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Necessary and Sufficient Conditions for Analysis and
Synthesis of Markov Jump Linear Systems

With Incomplete Transition Descriptions

Lixian Zhang and James Lam

Abstract—This technical note is concerned with exploring a new ap-
proach for the analysis and synthesis for Markov jump linear systems with
incomplete transition descriptions. In the study, not all the elements of the
transition rate matrices (TRMs) in continuous-time domain, or transition
probability matrices (TPMs) in discrete-time domain are assumed to be
known. By fully considering the properties of the TRMs and TPMs, and
the convexity of the uncertain domains, necessary and sufficient criteria
of stability and stabilization are obtained in both continuous and discrete
time. Numerical examples are used to illustrate the results.

Index Terms—Markov jump linear systems, stability, stabilization.

I. INTRODUCTION

Markov jump linear system (MJLS) is a class of multi-modal sys-
tems in which the transitions among different modes are governed by a
Markov chain. The studies of these systems are motivated by the pow-
erful modeling capability of Markov chains in practical applications,
and many useful results have been obtained, see [1]–[11] for instance.
The concepts of semi-Markov chain, hidden Markov chain, time-non-
homogeneous Markov chain, have also been imported to the control
community in recent years and have promoted many applications of
MJLSs [12]–[14]. However, in most of the studies, complete knowl-
edge of the mode transitions is required as a prerequisite for analysis
and synthesis of MJLSs. This means that the transition probabilities
(TPs) of the underlying Markov chain are assumed to be completely
known. However, in practice, incomplete TPs are often encountered
especially if adequate samples of the transitions are costly or time-con-
suming to obtain. Examples with such difficulties can be found in many
fields, such as communication systems with delay variations and packet
losses, biochemical systems with diverse changes of environmental
conditions, temperature, humidity.

To relax the assumption that all the TPs are known, a new con-
cept for MJLSs with partially unknown TPs is proposed [15] and a se-
ries of studies have been carried out [16]–[18]. The proposed systems
are therefore more general, by which much more complex switching
phenomena can be modeled. Meanwhile, as two extreme cases, the
so-called switched systems under arbitrary switching [19], [20] and
the conventional Markov jump systems are covered in the framework.
However, although the works laid a conceptual foundation for analysis
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and synthesis of MJLSs, the approach developed still has room for im-
provement in terms of conservatism. In fact, the properties of both the
transition rate matrix (TRM) in continuous-time domain and the tran-
sition probability matrix (TPM) in discrete-time domain have not been
fully used.

In this technical note, a new approach will be explored for the anal-
ysis and synthesis of MJLSs with incomplete description of their tran-
sitions. Using the properties that the sum of each row is zero in a
TRM or one in a TPM, together with the convexity of the uncertain
domains, necessary and sufficient conditions for the stability analysis
and stabilization synthesis problems are first derived for both contin-
uous-time and discrete-time cases. The conservatism in the previous
studies is eliminated by considering the fact that the unknown elements
of each row in TRM or TPM form a polytope. Moreover, for the con-
tinuous-time case, the difficulty that the unknown elements contain di-
agonal elements is also overcome by introducing a lower bound of the
diagonal element without additional conservatism. The rest of the tech-
nical note is organized as follows. We formulate the considered systems
in Section II. Section III is devoted to the issue of stability and stabi-
lization for the system in both continuous-time and discrete-time cases.
Numerical examples are provided to demonstrate the theoretical find-
ings. The technical note is concluded in Section IV.

Notation: The notation used in this technical note is standard. The
superscript “� ” stands for matrix transposition, � denotes the � di-
mensional Euclidean space; � represents the sets of positive inte-
gers, respectively. For the notation ���� ���,� represents the sample
space, � is the �-algebra of subsets of the sample space and � is the
probability measure on � . ���� stands for the mathematical expecta-
tion. In addition, in symmetric block matrices or long matrix expres-
sions, we use � as an ellipsis for the terms that are introduced by sym-
metry and ���	������� 
 
 
 ���� stands for a block-diagonal ma-
trix constituted by ������ 
 
 
 ��� . The notation � � � �� ��
means � is real symmetric positive (semi-positive) definite, and ��

is adopted to denote ��	� for brevity. 
 and 0 represent respectively,
identity matrix and zero matrix. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic operations.

