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NECESSARY AND SUFFICIENT CONDITIONS FOR A

TRIANGLE COMPARISON THEOREM

JAMES J. HEBDA AND YUTAKA IKEDA

Abstract. We prove a version of Topogonov’s triangle comparison theorem with
surfaces of revolution as model spaces. Given a model surface and a Riemannian
manifold with a fixed base point, we give necessary and sufficient conditions under
which every geodesic triangle in the manifold with a vertex at the base point has
a corresponding Alexandrov triangle in the model. Under these conditions we
also prove a version of the Maximal Radius Theorem and a Grove–Shiohama type
Sphere Theorem.

1. Introduction

Let M̃ be a simply connected, complete, 2–dimensional Riemannain manifold
which is rotationally symmetric about its base point õ, and let M be a complete
Riemannian manifold with a fixed base point o. The generalized Toponogov com-
parison theorem asserts that, under appropriate hypotheses, geodesic triangles △opq
in M have a corresponding geodesic triangle △õp̃q̃ in M̃ , whose corresponding sides
have the same lengths and whose corresponding angles have smaller measures. Dif-
ferent versions of this theorem have appeared in the literature under increasingly
more general hypotheses. For a sample of this literature, see [3, 1, 10, 17, 18, 19,
12, 23, 15, 16, 22, 9]. Typical hypotheses include bounding the curvature of M from

below by that of M̃ and imposing additional restrictions either on M̃ or on the tri-
angles under consideration. In any case, the hypotheses assumed in these works are
stronger than needed. In [8], we proved a generalized Toponogov Theorem in which
the usual hypothesis on curvature was replaced by a weaker notion, called weaker ra-

dial attraction. However, in that paper M̃ was required to have the special property

that the cut locus of every point p̃ in M̃ is contained in the meridian opposite to p̃.

In this paper, we place no restriction on M̃ , but instead require that the geodesics in

the space M do not have bad encounters with the cut loci in M̃ . As it turns out, the
assumption of both weaker radial attraction and no bad encounters is a necessary

and sufficient condition for the existence of a comparison triangle △õp̃q̃ in M̃ for
every geodesic triangle △opq in M . The condition of no bad encounters, which is
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defined in Section 4, is in the spirit of, but not equivalent to, a condition in [9] that
serves a similar purpose.

Before stating the main result, we introduce some notation and terminology.

Definition 1.1. If △opq is a geodesic triangle in M , σ will always denote the side
joining p to q, γ the side joining o to q and τ the side joining o to p. (See Figure

1.) The corresponding sides in a corresponding geodesic triangle △õp̃q̃ in M̃ will be
denoted σ̃, γ̃ and τ̃ respectively. We will say that △õp̃q̃ is an Alexandrov triangle
corresponding to △opq if the following three properties are satisfied:

(1) Equality of corresponding sides:

d(o, p) = d(õ, p̃), d(o, q) = d(õ, q̃), d(p, q) = d(p̃, q̃).

(2) Alexandrov convexity from the base point:

d(õ, σ̃(t)) ≤ d(o, σ(t)) ∀t ∈ [0, d(p, q)].

(3) The angle comparisons:

∡p̃ ≤ ∡p, ∡q̃ ≤ ∡q.

Here d is the distance function in M and M̃ .

Remark 1.2. If d(o, p) and d(o, q) are both strictly less than ℓ = sup
q̃∈M̃ d(õ, q̃), then

(1) and (2) automatically imply (3) by [8, Lemma 4.6].

Theorem 1.3. Let (M, o) be a complete pointed Riemannian manifold, and let (M̃, õ)
be a simply connected, complete, 2–dimensional Riemannain manifold which is rota-
tionally symmetric about õ. Every geodesic triangle △opq in M has a corresponding

Alexandrov triangle △õp̃q̃ in M̃ if and only if M̃ has weaker radial attraction than

M and no minimizing geodesic in M has a bad encounter with the cut locus in M̃ .
Furthermore, under these equivalent conditions, in addition to properties (1), (2),

and (3), the Alexandrov triangle △õp̃q̃ corresponding to △opq also satisfies:

(4) the angle comparison at the base:

∡õ ≤ ∡o,

and
(5) the convexity conditions:

d(p̃, γ̃(s)) ≤ d(p, γ(s)) ∀s ∈ [0, d(o, q)],

d(q̃, τ̃(s)) ≤ d(q, τ(s)) ∀s ∈ [0, d(o, p)].

Remark 1.4. (i) The necessity of the weaker radial attraction hypothesis for the
existence of Alexandrov triangles was proved in [8, Proposition 4.13]. (ii) The angle

comparison at the base (5) was observed in [12] when M̃ is a Von Mangoldt surface
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that bounds the radial curvature ofM from below. (iii) The convexity conditions (5)
in Theorem 1.3 seem not to have been noted in the previous literature. (iv) Theorem
1.3 generalizes the main theorem of [8] because the assumption made in [8] that the

cut loci of points in M̃ are contained in the opposite meridian automatically entails
the hypothesis that there are no bad encounters.

When M̃ has weaker radial attraction than M we prove an analog of the Rauch
Theorem that compares the lengths of Jacobi fields along radial geodesics in the two

manifolds. Consequently, if M̃ is compact, then M is compact and maxq∈M d(o, q) ≤
ℓ = max

q̃∈M̃ d(õ, q̃) with equality holding if and only if the metric on M takes a

special form. This Maximal Radius Theorem generalizes a result in [11].

Theorem 1.5 (Maximal Radius Theorem). Suppose (M̃, õ) is a compact model sur-
face with radius ℓ <∞, whose metric takes the form

dr2 + y(r)2dθ2

in polar coordinates (r, θ) about õ. Suppose that every geodesic triangle △opq in M

has a corresponding Alexandrov triangle △õp̃q̃ in M̃ . If there is a point q in M with
d(o, q) = ℓ, then M is diffeomorphic to Sn and its metric takes the form

dr2 + y(r)2dθ2n−1

in geodesic coordinates about o where dθ2n−1 is the standard metric on the unit (n−1)
sphere.

This paper is organized as follows: In Section 2 we discuss the reference maps of

M and M̃ . The reference maps have used in [9]. In this section we also give a suffi-
cient condition for the existence of an Alexandrov triangle corresponding to a given

geodesic triangle in terms of the slope field in the reference space of M̃ . In Section
3 we discuss the notion of weaker radial attraction and draw some consequences. In
particular we prove an analog of the Rauch Theorem and deduce Theorem 1.5. In
Section 4 we introduce the notion of geodesics in M having bad encounters with the

cut locus in M̃ , and prove the necessity of the hypothesis of no bad encounters in
Theorem 1.3. We also investigate conditions that prevent bad encounters. In Section
5 we prove sufficiency of the conditions in Theorem 1.3. The examples in Section 6
illustrate the hypotheses of Theorem 1.3. Section 7 provides two topological appli-
cations of the main theorem including a Grove–Shiohama type Sphere Theorem. In
Section 8 we employ our methods to establish some of the results in [9]. Finally in

Section 9, we calculate the slope field in the reference space for M̃ at cut points.
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2. The Reference Map

Let M be a complete Riemannian manifold with base point o. Fix a point p ∈M
and fix a minimizing geodesic τ from o to p. For any q ∈M different from o and p, we
determine a geodesic triangle △opq by choosing a minimizing geodesic σ joining p to
q and a minimizing geodesic γ joining o to q. The notation △opq can be ambiguous
when q is in the cut locus of either p or o since the triangle depends on the choices
of σ and γ, but in what follows, the context will always make clear what geodesics
form the sides of the triangle △opq. The reference map F : M → R2 is defined by
F (q) = (d(p, q), d(o, q)). Clearly F depends upon the base point o and on p. Setting
r0 = d(o, p), the triangle inequality implies that the image ofM under F is contained
in a certain half infinite oblique strip in the plane, that is,

F (M) ⊂ {(x, y) ∈ R2 : x+ y ≥ r0,−r0 ≤ y − x ≤ r0}.
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F (σ)

Figure 1. △opq and F (△opq).

Lemma 2.1. Given △opq, F (σ) lies in the rectangle with diagonal F (p)F (q), and
F (γ) lies in the rectangle with diagonal F (o)F (q). See Figure 1.

Proof. Let q∗ be a point on σ between p and q, and set

F (q∗) = (x, y) = (d(p, q∗), d(o, q∗)).

Since σ is a minimizing geodesic, one has x+ d(q∗, q) = d(p, q). Therefore, applying
the triangle inequality one obtains

d(o, p) ≤ x+ y
≤ x+ d(q∗, q) + d(q, o)
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= d(p, q) + d(o, q)

and

d(o, q)− d(p, q) = d(o, q)− (d(q∗, q) + x)
≤ y − x
≤ d(o, p).

See Figure 2 on the left. This proves the statement about F (σ). If q∗ is a point on
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Figure 2. △opq with q∗ on σ (left) and with q∗ on γ (right).

γ between o and q and F (q∗) = (x, y), then the statement about F (γ) is similarly
proved by showing that

d(o, p) ≤ x+ y ≤ d(o, q) + d(p, q)

and
−d(o, p) ≤ y − x ≤ d(o, q)− d(p, q)

using the minimizing property of γ and the triangle inequality. See Figure 2 on the
right. �

One should observe that the image F (σ) is the graph of the function Lo ◦ σ where
Lo(q) = d(o, q).

2.1. Model Surfaces. Let M̃ be a complete surface which is rotationally symmetric

about the base point õ, and let (r, θ) denote polar coordinates on M̃ . Suppose that
r0 < ℓ where ℓ ∈ (0,∞] denotes the supremum of the distance function from õ. We
pick p̃ to be the point with polar coordinates (r0, 0). We have the corresponding

reference map F̃ : M̃ → R2 defined by F̃ (q̃) = (d(p̃, q̃), d(õ, q̃)). The meridian



6 JAMES J. HEBDA AND YUTAKA IKEDA

opposite p̃ is defined by θ = π. Set M̃+ to be the portion of M̃ satisfying 0 ≤ θ ≤ π.

Then F̃ carries M̃+ homeomorphically onto F̃ (M̃) [9]. The interior int(M̃+) of M̃+

consists of the points satisfying 0 < r < ℓ, and 0 < θ < π.
We collect here some known properties of the cut locus C(p̃) of p̃ in a surface of

revolution. The structure of cut loci in surfaces is discussed in [7] and in [21].

(1) If M̃ is compact, then C(p̃) is a tree. This means that the minimal connected
subset containing any given pair of points is homeomorphic to an interval

whose endpoints are the given pair. If M̃ is not compact, the cut locus may
be disconnected, but still each connected component is a tree.

(2) We will call the portion of C(p̃) which is contained in the meridian opposite p̃

the trunk of C(p̃). A maximal connected piece of C(p̃)∩int(M̃+) will be called

a positive branch of the cut locus. When M̃ is not compact, the branches
may not be attached to the trunk. It is possible that there are branches but
the trunk is empty. In these cases we say that the branch attaches to the
trunk at infinity.

(3) If q̃ is a point on a positive branch of C(p̃), then there will generally be at
least two minimizing geodesics joining p̃ to q̃. If σ̃1 and σ̃2 are two minimizing
geodesics joining p̃ to q̃, we say σ̃1 is above σ̃2 if d(õ, σ̃1(t)) > d(õ, σ̃2(t)) for

all 0 < t < d(p̃, q̃). Under the reference map the curve F̃ (σ̃1) lies above the

curve F̃ (σ̃2). There is always an uppermost σ̃↑ and a lowermost σ̃↓ minimizing
geodesic joining p̃ to q̃. However, σ̃↓ = σ̃↑ in the case that q̃ is an endpoint of
the branch of C(p̃) and there is a unique minimizing geodesic joining p̃ to q̃.

(4) If q̃ is a point on a positive branch of C(p̃), then there is an arc α in the
branch of C(p̃) joining q̃ to the trunk. The points on α are parameterized by
their distance from p̃. If a = d(p̃, q̃) and b is the distance of the point where
the branch attaches to the trunk, (which may be ∞), then α(a) = q̃ and the
point α(t) satisfies d(p̃, α(t)) = t for all a ≤ t < b. Moreover the right–hand
derivative (Lõ ◦ α)′+(t) exists for all t ∈ [a, b) where Lõ(−) = d(õ,−). A
formula for (Lõ ◦ α)′+(t) is obtained in Lemma 9.2 below.

We define a slope field s : F̃ (int(M̃+)) → R as follows: Let (x, y) ∈ F̃ (M̃).

Suppose that (x, y) = F̃ (q̃) for some q̃ ∈ int(M̃+). If q̃ /∈ C(p̃), then there exists
a unique minimizing geodesic σ̃ emanating from p̃ that passes through q̃. Thus
σ̃(x) = q̃, and we set s(x, y) = (Lõ ◦ σ̃)′+(x). If q̃ is on a branch of C(p̃), then let
α be the arc in the cut locus joining q̃ to the trunk of C(p̃). Then α(x) = q̃. Set

s(x, y) = (Lõ ◦α)′+(x). The slope field s has discontinuities at points of F̃ (C(p̃)) but

is smooth in the complement of F̃ (C(p̃)). The integral curves of s away from the cut

points are the images under F̃ of the geodesics emanating from p̃.
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A formula for s is easily computed for a 2–sphere of constant curvature.

Proposition 2.2. Let M̃κ be the 2-sphere of constant curvature κ with base point õ,

and let p̃ ∈ M̃ with d(p̃, õ) = r0. Then the reference space F̃ (M̃κ) is the rectangle
{
(x, y) : r0 ≤ x+ y ≤ 2π√

κ
− r0,−r0 ≤ y − x ≤ r0

}
,

and the slope field has the formula

(2.1) s(x, y) =
cos(

√
κr0)− cos(

√
κy) cos(

√
κx)

sin(
√
κx) sin(

√
κy)

.

