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Necessary and Sufficient Conditions for Sparsity
Pattern Recovery

Alyson K. Fletcher, Member, IEEE, Sundeep Rangan, and Vivek K Goyal, Senior Member, IEEE

Abstract—The paper considers the problem of detecting the
sparsity pattern of a �-sparse vector in � from � random noisy
measurements. A new necessary condition on the number of
measurements for asymptotically reliable detection with max-
imum-likelihood (ML) estimation and Gaussian measurement
matrices is derived. This necessary condition for ML detection
is compared against a sufficient condition for simple maximum
correlation (MC) or thresholding algorithms. The analysis shows
that the gap between thresholding and ML can be described by a
simple expression in terms of the total signal-to-noise ratio (SNR),
with the gap growing with increasing SNR. Thresholding is also
compared against the more sophisticated Lasso and orthogonal
matching pursuit (OMP) methods. At high SNRs, it is shown that
the gap between Lasso and OMP over thresholding is described
by the range of powers of the nonzero component values of the
unknown signals. Specifically, the key benefit of Lasso and OMP
over thresholding is the ability of Lasso and OMP to detect signals
with relatively small components.

Index Terms—Compressed sensing, convex optimization, Lasso,
maximum-likelihood (ML) estimation, orthogonal matching pur-
suit (OMP), random matrices, random projections, sparse approx-
imation, subset selection, thresholding.

I. INTRODUCTION

A common problem in signal processing is to estimate an
unknown sparse vector from linear observations

of the form . Here, the measurement matrix
is known and is an additive noise vector with

a known distribution. The vector is said to be sparse
in that it is known a priori to have a relatively small number of
nonzero components, but the locations of those components are
not known and must be detected as part of the signal estimation.

Sparse signal estimation arises in a number of applications,
notably subset selection in linear regression [1]. In this case, de-
termining the locations of the nonzero components of corre-
sponds to finding a small subset of features which linearly influ-
ence the observed data . In digital communication over channel
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with additive noise , the locations of nonzero components in
could convey information [2], [3].
In this paper, we are concerned with establishing necessary

and sufficient conditions for the recovery of the positions of the
nonzero entries of , which we call the sparsity pattern. The
ability to detect the sparsity pattern of a vector from noisy mea-
surements depends on a number of factors, including the signal
dimension, level of sparsity, number of measurements, and noise
level. The broad goal of this paper is to explain the influence
of these factors on the performances of various detection algo-
rithms.

A. Related Work

Sparsity pattern recovery (or more simply, sparsity recovery)
has received considerable attention in a variety of guises. Most
transparent from our formulation is the connection to sparse ap-
proximation. In a typical sparse approximation problem, one is
given data , dictionary1 , and tolerance .
The aim is to find with the fewest number of nonzero entries
among those satisfying . This problem is NP-hard
[5] but greedy heuristics (matching pursuit [4] and its variants)
and convex relaxations (basis pursuit [6], Lasso [7] and others)
can be effective under certain conditions on and [8]–[10]. In
our formulation, without additive Gaussian noise would have
an exact sparse approximation with terms.

More recently, the concept of “sensing” sparse or compress-
ible through multiplication by a suitable random matrix has
been termed compressed sensing [11]–[13]. This has popular-
ized the study of sparse approximation with respect to random
dictionaries, which was considered also in [14], [15].

The principal results in compressed sensing bound the
error of a reconstruction computed from relative to the error
of an optimal -term nonlinear approximation of with respect
to a suitable fixed basis. These results show that for only mod-
erately larger than , these errors are similar. For the case
where the -term representation of is exact, these results thus
establish exact recovery of . For example, if has independent
and identically distributed (i.i.d.) Gaussian entries and has
nonzero entries, then

(1)

dictates the minimum scaling at which basis pursuit

succeeds at recovering exactly from with high prob-
ability [16].

1The term seems to have originated in [4] and may apply to� or the columns
of � as a set.

0018-9448/$26.00 © 2009 IEEE
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TABLE I
SUMMARY OF RESULTS ON MEASUREMENT SCALING FOR RELIABLE SPARSITY RECOVERY (SEE BODY FOR DEFINITIONS AND TECHNICAL LIMITATIONS)

Extension of the exact recovery of the sparsity pattern to the
noisy case is our object of study. One key previous result in this
area, reviewed in more detail in Section II-B, is that the scaling

(2)

is necessary and sufficient for the Lasso technique to succeed
in recovering the sparsity pattern, under certain assumptions on
the signal-to-noise ratio (SNR) [17], [18]. While the scalings
(1) and (2) are superficially similar, the presence of noise can
greatly increase the number of measurements required. For ex-
ample, if then measurements is sufficient
in the noiseless case but measurements are
needed in the noisy case.