II. PRELIMINARIES

Given the probability space ���� ��� and consider the following
continuous-time and discrete-time MJLS, respectively:

�����  �������� ���������� (1)

and

��� � ��  �������� ���������� (2)

where ���� � � (respectively, ����) is the state vector and ���� � �

(respectively, ����) is the control input. The stochastic process ���� � �
�� (respectively, the Markov chain ���� � � ��), taking values in a fi-
nite set 	

�
 ��� 
 
 
 � ��, governs the switching among the different

system modes. In the continuous-time MJLS, ���� � � �� is a con-
tinuous-time, discrete-state homogeneous Markov process and has the
following mode transition probabilities:

�������  �
��  	� 
����� ����� if � � 	

� � ����� ����� if �  	

where � � �, ��������������  � and ��� � � (	� � � 	 , � � 	)
denotes the switching rate from mode 	 at time � to mode � at time
� � �, and ���  �

���	� ��� ��� for all 	 � 	 . Hence, the transition
rate matrix (TRM) in the Markov process is given by

��� 

��� ��� � � � ���
��� ��� � � � ���

. . .

��� ��� � � � ���

�

For the discrete-time case, the process ���� � � �� is described by a
discrete-time homogeneous Markov chain, which takes values in finite
set 	 with mode transition probabilities

�������  �
��  	�  ���

where ��� � ��	� � � 	 , and �

��� ���  �. Likewise, the transition
probability matrix (TPM) is given by

��� 

��� ��� � � � ���
��� ��� � � � ���

. . .

��� ��� � � � ���

�

The set 	 contains � modes of system (1) (or system (2)) and for �� 
	 � 	 (respectively, ��  	), the system matrices of the 	�� mode are
denoted by �, ��, ��, ��, ��, ��, which are real and known.

The transition rates or probabilities described above are considered
to be partially available, that is, some elements in matrix ��� or ��� are
unknown. Take system (1) or system (2) with 4 operation modes for
example, the TRM ��� or TPM ��� may be written as

��� ���� ��� ����
���� ���� ���� ���
���� ��� ��� ����
���� ���� ��� ���

�

��� ���� ��� ����
���� ���� ���� ���
��� ���� ��� ����
���� ���� ��� ���

where each unknown element is labeled with a hat “�.”
For convenience, 	 � 	 , we denote

	
	�

�

�
 �� � ��� ��� ���� �� ������ �

	
	�

��

�
 �� � ��� ��� ���� �� �������� (3)

In addition, if 		�
� � �, 		�
� is further described as

	
	�

�  ������� 
 
 
 ��
 � � �� � ��� �� 
 
 
 � � � �� (4)

where �� �
�, � � ��� �� 
 
 
 � ���, represents the index of the ���

known element in the 	�� row of matrix ��� or ���. Also, throughout the
technical note, we denote

�
	�

�

�


���

��� � �
	�

�

�


���

��� �

In the continuous-time case, when ���� is unknown, it is necessary to
provide a lower bound �	�
� for it and we have �	�
� � ��

	�

� .

Remark 1: The case ��  � � ��	 � 	 , is excluded in (4),
which means if we have only one unknown element, one can naturally
calculate it from the known elements in each row and the TRM or TPM
property.

For MJLSs, the following stability definition will be used [1], [2].
Definition 1: System (1) (respectively, (2)) is said to be stochasti-

cally stable if for ���� � � (respectively, ���� � �) and every initial
condition �� � � and �� � 	 , the following holds:

�
�

�

������� 
��� �� ��

��� �!"�#��$� �

�

���

������� 
��� �� �� �
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III. STABILITY AND STABILIZATION

In this section, we will derive the stochastic stability criteria for
system (1) and system (2) when the transition rates or probabilities are
partially unknown, and to design a state-feedback stabilizing controller
such that the closed-loop system is stochastically stable. The mode-de-
pendent controller considered here has the form

���� � ��������� �������	
���� ���� � ���������� (5)

where �� (��� � � � � , or �� � � � �) are the controller gains
to be determined. First, we provide the following preliminary stability
results for MJLSs with completely known TRM or TPM.