Proof. In polar coordinates about õ, the unit speed geodesic (r(t), θ(t)) with initial
conditions r(0) = r0 and r′(0) = ṙ0 satisfies:

cos(
√
κr(t)) = cos(

√
κt) cos(

√
κr0)− ṙ0 sin(

√
κt) sin(

√
κr0).

Since F̃ (r(t), θ(t)) = (t, r(t)) = (x, y), the image of this geodesic in the reference
space is the solution curve of the equation

(2.2) cos(
√
κy) = cos(

√
κx) cos(

√
κr0)− ṙ0 sin(

√
κx) sin(

√
κr0).

Differentiating equation (2.2) implicitly gives

(2.3) s(x, y) =
dy

dx
=

sin(
√
κx) cos(

√
κr0) + ṙ0 cos(

√
κx) sin(

√
κr0)

sin(
√
κy)

.

To obtain (2.1), solve for ṙ0 in (2.2), substitute the result into (2.3) and simplify. �

Following equation (2.1), Figure 3 presents qualitative pictures of the slope field s

for the 2–sphere of constant curvature κ for different values of r0 .

Definition 2.3. Let σ̃φ be the geodesic emanating from p̃ making an angle φ with
the meridian µ0 through p̃. Specifically, φ ∈ [0, π] is the angle between σ̃′

φ(0) and
−µ′

0(p̃). Suppose that σ̃φ meets the cut locus C(p̃) at parameter distance τφ. If
σ̃φ(τφ) is a cut point in the trunk of C(p̃), define ςφ(t) = σ̃φ(t) for 0 ≤ t ≤ τφ, while
if σ̃φ(τφ) is on a branch of C(p̃), let α be the arc in the cut locus joining σ̃φ(τφ) to
the trunk, and define ςφ = σ̃φ · α, that is, the concatenation of σ̃φ with α which is
equal to σ̃φ(t) for 0 ≤ t ≤ τφ and to α(t) for t ≥ τφ.

By construction Lõ ◦ ςφ is a solution of the slope field s in the sense that its
right–hand derivative satisfies

(Lõ ◦ ςφ)′+(t) = s(F̃ ◦ ςφ(t)).
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Figure 3. The sign of the slope field s and its nullclines s = 0 in

F̃ (M̃+
κ ) for 0 < r0 <

π
2
√
κ
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2
√
κ
(upper right), and

π
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√
κ
< r0 <

π√
κ
(lower center).

Lemma 2.4. Suppose f , which is continuous and has a finite right–hand derivative
for all t, satisfies the differential inequality

(2.4) f ′
+(t) ≤ s(t, f(t))

Fix φ0 ∈ (0, π), and let g(t) = Lõ(ςφ0(t)) so that g′+(t) = s(t, g(t)). If for some
t0 > 0, f(t0) ≤ g(t0), then f(t) ≤ g(t) for t > t0. In other words, the graph of f
cannot cross the graph of g from below to above.

Proof. Let (x, y) be a point in F̃ (M̃+) which is not in the image of C(p̃). Define
Φ(x, y) to be the angle φ which the minimizing geodesic joining p̃ to q̃ makes with

the meridian from p̃ to õ, where q̃ is the unique point in M̃+ such that F̃ (q̃) = (x, y).
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Thus Φ is C∞ in the complement of F̃ (C(p̃)). By construction the level curves of

Φ are the images under F̃ of minimizing geodesics emanating from p̃. Thus at all

points (t, f(t)) not in F̃ (C(p̃)), we have that the right–hand derivative of Φ(t, f(t))
is nonpositive because, by (2.4), f ′

+(t) is less than or equal to the slope of the level
curve of Φ passing through (t, f(t)). Thus in those intervals where (t, f(t)) does not

meet F̃ (C(p̃)), Φ(t, f(t)) is nonincreasing. In particular, the graph of f cannot cross
any of the level curves of Φ from a lower to a higher value.

To prove the Lemma, suppose there exists a t1 > t0 with f(t1) > g(t1). By
continuity of f and g there exists a t̄ with t0 ≤ t̄ such the g(t̄) = f(t̄) and g(t) < f(t)

for all t̄ < t < t1. If (t̄, g(t̄)) = F̃ (ςφ0(t̄)) is not in F̃ (C(p̃)), we would have by the
previous paragraph that Φ(t, f(t)) was nonincreasing in an interval about t̄, and at

the same time Φ(t, f(t)) > Φ(t̄, g(t̄)) = φ0 for t > t̄. Thus (t̄, g(t̄)) ∈ F̃ (C(p̃)).

Pick a t > t̄. Then ςφ0(t) = F̃−1(t, g(t)) lies on the arc α in C(p̃) starting at ςφ0(t̄).

Let q̃ ∈ C(p̃) be the point such that F̃ (q̃) = (t, g(t)) and let σ̃↑ be the uppermost
minimizing geodesic joining p̃ to q̃. Thus the angle φ that σ̃↑ makes with the meridian
through p̃ satisfies φ > φ0. Thus Lõ(σ̃

↑(t̄)) > g(t̄) = f(t̄) and Lõ(σ̃
↑(t)) = g(t) < f(t).

Therefore the graph of f must cross the image of σ̃↑ at some t̄ < s < t, that is, it
crosses a level curve of Φ from a lower to a higher value, contradicting the earlier
assertion. �

Sufficient conditions under which a given geodesic triangle △opq has a correspond-

ing Alexandrov triangle △õp̃q̃ in M̃ can be described in terms of the reference space

and slope field s for M̃ .

Proposition 2.5. Given △opq in M , suppose F (q) ∈ F̃ (M̃). Let σ be the minimiz-
ing geodesic joining p to q. Every geodesic triangle △opσ(t) for t ∈ (0, d(p, q)], has an

Alexandrov triangle △õp̃q̃t in M̃ if and only if σ satisfies the differential inequality.

(Lo ◦ σ)′+(t) ≤ s(F (σ(t)))

for all 0 < t < d(p, q).

Proof. By Lemma 2.1, F (σ) ⊂ F̃ (M̃). Thus every △opσ(t) has a corresponding

△õp̃q̃t in M̃ where we take the lowermost minimizing geodesic joining p̃ to q̃t for that
side.

First assume that for every t the corresponding △õp̃q̃t in M̃ is an Alexandrov
triangle corresponding to △opσ(t). Suppose the differential inequality is not satisfied
for some t0 ∈ (0, d(p, q)). Let φ0 be chosen so that ςφ0 restricted to [0, t0] is the
lowermost minimizing geodesic joining p̃ to q̃t0 , that is, the side of the corresponding
Alexandrov triangle △õp̃q̃t0 . Since we are supposing that

(Lo ◦ σ)′+(t0) > s(F (σ(t0))),
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it follows that there exists ǫ > 0 such that Lo(σ(t)) > Lõ(ςφ0(t)) for all t ∈ (t0, t0+ǫ).
For any such t, let φt be chosen so that ςφt restricted to [0, t] is the lowermost mini-
mizing geodesic joining p̃ to q̃t. Thus for such t, Lõ(ςφt(t)) = Lo(σ(t)) > Lõ(ςφ0(t)).
Hence we have φt > φ0, and therefore Lõ(ςφt(t0)) > Lõ(ςφ0(t0)) = Lo(σ(t0)) which
contradicts Alexandrov convexity for △opσ(t) and △õp̃q̃t. Therefore the differential
inequality is satisfied for all t.

Conversely assume that the differential inequality is satisfied for all 0 < t < d(p, q).
We must show that for any t, Lo(σ(s)) ≥ Lõ(ςφt(s)) for all 0 ≤ s ≤ t. If this were
not so, there would exist a t̄ and a t0 with 0 < t0 < t̄ such that

Lõ(ςφt0 (t0)) = Lo(σ(t0)) < Lõ(ςφt̄(t0)).

Hence φt0 < φt̄ and therefore Lõ(ςφt0 (t̄)) < Lõ(ςφt̄(t̄)) = Lo(σ(t̄)). On the other hand,
applying Lemma 2.4 with f(t) = Lo(σ(t)) leads to the contradiction Lo(σ(t̄)) ≤
Lõ(ςφt0 (t̄)).

�

3. Weaker Radial Attraction

3.1. Definition and Equivalences. We introduced the notion of weaker radial
attraction in [8]. One may be regard it as an assumption comparing small hinges.
In this section we investigate several consequences of this condition.

Definition 3.1. The model surface (M̃, õ) is said to have weaker radial attrac-
tion than the pointed complete Riemannian manifold (M, o), if, for any unit speed

geodesics σ, σ̃ inM, M̃ respectively satisfying Lo◦σ(0) = Lõ◦σ̃(0) < ℓ = sup
p̃∈M̃ d(õ, p̃)

and (Lo ◦ σ)′+(0) = (Lõ ◦ σ̃)′+(0), then there exists an ǫ > 0 such that Lo ◦ σ(t) ≤
Lõ ◦ σ̃(t) for all 0 ≤ t < ǫ. Here Lo and Lõ are the distance functions from o and õ
respectively.

Remark 3.2. (i) As pointed out in [8, Remark 4.2], if the radial curvature of M is

bounded from below by the curvature of M̃ , then M̃ has weaker radial attraction
thanM but not conversely. (ii) The necessity of weaker radial attraction in Theorem
1.3 was proved in [8, Proposition 4.13].

The following theorem proved in [8] asserts that the condition of weaker radial
attraction is equivalent to two other conditions.

Theorem 3.3 (Theorem 5.3 [8]). The following are equivalent:

(1) The Hessian of Lõ dominates the Hessian of Lo.
(2) The principal curvatures of the geodesic spheres about o are bounded from

below by the curvature of the geodesic circles about õ of the same radius.

(3) M̃ has weaker radial attraction than M .
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It will be convenient to reformulate condition (1) in terms of a certain tensor field

S in M . Suppose the metric of the model surface M̃ takes the form

ds̃2 = dr2 + y(r)2dθ2,

in polar cordinates about õ. Let g denote the Riemannian metric for M . We will
also write 〈−,−〉 = g(−,−). In the open setM\(C(o)∪{o}) we can define the radial
vector field ξ = grad(Lo) and the symmetric (2, 0) tensor field

S =
y′ ◦ Lo
y ◦ Lo

(g − dLo ⊗ dLo)−∇2Lo.

For vector fields X and Y , we have

S(X, Y ) =
y′ ◦ Lo
y ◦ Lo

(〈X, Y 〉 − 〈X, ξ〉〈Y, ξ〉)− 〈∇Xξ, Y 〉.

The metrically equivalent symmetric operator Ŝ, that is, the (1, 1) tensor field, de-
fined by

〈Ŝ(X), Y 〉 = S(X, Y ),

is thus given by

Ŝ(X) =
y′ ◦ Lo
y ◦ Lo

(X − 〈X, ξ〉ξ)−∇Xξ.

It is clear from these formulas that Ŝ(ξ) = 0.

Corollary 3.4. The model surface (M̃, õ) has weaker radial attraction than (M, o)

if and only if S(X,X) ≥ 0 for all X, or equivalently, the eigenvalues of Ŝ are
nonnegative at every point p ∈M\(C(o) ∪ {o}) with Lo(p) < ℓ.

Proof. Since ∇2Lo is the Hessian of Lo and y′

y
(ds̃2 − dr2) is the Hessian of Lõ [5,

Proposition 2.20], S(X,X) ≥ 0 is exactly the condition that the Hessian of Lõ
dominates the Hessian of Lo. The result follows from Theorem 3.3. �

Remark 3.5. We will prove in Corollary 3.14 that Lo(p) ≤ ℓ for all p ∈M . Thus S is
indeed defined in M\(C(o)∪ {o}) and not just in {p : Lo(p) < ℓ} ∩M\(C(o)∪ {o}).
3.2. Geodesic comparison.

Proposition 3.6. Suppose that (M̃, õ) has weaker radial attraction than (M, o).

Suppose that σ : [a, b] → M and σ̃ : [a, b] → M̃ are unit speed geodesics such that
Lõ ◦ σ̃(t) ≤ Lo ◦ σ(t) for all t ∈ [a, b]. If any one of the following three conditions
hold:

(1) (Lo ◦ σ)(a) = (Lõ ◦ σ̃)(a) and (Lo ◦ σ)′+(a) = (Lõ ◦ σ̃)′+(a).
(2) (Lo ◦ σ)(b) = (Lõ ◦ σ̃)(b) and (Lo ◦ σ)′−(b) = (Lõ ◦ σ̃)′−(b).
(3) There exists t0 ∈ (a, b) with (Lo ◦ σ)(t0) = (Lõ ◦ σ̃)(t0).
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then (Lo ◦ σ)(t) = (Lõ ◦ σ̃)(t) for all t ∈ [a, b].

Proof. If (1) holds, then by hypothesis and by weaker radial attraction there exists
an ǫ > 0 such that

(Lõ ◦ σ̃)(t) ≤ (Lo ◦ σ)(t) ≤ (Lõ ◦ σ̃)(t)
for all a ≤ t < a + ǫ. Hence (Lõ ◦ σ̃)(t) = (Lo ◦ σ)(t) for a ≤ t < a + ǫ and thus
(3) holds. Similarly if (2) holds so does (3). We may now assume that (3) holds.
Let E = {t ∈ (a, b) : (Lo ◦ σ)(t) = (Lõ ◦ σ̃)(t)}. By assumption E is nonempty. By
continuity E is closed. It is also open because if t0 ∈ E, then, using [8, Corollary
2.3] for the middle inequality,

(Lõ ◦ σ̃)′(t0) ≥ (Lo ◦ σ)′−(t0) ≥ (Lo ◦ σ)′+(t0) ≥ (Lõ ◦ σ̃)′(t0).
Thus we have equality holding at all places. By weaker radial attraction, there exists
an ǫ > 0 such that (Lo ◦ σ)(t) ≤ (Lõ ◦ σ̃)(t) for all t ∈ (t0 − ǫ, t0 + ǫ). Combining
this with the assumption, (Lo ◦ σ)(t) = (Lõ ◦ σ̃)(t) for all t ∈ (t0 − ǫ, t0 + ǫ). This
shows that E is open. Thus by connectivity, E = (a, b). By continuity this equality
extends to the endpoints as well. �

Lemma 3.7. Assume that (M̃, õ) has weaker radial attraction than (M, o). Let
q ∈M\(C(o)∪{o}) with Lo(q) = r < ℓ, and let X ∈ TqM be linearly independent of

the radial vector ξq at q. If Ŝ(X) = 0 then the sectional curvature K(X∧ξ) = −y′′(r)
y(r)

.

