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Abstract. This  paper determines an exact relationship between colli- 
sion-free hash functions and other cryptographic primitives. Namely, it 
introduces a new concept. the pseudc+permutation, and shows tha t  the  
existence of collision-free hash functions is equivalent to t h e  existence 
of claw-free pairs of pseudo-permutations. When considered as one bit 
contractors (functions from k + 1 bits to  k bits), the  collision-free hash 
functions constructed are more efficient than those proposed originally, 
requiring a single (claw-free) function evaluation rather than  k. 

1 Introduction 

Hash functions with various cryptographic properties have been studied exten- 
sively, especially with respect to signing algorithms (see [2, 3, 4, 10, 12, 14, 151). 
We focus on the most natural of these functions, the collision-free hash func- 
tions. A hash function h is collision-free if it is hard for any efficient algorithm, 
given h and l k ,  to find a pair (2, y) so that 1x1 = IyI = k and h ( r )  = h(y). These 
functions were first carefully studied by Damggrd in [2]. Given the interest in 
these functions, we would like to determine necessary and sufficient conditions 
for their existence in terms of other, simpler, Cryptographic machinery. 

There has been recent attention to the minimal logical requirements for other 
cryptographic primitives. Rompel (in [I?]), improving a construction of Naor and 
Yung (in [lo]),  shows that the existence of secure digital signing systems (in the 
sense of [5]) is equivalent to the existence of one-way functions. Impagliazzo, 
Levin, and Luby (in [7]) and Histad (in [6]) demonstrate the equivalence of the 
existence of pseudo-random number generators (see [l,  131) and the existence of 
one-way functions. 

DamgGd (in [Z]), distilling arguments of Goldwasser, Micali, and Rivest (in 
[ 5 ] ) ,  shows that the existence of another cryptographic primitive, a claw-free 
pair of permutations, is sufficient to construct collision-free hash functions. A 
pair of permutations ( f , g )  is claw-free if it is hard for any efficient algorithm, 
given ( f , g )  and lk, to find a pair (z,y) so that 1 1 1  = lyl = k and f (2)  = 
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g( y). Comparing the definitions of collision-free hash functions and claw-free 
pairs of permutations, it seems unlikely that the existence of claw-free pairs 
of permutations is necessary for the existence of collision-free hash functions 
because the hash functions have no explicit structural properties tha t  reflect 
the condition of permutativity in the claw-free pairs of permutations. Our paper 
relaxes this condition of permutativity and defines a natural object, the existence 
of which is necessary and sufficient for the existence of a family of collision-free 
hash functions. 

We define a new concept, the pseudo-permutation. A function f : S - S is a 
pseudo-permutation if it is computationally indistinguishable from a permuta- 
tion. For this “indistinguishability” we require that  it be hard for any efficient 
algorithm, given the function f and l k l  to  compute a quickly verifiable proof of 
non-injectivity, i.e. a pair (z,y) where 121 = IyI = k , z  # y, and f(z) = f ( ~ ) .  
The  main contribution of our paper is that the existence of a collection of claw- 
free pairs of pseudc-permutations is equivalent to the existence of a collection 
of collision-free hash functions. This fact shows that nontrivial “claw-freeness” 
is essential to collision-free hashing and also weakens the assumptions necessary 
for their existence. 

In 32 we describe our notation and define some cryptographic machinery. 
In §3 we present our main theorem. In $4 we consider the efficiency of our 
construction. Finally, in $ 5 ,  we discuss an open problem and the motivation for 
this research. 

2 Notation and Definitions 

We adopt the following class of expected polynomial time Turing machines as 
our standard class of “efficient algorithms” (see [9] for a precise definition and 
discussion of this class). 

Definitionl. Let Ed, our class of efficient algorithms, be the class of prob- 
abilistic Turing machines (with output) running in expected polynomial time. 
We consider these machines to  compute probability distributions over c‘ . For 
M E Ed we use the notation M[w] to  denote both the probability space defined 
by M on w over S’ and an element selected according to this space. 

For simplicity, let us fix a two letter alphabet C = ( 0 , l ) .  The consequences 
of a larger alphabet will be discussed in 34. lk denotes the concatenation of k 1’s. 
Q[z] denotes the class of polynomials over the rationals. Borrowing notation from 
[4], if S is a probability space, z t S denotes the assignment of z according to  
s. If p ( z 1 , .  . . , zlc) is a predicate, then Pr[zl + SI, .  . . ,zk +- sk : P(zi, . . . , zk)] 
denotes the probability that  p will be true after the ordered assignment of 21 

through zk. 