Lemma 1 ([1]): System (1) (with ���� � �) is stochastically stable
if and only if there exists a set of positive-definite matrices 	�, � � � ,
satisfying


�
� 	� � 	�
� � �

��� � � (6)

where ���� �
�

���
���	� .

Lemma 2 ([2]): System (2) (with ���� � �) is stochastically stable
if and only if there exists a set of positive-definite matrices 	�, � � � ,
satisfying


�
� �

���
� � 	� � � (7)

where ���� �
�

���
��	� .

A. Continuous-Time Case

Let us first give the stability result for the unforced system (1) (with
���� � �). The following theorem presents a necessary and sufficient
condition on the stochastic stability of the considered system with par-
tially unknown transition rates.

Theorem 1: Consider unforced system (1) with partially unknown
transition rates. The corresponding system is stochastically stable if and
only if there exists a set of matrices 	� � �, � � � , such that, �� � �


�
� 	� � 	�
� � �

���
� � �

���
� 	� � ��

�� � �
���
��� 
� � � �

���
� (8)


�
� 	� � 	�
� � �

���
� � �

���
� 	� � �

���
� 	� � �

���
� 	� � ��

�� � �
���
��� 
� � � �

���
�� (9)

where ����
�

�
�

���
���	� and �

���
� is a given lower bound for the

unknown diagonal element.
Proof: We shall separate the proof into two cases, � � ����� and

� � �
���
��, and bear in mind that system (1) is stochastically stable if

and only if (6) holds.
1) Case 1: � � �

���
� .

It should be first noted that in this case one has ����� � �. We only
need to consider ����� � � here since ����� � � means the elements
in the ��� row of the TRM are known.
Now we rewrite the left-hand side of (6) as

��
�
�
�

� 	� � 	�
� � �
���
� �

���

����	�

�
�
� 	� � 	�
� � �

���
� � �

���
�

���

����

��
���
�

	�

where the elements ���� � �� � �
���
��, are unknown. Since we have

� � ��������
���
� � � � and

���
��������

���
� � � �, we know

that

�� �

���

����

��
���
�


�
� 	� � 	�
� � �

�
� � �

���
� 	� �

Therefore, for � � ���� � ��
���
� , �� � � is equivalent to 
�

� 	��

	�
� � ��
� � �

���
� 	� � ���� � �

���
��, which implies that, in the

presence of unknown elements ���� , the system stability is ensured
if and only if (8) holds.

2) Case 2: � � �
���
��.

In this case, ���� is unknown, ����� � � and ���� � ��
���
� . Also, we

only consider ���� � ��
���
� here since if ���� � ��

���
� , then the ���

row of the TRM is completely known.
Now the left-hand side of the stability condition in (6) can be
rewritten as

�� �
�
� 	� � 	�
� � �

���
� � ����	� �

��� �� ���

����	�

�
�
� 	� � 	�
� � �

���
� � ����	�

� ����� � �
���
�

��� �� ���

����

����� � �
���
�

	� �

Likewise, since we have � � ������ � ���� � �
���
� � � � and

��� �� ���
������� ���� � �

���
� � � �, we know that

�� �

��� �� ���

����

����� � �
���
�


�
� 	� � 	�
� � �

���
�

�����	� � ����	� � �
���
� 	�

which means that �� � � is equivalent to �� � ������, � 	� �


�
� 	� � 	�
� � �

���
� � ����	� � ����	� � �

���
� 	� � �� (10)