This is the Gaussan curvature of M̃ at distance r from õ.

Proof. We may assume X is a unit vector perpendicular to ξ at q. Since Ŝ(X) = 0, it

follows that ∇Xξ =
y′(r)
y(r)

X . Let γ(t) for 0 ≤ t ≤ r be the minimizing geodesic joining

o to q, and let J(t) be the Jacobi field along γ satisfying J(0) = 0 and J(r) = X .
The function f(t) = S(J(t), J(t)) ≥ 0 for all 0 < t < r + ǫ for some positive ǫ and
f(r) = 0. Hence f attains its minimum at t = r. Therefore after a straightforward

calculation, which uses ∇Xξ =
y′(r)
y(r)

X , we obtain

0 = f ′(r) =
y′′(r)

y(r)
+ 〈R(X, ξ)ξ,X〉.

�

Suppose that σ is a geodesic in M\(C(o) ∪ {o}) and σ̃ a geodesic in M̃ parame-
terized on the same interval such that Lo ◦ σ = Lõ ◦ σ̃. Because

∇2Lo(σ
′, σ′) = (Lo ◦ σ)′′ = (Lõ ◦ σ̃)′′ = ∇2Lõ(σ̃

′, σ̃′),

it follows that Ŝ(σ′) = 0 at all points along σ. The preceding lemma implies that for

all t, K(σ′(t) ∧ ξ) equals the curvature of M̃ at σ̃(t).
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Proposition 3.8. Assume the geodesic σ in M\(C(o) ∪ {o}) satisfies Ŝ(σ′) = 0.
Define the vector field ξ⊥ along σ by

ξ⊥ = ξ − 〈ξ, σ′〉σ′.

Then

∇σ′ξ
⊥ = −y

′ ◦ Lo ◦ σ
y ◦ Lo ◦ σ

〈σ′, ξ〉ξ⊥.

Proof. This is a straightforward calculation using ∇σ′σ
′ = 0 and

∇σ′ξ =
y′ ◦ Lo ◦ σ
y ◦ Lo ◦ σ

(σ′ − 〈σ′, ξ〉ξ)

which holds because Ŝ(σ′) = 0. �

Corollary 3.9. Under the same hypothesis, the normalized vector field ξ⊥

|ξ⊥| is parallel

along σ, that is,

∇σ′
ξ⊥

|ξ⊥| = 0

because the covariant derivative of ξ⊥ along σ is a multiple of itself.

This shows that the 2–planes spanned by σ′ and ξ are parallel along σ.

Corollary 3.10. Suppose the two geodesics σ : [0, a] → M\(C(o) ∪ {o}) and σ̃ :

[0, a] → M̃ satisfy Lo ◦ σ = Lõ ◦ σ̃, and suppose that σ̃(a) is the first conjugate point
to σ̃(0) along σ̃. Then σ is not free of conjugate points, and thus cannot minimize
past a.

Proof. We assume that σ is free of conjugate points. By the Morse Index Lemma
[13, Corollary 3.2, p. 74], if V is a vector field along σ which is perpendicular to σ
and satisfies V (0) = 0 and V (a) = 0, then

I(V ) =

∫ a

0

〈∇σ′V,∇σ′V 〉 − 〈R(V, σ′)σ′, V 〉dt ≥ 0

with equality holding if and only if V is identically zero. We will construct a non–zero
vector field V whose Morse index is 0 to obtain a contradiction.

Let κ(r) = −y′′(r)
y(r)

. Since σ̃(a) is the first conjugate point to σ̃(0) along σ̃, there

exists a non–zero Jacobi field along σ̃ which vanishes at 0 and a. Thus there is a
non-zero function f vanishing at 0 and a satisfying

f ′′ + (κ ◦ Lõ ◦ σ̃)f = 0.
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Set V = f ξ⊥

|ξ⊥| . Then since ξ⊥

|ξ⊥| is parallel along σ we have, using Proposition 3.8 and

integration by parts,

I(V ) =

∫ a

0

(f ′(t))2 − (κ ◦ Lõ ◦ σ̃)f(t)2dt

= f ′(t)f(t)|a0 −
∫ a

0

(f ′′(t) + (κ ◦ Lõ ◦ σ̃(t))f(t))f(t)dt

= 0.

�

The proof of this corollary shows that more generally:

Proposition 3.11. Suppose that γ is a geodesic in a Riemannian manifold and that
P is a parallel unit vector field along γ. Let κ(t) = K(γ′ ∧ P (t)) for 0 ≤ t ≤ a. If
there exists a nonzero solution f(t) of

f ′′ + κf = 0,

such that f(0) = f(a) = 0, then γ is not free of conjugate points on [0, a].

Remark 3.12. In light of this proposition, the conclusion of Corollary 3.10 is still
valid if either one or both of the endpoints of σ lie in C(o), as long as the interior

of σ is disjoint from C(o) ∪ {o}. This is because by continuity the parallel field ξ⊥

|ξ⊥|
along the interior of σ extends to a parallel field P that satisfies K(σ′∧P ) = κ◦Lõ◦σ̃
on the closed interval [0, a].

3.3. Jacobi Fields. We prove an analog of the Rauch Comparison Theorem for
Jacobi fields along a pair of geodesics in two Riemannian manifolds under an as-
sumption on the Hessians of the distance functions, rather than under the usual
assumption on the sectional curvatures.

Theorem 3.13. Let M and M̄ be two Riemannian manifolds. Let γ : [0, a] → M
and γ̄ : [0, a] → M̄ be normal geodesics in M and M̄ respectively. Set o = γ(0) and
ō = γ̄(0). Suppose that γ(t) and γ̄(t) are not conjugate to o and ō respectively along
γ and γ̄ respectively, and that the Hessians of Lo and Lō satisfy ∇2Lo ≤ ∇2Lō at γ(t)
and γ̄(t) for every 0 < t < a. If J and J̄ are Jacobi fields along γ and γ̄ respectively,
that satisfy J(0) = 0, J̄(0) = 0, |J ′(0)| = |J̄ ′(0)|, and 〈J ′(0), γ′(0)〉 = 〈J̄ ′(0), γ̄′(0)〉,
then

|J(t)| ≤ |J̄(t)|
for all 0 ≤ t ≤ a. Moreover, if equality holds for some t0 ∈ (0, a), then equality holds
for all 0 ≤ t ≤ t0, and if

lim
t→a−

|J̄(t)|
|J(t)| = 1,
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then equality holds for all 0 ≤ t ≤ a.

Proof. We may suppose that 〈J ′(0), γ′(0)〉 = 〈J̄ ′(0), γ̄′(0)〉 = 0 so that J and J̄ are
perpendicular to γ and γ̄ respectively. Let f(t) = 〈J(t), J(t)〉 and f̄(t) = 〈J̄(t), J̄(t)〉.
We must show f(t) ≤ f̄(t). By two applications of l’Hôpital’s rule,

(3.1) lim
t→0+

f̄(t)

f(t)
= lim

t→0+

〈J̄ ′(t), J̄(t)〉
〈J ′(t), J(t)〉 = lim

t→0+

〈J̄ ′(t), J̄ ′(t)〉+ 〈J̄ ′′(t), J̄(t)〉
〈J ′(t), J ′(t)〉+ 〈J ′′(t), J(t)〉 = 1.

It thus suffices to prove

(3.2)
d

dt

(
f̄(t)

f(t)

)
≥ 0

or equivalently that
f ′(t)

f(t)
≤ f̄ ′(t)

f̄(t)

for all t ∈ (0, a). (The no conjugacy condition implies that f and f̄ do not vanish
anywhere in (0, a).) Fix t0 ∈ (0, a). Set

Y (t) =
1√
f(t0)

J(t) and Ȳ (t) =
1√
f̄(t0)

J̄(t)

so that Y and Ȳ are Jacobi fields along γ and γ̄ which are perpendicular to the
geodesics and have the same norm at t0, that is, |Y (t0)| = |Ȳ (t0)| = 1. Therefore,
by the assumption on the Hessians,

f ′(t0)

f(t0)
= 2∇2Lo(Y (t0), Y (t0)) ≤ 2∇2Lō(Ȳ (t0), Ȳ (t0)) =

f̄ ′(t0)

f̄(t0)
.

This proves the inequality. In case equality holds at t0 ∈ (0, a), equations (3.1) and
(3.2) imply that

f̄(t)

f(t)
= 1

for all t ∈ (0, t0) and thus f(t) = f̄(t) whenever 0 ≤ t ≤ t0. Similarly f(t) = f̄(t) for

all 0 ≤ t ≤ a if limt→a−
f̄(t)
f(t)

= 1. �

Corollary 3.14. Assume the model surface (M̃, õ) has weaker radial attraction than

the complete pointed Riemannian manifold (M, o). If M̃ has a finite radius ℓ, then
d(o, p) ≤ ℓ for all p ∈M .

Proof. If not, there exists a geodesic γ emanating from o which is conjugate free
on the interval [0, ℓ]. Let γ̃ be a geodesic emanating from õ. Then γ(t) and γ̃(t)
are not conjugate to o and õ respectively for all t ∈ (0, ℓ). Because of weaker radial

attraction, ∇2Lo ≤ ∇2Lõ at γ(t) and γ̃(t) respectively for every 0 < t < ℓ. Let J̃ be a
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nontrivial Jacobi field along γ̃ satisfying J̃(0) = 0, |J̃ ′(0)| = 1, and 〈γ̃′(0), J̃ ′(0)〉 = 0.

Then J̃(ℓ) = 0. Let J be a Jacobi field along γ satisfying J(0) = 0, |J ′(0)| = 1, and
〈γ′(0), J ′(0)〉 = 0. By Theorem 3.13,

|J(ℓ)| ≤ |J̃(ℓ)| = 0

which contradicts that γ is conjugate free for t ∈ [0, ℓ]. �

More can be said in the case of equality in Theorem 3.13.

Proposition 3.15. Assume the hypothesis of Theorem 3.13. Suppose J and J̄ are
Jacobi fields along γ and γ̄ respectively which are perpendicular to the geodesics.
Assume

|J(t)| = |J̄(t)| = y(t)

for all 0 ≤ t ≤ t0. Then there exist parallel unit vector fields P and P̄ along γ and
γ̄ such that

J(t) = y(t)P and J̄(t) = y(t)P̄ .

Proof. From the proof of Theorem 3.13 we have

∇2Lo(J(t), J(t)) = ∇2Lō(J̄(t), J̄(t))

for all t ∈ (0, t0). Since ∇2Lo ≤ ∇2Lō at γ(t) and γ̄(t) for every 0 < t < a, this shows
that J(t) is the eigenvector for the largest eigenvalue of ∇2Lo while J̄(t) is that for
the smallest eigenvalue of ∇2Lō and those eigenvalues are equal for t ∈ (0, t0). This
common eigenvalue can be denoted λ(t) and is a continuous function of t. What this
means is that

(3.3) ∇2Lo(J(t), Y ) = λ(t)〈J(t), Y 〉 and ∇2Lō(J̄(t), Ȳ ) = λ(t)〈J̄(t), Ȳ 〉
for every Y ∈ Tγ(t)M and Ȳ ∈ Tγ̄(t)M̄ . To compute the Hessians we can look in
geodesic coordinates about o and ō to extend the velocity vector fields of the geodesics
to the radial fields T and T̄ and the Jacobi fields to J and J̄ which commute with T
and T̄ respectively. Extend Y and Ȳ , then a short computation shows that

(3.4) ∇2Lo(J, Y ) = 〈∇TJ, Y 〉 and ∇2Lō(J̄ , Ȳ ) = 〈∇T̄ J̄ , Ȳ 〉.
Thus along γ amd γ̄

(3.5) ∇TJ = λJ and ∇T̄ J̄ = λJ̄.

Therefore

∇T

(
1

y(t)
J

)
= 0 and ∇T̄

(
1

y(t)
J̄

)
= 0

which shows that

(3.6) P (t) =
1

y(t)
J and P̄ (t) =

1

y(t)
J̄
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are unit parallel vector fields along γ and γ̄ �

Remark 3.16. If J and J̄ are not perpendicular Jacobi fields in Proposition 3.15,
then we can write J(t) = ctT + J0(t) and J̄(t) = ctT̄ + J̄0(t) where J0 and J̄0
are perpendicular Jacobi Fields vanishing at 0. Then by same reasoning in the
proposition we conclude that J0(t) = y0(t)P (t) and J̄0(t) = y0(t)P̄ (t), where P and
P̄ are parallel unit fields and y0(t) = |J0(t)| = |J̄0(t)|.

Corollary 3.17. Assume the model surface (M̃, õ) has weaker radial attraction than

the complete pointed Riemannian manifold (M, o), and let Φ : TõM̃ → ToM be

a linear isometric inclusion. Let X : [a, b] → TõM̃ be a smooth curve such that
|X(s)| < ℓ and the geodesics γs(t) = expo(tΦX(s)) are cut point free for 0 ≤ t ≤ 1
and for all s ∈ [a, b]. Then

Length(expo ◦Φ ◦X) ≤ Length(expõ ◦X).