Definition2. A collection of claw-free functions is a collection of function 
tuples {(f!, f:)\i E I }  for some index set I 2 c’ where f! : .Eli[ + Clil and: 
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CF1. [accessibility] there exists a generating algorithm G E Ed SO that  G[1"] E 

CF2. [ e f i c i en t  computability] there exists an computing algorithm C E Ed SO that 

CF3. [claw-freedom] for all claw finding algorithms A E &d, VP E Q[z], 3k.0, 

{ o , ~ ) ~  n I .  

for i E I ,  j E (0, l}, and x E Clil, C[i,  j ,  x] = f!(z), 

Vk > ko, 
1 

Pr[i - G[lk], (z, y) c A[i ]  : f:(z) = f;(y)] < - 

If (f", f') is a member of a collection of claw-free pairs, then Ifo, f') is called 
a c l a w f r e e  p a i r  and a pair (2, y) so that  f"(z) = f'(y) is called a claw of (f', f'). 

This definition, from a cryptographic perspective, requires nothing of the 
function pairs involved unless they have overlapping images. One way to require 
that  the functions have overlapping images is to require that the functions be 
permutations. This yields the following object, originally defined in [5] and then 
in this form by [a] .  

Definition 3. A collection of claw-free permutations is a collection of claw 
free functions {(fp, f))li E I }  where each fj is a permutation. 

P ( k )  

Although the intractability of certain number theoretic problems implies the 
existence of a collection of claw-free pairs of permutations2, the existence of 
one-way permutations is not known to be e n ~ u g h . ~  

Definition4 A collection of pseudo-permutations is a collection of func- 
tions { f i ] i  E I }  for some index set I C c' where fi : Eli[ - Elil and: 

$Pl.  [accessibiliiy] there exists a generating algorithm G E Ed so that C[1"] E 

$P2. [ef ic ient  computabili ty] there exists a computing algorithm C E Ed so that 

qP3. [collapse freedom] for all collapse finding algorithms A E Ed, V P  f &[2], 

{ O , l } n  n I .  

for i E I and z E CIil,C[i, z] = fi(x).  

3k0, V k  > ko 

1 Pr[i +- G[lk], ( 2 , ~ )  + A[i]  : f i ( z )  = f i ( y )  A 1: # Y] < - 
P ( k )  

If a function f is a member of a collection of pseudo-permutations it is 
called a pseudo-permutation and a pair (z,y) where f(z) = f (y)  and z # y 
is called a collapse of f. Property $P3 means that i t  is hard for an efficient 
algorithm to produce a quickly verifiable proof that f is not a permutation. In 
the definition above, this proof is specifically required to be a proof of non- 
injectivity: a collapse. One might also prove that a function f : S - s is 

In [ 5 ]  the intractability of factoring is shown to be sufficient, In [2], the construction of 
[5] is extended and the intractability of the discrete log is also shown to be sufficient. 
[ll] discusses algebraic forms of one way permutations sufficient for claw-free 
permutations. 

2 

3 
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not a permutation by producing a proof of non-surjeetivity: an element in S - 
Imf. We require the former because of the difference in computational resources 
necessary to verify these proofs: a proof of non-iqjectivity may be verified with 
two function applications whereas a proof of non-eurjectivity requires evaluation 
of f at every point in the domain. Like the definition for claw-free functions, 
the above definition requires nothing Cryptographically of the functions involved 
unless IIm fi I < lDom fil. If the functions in the collection are injective, then 
$P3 is vacuously true. 

Pseudepermutations are a reasonable replacement for permutations in a 
cryptographic setting; for example, the entire signing algorithm of Naor and 
Yung (in [lo]) may be implemented with one-way4 pseudepermutationa rather 
than one-way permutations. 

Deihition5. A collection of claw-free pseudo-permutations is a collec- 
tion of claw-free functions { ( f ,  f / ) l i  E I} 80 that both {f,!'li E I }  and { j /  li E I} 
are collections of pseudo-permutations. 

Collections of claw-free pseud*permutations gather their cryptographic 
structure from the tension between two otherwise weak definitions. If the pseudo- 
permutations lack cryptographic richness (so that they are very close to permu- 
tations) then the intersection of their images must'be large and there must be 
many claws, imparting richness by virtue of claw-freedom. If, instead, the pair 
has few claws, then the images of the two functions must be nearly disjoint (and 
so, small) so that the functions themselves are cryptographically rich by virtue 
of their many collapses. 

3 The Structure of Collision-Free Hash Functions 

DefinitionG. A collection of collision-free hash functions is a collection 
of functions {hi(i  E I} for some index set I C where hi : Elil+' -+ Eli[ and: 

H1. [accessibilify] there exists a generating algorithm G E &A so that G[1"] E 

H2. [eficieni compuiabiliiy] there exists a computing algorithm C E € A  80 that 

H3. [collision-freedom] for all collision generating algorithms A E &A,VP E 

{o, 1)" n 1. 

for i E I, and w E C[i, w]  = hi(w). 

