
Necessary and Sufficient Conditions for
C ollisio n- F'r e e Hashing

Alexander Russell"
acr@theory.lcs.mit .edu

Laboratory for Computer Science
545 Technology Square

Massachusetts Institute of Technology
Cambridge, MA 02139 USA

Abstract. This paper determines an exact relationship between colli-
sion-free hash functions and other cryptographic primitives. Namely, it
introduces a new concept. the pseudc+permutation, and shows tha t the
existence of collision-free hash functions is equivalent to t h e existence
of claw-free pairs of pseudo-permutations. When considered as one bit
contractors (functions from k + 1 bits to k bits), the collision-free hash
functions constructed are more efficient than those proposed originally,
requiring a single (claw-free) function evaluation rather than k.

1 Introduction

Hash functions with various cryptographic properties have been studied exten-
sively, especially with respect to signing algorithms (see [2, 3, 4, 10, 12, 14, 151).
We focus on the most natural of these functions, the collision-free hash func-
tions. A hash function h is collision-free if it is hard for any efficient algorithm,
given h and l k , to find a pair (2, y) so that 1x1 = IyI = k and h (r) = h(y). These
functions were first carefully studied by Damggrd in [2]. Given the interest in
these functions, we would like to determine necessary and sufficient conditions
for their existence in terms of other, simpler, Cryptographic machinery.

There has been recent attention to the minimal logical requirements for other
cryptographic primitives. Rompel (in [I?]), improving a construction of Naor and
Yung (in [lo]), shows that the existence of secure digital signing systems (in the
sense of [5]) is equivalent to the existence of one-way functions. Impagliazzo,
Levin, and Luby (in [7]) and Histad (in [6]) demonstrate the equivalence of the
existence of pseudo-random number generators (see [l, 131) and the existence of
one-way functions.

DamgGd (in [Z]), distilling arguments of Goldwasser, Micali, and Rivest (in
[5]) , shows that the existence of another cryptographic primitive, a claw-free
pair of permutations, is sufficient to construct collision-free hash functions. A
pair of permutations (f , g) is claw-free if it is hard for any efficient algorithm,
given (f , g) and lk, to find a pair (z,y) so that 1 1 1 = lyl = k and f (2) =

* Supported by a NSF Graduate Fellowship

E.F. Brickell (Ed.): Advances in Cryptology - CRYPT0 '92, LNCS 740, pp. 433-441, 1993.
0 Springer-Verlag Berlin Heidelberg 1993

434

g(y). Comparing the definitions of collision-free hash functions and claw-free
pairs of permutations, it seems unlikely that the existence of claw-free pairs
of permutations is necessary for the existence of collision-free hash functions
because the hash functions have no explicit structural properties tha t reflect
the condition of permutativity in the claw-free pairs of permutations. Our paper
relaxes this condition of permutativity and defines a natural object, the existence
of which is necessary and sufficient for the existence of a family of collision-free
hash functions.

We define a new concept, the pseudo-permutation. A function f : S - S is a
pseudo-permutation if it is computationally indistinguishable from a permuta-
tion. For this “indistinguishability” we require that it be hard for any efficient
algorithm, given the function f and l k l to compute a quickly verifiable proof of
non-injectivity, i.e. a pair (z,y) where 121 = IyI = k , z # y, and f(z) = f (~) .
The main contribution of our paper is that the existence of a collection of claw-
free pairs of pseudc-permutations is equivalent to the existence of a collection
of collision-free hash functions. This fact shows that nontrivial “claw-freeness”
is essential to collision-free hashing and also weakens the assumptions necessary
for their existence.

In 32 we describe our notation and define some cryptographic machinery.
In §3 we present our main theorem. In $4 we consider the efficiency of our
construction. Finally, in $ 5 , we discuss an open problem and the motivation for
this research.

2 Notation and Definitions

We adopt the following class of expected polynomial time Turing machines as
our standard class of “efficient algorithms” (see [9] for a precise definition and
discussion of this class).

Definitionl. Let Ed, our class of efficient algorithms, be the class of prob-
abilistic Turing machines (with output) running in expected polynomial time.
We consider these machines to compute probability distributions over c‘ . For
M E Ed we use the notation M[w] to denote both the probability space defined
by M on w over S’ and an element selected according to this space.