Proof. Set γ̃s(t) = expõ(tX(s)). Then γs and γ̃s are variations through geodesics, and

hence their transverse fields are Jacobi fields Js and J̃s along γs and γ̃s respectively
which satisfy Js(0) = 0, J̃s(0) = 0, J ′

s(0) = Φ(X ′(s)) and J̃ ′
s(0) = X ′(s). Since Φ is

a linear isometric inclusion, the conditions on the initial conditions of Js and J̃s in
Theorem 3.13 are satisfied. Thus

|Js(1)| ≤ |J̃s(1)|
for all s ∈ [a, b]. Therefore on integrating

(3.7) Length(expo ◦Φ ◦X) =

∫ b

a

|Js(1)|ds ≤
∫ b

a

|J̃s(1)|ds = Length(expõ ◦X).

. �

Remark 3.18. If equality holds in Corollary 3.17, then we have |Js(1)| = |J̃s(1)| for
all s. Then by Theorem 3.13, |Js(t)| = |J̃s(t)| for all s and t. We can then argue
that the surface S ruled by the geodesics γs and the surface S̃ ruled by the γ̃s have
isometric interiors.

3.4. Maximal Radius Theorem.

Proposition 3.19. Let M be a complete n–dimensional Riemannian manifold, and

let o be a fixed point in M . Let M̃ be a compact model surface with vertex õ whose
metric in a normal polar coordinate system around õ takes the form

dr2 + y(r)2dθ2, 0 < r < ℓ.

Assume that (M̃, õ) has weaker radial attraction than (M, o) and that the cut locus
of o in M is a single point q whose distance from o is ℓ. Then M is diffeomorphic
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to a sphere Sn and its metric in geodesic coordinates about o is given by

dr2 + y(r)2dθ2n−1

where y is the function defining the metric on M̃ in polar coordinates and dθ2n−1 is
the standard Riemannian metric of constant curvature 1 on Sn−1.

Proof. By hypothesis, every minimizing geodesic emanating from o has length ℓ and
ends at the point q. ThusM is an Allamigeon–Warner manifold or a Blashke manifold
at o of the type that is homeomorphic to a sphere [2, Chapter 5]. Moreover, one may
define a smooth mapping Ψ from the unit sphere Σo in ToM to the unit sphere Σq in
TqM by setting Ψ(X) = −γ′X(ℓ) where γX is the geodesic emanating from o whose
initial tangent vector γ′X(0) is equal to X ∈ Σo. Its differential Ψ∗ : TXΣo → TΨ(X)Σq
can be calculated as follows: Given Y ∈ TXΣo, regard Y as a vector in ToM which
is perpendicular to X . Let J be the Jacobi field along γX satisfying the initial
conditions J(0) = 0 and J ′(0) = Y . Then J is an orthogonal Jacobi field along γX .
By hypothesis J(ℓ) = 0. Consequently J ′(ℓ) is perpendicular to γ′X(ℓ) and so may
be regarded as a tangent vector in TΨ(X)Σq. It is now clear that Ψ∗(Y ) = −J ′(ℓ).
(cf. the proof of [2, Lemma 5.27].)

The hypothesis that (M̃, õ) has weaker radial attraction than (M, o) implies that
|Ψ∗(Y )| ≤ |Y | for all Y ∈ TXΣo. To prove this, it will suffice to show that |Ψ∗(Y )| ≤ 1

when |Y | = 1. Let γ̄ : [0, ℓ] → M̃ be a meridian of M̃ emanating from õ, then the
Hessian comparison in the hypothesis of Theorem 3.13 is satisfied along γX and
γ̄ on the interval [0, ℓ]. Assume |Y | = 1 and let J be the Jacobi field along γX
satisfying J(0) = 0 and J ′(0) = Y . Since y(r) is the norm of the corresponding
Jacobi field along γ̄, Theorem 3.13 implies that |J(r)| ≤ y(r) for all 0 ≤ r ≤ ℓ. Set

f(r) = 〈J(r), J(r)〉 and f̄(r) = y(r)2. Then f(r)

f̄(r)
≤ 1 for 0 < r < ℓ. Thus by two

applications of l’Hôpital’s rule,

1 ≥ lim
r→ℓ−

f(r)

f̄(r)
= lim

r→ℓ−

〈J(r), J ′(r)〉
y(r)y′(r)

= lim
r→ℓ−

〈J ′(r), J ′(r)〉+ 〈J(r), J ′′(r)〉
y′(r)2 + y(r)y′′(r)

=
〈J ′(ℓ), J ′(ℓ)〉

y′(ℓ)2
= |J ′(ℓ)|2(3.8)

because J(ℓ) = 0, y(ℓ) = 0 and y′(ℓ) = −1. Therefore |Ψ∗(Y )| = |J ′(ℓ)| ≤ 1.
The next step is to show that |Ψ∗(Y )| = 1 whenever |Y | = 1. To prove this we

proceed as follows: Let Ω and Ω̂ be the volume (n− 1) forms on the respective unit

spheres Σo and Σq. Then Ψ∗Ω̂ = λΩ for some non–vanishing real valued function λ
on Σo. Note that if Y1, . . . , Yn−1 is an orthonormal basis for TXΣo then

|λ(X)| = |λ(X)Ω(Y1, . . . , Yn−1)| = |Ω̂(Ψ∗(Y1), . . . ,Ψ∗(Yn−1))|
≤ |Ψ∗(Y1)| · · · |Ψ∗(Yn−1)|.
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Consequently, |λ(X)| ≤ 1 for allX ∈ Σo, and the inequality is strict at points X ∈ Σ0

where there exists a unit tangent vector Y with |Ψ∗(Y )| < 1. It follows from this
and the change of variables formula that

(3.9) V ol(Sn−1) =

∣∣∣∣
∫

Σo

Ω

∣∣∣∣ ≥
∣∣∣∣
∫

Σo

λΩ

∣∣∣∣ =
∣∣∣∣
∫

Σo

Ψ∗Ω̂

∣∣∣∣ =
∣∣∣∣∣

∫

Σq

Ω̂

∣∣∣∣∣ = V ol(Sn−1).

Consequently, equality holds in (3.9), and we deduce that |λ| = 1 everywhere. There-
fore |Ψ∗(Y )| = 1 whenever |Y | = 1. Hence, by (3.8) and Theorem 3.13, for every
such Y , the Jacobi field J with J(0) = 0 and J ′(0) = Y satisfies |J(r)| = y(r) for all
0 ≤ r ≤ ℓ. By Proposition 3.15 the metric on M takes the form

dr2 + y(r)2dθ2n−1

in polar coordinates about o. Moreover M must be diffeomorphic to Sn as the map
Ψ is an isometry. �

3.5. Proof of Theorem 1.5. Suppose that every geodesic triangle △opq has an

Alexandrov triangle △õp̃q̃ in M̃ and that there is a point q ∈ M with d(o, q) = ℓ.

By Theorem 1.3, M̃ has weaker radial attraction than M . Thus the distance of
every point of M from o is at most ℓ by Corollary 3.14. Let τ be any minimizing
geodesic emanating from o to some point p. By hypothesis, the triangle △opq has a
comparison triangle△õp̃q̃ in M̃ . Thus d(o, p)+d(p, q) = d(õ, p̃)+d(p̃, q̃) = d(õ, q̃) = ℓ.
Hence τ extends to a minimizing geodesic joining o to q. Since τ was arbitrary, q
is the cut point along every geodesic emanating from o. Hence the cut locus of o is
the single point q. Therefore the hypothesis of Proposition 3.19 is satisfied, and the
result follows.

4. Bad Encounters

In this section assume (M, o) is a pointed complete Riemannian manifold and

(M̃, õ) is a model surface of revolution about the point õ. We make no further

assumptions about the cut loci of points in M̃ . For a given point p inM , let p̃ be the

point on the zero meridian of M̃ , such that d(õ, p̃) = d(o, p). Recall from Section 2

the reference map F̃ : M̃+ → R
2 defined by F̃ (q̃) = (Lp̃(q̃), Lõ(q̃)) and the similarly

defined reference map F :M → R
2.

Definition 4.1. Let σ : [0, l] → M be a minimizing geodesic in M emanating
from p ∈ M . We say that σ has an encounter with the cut locus at t0 ∈ (0, l) if

F (σ(t0)) ∈ F̃ (C(p̃)∩int(M̃+)). Suppose that q̃ is the unique point in C(p̃)∩int(M̃+)

such that F̃ (q̃) = F (σ(t0)) and α is the arc in C(p̃) joining q̃ to the trunk. The
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encounter at t0 is a bad encounter if for every ǫ > 0 there exists t∗ ∈ (t0, t0 + ǫ) such
that Lo(σ(t

∗)) > Lõ(α(t
∗)).

Proposition 4.2. Suppose the minimizing geodesic σ : [0, l] → M has an encounter
with the cut locus at t0 ∈ (0, l) and that there exists a t1 ∈ (t0, l] such that Lo(σ(t1)) >
Lõ(α(t1)). Then there is a bad encounter at some t̄ ∈ [t0, t1).

Proof. Set t̄ = sup{t ∈ [t0, t1) : Lo(σ(t)) ≤ Lõ(α(t))}. Then t0 ≤ t̄ < t1 and
Lo(σ(t

∗)) > Lõ(α(t
∗)) for all t∗ ∈ (t̄, t1). �

Proposition 4.3. Suppose the minimizing geodesic σ : [0, l] → M emanating from
p has a bad encounter with the cut locus at t0. Then choosing any t∗ ∈ (t0, t0 + ǫ) as
in Definition 4.1, the triangle △opσ(t∗) does not satisfy Alexandrov convexity from
o.

Proof. Set q̃ = F̃−1(F (σ(t0))). Since Lo(σ(t
∗)) > Lõ(α(t

∗)), the minimizing geodesic

σ̃ joining p̃ to q̃∗ = F̃−1(F (σ(t∗))) passes above q̃, that is, Lõ(σ̃(t0)) > Lõ(q̃) =
Lo(σ(t0)), which violates Alexandrov convexity. �

This establishes the necessity of the assumption of no bad encounters in Theorem
1.3.

4.1. Ensuring encounters with the cut locus are not bad. Let us assume that
σ is a minimizing geodesic in M joining p to q. Suppose that the reference curve

F ◦ σ is contained in F̃ (M̃+) where as usual d(p̃, õ) = d(p, o). Moreover suppose
that σ encounters the cut locus at t0 for some 0 < t0 < d(p, q). Set q0 = σ(t0), set

q̃0 = F̃−1(F (q0)), and let α denote the arc in C(p̃) connecting q̃0 to the trunk of
C(p̃).

Lemma 4.4. The encounter at q0 is not bad if (Lo ◦ σ)′+(t0) < (Lõ ◦ α)′+(t0).
Proof. Because Lo(σ(t0)) = Lõ(α(t0)), (Lo◦σ)′+(t0) < (Lõ◦α)′+(t0) implies that there
exists an ǫ > 0 such that for all t0 < t < t0 + ǫ we have Lo(σ(t)) < Lõ(α(t)) which
shows the encounter is not bad. �

Remark 4.5. Conversely, it is clear that (Lo ◦σ)′+(t0) ≤ (Lõ ◦α)′+(t0) if the encounter
is not bad.

Let σ̃↓ and σ̃↑ be the lowermost and uppermost minimizing geodesics in M̃ joining
p̃ to the cut point q̃0 ∈ C(p̃). In particular this means that if σ̃ is any minimizing
geodesic joining p̃ to q̃0, then Lõ(σ̃

↓(t)) ≤ Lõ(σ̃(t)) ≤ Lõ(σ̃
↑(t)) for all t ∈ [0, t0]. By

Lemma 9.2 we have the following inequalities:

(4.1) (Lõ ◦ σ̃↑)′(t0) ≤ (Lõ ◦ α)′+(t0) ≤ (Lõ ◦ σ̃↓)′(t0)
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where α is the arc joining q̃0 to the trunk. Moreover the inequalities are strict when
σ̃↓ 6= σ̃↑.

Note that generally σ̃↓ 6= σ̃↑, except in the case that q̃0 is an endpoint of C(p̃),
and even then only if there is only one minimizing geodesic joining p̃ to q̃0.

Lemma 4.6. Assume that there exists an ǫ > 0 such that Lo(σ(t)) ≥ Lõ(σ̃
↑(t)) for

all t0 − ǫ ≤ t ≤ t0. Suppose either

(1) σ̃↓ 6= σ̃↑, or
(2) σ̃↓ = σ̃↑ and (Lo ◦ σ)′−(t0) < (Lõ ◦ σ̃↑)′(t0).

Then (Lo ◦ σ)′+(t0) < (Lõ ◦ α)′+(t0) and the encounter at q0 is not bad.

Proof. We have the following string of inequalities.

(4.2) (Lo ◦ σ)′+(t0) ≤ (Lo ◦ σ)′−(t0) ≤ (Lõ ◦ σ̃↑)′(t0) ≤ (Lõ ◦ α)′+(t0).
For the first inequality see [8, Corollary 2.3]. The second is a consequence of the
assumption, and the third follows from equation (4.1). In case (1) the third inequality
is strict because of equation (4.1), and in case (2) the second inequality is strict.
Hence q0 is not a bad encounter by Lemma 4.4. �

Definition 4.7. Say that σ approaches q̃0 ∈ C(p̃) from the far side of the cut locus
if there exists an ǫ > 0 such that Lo(σ(t)) > Lõ(q̃) for all t0 − ǫ < t < t0 whenever
q̃ ∈ C(p̃) with d(p̃, q̃) = t and the arc in the cut locus connecting q̃ to the trunk
passes through q̃0.

Remark 4.8. It is vacuously true that if q̃0 is an endpoint of a branch of C(p̃), then
σ approaches q̃0 from the far side of the cut locus. This definition is adapted from
the notion of “intersecting positively”in [9].