Q[z], 3h0, VE > Lo 

If h is a member of a collection of collision-free hash functions then h is called 
a collision-free hash funcfion and a pair (z,y) where h(z)  = h(y)  and z # y is 
called a collision of h. 
' This is a collection of psendcqwrmutations which are hard to invert in the Bense of 

one-way functions. 
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The notion of a polynomial separator will be used in the following proof. For 
the purposes of this paper, a separator is a pair of bijections from Ck into C"' 
so that  their images have no intersection. (Because ICI = 2, their images cover 
Ck+' .) 

Definition 7. A collection of polynomial separators is a collection of func- 
tion pairs {(u:,n!)\i E I} for some index set I C: C' where 4 : El'! + Clil+' 
for j E {0,1} and: 

PS1. [accessibility] there exists a generating algorithm G E Id so that G[1"] E 

PS2. [injectiuity] u: and u! are injective. 
PS3. [disjointness] im u: n im uf = 0 
PS4. [ef ic ieni  computability] there exists a computing algorithm C E &d so that 

{0,1}" n I .  

for i E I ,  w E Ciil, and j E (0, l}, C[ i ,  j, w] = a;f (w). 

With each such collection, we associate a collection of inverses {L;} where 
Li : ~ l 4 + 1  4 ~ I l I  and L ,  o up = L; o u,! = idE,,, and a collection of image deciders 
{Si} where b,  : Elil+' + (0, l} and Vw E Zlil+l, w E im np""':'. 

The collection is said to have a polynomial inverse if the collection of 
inverses is so that 3C, E &d,Vw E .L'lil+l,Vi E I,C,[w,i] = i i [ w ) .  If a collec- 
tion is so endowed, then it is clear that the image deciders are also efficiently 
computable. 

Construction of a family of polynomial separators with a polynomial inverse 
is easy: the append0 : x t-+ 20 and append1 : x +.+ r l  functions, for example. 

Theorems. There exists a collecfion of collision-free hash junctions iff there 
exists a collection of claw-free pairs of pseudo-permutations. 

Proof. (*) Let { h i  / i  E I }  be a collection of collision-free hash functions and let 
{(f lu ,  u;)li  E I }  be a collection of polynomial separators (unrelated to  the hash 
functions, but over the same index set). Define the collection {(f:, f;)li E I} so 
that 

f: = h , o <  f o r j E { O , I }  

We show that  the collection of functions so defined is a collection of claw- 
free pseudepermutations. Properties CF1 and CF2 are immediate. Assume that  
property CF3 does not hold, that  is 3 A  E LA, 3P E Q[z] ,Vko,  3k > ko, 

Let (z,y) be a claw for ( f ? f , ' ) ,  then f ( ~ )  = f,'(y) hi(gP(2)) = ~;(C;(Y)), 
but im u: n im uf = 0 so that ap(t) # n,'(y) and a collision has been found for 
hi .  Then, given this claw generating algorithm A we can construct a collision 
generating algorithm A' succeeding with identical probability as A, violating H3. 
Therefore, CF3 holds. 
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To show that {f!li E I }  for each j E { O ,  1) are collections of pseude 
permutations, we verify properties $P1 - +P3 for each. $P1 and $P2 are im- 
mediate. Suppose, for contradiction, that property $P3 is not satisfied, so that 
( 3 j  E (0, l},) 3A E &d,3P E Q [ z l , V k ~ ,  3k > k~ 

1 Pr[i t G[l']], ( z l  y) - A[i] : f ! ( z )  = f! (y)] 2 - 
P ( k )  

Let (2 ,  y) be a collapse of $, so that f/ (2) = fi (y) and x # y. Then 4 ( z )  # 
4 ( y )  because .;' is injective, 90 that (<(z),<(y)) is a nontrivial collision of 
hi (because f j  = hi o 4) .  Then, given this collapse generating algorithm A 
we can construct a collision generating algorithm A' succeeding with identical 
probability as -4, violating H 3 .  Therefore] $ P 3  holds. 

