rupts the Name variable of the faulty processor, the func-
tions (N-1)ConsistentSnapshots and Consensus are
used for fault confinement. Indeed in this case, as the N —1
correct processors evaluate (N-1)ConsistentSnapshots
to true, they are not enabled. The faulty processor evaluates
(N-1)ConsistentSnapshots to false and applies A5. The
faulty processor updates its N ame variable with value com-
puted by the consensus function and updates its N ames and
Snapshot values. These new values are consistent which
the Names and Snapshots variables of the correct proces-
sors.

5. Conclusion

We have introduced in this paper a new kind of fault con-
taining self-stabilizing algorithms. The concept of correct-

ing a single fault in one transition was introduced in [12].
In [12] only restricted types of corruptions are considered
and many types of corruptions of a single processor can
lead several other processes to participate to the stabiliza-
tion, delaying the time of recovery.

We presented here two necessary and sufficient condi-
tions for a self-stabilizing algorithm to be able to correct
any possible memory corruption of a single process in just
one computation step. With the help of these conditions, we
gave two l-adaptive self-stabilizing algorithms.

The first condition shows two things. First, if the algo-
rithm we want to be 1-adaptive has a local specification (a
specification that implies that every local view of every pro-
cessor of the system has to be correct) then 1-adaptivity im-
plies almost systematically the fact that the algorithm has to
be silent. We can also state that the correction has to be lo-
cal and that only the faulty processor or one of its neighbor
can participate to the correction. Second the system topol-
ogy has an important impact on the property of 1-adaptivity.
In particular in a network with no triangle the correction is
possible if and only a processor with a correct view cannot
be activated.

The second condition points out the fact that if the legit-
imate configurations are far from each other, then the only
way to be 1-adaptive is to return in the legitimate state that
precedes the corruption. In this case the neighbors of the
corrupted node have to be frozen and the corrupted node
must return in its previous state.

We used these conditions for designing two algorithms.
The first algorithm works on hypercubes. The stabilization
is obtained thanks to the knowledge of the diameter. The
property of 1-adaptivity is obtained by the fact that the cor-
rect information is forwarded to each processor in the sys-
tem from the correct source by at least two neighbors. Thus
even if one processor is corrupted every processor has at
least one neighbor that continues to forward the correct in-
formation. Then we guarantee that the stabilization will not
be blocked by the freezing mechanism because the sources
of fake information eventually disappear.

The second algorithm uses a well known concept pre-
sented in [2]. Every processor holds a local snapshot of
its neighbors. The processor detecting an inconsistency can
then be frozen. An appropriate system of vote on the snap-
shots allows to restore the corrupted processor to its state
before the corruption. This algorithm gives an example of a
probabilistic 1-adaptive algorithm.

Note that our results have in fact a larger application do-
main and there are two simple extensions. First the assump-
tion of a single corruption can be slightly relaxed. Our re-
sults also apply when an arbitrary number of memory cor-
ruptions hit the system, provided that no processor has two
neighbors that are simultaneously corrupted. If it is not the
case, the general stabilizing mechanisms allows anyway the

system to recover (unfortunately in more than one step).

The necessary and sufficient conditions we have pre-
sented can also be seen as a simple way to prove that a
self-stabilizing algorithm is 1-adaptive. In fact those con-
ditions points out the fact that the property of 1-adaptivity
is very local. Thus to prove the 1-adaptivity there is no need
to study every possible execution of the system but just local
conditions.

Our future works will consist in generalizing the method
we used to design the algorithms presented in this article to
get general transformers of silent self-stabilizing algorithms
to 1-adaptive self-stabilizing algorithms. In fact we strongly
believe that several different problems can be solved on spe-
cific topologies in exactly the same way as for the election
algorithm and in particular on hypercubes. We will also ex-
tend the snapshot technique to larger classes of networks.

References

[1] Y. Afek and A. Bremler. Self-stabilizing unidirectional net-

work algorithms by power-supply. In SODA *97: Proceed-

ings of the eighth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 111-120, Philadelphia, PA, USA,

1997. Society for Industrial and Applied Mathematics.

Y. Afek and S. Dolev. Local stabilizer. In Israel Symposium

on Theory of Computing Systems, pages 74—84, 1997.

[3] H. Attiya and J. L. Welch. Distributed computing: funda-
mentals, simulations and advanced topics. McGraw-Hill,
Inc., Hightstown, NJ, USA, 1998.

[4] Y. Azar, S. Kutten, and B. Patt-Shamir. Distributed error
confinement. In Proceedings of the twenty-second annual
symposium on Principles of distributed computing, pages
33-42, Boston, Massachusetts, July 2003.

[5] J. Beauquier, S. Delaét, S. Dolev, and S. Tixeuil. Transient
fault detectors. In Proceedings of the 12th International
Symposium on DIStributed Computing (DISC’98), number
1499, pages 62-74, Andros, Greece, 1998. Springer-Verlag.

[6] J. Beauquier, C. Genolini, and S. Kutten. Optimal reactive

k-stabilisation: the case of mutual exclusion. In /8th An-

nual ACM Symposium on Principles of Distributed Comput-

ing (PODC’99), May 1999.

E. Dijkstra. Self stabilizing systems in spite of distributed

control. Commun. ACM, 17:643-644, 1974.

S. Dolev. Self-Stabilization. MIT Press, Cambridge, MA,

2000. Ben-Gurion University of the Negev, Israel.

S. Dolev and T. Herman. Superstabilizing protocols for dy-

namic distributed systems. In PODC ’95: Proceedings of

the fourteenth annual ACM symposium on Principles of dis-

tributed computing, page 255, New York, NY, USA, 1995.

ACM Press.

[10] C. Genolini and S. Tixeuil. A lower bound of dynamic k-
stabilization in asynchronous systems. In 2/st IEEE Sym-
posium on Reliable Distributed Systems (SRDS’02), pages
212-222, Osaka University, Suita, Japan, Octobre 2002.

[11] S. Ghosh, A. Gupta, T. Herman, and S. Pemmaraju. Fault-
containing self-stabilizing algorithms. In Symposium on
Principles of Distributed Computing, pages 45-54, 1996.

[2

—

[7

—

[8

[t}

[9

[}

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

Herman and Pemmaraju. Error-detecting codes and fault-
containing self-stabilization. IPL: Information Processing
Letters, 73, 2000.

T. Herman. Observations on time-adaptive self-stabilization,
Oct. 15 1997.

T. Herman. Superstabilizing mutual exclusion. Distributed
Computing, 13(1):1-17, 2000.

S. Kutten and B. Patt-Shamir. Time-adaptive self stabiliza-
tion. In Proceedings of the 16th Annual ACM Symposium
on Principles of Distributed Computing (PODC’97), pages
149-158, 1997.

S. Kutten and B. Patt-Shamir. Asynchronous time-adaptive
self stabilization. In PODC, page 319, 1998.

S. Kutten and B. Patt-Shamir. Adaptive stabilization of re-
active protocols. FSTTCS: Foundations of Software Tech-
nology and Theoretical Computer Science, 24, 2004.

S. Kutten and D. Peleg. Fault-local distributed mending. In
Proceedings of the 14th Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC’95), pages 20-27,
August 1995.

M. Nesterenko and A. Arora. Tolerance to unbounded
byzantine faults. In The 21th IEEE Symposium on Reliable
Distributed Systems, (SRDS ’02), pages 22-31, Washington
- Brussels - Tokyo, Oct. 2002. IEEE.

G. Tel. Introduction to distributed algorithms. Cambridge
University Press, New York, NY, USA, 1994.