For simplicity, let us fix a two letter alphabet C = (0 , l) . The consequences
of a larger alphabet will be discussed in 34. lk denotes the concatenation of k 1’s.
Q[z] denotes the class of polynomials over the rationals. Borrowing notation from
[4], if S is a probability space, z t S denotes the assignment of z according to
s. If p (z 1 , . . . , zlc) is a predicate, then Pr[zl + SI, . . . ,zk +- sk : P(zi, . . . , zk)]
denotes the probability that p will be true after the ordered assignment of 21

through zk.

Definition2. A collection of claw-free functions is a collection of function
tuples {(f!, f:)\i E I } for some index set I 2 c’ where f! : .Eli[+ Clil and:

435

CF1. [accessibility] there exists a generating algorithm G E Ed SO that G[1"] E

CF2. [e f i c i en t computability] there exists an computing algorithm C E Ed SO that

CF3. [claw-freedom] for all claw finding algorithms A E &d, VP E Q[z], 3k.0,

{ o , ~) ~ n I .

for i E I , j E (0, l}, and x E Clil, C[i, j , x] = f!(z),

Vk > ko,
1

Pr[i - G[lk], (z, y) c A[i] : f:(z) = f;(y)] < -

If (f", f') is a member of a collection of claw-free pairs, then Ifo, f') is called
a c l a w f r e e p a i r and a pair (2, y) so that f"(z) = f'(y) is called a claw of (f', f').

This definition, from a cryptographic perspective, requires nothing of the
function pairs involved unless they have overlapping images. One way to require
that the functions have overlapping images is to require that the functions be
permutations. This yields the following object, originally defined in [5] and then
in this form by [a] .

Definition 3. A collection of claw-free permutations is a collection of claw
free functions {(fp, f))li E I } where each fj is a permutation.

P (k)

Although the intractability of certain number theoretic problems implies the
existence of a collection of claw-free pairs of permutations2, the existence of
one-way permutations is not known to be e n ~ u g h . ~

Definition4 A collection of pseudo-permutations is a collection of func-
tions { f i] i E I } for some index set I C c' where fi : Eli[- Elil and:

$Pl. [accessibiliiy] there exists a generating algorithm G E Ed so that C[1"] E

$P2. [ef ic ient computabili ty] there exists a computing algorithm C E Ed so that

qP3. [collapse freedom] for all collapse finding algorithms A E Ed, V P f &[2],

{ O , l } n n I .

for i E I and z E CIil,C[i, z] = fi(x).

3k0, V k > ko

1 Pr[i +- G[lk], (2 , ~) + A[i] : f i (z) = f i (y) A 1: # Y] < -
P (k)

If a function f is a member of a collection of pseudo-permutations it is
called a pseudo-permutation and a pair (z,y) where f(z) = f (y) and z # y
is called a collapse of f. Property $P3 means that i t is hard for an efficient
algorithm to produce a quickly verifiable proof that f is not a permutation. In
the definition above, this proof is specifically required to be a proof of non-
injectivity: a collapse. One might also prove that a function f : S - s is

In [5] the intractability of factoring is shown to be sufficient, In [2], the construction of
[5] is extended and the intractability of the discrete log is also shown to be sufficient.
[ll] discusses algebraic forms of one way permutations sufficient for claw-free
permutations.

2

3

436

not a permutation by producing a proof of non-surjeetivity: an element in S -
Imf. We require the former because of the difference in computational resources
necessary to verify these proofs: a proof of non-iqjectivity may be verified with
two function applications whereas a proof of non-eurjectivity requires evaluation
of f at every point in the domain. Like the definition for claw-free functions,
the above definition requires nothing Cryptographically of the functions involved
unless IIm fi I < lDom fil. If the functions in the collection are injective, then
$P3 is vacuously true.

Pseudepermutations are a reasonable replacement for permutations in a
cryptographic setting; for example, the entire signing algorithm of Naor and
Yung (in [lo]) may be implemented with one-way4 pseudepermutationa rather
than one-way permutations.

Deihition5. A collection of claw-free pseudo-permutations is a collec-
tion of claw-free functions { (f , f /) l i E I} 80 that both {f,!'li E I } and { j / li E I}
are collections of pseudo-permutations.