It should be stressed that this work is concerned only with
sparsity pattern detection—not with bounding or estimating the

error when estimating in noise. Recovering the sparsity pat-
tern certainly results in well-controlled error, but it is not nec-
essary for low error. Two important works in this regard are
the Dantzig selector of Candès and Tao [19] and the risk min-
imization estimator of Haupt and Nowak [20]. Mean-squared
error and other formulations are beyond the scope of this paper.

B. Preview of Main Results

The condition (2) applies to Lasso, which is a computation-
ally tractable but suboptimal estimation method. A natural ques-
tion then is: What are the limits on sparsity recovery if compu-
tational constraints are removed? We address this in our first
main result, Theorem 1 in Section III, which considers max-
imum-likelihood (ML) estimation. This result is a necessary
condition for ML to asymptotically recover the sparsity pattern
correctly when has i.i.d. Gaussian entries. It shows that ML
requires a scaling of the number of measurements that differs
from the Lasso scaling law (2) by a simple factor that depends
only on the SNR and what we call the minimum-to-average ratio
(MAR) of the component magnitudes. This expression shows
that, at high SNRs, there is a potentially large gap in perfor-
mance between what is achievable with ML detection and cur-
rent practical algorithms such as Lasso and orthogonal matching
pursuit (OMP). Finding alternative practical algorithms that can
close this gap is an open research area.

Previous necessary conditions had been based on informa-
tion-theoretic capacity arguments in [21], [22] and a use of
Fano’s inequality in [23]. More recent publications with neces-
sary conditions include [24]–[27]. As described in Section III,
our new necessary condition is stronger than the previous
results in certain important regimes.

In contrast to removing all computational strictures, it is also
interesting to understand what performance can be achieved by
algorithms even simpler than Lasso and OMP. To this end, we
consider a computationally trivial maximum correlation (MC)
algorithm and a closely related thresholding estimator that
has been recently studied in [28]. Similar to Lasso and OMP,
thresholding may also perform significantly worse than ML at
high SNRs. In fact, we provide a precise bound on this perfor-
mance gap and show that thresholding may require as many as

more measurements than ML.
However, at high SNRs, the gap between thresholding and

other practical methods such as Lasso and OMP is not as large.
In particular, the gap does not grow with SNR. We show that
the gap between thresholding on the one hand and Lasso and
OMP on the other hand is instead described precisely by the
MAR. In particular, the Lasso and OMP algorithms perform sig-
nificantly better than thresholding when the spread of nonzero
component magnitudes is large and the estimator must detect
relatively small values. On the other hand, when the spread is
bounded, their performances (in terms of number of measure-
ments for success) can be matched within a constant factor by a
computationally trivial algorithm.

Table I previews our main results in the context of previous
results for Lasso and OMP. The measurement model and pa-
rameters and are defined in Section II. Arbitrarily
small constants have been omitted to simplify the table entries.

C. Organization of the Paper

The setting is formalized in Section II. In particular, we
define our concepts of SNR and MAR; our results clarify the
roles of these quantities in the sparsity recovery problem. Nec-
essary conditions for success of any algorithm are considered
in Section III. There we present a new necessary condition
and compare it to previous results and numerical experiments.
Section IV introduces and analyzes a very simple thresholding
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algorithm. Conclusions are given in Section V, and proofs
appear in the Appendices.

II. PROBLEM STATEMENT

Consider estimating a -sparse vector through a
vector of observations

(3)

where is a random matrix with i.i.d. en-
tries. The vector represents additive noise and also has
i.i.d. components. Denote the sparsity pattern of
(positions of nonzero entries) by the set , which is a -ele-
ment subset of the set of indices . Estimates of the
sparsity pattern will be denoted by with subscripts indicating
the type of estimator. We seek conditions under which there ex-
ists an estimator such that with high probability.