As ���� is lower bounded by �
���
� , we have

�
���
� � ���� � ��

���
�

which implies that ���� may take any value between ��
���
� ���

���
� �

�� for some � � � arbitrarily small. Then ���� can be further written
as a convex combination

���� � ���
���
� � �� � ��� ���

���
�

where � takes value arbitrarily in [0, 1]. Thus, (10) holds if and
only if �� � ������, � 	� �


�
� 	��	�
���

���
� ��

���
� 	���

���
� 	���

���
� 	����	��	�� � � (11)

and


�
� 	� � 	�
� � �

���
� � �

���
� 	� � �

���
� 	� � �

���
� 	� � � (12)

simultaneously hold. Since � is arbitrarily small, (11) holds if and
only if


�
� 	� � 	�
� � �

���
� � �

���
� 	� � �

which is the case in (12) when � � �� �� � �
���
��. Hence (10) is

equivalent to (9).
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Therefore, in the presence of unknown elements in the TRM, one
can readily conclude that the system is stable if and only if (8) and (9)
hold for � � ����

�
and � � ����

��
, respectively.

Remark 2: The stability criterion developed in Theorem 1 is less
conservative than the one obtained in [15]. More specifically, in The-
orem 1 of [15], if � � �

���
� , the conditions are

� � �
���
�

��
� �� � ���� � �

���
�

� �

��
� �� � ���� � �� � �

which, since ����
�

� �, ensure

���
���
� ��

� ������� � �
���
� ��

���
� ��

� ���������� ��

which is (8). Also, if � � ������, the criteria in Theorem 1 of [15] are

� � �
���
�

��
� �� � ���� � �

���
�

� �

��
� �� � ���� � �� � �� �� � �

���
��

� � � �

��
� �� � ���� � �� � �� �� � �

���
��

� � �� ��

(13)

In this case, since ����� � � and ������ � �
���
� 	 �, we have

���
���
�

��
� ������� ��

���
�

��
���
� ��

� ���������� �

��
���
� ��

���
� ��

� ���������� ��

which guarantees

��
� �� � ���� ��

���
�

� �
���
� �� � �

���
� �� � �

���
�
�� � �� �� � �

����
��

Therefore, the conditions (8), (9) are less conservative than (13). Note
that the obtained conditions are without loss of generality since the
lower bound, ����� , of ���� is allowed to be arbitrarily negative.

Now let us consider the stabilization problem of system (1) in the
presence of unknown elements in the TRM. The following theorem
presents a necessary and sufficient criterion for the existence of a mode-
dependent stabilizing controller of the form in (5).

Theorem 2: Consider system (1) with partially unknown transition
rates. If there exist matrices 
� 	 � and ��� �� � � such that

�� � ���
� 	
���
�

��
���
�

�


 ��
���
�

�


 
 �
�

� ��

�� � �
���
��� �� � � �

���
� (14)

�� � �
���
� 
� 	

���
� ��

���
� � �

���
� 
�


 ��
���
� �


 
 �
�

� ��

�� � �
���
��

� �� � � �
���
��

(15)

where ��
�
� ��
� �
��

�
� � ���� � � �

� ��
� and

�
���
�

�
�	�
� 
� � � � � � 
� �

	
���
�

�
� ��� 
�� � � � � ��� 
� (16)

and � � ��� � � � � � ��, �� is described in (4), �� �� �, then there
exists a mode-dependent stabilizing controller of the form in (5) such
that the closed-loop system is stochastically stable. Moreover, if the
LMIs in (14), (15) have a solution, an admissible controller gain is
given by

�� � ��

��
� � (17)

Proof: Consider system (1) with the control input (5) and replace
�� by������� in (8), (9), respectively. Then, if � � ����� , performing
a congruence transformation to (8) by ���� , we can obtain

��� �������
��
� � ���� ��� ������

� � ���� �
���
� ���� �

���� �
���
�
���

��
� � �� (18)

Setting 
�
�
� ���� , ��

�
� ��
� and considering (16), by Schur com-

plement, one can obtain that (18) is equivalent to (14). In a similar
way, if � � �

���
��

, (15) can be worked out from (9). Meanwhile, due to
�� � ��
�, the desired controller gain is given by (17).