Lemma 4.9. Suppose that σ approaches q̃0 from the far side of the cut locus, and
that for each 0 < t < t0, there exists a corresponding Alexandrov triangle for every
triangle △opσ(t). Then Lo(σ(t)) ≥ Lõ(σ̃

↑(t)) for all 0 ≤ t ≤ t0 where σ̃↑ is the
uppermost geodesic joining p̃ to q̃0.

Proof. Because σ approaches q̃0 from the far side, the minimizing geodesics σ̃t join-

ing p̃ to F̃−1(F (σ(t))) converge to σ̃↑ as t approaches t0. Moreover, Lo(σ(t)) =
Lõ(σ̃

t(t)) ≥ Lõ(σ̃
↑(t)) for each 0 < t < t0 because of Alexandrov convexity. �

5. Triangle Comparison

Here we will prove that if the model surface M̃ has weaker radial attraction than
M and if every minimizing geodesic emanating from p has no bad encounters with

the cut locus of p̃ in M̃ , then for every q ∈ M and geodesic triangle △opq in M ,

there exists a corresponding geodesic triangle △õp̃q̃ in M̃ satisfying:
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(1) d(o, p) = d(õ, p̃), d(o, q) = d(õ, q̃), d(p, q) = d(p̃, q̃);
(2) d(õ, σ̃(t)) ≤ d(o, σ(t)) ∀t ∈ [0, d(p, q)];
(3) ∡p̃ ≤ ∡p, ∡q̃ ≤ ∡q;
(4) ∡õ ≤ ∡o;
(5) d(p̃, γ̃(s)) ≤ d(p, γ(s)) ∀s ∈ [0, d(o, q)].

Remark 5.1. The point p̃ is chosen on the 0–meridian so that d(o, p) = d(õ, p̃) is

automatic. The point q̃ ∈ M̃+ satisfying (1) exists and is unique if and only if F (q)

lies in the image of F̃ .

As in previous sections d(o, p) will be denoted by r0. The proof will be broken
down into a sequence of lemmas.

Lemma 5.2. Given a geodesic triangle △opq in M with F (q) ∈ F̃ (M̃), suppose
the reference point F (q) = (x, y) lies on the boundary, that is, either x + y = r0,
y−x = −r0 or y−x = r0. Then there exists a corresponding triangle △õp̃q̃ satisfying
(1), (2), (3), (4) and (5).

Proof. Consider each case separately. Assume first that x + y = r0. Then σ · γ−1

forms a minimizing geodesic joining p to o, and q̃ lies on τ̃ joining õ to p̃. Hence
∡p̃ = 0 ≤ ∡p, ∡õ = 0 ≤ ∡o, and ∡q̃ = π = ∡q. Moreover, d(õ, σ̃(t)) = r0 − t =
d(o, σ(t)) and d(p̃, γ̃(s)) = r0 − s = d(p, γ(s)).

Assume next that y = x − r0. Then τ−1 · γ is a minimizing geodesic joining p
to q and õ lies on σ̃ joining p̃ to q̃. Hence ∡p̃ = 0 ≤ ∡p, ∡õ = π = ∡o, and
∡q̃ = 0 ≤ ∡q. Moreover, by the triangle inequality, d(õ, σ̃(t)) = |r0 − t| ≤ d(o, σ(t))
and d(p̃, γ̃(s)) = r0 + s = d(p, γ(s)).

Lastly assume y = x+ r0. Thus τ · σ is a minimizing geodesic joining o to q and
p̃ lies on γ̃ joining õ to q̃. Hence ∡p̃ = π = ∡p, ∡õ = 0 ≤ ∡o, and ∡q̃ = 0 ≤ ∡q.
Moreover, by the triangle inequality, d(õ, σ̃(t)) = r0 + t = d(o, σ(t)) and d(p̃, γ̃(s)) =
|r0 − s| ≤ d(p, γ(s)). �

Lemma 5.3. Given a geodesic triangle △opq in M with F (q) = (x, y) ∈ F̃ (M̃),
suppose that F (σ(t)) = (x′, y′) such that either x′ + y′ = r0 or y − x = y′ − x′ for
some t ∈ (0, d(p, q)). Then there exists a corresponding triangle △õp̃q̃ satisfying (1),
(2), (3), (4) and (5).

Proof. We will show that the hypothesis implies that either x+ y = r0, y− x = −r0
or y − x = r0 and then apply Lemma 5.2. First suppose x′ + y′ = r0, that is,
d(p, σ(t)) + d(σ(t), o) = d(p, o). Then σ(t) lies on a minimizing geodesic joining o to
p. Thus either q lies between p and o on this geodesic, that is, x+y = r0, or o lies on σ,
that is x−y = r0. Next suppose y−x = y′−x′, that is, d(o, q) = d(o, σ(t))+d(σ(t), q).
Then σ(t) lies on a minimizing geodesic joining o to q. Thus either, p lies between o
and q on this geodesic, that is, y − x = r0, or o lies on σ, that is, x = r0 + y. �
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The two preceding lemmas treat the degenerate cases. They require neither the
hypothesis of weaker radial attraction nor that of no bad encounters. The following
lemma is where these hypotheses are employed.

Lemma 5.4. Assume that M̃ has weaker radial attraction than M . Given a geodesic

triangle △opq in M with F (q) ∈ F̃ (M̃), suppose that σ has no bad encounters with

the cut locus of p̃. Then there exists a triangle △õp̃q̃ in M̃ satisfying (1), (2), and
(3).

Proof. Because F (q) ∈ F̃ (M̃), there exists a unique q̃ ∈ M̃+ such that F̃ (q̃) =
F (q) = (x0, y0). By Lemma 5.3 we may assume that for all t ∈ (0, d(p, q)),

(5.1) x′ + y′ > r0 and y0 − x0 < y′ − x′

where F (σ(t)) = (x′, y′).
Choose σ̃ to be the unique minimizing geodesic joining p̃ to q̃ if q̃ /∈ C(p̃) or

lowermost one if q̃ ∈ C(p̃). Let γ̃ be the arc of the meridian joining õ to q̃. These
choices determine the triangle △õp̃q̃. We must prove d(õ, σ̃(t)) ≤ d(o, σ(t)) for all
t ∈ [0, d(p, q)].

Set f(t) = d(o, σ(t)) for 0 ≤ t ≤ d(p, q), and define a family of functions fφ(t)
for 0 ≤ t ≤ d(p, q) where 0 ≤ φ ≤ ∡p̃ as follows: Given 0 ≤ φ ≤ ∡p̃, consider the
curve ςφ previously described in Definition 2.3. This curve initially emanates from p̃
travelling along the geodesic σ̃φ until, if and when, it meets a cut point at t = τφ,
after which it travels along the arc of the cut locus joining that point to the trunk. By
construction, the lowermost geodesic σ̃ joining p̃ to q̃, satisfies σ̃(t) = ς∡p̃(t) = σ∡p̃(t)

for 0 ≤ t ≤ d(p, q). Consequently, if 0 ≤ φ < ∡p̃, then the curve F̃ (ςφ) is below F̃ (σ̃)
on the interval [0, d(p, q)], so that there exists a parameter value ťφ ∈ (0, d(p, q))

where F̃ (ςφ) crosses the line y− x = y0 −x0 = d(0, q)− d(p, q) in the reference space

F̃ (M̃). This leads to the definition for each 0 ≤ φ ≤ ∡p̃,

fφ(t) =

{
d(õ, ςφ(t)) if 0 ≤ t ≤ ťφ
t + d(o, q)− d(o, p) if ťφ ≤ t ≤ d(p, q).

Thus fφ(t) is continuous in φ and t. Moreover f∡p̃(t) = d(õ, σ̃(t)). Therefore our goal
is to prove f∡p̃(t) ≤ f(t) for 0 ≤ t ≤ d(p, q).

By equation (5.1), we have that f0(t) < f(t) for 0 < t < d(p, q), f ′
0(0) = −1 <

f ′(0), and fφ(t) < f(t) for ťφ ≤ t < d(p, q) and 0 ≤ φ < ∡p̃.
Set

φ̄ = sup{0 ≤ φ ≤ ∡p̃ : f ′
φ(0) < f ′(0) and fφ(t) < f(t) for 0 < t < d(p, q)}.

If φ̄ = ∡p̃, then f∡p̃ ≤ f which proves property (2). So suppose that φ̄ < ∡p̃. Then
by continuity and compactness, fφ̄(t) ≤ f(t) for all t and either f ′

φ̄
(0) = f ′(0) or
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there exists a 0 < t̄ < d(p, q) such that fφ̄(t̄) = f(t̄). Were such a t̄ to exist, we
would have 0 < t̄ < ťφ̄ because of (5.1). Thus either ςφ̄(t̄) is a cut point of C(p̃),
or it lies on σ̃φ. In the first case, σ has an encounter with C(p̃) at the parameter t̄.
Because there are no bad encounters, f(t) ≤ fφ̄(t) for all t̄ ≤ t ≤ ťφ̄ by Proposition
4.2 which contradicts f(ťφ̄) > fφ̄(ťφ̄). Thus t̄ must be a parameter value along σ̃φ̄.
But then applying Proposition 3.6(3) with σ and σ̃φ̄, it follows that f(t) = fφ̄(t) for
all 0 ≤ t ≤ min(τφ̄, ťφ̄). Depending upon which of τφ̄ or ťφ̄ is the smaller, this leads
either to an encounter with the cut locus at t = τφ̄ which leads to a contradiction
as above or to f(ťφ̄) = fφ̄(ťφ̄) which is impossible. Hence there is no such t̄, and
we would have the case f ′

φ̄
(0) = f ′(0). But by Proposition 3.6(1), this again leads

to f(t) = fφ̄(t) for all 0 ≤ t ≤ min(τφ̄, ťφ̄) which we just saw was impossible. This
completes the proof of property (2).

The angle comparison (3) follows from Alexandrov convexity from o by [8, Lemma
4.6]. �

Lemma 5.5. Given a geodesic triangle△opq inM , let γ : [0, d(o, q)] → M be the side
joining o to q, and set qs = γ(s). Consider the family of triangles of the form △opqs
for s ∈ (0, d(o, q)]. Suppose each such △opqs has a corresponding triangle △õp̃q̃s
satisfying (1), (2), and (3). Then there exists a triangle △õp̃q̃ in M̃ satisfyling (1),
(2), (3), (4), and (5).

Remark 5.6. By Lemma 5.4, the hypothesis is satisfied if M̃ has weaker radial at-

traction than M , F (qs) ∈ F̃ (M̃) for all s, and every minimizing geodesic emanating
from p has no bad encounters with the cut locus of p̃.

Proof. Set θ̂(s) = θ(F̃−1(F (qs))) where θ is the coordinate on M̃
+. It will be enough

to show that θ̂ is a nonincreasing function. Since θ̂ is continuous, this will be accom-

plished by showing that that the lower left Dini derivates of θ̂ satisfy D−θ̂(s) ≤ 0

for all 0 < s ≤ d(o, q). We will show the assumption D−θ̂(s0) = 2c0 > 0 for some s0
leads to a contradiction. Observe that F (qs0) does not lie on the upper left, or lower

left boundary lines of F̃ (M̃) since then θ̂(s0) = 0 which is the absolute minimum

value of θ̂ which would imply that D−θ̂(s0) ≤ 0. Also F (qs0) does not lie on the
lower right boundary line, y = x + r0 since then, by Lemma 2.1, we would have

F (s) lying on that line for all s ≤ s0. In other words θ̂(s) = π for all s ≤ s0 which

would imply the D−θ̂(s0) = 0. This leaves two possibilities, F (s0) = (x0, y0) satisfies
−r0 < y0 − x0 < r0 and either (i) r0 < x0 + y0 < 2ℓ − r0 or (ii) x0 + y0 = 2ℓ − r0
where ℓ ∈ (0,∞] is the maximum radius of M̃ .
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Now D−θ̂(s0) = 2c0 > 0 implies that

θ̂(s0 − h)− θ̂(s0)

−h > c0

or equivalently θ̂(s0)− θ̂(s0 − h) > c0h for all sufficiently small h > 0. Thus in case
(i), [8, Corollary 3.4] implies that there exists a C > 0 such that

(5.2) Lp̃(µ(s0 − h))− Lp̃(q̃s0−h) ≥ C(θ̂(s0)− θ̂(s0 − h)) ≥ Cc0h

for all sufficiently small h > 0, where µ is the meridian passing through q̃s0. On the
other hand, since µ(s0) = q̃s0, the left-hand side of (5.2) is equal to

Lp̃(µ(s0 − h))− Lp̃(µ(s0))− (Lp̃(q̃s0−h)− Lp̃(q̃s0))

= Lp̃(µ(s0 − h))− Lp̃(µ(s0))− (Lp(γ(s0 − h))− Lp(γ(s0)))

which combines with (5.2) to obtain

Lp̃(µ(s0 − h))− Lp̃(µ(s0))

−h − Lp(γ(s0 − h))− Lp(γ(s0))

−h ≤ −Cc0.

Thus taking the limit as h→ 0+ gives

(Lp̃ ◦ µ)′−(s0)− (Lp ◦ γ)′−(s0) ≤ −Cc0 < 0.

which is equivalent to

cos(∡q̃s0)− cos(∡qs0) < 0

contradicting ∡q̃s0 ≤ ∡qs0, since cosine is strictly decreasing on [0, π].
Case (ii) cannot occur. If it could, then ℓ would have to be finite. Thus we would

have θ̂(s0) = π and for all sufficiently small h > 0, θ̂(s0−h) < θ̂(s0) = π. Hence q̃so−h
would be in the interior of the reference space, but we have proved in case (i) that θ̂

is a nonincreasing function at such points making it impossible for θ̂ to increase to
the value π. �

Lemma 5.7. Assume that M̃ has weaker radial attraction than M , and that every
minimizing geodesic emanating from p has no bad encounters with the cut locus of

p̃. Suppose the geodesic triangle △opq has ∡o < π. Then F (q) ∈ F̃ (M̃), and there

exists a triangle △õp̃q̃ in M̃ satisfyling (1), (2), (3), (4), and (5).