The success or failure of any detection algorithm will depend
on the unknown deterministic vector and the realizations of
the measurement matrix and noise . Of course, the analysis
handles and probabilistically. In addition, we would like
to reduce the dependence on to one or two scalar parameters
so that our results are easy to interpret. A necessary condition
for ML can be given using only the magnitude of the smallest
nonzero entry of 2

For other results and to compare algorithms, we need more than
only . We thus parameterize the dependence on through
two quantities: the SNR, and what we will call the minimum-to-
average ratio (MAR).

The SNR is defined by

(4)

Since we are considering as an unknown deterministic vector,
and the matrix and vector have i.i.d. compo-
nents, it is easily verified that

(5)

The MAR of is defined as

(6)

Since is the average of ,
with the upper limit occurring when all the nonzero en-

tries of have the same magnitude. can be interpreted as
a reciprocal of dynamic range.

Another quantity of interest is the minimum component SNR,
defined as

(7)

2The magnitude of the smallest nonzero entry of the sparse vector was first
highlighted as a key parameter in sparsity pattern recovery in the work of Wain-
wright [17], [18], [23].

where is the th column of . The quantity has a nat-
ural interpretation: The numerator is the signal
energy due to the smallest nonzero component in , while the
denominator is the total noise energy. The ratio
thus represents the contribution to the SNR from the smallest
nonzero component of the unknown vector . Our choice of
variances for the elements of and yields .
Also, observe that (5) and (6) show

(8)

A. Normalizations

Other works use a variety of normalizations, e.g., the entries
of have variance in [13], [25]; the entries of have unit
variance and the variance of is a variable in [17], [18], [23],
[26], [27]; and our scaling of and a noise variance of are
used in [20]. This necessitates great care in comparing results.

We have expressed all our results in terms of , ,
and as defined above. All of these quantities are dimen-
sionless; if either and or and are scaled together, these
ratios will not change. Thus, the results can be applied to any
scaling of , and , provided that the quantities , ,
and are computed via their ratio definitions.

To aid some readers in interpreting the results and comparing
to other results in the literature, some expressions are given in
equivalent forms using and . It should be noted, how-
ever, that any condition on and has an implicit depen-
dence on the normalizations of and .

B. Review of Lasso and OMP Performance

As discussed above, one common approach for detecting the
sparsity pattern of is the so-called Lasso method of [7], also
known as basis pursuit denoising [6]. The Lasso method first
finds an estimate of via the optimization

(9)

where is an algorithm parameter. The Lasso estimate is
essentially a least-square minimization with an additional reg-
ularization term , which encourages the solution to be
sparse. The sparsity pattern of can then be used as an esti-
mate of the sparsity pattern of . We will denote this estimate
as

Necessary and sufficient conditions for sparsity recovery via
Lasso were determined by Wainwright [17], [18]. He showed
that

(10)

is necessary for Lasso to asymptotically detect the correct spar-
sity pattern for any at any SNR level. Conversely, if the min-
imum component SNR scales as

(11)
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then the condition (10) is also sufficient; i.e., there exists a se-
quence of threshold levels that guarantees asymptotically
reliable recovery.3 Using (8), the condition (11) is equivalent to

Therefore, for the measurement scaling given precisely by (10),
we need that . The condition (10) is included
in Table I.

Another common approach to sparsity pattern detection is
the greedy OMP algorithm [30]–[32]. This was analyzed by
Tropp and Gilbert [33] in a setting with no noise. More recently,
Fletcher and Rangan [29] improved this analysis, lowering the
number of measurements sufficient for recovery while also al-
lowing noise satisfying (11) and bounded uncertainty in a priori
knowledge of . They show that, when has Gaussian entries,
a sufficient condition for asymptotic reliable recovery is

(12)

similar to the condition for Lasso. This condition is also sup-
ported by numerical experiments reported in [33]. The sufficient
condition (12) appears in Table I.

III. NECESSARY CONDITION FOR SPARSITY RECOVERY

We first consider sparsity recovery without being concerned
with computational complexity of the estimation algorithm.
Since our formulation is non-Bayesian, we consider the ML
estimate, which is optimal when there is no prior on other
than it being -sparse.

The vector is -sparse, so the vector belongs
to one of subspaces spanned by of the columns of .
Estimation of the sparsity pattern is the selection of one of these
subspaces, and since the noise is Gaussian, the ML estimate
minimizes the Euclidean norm of the residual between and
its projection to the subspace. More simply, the ML estimate
chooses the subspace closest to .