Remark 3: It is noted from (15) that if the diagonal elements in the
TRM contain unknown ones, the system stability, the existence of the
admissible controller and the controller gains solution will be depen-
dent on ����� . This dependency, therefore, will reduce the conservatism
existed in the previous “����� -independent” results obtained in [15].

B. Discrete-Time Case

The following theorem presents a necessary and sufficient condition
on the stochastic stability of the unforced system (2) with partially un-
known transition probabilities.

Theorem 3: Consider the unforced system (2) with partially un-
known transition probabilities. The corresponding system is stochas-
tically stable if and only if there exists a set of matrices �� 	 �, � � �
such that

��
� �

���
� � �� �

���
� �� �� � �� � �� �� � �

���
� (19)

where ����
�

�
�

���
����� .

Proof: It should be first noted that ����� � � in the discrete-time
case, and we exclude ����� � � here since it means that all the elements
in the ��� row are known.

Now the left-hand side of stability condition (7) in Lemma 2 can be
rewritten as

��
�
���

� ��
� �

���

������ �� � ��

���
� ��

� � �� �
���
�

���

����

�� �
���
�

�� �� � ��

where the elements ���� , � � �
���
��

, are unknown. Since � � ��������

�
���
� � � ���� � �

���
�� and

���
�������� �

���
� � � �, we know that

�� �

���

����

�� �
���
�

��
� �

���
� � �� �

���
� �� �� � ��

Therefore, for � � ���� � ���
���
� , �� � � is equivalent to��

� ��
���
� �

�� � �
���
� ������ � �� � ���� � �

���
��, which implies that, in the

presence of unknown elements ���� , the system stability is ensured if
and only if (19) holds.

Remark 4: Analogous to Remark 2 for the continuous-time case,
the necessary and sufficient criterion developed in Theorem 3 is also
less conservative when compared with Theorem 3 in [15], where the
stability conditions are given by

��
� �

���
�
�� � �

���
�
�� � �

��
� ���� � �� � �� �� � �

���
��

�
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The inequalities yield

�
�
� ����

�
�� � �

���
�
�� � ������

�
�
�
� ������� ��� �������

��

which is (19). Therefore, combined with Remark 1, it is seen that the
approach adopted in Theorems 1 and 3 in this technical note, which
uses the TRM or TPM property (the sum of all the elements in each
row is zero or one), gives the necessary and sufficient criteria and are
less conservative than the existing results.

Now consider the system (2) with control input ����, the following
theorem presents a condition for the existence of a mode-dependent
stabilizing controller with the form in (5).

Theorem 4: Consider system (2) with partially unknown transition
probabilities. If there exist matrices 	� 
 � and ��� �� � � such that

�	� ����
�
���	� �����

�

� �� ���
�

� � (20)

where

����
�

�
�

	
��� �� � � � � ��� �� �� �

���
�
�

�

(21)

� ���
�

�
��	
� 	� � � � � � 	� � 	� � � � ����

��
(22)

and �� � 
�� �� � � � ����, �� is described in (4), then there exists a
mode-dependent stabilizing controller of the form in (5) such that the
closed-loop system is stochastically stable. Moreover, if the LMIs in
(20) have a solution, an admissible controller gain is given by (17).

Proof: First of all, by Theorem 3, we know that system (2) is
stochastically stable with partially unknown transition probabilities if
the inequality (19) holds. By Schur complement, (19) is equivalent to

��� � � � � �	
��� �� �� ��� � � � �	
��� �� �� � ��� � � �

...
...

...
. . . � �	

��� �� �� � �    ��� �
�� �

���
�
���� � �    � ���

��� (23)

Now, consider the system with the control input (5) and replace ��

by �� � ��� in (23). Setting 	�
�
� ���� , performing a congruence

transformation to (23) by �	
�	��� ���
�

� and applying the change of

variable ��
�
� ��	�, we can readily obtain (20). Therefore, if (20)

holds, (19) will be satisfied in Theorem 3, that is, the underlying system
is stochastically stable. Meanwhile, due to �� � ��	�, the desired
controller gain is given by (17).