Proof. Let γ be the side joining o to q. By Lemma 5.5 it suffices to prove that

F (γ(s)) = F (qs) ∈ F̃ (M̃) for all s ∈ [0, d(o, q)]. If this is not true, let s0 = inf{s :

F (qs) /∈ F̃ (M̃)}. By continuity of F , F (qs) ∈ F̃ (M̃) for 0 ≤ s ≤ s0. By Remark
5.6 we may apply Lemma 5.5 to △opqs0 to deduce that ∡õ ≤ ∡o < π. It follows

that F (qs0) is in the interior of F̃ (M̃). By continuity of F , there is an ǫ > 0 such
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that F (qs) is in the interior of F̃ (M̃) for |s− so| < ǫ which contradicts the choice of
s0. �

Lemma 5.8. Assume that M̃ has weaker radial attraction than M , and that every
minimizing geodesic emanating from p has no bad encounters with the cut locus of

p̃. Then F (M) ⊂ F̃ (M̃).

Proof. The set of q ∈ M such that there is a geodesic triangle of the form △opq
with ∡o < π is dense in M . By Lemma 5.7 for all such q, F (q) ∈ F̃ (M̃). Thus by

continuity of F and the fact that F̃ (M̃) is closed, F (M) ⊂ F̃ (M̃). �

This completes the proof of Theorem 1.3 except for the convexity condition about
τ . But, by symmetry on interchanging the roles of p and q, it follows from the one
about γ.

6. Examples

6.1. The λ–spheres M̃λ. Faridi and Schucking [4] studied a one parameter family
of rotationally symmetric Riemannian metrics on the two dimensional sphere that,
in geodesic polar coordinates (r, θ), take the form

(6.1) ds2λ = dr2 +
sin2(r)

1 + λ sin2(r)
dθ2.

For λ > −1, let M̃λ denote the surface with the metric (6.1). In particular M̃0 is the

2–sphere of constant curvature 1. The M̃λ make convenient model surfaces because
their geodesics have explicit formulas in terms of elementary functions.

According to [4], if σ(t) = (r(t), θ(t)) is the unit speed geodesic in M̃λ starting at
σ(0) = p̃ = (r0, 0) which is initially perpendicular to the meridian, then

r(t) = arccos(cos(r0) cos(tϕ0))

θ(t) = tϕ0λ sin(r0) + arctan

(
tan(tϕ0)

sin(r0)

)
(6.2)

where ϕ0 =
1√

1+λ sin2(r0)
and the branch of the inverse tangent is chosen appropriately.

More generally, one can verify that if the initial condition satisfies r(0) = r0 ∈ (0, π)
and r′(0) = ṙ0 ∈ [−1, 1], then

(6.3) r(t) = arccos

(
cos(r0) cos(tϕ)− ṙ0 sin(r0)

sin(tϕ)

ϕ

)
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where ϕ =
√

1+ṙ2
0
λ sin2(r0)

1+λ sin2(r0)
. Also by [4] the Gaussian curvature of M̃λ is given by the

formula

(6.4) Gλ(r) =
1 + 3λ− 2λ sin2(r)

(1 + λ sin2(r))2
.

The cut loci of points for a general class of surfaces of revolution, which include
the λ–spheres for λ ≥ −2

3
, are described in [22]. If λ > 0, then C(p̃) is an arc

in the opposite meridian θ = π containing the antipodal point (π − r0, π), while if
−2

3
< λ < 0, then C(p̃) is an arc contained in the parallel r = π − r0 containing

the antipodal point (π − r0, π). The results of [22] fail to apply when −1 < λ ≤ −2
3

because the Gaussian curvature (6.4) in not a monotone function for 0 < r < π
2

whenever λ is in this range. Fortunately, using (6.3), it is still true that, for all
−1 < λ < 0, C(p̃) is an arc contained in the parallel r = π − r0 containing the
antipodal point (π − r0, π). In this case, the endpoints of C(p̃) are found where the
geodesic (6.2) starting at p̃ perpendicularly to the meridian first meets the parallel
r = π − r0. This means that r(t) = π − r0 where tϕ0 = π. Hence solving for t, the

distance from p̃ to the endpoints of C(p̃) is t = π
√

1 + λ sin2(r0). Therefore, when

−1 < λ < 0, the reference space for M̃λ is the rectangle

{(x, y) : r0 ≤ x+ y ≤ 2π − r0,−r0 ≤ y − x ≤ r0},

and the image of the cut locus of p̃ in F̃ (M̃λ) is the horizontal line segment with

y = π − r0 and π
√
1 + λ sin2(r0) ≤ x ≤ π as pictured in Figure 4.
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Figure 4. F̃ (M̃λ) with cut locus for −1 < λ < 0 for r0 <
π
2
(left) and

r0 >
π
2
(right).
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Using equation (6.1) to calculate the Hessian of the distance function Lõ from the

vertex õ in M̃λ, one obtains

(6.5) ∇2Lõ =
cos(r)

sin(r)(1 + λ sin2(r))
(ds2λ − dr2)

in geodesic polar coordinates about õ.

6.2. Comparison of RP
n with λ–spheres. Let RP

n denote the real projective
n–space with its metric of constant sectional curvature 1. In a normal coordinate
system about a fixed origin o ∈ RP

n, its metric takes the form dr2+ sin2(r)dθ2n−1 for
0 < r < π

2
. Here dθ2n−1 denotes the standard metric on the unit (n− 1)–dimensional

sphere. If −1 < λ < 0 and 0 < r < π
2
, then 0 < 1 + λ sin2(r) ≤ 1. Thus

(6.6)
cos(r)

sin(r)
≤ cos(r)

sin(r)(1 + λ sin2(r))
.

With (6.5), this demonstrates that the Hessian of Lõ dominates that of Lo. Therefore

every λ–sphere M̃λ with −1 < λ < 0 has weaker radial attraction than RP
n.

Furthermore, none of the geodesics in RP
n have bad encounters with the cut loci

of M̃λ when −1 < λ < 0. The reason is simple. The distance of any point of RPn

to the origin o is never greater than π
2
. On the other hand the cut locus of any

point p̃ = (r0, 0) in M̃λ with r0 ≤ π
2
, being an arc in the co–parallel r = π − r0, is

at a distance π − r0 ≥ π
2
from õ. Suppose that σ is a geodesic emanating from a

point p in RP
n with d(p, o) = r0, then if r0 <

π
2
, σ cannot encounter any cut points,

while if r0 = π
2
, the existence of a bad encounter would lead to the contradiction

π
2
< Lo(σ(t

∗)) ≤ π
2
for some t∗. This is clear from Figure 5. Thus Theorem 1.3

applies to the pair M = RP
n and M̃ = M̃λ.

Remark 6.1. The preceding example is relevant to the version of the generalized
Toponogov theorem proved in the paper [9]: If the radial curvature ofM is bounded

from below by that of the model surface M̃ , then every geodesic triangle △opq has
a corresponding Alexandrov triangle △õp̃q̃ provided one also assumes the condition
that none of the local maxima of the distance function Lo restricted to the “ellipsoids”

E(o, p; r) = {x ∈M : d(o, x) + d(p, x) = r}
for d(o, p) < r are mapped to a cut point of p̃ under the reference map.

However, this condition is stronger than necessary. Let −1 < λ < −3
4
, then there

exists p, x ∈ RP
n satisfying d(o, p) = d(o, x) = π

2
and π

√
1 + λ < d(p, x) ≤ π

2
. Hence

x maps to a cut point of p̃ under the reference map and x is a local maximum of Lo
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Figure 5. F (RPn) ⊂ F̃ (M̃λ) for r0 <
π
2
(left) and r0 =

π
2
(right).

restricted to the ellipsoid E(o, p; d(o, x) + d(p, x)). Indeed, x is a global maximum of
Lo on RP

n. See Figure 5 (right). Thus corresponding Alexandrov triangles exist on
account of Theorem 1.3 without the condition about the ellipsoids being satisfied.

6.3. Comparison of spheres of constant curvature κ with the λ–spheres.
Another interesting family of examples can be obtained where Mκ is a sphere of
constant curvature κ.

Definition 6.2. Let 1 ≤ κ ≤ 4. Define

λ̂(κ) = max
π

2
<r< π√

κ

cot(r) tan(
√
κr)√

κ
− 1

sin2 r
.

Proposition 6.3. Let 1 ≤ κ ≤ 4. If λ̂(κ) ≤ λ ≤ 0, then the λ–sphere M̃λ has weaker
radial attraction that the n–sphere Mκ of constant sectional curvature κ.

Proof. By comparing the Hessians of the distance functions, M̃λ has weaker radial
attraction than Mκ, if and only if

(6.7)
cos(

√
κr)

sin(
√
κr)

√
κ ≤ cos(r)

sin(r)(1 + λ sin2(r))

for all 0 < r ≤ π√
κ
. However, assuming −1 < λ ≤ 0 and 1 ≤ κ ≤ 4, it is automatic

that

(6.8)
cos(

√
κr)

sin(
√
κr)

√
κ ≤ cos(r)

sin(r)
≤ cos(r)

sin(r)(1 + λ sin2(r))
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for 0 < r < π
2
. Consequently, inequality (6.7) only needs to hold for π

2
< r < π√

κ

when −1 < λ ≤ 0 and 1 ≤ κ ≤ 4. Noting that cos(
√
κr) is negative for π

2
< r < π√

κ
,

inequality (6.7) can be rewritten

(6.9) λ ≥
cot(r) tan(

√
κr)√

κ
− 1

sin2 r
when π

2
< r < π√

κ
which concludes the proof. �
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Figure 6. F (Mκ) ⊂ F̃ (M̃λ) with cut locus and the null curves s = 0

represented by overlaying Figure 3 on Figure 4. F̃ (C(p̃)) ∩ F (Mκ) is
empty for r0 ≤ π − π√

κ
(left) and contained in the region where s < 0

for π
2
< r0 <

π√
κ
(right) .

The function λ̂(κ) is easily computed numerically. See Table 1 for some approxi-
mate values.

Proposition 6.4. If 1 ≤ κ ≤ 4 and λ̂(κ) < λ < 0, then minimizing geodesics in Mκ

do not have any bad encounters with the cut loci in M̃λ.

Proof. Let r0 = d(p, o) with 0 < r0 <
π√
κ
.

If 0 < r0 ≤ π− π√
κ
, then no minimizing geodesic emanating from p encounters the

cut locus because π√
κ
< π − r0 shows F̃ (C(p̃)) is disjoint from F (Mκ). See Figure 6

on the left.
When π− π√

κ
< r0 <

π√
κ
, the cut locus intersects F (Mκ) only if π

√
1 + λ sin2 r0 ≤

2π√
κ
− π, or equivalently, λ sin2 r0 ≤ 4

κ
− 4√

κ
. One may verify that λ̂(κ) < 4

κ
− 4√

κ
for
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Figure 7. F (Mκ) ⊂ F̃ (M̃λ) with cut locus and the null curves s = 0
for π − π√

κ
< r0 < π

2
√
κ
(lower left), r0 = π

2
√
κ
(upper middle), and

π
2
√
κ
< r0 <

π
2
(lower right). F̃ (C(p̃)) ∩ F (Mκ) is always contained in

the region where s < 0.

all 1 < κ < 4. (See Table 1.) Thus for every 1 < κ < 4 and λ̂(κ) ≤ λ ≤ 4
κ
− 4√

κ
,

some geodesics emanating from p will encounter the cut locus as long as r0 is close
enough to π

2
. However, by Lemma 4.4, none of these encounters are bad because the

cut locus never extends far enough into F (Mκ) to meet the region where the slope
field satisfies s > 0 and in fact remains in the region where s < 0. In order to see
this there are two cases to consider.

In the first case suppose π− π√
κ
< r0 <

π
2
. There are three possible configurations

pictured in Figure 7. Using (2.1) to solve the equation s(x, y) = 0 for x with y =
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π − r0, one finds that the cut locus does not cross the null curve of s as long as

(6.10)
1√
κ
cos−1

(
cos(

√
κr0)

cos(
√
κ(r0 − π))

)
< π

√
1 + λ sin2 r0.

Inequality (6.10) may be rearranged into the equivalent inequality

(6.11)

(
1

π
√
κ
cos−1

(
cos(

√
κr0)

cos(
√
κ(r0−π))

))2

− 1

sin2(r0)
< λ.

By setting µ̂(κ) equal to the supremum of the left–hand side of inequality (6.11) for

π − π√
κ
< r0 <

π
2
, one can verify that µ̂(κ) < λ̂(κ) for all 1 < κ < 4. (See Table 1.)

Since λ̂(κ) ≤ λ < 0, inequality (6.11) and hence (6.10) will be satisfied.

In the second case, suppose π
2
< r0 <

π√
κ
. Then every point of F̃ (M̃λ) on the

horizontal line y = π − r0 is contained in the region with s < 0. See the right part
of Figure 6.

�

Table 1. Values of λ̂ and µ̂ rounded to 5 places.

√
κ µ̂(κ) λ̂(κ) 4

κ
− 4√

κ

1.0 0 0 0
1.1 -.74446 -.50881 -.33058
1.2 -.88571 -.74151 -.55556
1.3 -.94333 -.85889 -.71006
1.4 -.97071 -.92212 -.81633
1.5 -.98480 -.95764 -.88889
1.6 -.99238 -.97803 -.93750
1.7 -.99651 -.98968 -.96886
1.8 -.99869 -.99607 -.98765
1.9 -.99972 -.99914 -.99723
2.0 -1 -1 -1

7. Topological Applications

7.1. A Sphere Theorem. In view of Theorem 1.5 it seems reasonable to think
that if the maximal distance is close enough to ℓ then M should be homeomorphic
to a sphere. Such a result which generalized the Grove–Shiohama Sphere Theorem
is proved in [14] under the assumption that the model surface is Von Mangoldt and
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bounds the radial curvature of M from below. This result can be adapted to our
situation. A preliminary lemma is needed to state this result.