Mathematically, the ML estimator can be described as fol-
lows. Given a subset , let denote the or-
thogonal projection of the vector onto the subspace spanned
by the vectors . The ML estimate of the sparsity
pattern is

where denotes the cardinality of . That is, the ML estimate
is the set of indices such that the subspace spanned by the cor-
responding columns of contain the maximum signal energy
of .

ML estimation for sparsity recovery was first examined by
Wainwright [23]. He showed in [23, Theorem 1] that there exists
a constant such that the condition

(13a)

3Sufficient conditions under weaker conditions on are given in [18].
Interpreting these is more subtle: the scaling of with � determines the
sequences of regularization parameters �� � for which asymptotic almost sure
success is achieved, and �� � affects the sufficient number of measurements.

(13b)

(13c)

is sufficient for ML to asymptotically reliably recover the spar-
sity pattern. Note that the equality in (13c) is a consequence of
(8). Our first theorem provides a corresponding necessary con-
dition.

Theorem 1: Let , , ,
and be deterministic sequences in such that

and

(14a)

(14b)

(14c)

for some . Then even the ML estimator asymptotically
cannot detect the sparsity pattern, i.e.,

Proof: See Appendix B.

The theorem provides a simple lower bound on the minimum
number of measurements required to recover the sparsity pattern
in terms of , , and the minimum component SNR, .
Note again that the equality in (14c) is due to (8).

Remarks:
1) The theorem strengthens an earlier necessary condition in

[24] which showed that there exists a such that

is necessary for asymptotic reliable recovery. Theorem 1
strengthens the result to reflect the dependence on MAR
and make the constant explicit.

2) When the first of the two terms in the maximum in the
sufficient condition (13) dominates, the sufficient condi-
tion matches the necessary condition (14) within a constant
factor. The fact that the two conditions match is not sur-
prising since the proofs of the two use similar methods: The
necessary condition is proven by considering the tail prob-
ability of all error events with a single incorrect vector. The
sufficient condition is proven by bounding the sum proba-
bility of all error events.
However, the first term in (13c), , is
not always dominant. For example, if
or , then the second term may be
larger. In this case, there is a gap between the necessary
and sufficient conditions. The exact scalings for reliable
sparsity recovery with ML detection in these regimes are
not known.

3) The bound (14) strengthens earlier results in the regime
where is bounded and the sparsity ratio
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is fixed.4 To see this point, we can compare (14) against
previous information-theoretic bounds in [21]–[23], [26],
[27]. As one example, consider the bound in [21], which
uses a simple capacity argument to show that

(15)

is necessary for sparsity pattern detection. When and
the SNR are both fixed, can satisfy (15) while growing
only linearly with . The other capacity-based bounds have
the same property.
In contrast, Theorem 1 shows that with fixed and

bounded, is necessary for
reliable sparsity recovery. That is, the number of measure-
ments must grow superlinearly in in the linear sparsity
regime with bounded SNR.

4) In the regime of sublinear sparsity (where ) or in
the regime where , information-theoretic
bounds such as (15) may be stronger than (14) depending
on the precise scaling of , , and other terms.

5) For a set of sparse signals specified by a given , spar-
sity pattern recovery is most difficult when the magnitudes
of all nonzero entries is . (This makes .)
Thus, minimax rate conditions for this set are determined
by analysis of the case with all nonzero entries of equal
to . In [23, Theorem 2] Wainwright gives a necessary
condition of

for asymptotic reliable sparsity pattern recovery of such
signals.5 When and are of the same
order, Wainwright’s earlier necessary condition is within
a constant factor of that of Theorem 1. While Wainwright
correctly makes the point that is the most important
quantity for sparsity pattern recovery, one should be careful
to understand that all the nonzero entries of affect detec-
tion performance; the remaining nonzero entries disappear
from Wainwright’s analysis because he gives a minimax
result.

6) Results more similar to Theorem 1—based on direct
analyses of error events rather than information-theoretic
arguments—appeared in [24], [25]. The previous results
showed that with fixed SNR as defined here, sparsity
recovery with must fail. The more refined
analysis in this paper gives the additional factor
and the precise dependence on .

7) Theorem 1 is not contradicted by the relevant sufficient
condition of [26], [27]. That sufficient condition holds
for scaling that gives linear sparsity and

. For , Theorem
1 shows that fewer than measurements
will cause ML decoding to fail, while [27, Theorem 3.1]
shows that a typicality based decoder will succeed with

measurements.