Remark 5: In contrast with the continuous-time case, the discrete-
time case is relatively simpler since all the elements in the TPM are
nonnegative and we need not distinguish the cases of diagonal elements
known or unknown.

Remark 6: It is noted that an interesting conclusion can be directly
drawn from Theorem 1 and Theorem 3. That is, when all the elements
in the TRM or TPM are unknown, the underlying systems are sub-
ject to switchings without known statistics. This leads to the so-called
deterministic switched systems under arbitrary switchings (see [19],
[20] for continuous-time and discrete-time case, respectively). We can
therefore obtain the necessary and sufficient stability criterion of such
switched systems in continuous-time and discrete-time cases, respec-
tively. More specifically, in the discrete-time case, we have the stability
condition is��

� ������� � ������ � ��� , which is reduced from
(19) when all the elements in the TPM are unknown. Likewise, for the

TABLE I
CONTROLLERS FOR TRM (25)

continuous-time case, if all the elements in the TRM are unknown, the
conditions leads to (9) only and it reduces to

�
�
� �� � ���� � �

���
� ��� � ��� � �� (24)

Since ����� can be arbitrarily negative, inequality (24) requires �� �
�� � � which leads to the condition

�
�
� � � ��� � �� ��� � � � � ��

C. Numerical Examples

The validity and the reduction of conservatism of the results obtained
above are verified by the following numerical examples.

Example 1: Consider MJLS (1) with three operation modes and the
following system matrices:

�� �
����� �����

� �
� �� �

���� �����
� ���� �

�� �
����� ���

� �� � � �
�

�
�

� �
��
�� � � �

�

�� �

Assume the TRM is given by

��� �

���� � � �

� ���� ���� ����
� ��� ���� ���

� ���� ���� ����

(25)

where ���� � ��� � � � � ����
��

denote the unknown elements.
The purpose of this example is to verify the reduced conservatism of

the obtained results in the continuous-time case. First, one can check
that the open loop system is unstable by both Theorem 1 in the technical
note and Theorem 1 in [15]. Then, based on Theorem 2 in the technical
note, we obtain the controller gains for the system as shown in Table I.
However, it is verified that the stabilization criterion developed previ-
ously cannot yield a feasible solution of the controller, which shows
that the developed approach in the technical note is less conservative.

Notice that in Example 1, all the diagonal elements of ��� (25)
are known. Now we further provide another example with unknown
diagonal elements in the TRM to illustrate the dependency of controller
design on the lower bound ����� of the corresponding unknown diagonal
element.

Example 2: Consider MJLS (1) with four operation modes and the
following system matrices:

���
��� ����
�� ��

� ���
��� ����
�� ��

�

���
�� �

�� ��
� ���

�� ����
�� ��� �

��
�

�
� ��

�

�� � ��
�

�� � ��
��
�

�
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TABLE II
CONTROLLERS FOR TRM (26)

The TRM is given by

����

���� � � � 	

� ���� 
�� ���� ����

� ���� ���� 
�� 
��

� 
�� ���� ���� ����

	 
�	 
�� 
� ����

(26)

In the 2nd row of ��� (26), the diagonal element ���� is unknown,
we assign its lower bound ����

�
a priori with different values. It can be

checked that the open-loop system is unstable based on Theorem 1 in
[15], or Theorem 1 in this technical note for any ����

�
� �������.

Then, by Theorem 2 in [15] and Theorem 2 in the technical note with
different ����

�
, we obtain the controller gains as shown in Table II.

It is seen from Table II that the obtained controller gains are depen-
dent on ����

�
. By applying the bisection method with the conditions

in Theorem 2, one can further obtain the minimal value of ����
�

,
below which the stabilizing controller will not exist (here we get
�
���
�

� ������� by some standard numerical software). It is also
worth mentioning here that, for some systems, one may obtain that the
controller solution is independent on the bound of diagonal elements,
as the system in Example 1 of [15] shows that the controller exists
despite that ���� is unknown and has no given lower bound.