Collections of claw-free pseud*permutations gather their cryptographic
structure from the tension between two otherwise weak definitions. If the pseudo-
permutations lack cryptographic richness (so that they are very close to permu-
tations) then the intersection of their images must'be large and there must be
many claws, imparting richness by virtue of claw-freedom. If, instead, the pair
has few claws, then the images of the two functions must be nearly disjoint (and
so, small) so that the functions themselves are cryptographically rich by virtue
of their many collapses.

3 The Structure of Collision-Free Hash Functions

DefinitionG. A collection of collision-free hash functions is a collection
of functions {hi(i E I} for some index set I C where hi : Elil+' -+ Eli[and:

H1. [accessibilify] there exists a generating algorithm G E &A so that G[1"] E

H2. [eficieni compuiabiliiy] there exists a computing algorithm C E € A 80 that

H3. [collision-freedom] for all collision generating algorithms A E &A,VP E

{o, 1)" n 1.

for i E I, and w E C[i, w] = hi(w).

Q[z], 3h0, VE > Lo

If h is a member of a collection of collision-free hash functions then h is called
a collision-free hash funcfion and a pair (z,y) where h(z) = h(y) and z # y is
called a collision of h.
' This is a collection of psendcqwrmutations which are hard to invert in the Bense of

one-way functions.

43;

The notion of a polynomial separator will be used in the following proof. For
the purposes of this paper, a separator is a pair of bijections from Ck into C"'
so that their images have no intersection. (Because ICI = 2, their images cover
Ck+' .)

Definition 7. A collection of polynomial separators is a collection of func-
tion pairs {(u:,n!)\i E I} for some index set I C: C' where 4 : El'! + Clil+'
for j E {0,1} and:

PS1. [accessibility] there exists a generating algorithm G E Id so that G[1"] E

PS2. [injectiuity] u: and u! are injective.
PS3. [disjointness] im u: n im uf = 0
PS4. [ef ic ieni computability] there exists a computing algorithm C E &d so that

{0,1}" n I .

for i E I , w E Ciil, and j E (0, l}, C[i , j, w] = a;f (w).

With each such collection, we associate a collection of inverses {L;} where
Li : ~ l 4 + 1 4 ~ I l I and L , o up = L; o u,! = idE,,, and a collection of image deciders
{Si} where b, : Elil+' + (0, l} and Vw E Zlil+l, w E im np""':'.

The collection is said to have a polynomial inverse if the collection of
inverses is so that 3C, E &d,Vw E .L'lil+l,Vi E I,C,[w,i] = i i [w) . If a collec-
tion is so endowed, then it is clear that the image deciders are also efficiently
computable.

Construction of a family of polynomial separators with a polynomial inverse
is easy: the append0 : x t-+ 20 and append1 : x +.+ r l functions, for example.

Theorems. There exists a collecfion of collision-free hash junctions iff there
exists a collection of claw-free pairs of pseudo-permutations.

Proof. (*) Let { h i / i E I } be a collection of collision-free hash functions and let
{(f lu , u;)li E I } be a collection of polynomial separators (unrelated to the hash
functions, but over the same index set). Define the collection {(f:, f;)li E I} so
that

f: = h , o < f o r j E { O , I }

We show that the collection of functions so defined is a collection of claw-
free pseudepermutations. Properties CF1 and CF2 are immediate. Assume that
property CF3 does not hold, that is 3 A E LA, 3P E Q[z] ,Vko, 3k > ko,

Let (z,y) be a claw for (f ? f , ') , then f (~) = f,'(y) hi(gP(2)) = ~;(C;(Y)),
but im u: n im uf = 0 so that ap(t) # n,'(y) and a collision has been found for
hi . Then, given this claw generating algorithm A we can construct a collision
generating algorithm A' succeeding with identical probability as A, violating H3.
Therefore, CF3 holds.

438

To show that {f!li E I } for each j E { O , 1) are collections of pseude
permutations, we verify properties $P1 - +P3 for each. $P1 and $P2 are im-
mediate. Suppose, for contradiction, that property $P3 is not satisfied, so that
(3 j E (0, l},) 3A E &d,3P E Q [z l , V k ~ , 3k > k~

1 Pr[i t G[l']], (z l y) - A[i] : f ! (z) = f! (y)] 2 -
P (k)

Let (2 , y) be a collapse of $, so that f/ (2) = fi (y) and x # y. Then 4 (z) #
4 (y) because .;' is injective, 90 that (<(z),<(y)) is a nontrivial collision of
hi (because f j = hi o 4) . Then, given this collapse generating algorithm A
we can construct a collision generating algorithm A' succeeding with identical
probability as -4, violating H 3 . Therefore] $ P 3 holds.