4We will sometimes use linear sparsity to mean that ��� is fixed.
5While [23, Theorem 2] is stated without specifying a leading constant, the

constant � can be extracted from its proof.

8) Our definition of the ML estimator requires that the
number of nonzero components must be known a priori.
Of course, in many practical applications, may not
be known. If must be estimated, we would expect the
number of measurements to be even higher, so the lower
bound (14) should apply in this case as well.

9) The condition (14) can be rearranged to be a necessary
condition on a parameter other than . For example, re-
arranging to obtain a necessary condition on gives an
improvement over [34, Corollary 4.1] by about a factor of
in the restricted scenario of considered therein.

10) After the posting of [35], Theorem 1 was generalized to
i.i.d. non-Gaussian distributions for the entries of in [36].
An additional contribution of [36] is the study of a specific
distribution for obtained by multiplying i.i.d. Gaussian
entries by i.i.d. Bernoulli variables.

Comparison to Lasso and OMP: Comparing the necessary
condition for ML in (14c) against the sufficient conditions (10)
and (12) for Lasso and OMP, we see that ML may require dra-
matically fewer measurements than Lasso or OMP. Specifically,
ML may require a factor of fewer measure-
ments. This gap grows as .

Of course, since the ML scaling (14) is only necessary, the
actual performance gap between ML and Lasso may be smaller.
However, we do know that in the noiseless case, for any fixed

-sparse , it is sufficient to have for ML to succeed
with probability over the choice of . This is a scaling at which
Lasso fails, even in the noiseless case [17], [18]. It is an open
question to characterize the precise gap and to determine if there
are practical algorithms that close it.

Numerical Validation: The theorem is asymptotic, so it
cannot be confirmed computationally. Even qualitative support
is hard to obtain because of the high complexity of ML detec-
tion. Nevertheless, we present some evidence obtained through
Monte Carlo simulation.

Fig. 1 shows the probability of success of ML detection for
as , , , and are varied, with each point

representing at least 500 independent trials. Each subpanel gives
simulation results for and
for one pair. Signals with are created
by having one small nonzero component and equal, larger
nonzero components. Overlaid on the intensity plots is a white
curve representing (14).6

Taking any one column of one subpanel from bottom to top
shows that as is increased, there is a transition from ML
failing to ML succeeding. One can see that (14) follows the
failure–success transition qualitatively. In particular, the empir-
ical dependence on and approximately follows (14c).
Empirically, for the (small) value of , it seems that with

held fixed, sparsity recovery becomes easier as
increases (and decreases).

Less extensive Monte Carlo simulations for are re-
ported in Fig. 2. The results are qualitatively similar. As might
be expected, the transition from low to high probability of suc-
cessful recovery as a function of appears more sharp at

than at .

6Color versions of Figs. 1, 2 and 4 are available online in [35].
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Fig. 1. Simulated success probability of ML detection for � � �� and many values of �, �, , and . Each subgraph gives simulation results for � �
��� �� � � � � �� and � � ����� � � � � ��� for one � � 	 pair. Each subgraph heading gives � � 	. Each point represents at least 500 independent trials.
Overlaid on the intensity plots is a white curve representing (14).

Fig. 2. Simulated success probability of ML detection for � � ��; � ��;
� � (left) or � ��� (right); and many values of � and �. Each sub-

graph gives simulation results for � � ����� � � � � �� and � � ����� � � � � ���,
with each point representing at least 1000 independent trials. Overlaid on the
intensity plots (with scale as in Fig. 1) is a white curve representing (14).

IV. SUFFICIENT CONDITION WITH THRESHOLDING

The ML estimator analyzed in the previous section becomes
computationally infeasible quickly as problem size increases.
We now consider a sparsity recovery algorithm even simpler
than Lasso and OMP. It is not meant as a competitive alternative.
Rather, it serves to illustrate the precise benefits of Lasso and
OMP.

As before, let be the th column of the random matrix .
Define the thresholding estimate as

(16)

where is the correlation

(17)

and is a threshold level. This algorithm simply corre-
lates the observed signal with all the frame vectors and
selects the indices where the correlation energy exceeds a cer-
tain level .