Example 3: Consider MJLS (2) with four operation modes and the
following system matrices:

�� �
� �����

��� ����
� �� �


��� �
���

��� ����
�

�� �

�� �
���

��� ���

� �� �

��� �
��

��� �����
�

�� �
�

�
� �� �

�

��
� �� �

�

�
� �� �


��

��
�

Moreover, the TPM is given by

��� �

���� � 	 � 	

� 
�� 
�� 
�� 
�	

� �	�� 
�� 
�� �	��

� �	�� �	�� �
�� 
��

	 
�� 
�� 
�� 
��

(27)

TABLE III
CONTROLLERS FOR TPM (27)

The comparison of Theorem 4 in the technical note with Theorem 4
in [15] is summarized in Table III, where the reduction of conservatism
of the new criterion is demonstrated.

IV. CONCLUSION

In this technical note, we have revisited the analysis and synthesis
problems of Markov jump linear system with incomplete transition de-
scriptions. Necessary and sufficient criteria are obtained for MJLSs in
both continuous-time domain and discrete-time domain by fully ex-
ploiting the properties of the transition rates matrix and the transition
probabilities matrix. The conservatism of the approach developed pre-
viously, which only leads to sufficient conditions for the system, is
reduced by the newly developed approach. Numerical examples have
verified the theoretical results given in the technical note. It is expected
that the approach can be further used for other analysis and synthesis
issues such as
� analysis,
� synthesis and other applications such
as Markov jumping neural networks, e.g., [21] with incomplete transi-
tion descriptions therein.
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Topological Obstructions to Submanifold Stabilization

Abdol-Reza Mansouri, Member, IEEE

Abstract—We consider the problem of local asymptotic feedback sta-
bilization—via a continuously differentiable feedback law—of a control
system �� � �� �� defined in Euclidean space (with being con-
tinuously differentiable) to a compact, connected, oriented -dimensional
submanifold of with codimension strictly larger than one. We obtain
necessary conditions on the topology of for such a stabilizing feedback
law to exist. This extends the work done in [6], where only the codimension
one case was treated. We also briefly discuss the case where the control is
only assumed continuous.

Index Terms—Euler-Poincare characteristic, homology groups, subman-
ifold stabilization.

I. INTRODUCTION

Consider the following modification of Brockett’s non-holonomic
integrator [1], introduced in [6]: In � (with canonical coordinate func-
tions �� �� �), we define

���

�� � ��

�� � ��

�� � ���� �����

where �� � are the control functions. The control function � is given

here, with � �

�

�

�

and � � �

�
, by

����� �� � ������� �

�

�

���� ������

and is continuously differentiable. It is clear that � is not onto any
neighborhood of the origin in �; indeed, no point on the �-axis of
� other than the origin is in the range of � . It follows [1] that there ex-

ists no continuously differentiable feedback law that can stabilize this
system to the origin. Consider now the problem of asymptotically sta-
bilizing this control system to a submanifold of � homeomorphic to
the unit sphere 	� of �; defining

���� � ����� � � � �������� �� �

we easily have that ���� � � � � � � 	�
�; hence, we obtain

������� � � 
��

� � 	�
� � � �, where 
���� � denotes the
��� singular homology group with coefficients in , and “�” denotes a
group isomorphism (see e.g., Chapter 4 of [7]). On the other hand, the
Euler-Poincaré characteristic ��	�� of 	� is non-zero (see Chapter 4
of [7]). It follows therefore from Theorem 4 of [6] that there exists
no continuously differentiable feedback law stabilizing the above con-
trol system to 	�. Consider now the problem of asymptotically stabi-
lizing this control system to the unit circle in the ��-plane, defined by
	�  	� � �
. As noted in [6], this stabilization is achievable, and
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