Lemma 7.1. Let M̃ be a compact model surface with metric ds2 = dr2 + y(r)2dθ2,
for 0 ≤ r ≤ ℓ <∞. Then there exist 0 < R < R∗ < ℓ such that

(1) y(R) = y(R∗).
(2) y(r) > y(R) for R < r < R∗.
(3) y is strictly increasing on [0, R] and strictly decreasing on [R∗, ℓ].
(4) If 0 < r0 < R and γ = (r(t), θ(t)) is a geodesic starting at (r0, 0) perpen-

dicularly to the meridian, then γ eventually meets the parallel r = R∗ at a
parameter value t0 with θ(t0) >

π
2
.

Proof. Because y(0) = 0 = y(ℓ), y′(0) = 1, y′(ℓ) = −1, and y(r) > 0 for 0 < r < ℓ,
it clearly follows that if R is sufficiently close to 0, then there exists an R∗ close
to ℓ satisfying (1), (2) and (3). Assuming (1), (2) and (3), if 0 < r0 < R and
γ = (r(t), θ(t)) is a geodesic starting at (r0, 0) perpendicularly to the meridian, then
r(t) increases until it reaches the value r1 where y(r1) = y(r0). By (1), (2) and (3),
r1 > R∗. Thus there exists a t0 with r(t0) = R∗. To complete the proof it suffices
to show how to pick R small enough so that θ(t0) >

π
2
also holds. Observe that if R

approaches 0, then R∗ will approach ℓ.

Let σ be the unit speed geodesic through the origin õ of M̃ whose trace is the
union of the two meridians θ = 0 and θ = π. Assume σ is oriented so that θ(σ(s))
is equal to 0 for s > 0 and to π for s < 0. Consider the one–parameter family of
geodesics γs such that γs(0) = σ(s) and γ′s(0) is the unit vector perpendicular to σ

that points into M̃+. In particular, γ0 is the meridian θ = π
2
. The variation vector

field of this one–parameter family restricts to the Jacobi field Z along γ0 satisfying
the initial conditions Z(0) = σ′(0) and Z ′(0) = 0. Thus Z is perpendicular to γ0.
Let P (r) denote the parallel unit vector field perpendicular to γ0 along γ0 of the form
P (r) = 1

y(r)
∂
∂θ

for 0 < r < ℓ. Then Z(r) = z(r)P (r) for 0 ≤ r ≤ ℓ, where z(r) is a

function satisfying z(0) = −1 and z′(0) = 0. Because the first focal point of σ along
γ0 must occur before the first conjugate point of σ(0), there exists an 0 < r1 < ℓ
such that z(r1) = 0. Since the zeros of a non–trivial Jacobi field are simple, it follows
that z(r) changes sign at r = r1. Therefore if r2 is chosen a little bit larger than
r1, then for all sufficiently small s, the geodesics γs will cross γ0 at some parameter
value r < r2. Thus there exists a small R > 0 so that the theta coordinates satisfy
θ(γs(r2)) >

π
2
for all 0 < s < R, that is, γs must cross the θ = π

2
meridian. Therefore

(4) is satisfied by choosing R small enough to ensure that r2 < R∗. �

Proposition 7.2. Let M̃ be a compact model surface, and let R and R∗ be chosen

as in Lemma 7.1. Suppose that M̃ has weaker radial attraction than M and that
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the geodesics in M have no bad encounters with the cut loci of M̃ . If there exists a
point p ∈M with distance d(o, p) > R∗ such that o is a critical point for the distance
function from p, then M is homeomorphic to a sphere.

Proof. On account of Theorem 1.5, we may assume Lo attains its maximum value
rmax with R

∗ < rmax < ℓ. Because of Lemma 7.1(3), y is strictly decreasing on [R∗, ℓ].

Hence for each R∗ ≤ r ≤ ℓ, the geodesic ball {x ∈ M̃ : d(õ, x) ≥ r} is strictly convex.
Therefore, the maximum of Lo is attained at a unique point ofM . For if it is attained
at two points x1 and x2, then let △õx̃1x̃2 be the Alexandrov triangle corresponding

to △ox1x2. Thus by the strict convexity of the ball {x ∈ M̃ : d(õ, x) ≥ rmax} and by
Alexandrov convexity, we obtain the contradiction

rmax < d(õ, σ̃(t)) ≤ d(o, σ(t)) ≤ rmax

for 0 < t < d(x1, x2) where σ and σ̃ are the corresponding sides of △ox1x2 and
△õx̃1x̃2 respectively. Therefore the maximum of Lo is attained at a unique point
x0 ∈M .

Now there are no critical points of Lo in the set {x ∈ M : d(o, x) ≥ R∗} other
than x0. If there were, let q be another critical point. Let σ be a minimizing
geodesic joining x0 to q. Since x0 and q are critical points of Lo, we may pick
minimizing geodesics τ from o to x0 and γ from o to q so that ∡x0 ≤ π

2
and ∡q ≤ π

2
.

Consider the geodesic triangle △ox0q and the corresponding Alexandrov triangle
△õx̃0q̃. Because R∗ ≤ d(õ, q̃) < d(õ, x̃0), the geodesic σ̃ is contained in the convex

disk {x ∈ M̃ : d(õ, x) ≥ d(õ, q̃)}. Thus its tangent vector at q̃ points into the disk.
On the other hand γ̃ is a segment of the meridian starting at õ and thus its tangent
vector points out of the ball at q̃ and is in fact perpendicular to the boundary of
the disk. Therefore ∡q̃ > π

2
which contradicts the top angle comparison ∡q̃ ≤ ∡q.

Therefore there are no critical points of Lo in the set {x ∈ M̃ : d(õ, x) ≥ R∗} other
than x0.

Next we show that there are no critical points of Lo in the geodesic ball {x ∈M :
d(o, x) ≤ R∗} other than o. Here we use the hypothesis that o is a critical point of
p. Suppose there exists a critical point q of Lo with 0 < d(o, q) ≤ R∗. We construct
a geodesic triangle △opq in the following way. Let σ be any minimizing geodesic
joining p to q. Since q is a critical point of Lo, we may choose a minimizing geodesic
γ joining o to q so that ∡q ≤ π

2
. Finally since o is assumed to be a critical point of

the distance function from p, we may choose τ joining o to p such that ∡o ≤ π
2
. Let

△õp̃q̃ be the Alexandrov triangle corresponding to △opq. The geodesic σ̃ joining p̃
to q̃ makes an angle ∡q̃ ≤ ∡q ≤ π

2
with the meridian γ̃ joining õ to q̃. Because σ̃

starts at a point in {x ∈ M̃ : d(õ, x) > R∗}, by Lemma 7.1(2), σ̃ must enter the set

{x ∈ M̃ : d(õ, x) < R} and attain a closest distance r0 < R to õ before reaching q̃.
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Thus σ̃ contains a segment which is perpendicular to a meridian at distance r0 < R
from õ and extends to a point at distance R∗ from õ. Hence by Lemma 7.1(4), the
coordinate θ along σ̃ increases by more than π

2
along σ̃. Therefore ∡õ > π

2
which

contradicts the angle comparison at the base, ∡õ ≤ ∡o.
The non-existence of critical points of Lo in {x ∈ M : 0 < d(o, x) < rmax} implies

that M is homeomorphic to a sphere by [6]. �

7.2. Topological Ends.

Proposition 7.3. Let M̃ be a noncompact model surface with metric dr2+ y(r)2dθ2

for 0 < r <∞. Suppose that M̃ has weaker radial attraction than M and that mini-

mal geodesics inM have no bad encounters with cut loci in M̃ . If lim infr→∞
y(r)
r
< 2

π
,

then M has at most one end.

Proof. Assume that M has at least two ends. Then there exists a geodesic line
σ : R → M , that is, d(σ(t), σ(s)) = |s − t| for all s, t ∈ R. We can assume that
σ(0) is the closest point to o, and d0 = d(o, σ(0)). Let t > 0 and set σ(−t) = p and
σ(t) = q. Thus d(p, q) = 2t and by the triangle inequality we have

t− d0 ≤ d(o, p) ≤ t+ d0
t− d0 ≤ d(o, q) ≤ t + d0.

(7.1)

Let△õp̃q̃ denote the Alexandrov triangle corresponding to△opq. Then 2t = d(p̃, q̃) ≤
2d0+πy(t) if t > d0 because p̃ and q̃ can both be connected to a point on the parallel
r = t by a meridian segment of length at most d0, and the distance between these
two points on the parallel is at most half the length of the parallel, that is, πy(t). In

other words, 2
π
≤ 2d0

tπ
+ y(t)

t
. This leads to the contradiction: lim inft→∞

y(t)
t

≥ 2
π
. �

Remark 7.4. Any condition that precludes the existence of a geodesic line in M̃ , e.g.
positive total curvature, could also be used in Proposition 7.3. See [14].

8. Generic Geodesics

Let M be a complete n–dimensional Riemannian manifold with base point o.
Recall that the cut locus C(o) of o is the union of a closed singular subset S, whose
Hausdorff (n−1)– dimensional measure is zero, and a relatively open regular subset R
which is a smooth (n−1)–dimensional submanifold ofM . The elements of S are either
conjugate cut points or cut points joined to o by at least three minimizing geodesics,
while the elements of R are cut points joined to o by exactly two nonconjugate
minimizing geodesics. At a regular cut point, the tangent plane to R makes the
same angle with both of these geodesics.
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Definition 8.1. A minimizing geodesic σ from p ∈ M to q ∈ M is generic if the
interior of σ is transverse to R and disjoint from S. This allows either endpoint p
or q to be in C(o). A geodesic triangle △opq is generic if the side σ joining p to q is
generic.

Proposition 8.2. The generic minimizing geodesics emanating from p are dense.

Proof. Let Σp ⊂ TpM denote the (n− 1)–dimensional sphere of unit tangent vectors
at p. The map Υ : M\(C(p) ∪ {p}) → Σp defined by Υ(q) = σ′

q(0) where σq is
the unique minimizing geodesic joining p to q /∈ C(p) ∪ {p}, is smooth and hence
locally Lipschitz. Thus the Hausdorff (n− 1)–dimensional measure of Υ(S) is zero,
and, by Sard’s Theorem, the set of critical values of the restriction Υ|R has (n− 1)–
dimensional measure zero as well. Clearly, if Υ(q) is not a critical value of Υ|R, then
σq is transverse to R, and if also Υ(q) /∈ Υ(S) then σq is disjoint from S. The set
of all such q have n–dimensional measure zero in M . Thus the generic minimizing
geodesics emanating from p are dense. �

Proposition 8.3. Let σ : [0, l] → M be a generic minimizing geodesic emanating
from p. The two–sided derivative (Lo ◦ σ)′(t) exists for all 0 < t < l, if and only if
the interior of σ is disjoint from C(o).

Proof. By [8, Corollary 2.3], the two–sided derivative (Lo ◦ σ)′(t) exists if and only
if every minimizing geodesic from o to σ(t) makes the same angle with the tangent
vector σ′(t). Thus if σ(t) /∈ C(o) then (Lo ◦ σ)′(t) exists because there is only one
minimizing geodesic from o to σ(t). Conversely, if (Lo ◦σ)′(t) exists and σ(t) ∈ C(o),
then, since σ is generic, σ(t) ∈ R. Hence there are exactly two minimizing geodesics
from o to σ(t), and they make the same angle with σ′(t). This implies that σ′(t)
is tangent to R which contradicts the transversality condition in the definition of
generic geodesics. Therefore the existence of (Lo ◦ σ)′(t) implies σ(t) /∈ C(o). �

Proposition 8.4. Let σ : [0, l] → M be a generic minimizing geodesic emanating
from p. Then limt→t+

0
(Lo ◦ σ)′+(t) = (Lo ◦ σ)′+(t0) for all t0 ∈ (0, l).

Proof. If σ(t0) ∈ C(o), then σ(t0) is a regular cut point. In case σ(t0) ∈ C(o), let
γ0 be the minimizing geodesic joining o to σ(t0) such that the tangent vectors σ′(t0)
and γ′0 point to opposite sides of R. Otherwise, let γo be the unique minimizing
geodesic joining o to σ(0). Thus the (Lo ◦ σ)′+(t0) is equal to the cosine of the angle
between σ and γ0. Let tk be a decreasing sequence converging to t0 as k → ∞, and
let γk be a minimizing geodesic joining o to σ(tk) chosen so that the cosine of the
angle between σ and γk is equal to (Lo ◦ σ)′+(tk). Then clearly, γk converges to γ0 as
k → ∞. Therefore limt→t+

0
(Lo ◦ σ)′+(t) = (Lo ◦ σ)′+(t0). �

Theorem 8.5. Let (M, o) be a pointed Riemannian manifold and (M̃, õ) a model

surface having weaker radial attraction than (M, o). Let p ∈ M and let p̃ ∈ M̃ be
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the point on the 0–meridiam with d(p̃, õ) = d(p, o). Assume that every minimizing
geodesic emanating from p approaches the cut locus of C(p̃) from the far side. Then
for every geodesic triangle △opq there exists a corresponding Alexandrov triangle

△õp̃q̃ in M̃ .