(F) Let {(f,!',f!)li E I }  be a collection of claw-free pairs of pseud- 
permutations and let {(uP,gf) l i  E I }  be a collection of polynomial separat- 
ors with inverses { i , l i  E I }  and image deciders {&li E I } .  Then define {h i l i  E I )  
so that 

h; ( z )  = f;6""'(Lz(z)) 

We show that {hili E I }  is a collection of collision-free hash functions. Properties 
H I  and H 2  are immediate. Assume, for contradiction, that property H3 is not 
satisfied, that is 3A E &A, 3P E Q [ E ] ,  Vkol 3k > ko 

so that V k o ,  3k > ko 

1 
Pr[i + G[1'], ( t ,  y) + A [ ; ]  : h,(z) = h,(y) A L # y A &(z) # S;(y)] 2 - 

2P(k)  

and we encounter at least one of two possibilities: 

2. Vko,ZIk > ko 
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In the event of 1 above, the algorithm A generates collisions ( z ,y )  where 
&(z) = S;(z>. In this case, for at least one j f {0 ,1} ,Vk0 ,3k  > ko 

Pr[i + G[lk], (2, y) +- A[i] : 

Given a collision of this sort, h,(z) = h,(y) j fi (z) = f{ (y) which is a collapse 
of f! . Then, given algorit,hm A, we may produce another algorithm A‘ which 
produces a collapse off! with success related to  the success of A by a constant, 
violating q P 3 .  

In the event of 2 above, the algorithm A generates collisions ( 2 , ~ )  where 
&(y) # 6i(z). A collision of this sort produces a claw because hi(.) = h , ( y )  =+- 
f~’(”’(~i(z)) = f,P’tY’(~;(y)). Then, with algorithm A,  we may construct a claw 
generating algorithm A’ which produces claws with success related to  the success 
of A by a constant, violating CF3. 

A pair of separators partitions Ck+‘ into two equal sized subsets (the images 
of the separators). We couple the definition of collision-free hash functions with 
the definition of polynomial separators to  define a class of hash functions where 
every collision occurs across the partition boundary - then h ( z )  = h(y) implies 
that  5 and y are in the images of different separators. 

Definition 9. A collection of separated collision-free hash functions is 
a collection of function tuples { ( h i ,  uY,cr:)\i E I }  so that {h ,J i  E I} forms a 
collection of collision-free hash functions, {(c$, u,’)li E I }  forms a collection of 
polynomial separators, and 

SH. [separation] V j  E (0,  l}, h,lima;l , the restriction of h; to  im 4 ,  is bijec- 
tive. Equivalently, hi(.) = hi(y) 3 6;(z) # 6,(y), where { S i l i  E I }  is the 
collection of image deciders for the separators. 

The existence of a collection of separated collision-free hash functions is 
equivalent to the existence of a collection of claw-free pairs of permutations. 

Theorem 10. There exists a collection of claw-free permutations i f f  there exists 
a collection of separated collision- free hash functions. 

Proof. This proof is omitted due its similarity with the previous proof. 

The collision-free hash functions constructed in the two theorems above nat- 
urally inherit properties from the primitives with which they are constructed. 
If, for example, the claw-free pairs of (pseudo-) permutations are trapdoor func- 
tions, then the hash functions constructed share this property. It is not clear 
that  the original hash functions constructed in [2] offer inheritance of this sort. 

Toshiya Itoh [8] has pointed out that  in the above constructions, the demand 
of claw-freedom can be replaced in an appropriate way with the demand of 
“distinction intractibility” as discussed in [14]. 



It is not hard to  show that by composition the above collections of hash 
functions can be used to construct families of collision-free hash functions {h;  : 
i E I }  where hi : Cp(lil) -f Clil for any polynomial P E Q[x]  where V z  E 
N, P ( x )  > 2. 

4 Comments on Efficiency 

The (+) part of theorem 8 constructs a family of collision-free hash functions 
which are one bit contractors (functions from Zk+l to  Ck) and require 1 claw- 
free function evaluation to compute. Building a family of contractors by applying 
the construction in [2] yields hash functions which require k evaluations of the 
underlying claw-free functions. For the case of one-bit contractors, then, the 
above construction is substantially more efficient. 

In general, to construct hash functions from CP(k)  to Ck (for a polynomial 
P )  one can do better than naive composition. Using arguments similar to those 
of Damg5,rd in [2], the construction above can be altered to  yield hash functions 
from Z p ( k )  to Ck which require P ( k )  - k evaluations of the underlying claw-free 
functions on k bit arguments. The collection constructed in [2] of the same sort 
requires Pfk) evaluations. so the efficiency improvement in this case is only an 
additive factor of $. 

In [2], Damgkd shows that expanding the size of the alphabet (and u s  
ing claw-free tuples of functions) can reduce the number of required claw-free 
function evaluations by a multiplicative constant factor. This same procedure is 
applicable to our above construction. 

5 An Open Problem 

The motivation for this research is the following open problem: Is the existence of 
one-way functions sufficient for the existence of collision-free hash functions? We 
believe this to be the case, and that this paper represents a step towards proving 
this goal by demonstrating the equivalence between collision-free hashing and a 
primitive not requiring pure cryptographic permutativity. 
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