(F) Let {(f,!',f!)li E I } be a collection of claw-free pairs of pseud-
permutations and let {(uP,gf) l i E I } be a collection of polynomial separat-
ors with inverses { i , l i E I } and image deciders {&li E I } . Then define {h i l i E I)
so that

h; (z) = f;6""'(Lz(z))

We show that {hili E I } is a collection of collision-free hash functions. Properties
H I and H 2 are immediate. Assume, for contradiction, that property H3 is not
satisfied, that is 3A E &A, 3P E Q [E] , Vkol 3k > ko

so that V k o , 3k > ko

1
Pr[i + G[1'], (t , y) + A [;] : h,(z) = h,(y) A L # y A &(z) # S;(y)] 2 -

2P(k)

and we encounter at least one of two possibilities:

2. Vko,ZIk > ko

439

In the event of 1 above, the algorithm A generates collisions (z ,y) where
&(z) = S;(z>. In this case, for at least one j f {0 ,1} ,Vk0 ,3k > ko

Pr[i + G[lk], (2, y) +- A[i] :

Given a collision of this sort, h,(z) = h,(y) j fi (z) = f{ (y) which is a collapse
of f! . Then, given algorit,hm A, we may produce another algorithm A‘ which
produces a collapse off! with success related to the success of A by a constant,
violating q P 3 .

In the event of 2 above, the algorithm A generates collisions (2 , ~) where
&(y) # 6i(z). A collision of this sort produces a claw because hi(.) = h , (y) =+-
f~’(”’(~i(z)) = f,P’tY’(~;(y)). Then, with algorithm A, we may construct a claw
generating algorithm A’ which produces claws with success related to the success
of A by a constant, violating CF3.

A pair of separators partitions Ck+‘ into two equal sized subsets (the images
of the separators). We couple the definition of collision-free hash functions with
the definition of polynomial separators to define a class of hash functions where
every collision occurs across the partition boundary - then h (z) = h(y) implies
that 5 and y are in the images of different separators.

Definition 9. A collection of separated collision-free hash functions is
a collection of function tuples { (h i , uY,cr:)\i E I } so that {h ,J i E I} forms a
collection of collision-free hash functions, {(c$, u,’)li E I } forms a collection of
polynomial separators, and

SH. [separation] V j E (0, l}, h,lima;l , the restriction of h; to im 4 , is bijec-
tive. Equivalently, hi(.) = hi(y) 3 6;(z) # 6,(y), where { S i l i E I } is the
collection of image deciders for the separators.

The existence of a collection of separated collision-free hash functions is
equivalent to the existence of a collection of claw-free pairs of permutations.

Theorem 10. There exists a collection of claw-free permutations i f f there exists
a collection of separated collision- free hash functions.

Proof. This proof is omitted due its similarity with the previous proof.

The collision-free hash functions constructed in the two theorems above nat-
urally inherit properties from the primitives with which they are constructed.
If, for example, the claw-free pairs of (pseudo-) permutations are trapdoor func-
tions, then the hash functions constructed share this property. It is not clear
that the original hash functions constructed in [2] offer inheritance of this sort.

Toshiya Itoh [8] has pointed out that in the above constructions, the demand
of claw-freedom can be replaced in an appropriate way with the demand of
“distinction intractibility” as discussed in [14].

It is not hard to show that by composition the above collections of hash
functions can be used to construct families of collision-free hash functions {h; :
i E I } where hi : Cp(lil) -f Clil for any polynomial P E Q[x] where V z E
N, P (x) > 2.

4 Comments on Efficiency

The (+) part of theorem 8 constructs a family of collision-free hash functions
which are one bit contractors (functions from Zk+l to Ck) and require 1 claw-
free function evaluation to compute. Building a family of contractors by applying
the construction in [2] yields hash functions which require k evaluations of the
underlying claw-free functions. For the case of one-bit contractors, then, the
above construction is substantially more efficient.