Proof. We first prove this for generic triangles. Given △opq, suppose the side σ
joining p to q is generic. By Lemma 5.4 it suffices to show that σ has no bad
encounters with the cut locus. Let t0 be the supremum of all t such that σ|[0, t]
has no bad encounters. Certainly, if t0 = d(p, q) then σ has no bad encounters. Let
us assume t0 < d(p, q) and deduce a contradiction. It follows that σ must have an
encounter with the cut locus at t0, for otherwise would contradict the choice of t0.
Since σ approaches C(p̃) from the far side, Lemma 4.9 implies

Lo(σ(t)) ≥ Lõ(σ̃
↑
0(t)) for all 0 ≤ t ≤ t0

where σ̃↑
0 is the uppermost minimizing geodesic joining p̃ to q̃0 = F̃−1(F (σ(t0))). Let

α0 be the arc in the cut locus joining q̃0 to the trunk. We claim

(8.1) (Lo ◦ σ)′+(t0) < (Lõ ◦ α0)
′
+(t0).

There are two cases to consider. Let σ̃↓
0 denote the lowermost minimizing geodesic

from p̃ to q̃0. If σ̃↑
0 6= σ̃↓

0, then (8.1) follows from Lemma 4.6. In case σ̃↑
0 = σ̃↓

0 ,
equation (8.1) holds as well. Because if it didn’t, then q̃0 would be conjugate to p̃

along σ̃0 = σ̃↑
0 = σ̃↓

0 and we would have

(8.2) (Lo ◦ σ)′+(t0) = (Lõ ◦ α0)
′
+(t0) = (Lõ ◦ σ̃o)′+(t0).

Consequently, by Proposition 3.6, Lo(σ(t)) = Lõ(σ̃0(t)) for all 0 ≤ t ≤ t0. Because
Lõ ◦ σ̃0 is differentiable, so is Lo ◦ σ. Thus by Proposition 8.3 the interior of σ|[0, t0]
is disjoint from C(o). Hence by Corollary 3.10 with Remark 3.12, σ|[0, t0] is not
conjugate free and so does not minimize past t0. This contradicts σ minimizing to
distance d(p, q). This establishes equation (8.1).

This also proves that the encounter at t0 is not bad by Lemma 4.4. We will
next show that there exists an ǫ > 0 such that there are no bad encounters at t
for t0 < t < t0 + ǫ which will contradict the choice of t0 assuming t0 < d(p, q). If
no such ǫ exists, then there is a decreasing sequence tk, k = 1, 2, 3, . . . , such that

limk→∞ tk = t0 and σ has a bad encounter at tk. For each k set q̃k = F̃−1(F (σ(tk)))

and let αk be the arc in C(p̃) joining q̃k to the trunk, and let σ̃↑
k and σ̃↓

k denote the
uppermost and lowermost minimizing geodesics joining p̃ to q̃k. By Lemma 9.2, for
each k,

(8.3) (Lõ ◦ σ̃↑
k)

′
+(tk) ≤ (Lõ ◦ αk)′+(tk) ≤ (Lõ ◦ σ̃↓

k)
′
+(tk).
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Clearly, both σ̃↑
k and σ̃↓

k converge to σ̃↓
0 , and by (8.3)

lim
k→∞

(
(Lõ ◦ αk)′+(tk)− (Lo ◦ σ)′+(tk)

)
= (Lõ ◦ σ̃↓

0)
′
+(t0)− (Lo ◦ σ)′+(t0)

≥ (Lõ ◦ α0)
′
+(t0)− (Lo ◦ σ)′+(t0)

> 0.

Thus for large enough k, (Lõ ◦ αk)′+(tk) > (Lo ◦ σ)′+(tk) so that by Lemma 4.4 the
encounters at tk are not bad after all. Thus there exists an ǫ > 0 such that there are
no bad encounters at t for t0 < t < t0 + ǫ contradicting the choice of t0. Therefore σ
has no bad encounters with the cut locus.

Now consider the general case. Suppose that △opq is a geodesic triangle in M .
Let σ be the side joining p to q. By Proposition 8.2, there exists a sequence of generic
triangles △opqk such that the sides σk joining p to qk converge to σ and are generic.
By the first part of the proof there exists a sequence of corresponding Alexandrov

triangles △õp̃q̃k in M̃ . By choosing a subsequence if necessary, we may assume that
the sides σ̃k joining p̃ to q̃k converge to a geodesic σ̃ joining p̃ to some point q̃. Thus
by Alexandrov convexity from the base

d(o, σ(t)) = lim
k→∞

d(o, σk(t)) ≥ lim
k→∞

d(õ, σ̃k(t)) = d(õ, σ̃(t))

for all 0 ≤ t ≤ d(p, q). Thus △õp̃q̃ is an Alexandrov triangle corresponding to
△opq. �

9. The slope field at cut points

Let M̃ be a model surface rotationally symmetric about õ. Fix p̃ ∈ M̃ , and let
q̃0 ∈ C(p̃). Let α be the arc in C(p̃) joining q̃0 to the trunk. Let ᾱ denote α
reparameterized by arclength s from q̃0. For each s ≥ 0 in the domain of ᾱ, let
σ̃↑
s and σ̃↓

s respectively denote the uppermost and lowermost minimizing geodesics
joining p̃ to ᾱ(s). Note that if ᾱ(0) = q̃0 is an endpoint of C(p̃), then it may happen

that σ̃↑
0 = σ̃↓

0, but otherwise σ̃
↑
s 6= σ̃↓

s if s > 0 since ᾱ(s) for s > 0 is not an endpoint
of C(p̃). From the construction we have for every s0 in the domain of ᾱ that

(9.1) lim
s→s+

0

σ̃↑
s = σ̃↑

s0
and lim

s→s+
0

σ̃↓
s = σ̃↓

s0
.

(The analogous left–hand limit does not hold at branch points of the cut locus.)
Define ψ↑(s) and ψ↓(s) to be the respective angles that the respective tangent vectors
to σ̃↑

s and σ̃↓
s makes with the meridian µ through ᾱ(s), specifically with +µ′. Set

(9.2) φ(s) =
ψ↑(s) + ψ↓(s)

2
.
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These three angles may be equal for s = 0, if q̃0 is an end point of the cut locus, but
if s > 0, then one has the strict inequality

(9.3) 0 < ψ↓(s) < φ(s) < ψ↑(s) < π.

By equations (9.1) and (9.2), ψ↓, ψ↑ and φ are continuous on the right. On the open
dense set of parameters s where ᾱ(s) is a regular cut point, ᾱ(s) is smooth and φ(s)
is the angle that the tangent vector ᾱ′(s) makes with the meridian through ᾱ(s)
because ᾱ′(s) makes the same angle with both σ̃↑

s and σ̃↓
s by [20].

At parameter values s where ᾱ(s) is a regular cut point, the first variation formula
gives:

(9.4) (Lõ ◦ ᾱ)′(s) = cos φ(s)

and

(Lp̃ ◦ ᾱ)′(s) = cos(φ(s)− ψ↓(s)) = cos(ψ↑(s)− φ(s))

= cos

(
ψ↑(s)− ψ↓(s)

2

)
> 0.(9.5)

Likewise, with t = d(p̃, ᾱ(s)),

(9.6) (Lõ ◦ σ̃↑
s)

′(t) = cosψ↑(s) and (Lõ ◦ σ̃↓
s )

′(t) = cosψ↓(s).

The curve α is the curve ᾱ parameterized by the distance t from the point p̃. Thus
dt
ds

= (Lp̃ ◦ ᾱ)′(s). Therefore by the chain rule and equations (9.4) and (9.5) we have

(9.7) (Lõ ◦ α)′(t) =
(Lõ ◦ ᾱ)′(s)
(Lp̃ ◦ ᾱ)′(s)

=
cosφ(s)

cos
(
ψ↑(s)−ψ↓(s)

2

) .

Lemma 9.1. If ᾱ(s) is a regular cut point and t = d(p̃, ᾱ(s)), then

(Lõ ◦ σ̃↑
s)

′(t) < (Lõ ◦ α)′(t) < (Lõ ◦ σ̃↓
s )

′(t).

Proof. The following trig identity is derived from the addition formula for the cosine:

(9.8) cos(A+B) = cos(2B− (B−A)) = cos(2B) cos(B−A)+ sin(2B) sin(B−A).

Thus,

(9.9)
cos(A+B)

cos(B −A)
= cos(2B) + sin(2B) tan(B − A).

On setting A = ψ↓(s)
2

and B = ψ↑(s)
2

, we have A+B = φ(s) and B −A = ψ↑(s)−ψ↓(s)
2

.
Therefore by (9.9)

(9.10)
cos(φ(s))

cos
(
ψ↑(s)−ψ↓(s)

2

) = cos(ψ↑(s)) + sin(ψ↑(s)) tan

(
ψ↑(s)− ψ↓(s)

2

)
.
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Clearly the second term on the right is strictly positive since ψ↓(s) 6= ψ↑(s) because
ᾱ(s), being a regular cut point, is not an end point. The inequality on the left now
follows from (9.10) on account of (9.5), (9.6) and (9.7). The inequality on the right

is proved similarly by setting A = ψ↑(s)
2

and B = ψ↓(s)
2

in (9.9) which leads to the
equation

(9.11)
cos(φ(s))

cos
(
ψ↑(s)−ψ↓(s)

2

) = cos(ψ↓(s))− sin(ψ↓(s)) tan

(
ψ↑(s)− ψ↓(s)

2

)
.

�

The next Lemma calculates the value of the slope field s(x, y) at x = t and
y = Lõ(α(t)).

Lemma 9.2. For every s in the domain of ᾱ, if t = d(p̃, ᾱ(s)), then the right–hand
derivative

(Lõ ◦ α)′+(t) = (Lõ ◦ σ̃↑
s )

′(t) + sin(ψ↑(s)) tan

(
ψ↑(s)− ψ↓(s)

2

)

= (Lõ ◦ σ̃↓
s )

′(t)− sin(ψ↓(s)) tan

(
ψ↑(s)− ψ↓(s)

2

)
.

In particular

(Lõ ◦ σ̃↓
s)

′(t) ≥ (Lõ ◦ α)′+(t) ≥ (Lõ ◦ σ̃↑
s )

′(t)

where both inequalities are strict if s > 0.

Proof. Since ᾱ is parameterized by arclength, it is a Lipschitz 1 curve. Thus Lp̃◦ᾱ and
Lõ◦ᾱ are Lipschitz 1 functions. Hence they are absolutely continuous. Consequently,
the derivatives (Lp̃ ◦ ᾱ)′(s) and (Lõ ◦ ᾱ)′(s) exist for almost all s. But for almost all s,
ᾱ(s) is a regular cut point, and at regular cut points, equations (9.4) and (9.5) hold.
Thus Lp̃◦ᾱ and Lõ◦ᾱ are absolutely continuous functions whose derivatives are equal
almost everywhere to functions which are continuous on the right everywhere. In
other words, they are indefinite Lebesgue integrals of functions which are continuous
on the right at every point. Thus their right–hand derivatives exist everywhere and
satisfy

(9.12) (Lõ ◦ ᾱ)′+(s) = cos φ(s)

and

(9.13) (Lp̃ ◦ ᾱ)′+(s) = cos

(
ψ↑(s)− ψ↓(s)

2

)
> 0.
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By the chain rule

(9.14) (Lõ ◦ α)′+(t) =
(Lõ ◦ ᾱ)′+(s)
(Lp̃ ◦ ᾱ)′+(s)

.

The result now follows from equations (9.6), (9.10), (9.11), (9.12), (9.13) and (9.14).
�
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Sci. Éc. Norm. Sup. 18 (1985) 651–670.
[2] A. Besse. Manifolds all of whose Geodesics are Closed, Springer Verlag, Berlin, Heidelberg,

New York, 1978.
[3] D. Elerath. Improved comparison theorem for nonnegatively curved manifolds, J. Differential

Geometry 15 (1980) 187–216.
[4] A. Faridi and E. Schucking. Geodesics and Deformed Spheres, Proc. A.M.S. 100 (1987)

522–525.
[5] R. Greene and H. Wu. Function Theory on manifolds which possess a pole, Lecture Notes

in Mathematics, 699, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[6] M. Gromov. Curvature, diameter, and Betti numbers. Comment. Math. Helv. 56 (1981),

179–195.
[7] J. Hebda. Meric structure of cut loci in surfaces and Amrose’s problem, J. Differential

Geometry 40 (1994) 621–642.
[8] J. Hebda and Y. Ikeda. Replacing the Lower Curvature Bound in Toponogov’s Comparison

Theorem by a Weaker Hypothesis, Tohoku Math. J. 69 (2017) 305–320.
[9] N. Innami, K. Shiohama, and Y. Uneme. The Alexandrov–Toponogov Comparison Theorem

for Radial Curvature. Nihonkai Math. J. 24 (2013) 57–91.
[10] Y. Ikeda. A generalized Toponogov’s comparison theorem, Thesis (Ph.D.)Saint Louis Uni-

versity. 1991.
[11] Y. Itokawa, Y. Machigashira, and K. Shiohama. Maximal diameter theorems for manifolds

with restricted radial curvature, Tohoku Math. Publ., 20 (2001) 61–68.
[12] Y. Itokawa, Y. Machigashira, and K. Shiohama. Generalized Toponogov’s Theorem for

manifolds with radial curvature bounded below. Contemporary Mathematics 332 (2003)
121–130.

[13] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, Vol. II,, Interscience
tracts in pure and applied mathematics 15, John Wiley: New York, 1967.

[14] K. Kondo and S. Ohta. Topology of Complete Manifolds with Radial Curvature Bounded
from Below, Geom. Func. Anal. 17 (2007) 1237–1247.

[15] K. Kondo and M. Tanaka. Total curvatures of model surfaces control topology of complete
open manifolds with radial curvature bounded below. II, Trans. A.M.S. 362 (2010) 6293–
6324.

[16] K. Kondo and M. Tanaka. Toponogov comparison theorem for open triangles, Tôhoku Math.
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