In general, to construct hash functions from CP(k) to Ck (for a polynomial
P) one can do better than naive composition. Using arguments similar to those
of Damg5,rd in [2], the construction above can be altered to yield hash functions
from Z p (k) to Ck which require P (k) - k evaluations of the underlying claw-free
functions on k bit arguments. The collection constructed in [2] of the same sort
requires Pfk) evaluations. so the efficiency improvement in this case is only an
additive factor of $.

In [2], Damgkd shows that expanding the size of the alphabet (and u s
ing claw-free tuples of functions) can reduce the number of required claw-free
function evaluations by a multiplicative constant factor. This same procedure is
applicable to our above construction.

5 An Open Problem

The motivation for this research is the following open problem: Is the existence of
one-way functions sufficient for the existence of collision-free hash functions? We
believe this to be the case, and that this paper represents a step towards proving
this goal by demonstrating the equivalence between collision-free hashing and a
primitive not requiring pure cryptographic permutativity.

6 Acknowledgements

We gratefully acknowledge the keen guidance of SiIvio Micali, who originally
suggested this problem. We also acknowledge Ravi Sundaram for several helpful
discussions.

References

1. Manual Blum and Silvio Micali.
quences of pseudo-random bits.
November 1984.

How to generate cryptographically strong se-
SI.4 iM Journal of Computing, 13(4):850-864,

43 1

2. Ivan DamgZrd. Collision free hash functions and public key signature schemes.
In Proceedings of E U R O C R Y P T '87, volume 304 of Lecture Notes in Computer
Science, pages 203-216, Berlin, 1988. Springer-Verlag.

3. Alfred0 De Santis and Moti Yung. On the design of provably-secure cryptographic
hash functions. In Proceedings of EUROCRYPT '90, volume 473 of Lecture Notes
in Computer Science, pages 412 - 431, Berlin, 1990. Springer-Verlag.

4. Oded Goldreich, Shafi Goldwasser, and Silvio MiCali. How to construct random
functions. Journa l of the Association for Computing Machinery, 33(4):792-807,
October 1986.

5. Shafi Goldwasser, SiIvio Micah, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attack. S I A M Journa l of Computing,
17(2):281-308, April 1988.

6. J. Histad. Pseudo-random generators under uniform assumptions. In Proceedings
of the Twenty Second Annual A C M Symposium on Theory of Computing, pages

7. Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random gener-
ation from one-way functions. In Proceedings of the Twenty Firs t Annual ACM
Symposium on Theory of Computing, pages 12-24. ACM, 1989.

395-404. ACM, 1990.

8. Toshiya Itoh. Personal cornminucation, August 1992.
9. Leonid A. Levin. Average case complete problems. SIAill Journal on Computing,

10. M. Naor and M . Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the Twenty First Annual iiCM Symposium on
Theory of Computing, pages 33-43. ACM, 1989.

11. Wakaha Ogata and Kaoru Kurosawa. On claw free families. In Proceedings of
ASIACRYPT '91, 1991.

12. John Rompel. One-way functions are necessary and sufficient for secure signa-
tures. In Proceedings of the Twenty Second Annual ACM Symposium on Theory
of Computing, pages 387-394. ACM, 1990.

In Proceedings of the
Twenty Third IEEE Symposium o n Foundation3 of Computer Science, pages 80-

14. Yuliang Zheng, Tsutornu Matsumoto, and Ilideki Irnai. Duality between two c r v p
tographic primitives. In Proceedings of the Eighth Internat ional Conference on
Applied .4lgebra, Algebraic Algorithms a n d Error-Correcting Codes, volume 508 of
Lecture Notes in Computer Science, pages 379-390, Berlin, 1990. Springer-Verlag.

15. Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. Structural properties of
one-way hash functions. 1x1 Proceedings of C R Y P T 0 '90. volume 537 of Lecture
Notes in Computer Science, pages 285-302, Berlin, 1990. Springer-Verlag.

15:285-286, 1986.

13. A. Yao. Theory and applications of trapdoor functions.

91. IEEE, 1982.

	Necessary and Sufficient Conditions forC ollisio n- F'r e e Hashing
	1 Introduction
	2 Notation and Definitions
	3 The Structure of Collision-Free Hash Functions
	4 Comments on Efficiency
	5 An Open Problem
	6 Acknowledgements
	References