A closely related algorithm is to compute the maximum cor-
relation (MC) estimate

is one of the largest values (18)

This has slightly higher complexity because it requires the
sorting of , but it also has better performance in
principle. It is straightforward to show that if and
only if there exists a threshold such that .
Using MC instead of thresholding requires a priori knowledge
of but eliminates the need to pick a “correct” threshold value.
Our sufficient condition is for the weaker thresholding estimate
and thus applies also to the MC estimate.

A variant of these algorithms, called the “one-step greedy
algorithm (OSGA),” was proposed by Duarte et al. [37] for
detecting jointly sparse signals. For our application, the most
closely related previous study was by Rauhut et al. [28]. They
proved a sufficient condition for asymptotic reliability of the
thresholding estimate when there is no noise. The following the-
orem tightens the previous result in the noiseless case and gen-
eralizes to the noisy case.

Theorem 2: Let , , ,
and be deterministic sequences in such that

and

(19)

for some , where

(20)

Then there exists a sequence of threshold levels such
that thresholding asymptotically detects the sparsity pattern, i.e.,

Proof: See Appendix C.

Remarks:
1) The factor in (20) can be bounded to express (19)

in a form more easily comparable to (14c). If ,
then , so .
Using this bound with (19) shows that the more restrictive
condition

(21)
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is sufficient for asymptotic reliability of thresholding when
. This expression is shown in Table I, where the

infinitesimal quantity has been omitted for simplicity.
From the expression

we can draw further conclusions: (a)
; (b) when , ,

so (21) is asymptotically equivalent to (19); and (c) when
, the simpler form (21) is pessimistic. Fig. 3 plots

the ratio as a function of for a few
sparsity scalings .

2) Comparing (14c) and (19), we see that thresholding re-
quires a factor of at most
more measurements than ML estimation. This factor is
upper-bounded by and can be as small as

.
The factor has a natural interpretation: The lower
bound for ML estimation in (14c) is proven by essentially
assuming that, when detecting each component of the un-
known vector , the other components are known.
Thus, the detection only sees interference from the additive
noise . In contrast, thresholding treats the other vec-
tors as noise, resulting in a total increase in effective noise
by a factor of . To compensate for this increase
in effective noise, the number of measurements must be
scaled proportionally.
We can think of this additional noise as self-noise, by which
we mean the interference caused from different compo-
nents of the signal interfering with one another in the
observed signal through the measurement matrix . This
self-noise is distinct from the additive noise .

3) The gap between thresholding and ML can be large at high
SNRs. As one extreme, consider the case where

. For ML estimation, the lower bound on the number
of measurements required by ML decreases to as

.7 In contrast, with thresholding, increasing the
SNR has diminishing returns: as , the bound on
the number of measurements in (19) approaches

(22)

where the approximation holds for linear sparsity. Thus,
even with , the minimum number of measure-
ments is not improved from the scaling

.
By the discussion in Remark 2, we can think of this
problem as a self-noise limit: As the additive noise is
reduced, thresholding becomes limited by signal-depen-
dent noise. This self-noise limit is also exhibited by more
sophisticated methods such as Lasso. For example, as
discussed earlier, the analysis of [17] shows that when

, Lasso requires

(23)

7Of course, at least � � � measurements are necessary.

Fig. 3. Plots of ���� ��� ����� � �� as a function of � for a few sparsity
regimes ����. When ��� is constant, the ratio approaches �. When � 	 �
for � � �
� ��, the ratio approaches �� �

�
�� . When � is asymptotically

smaller than any power of �, the ratio approaches �.

for reliable recovery. Therefore, like thresholding, Lasso
does not achieve a scaling better than

, even at infinite SNR.
4) There is an important advantage of Lasso over thresh-

olding. Comparing (22) and (23), we see that, at high
SNR, thresholding requires a factor of up to more
measurements than Lasso. This factor is largest when

is small, which occurs when there are relatively
small nonzero components. This gap reveals the key ben-
efit of Lasso over thresholding: its ability to detect small
coefficients, even when they are much below the average
energy.
At high SNRs, the gap of can be arbitrarily large.
As an extreme example, suppose the unknown vector
has components with and one component
with for some . Then, and

, where the approximation is valid for large .
Now if satisfies (10), then it can be verified that (11) is
also satisfied. Therefore, the scaling (10) will be sufficient
for Lasso. In comparison, thresholding could need as much
as more measurements, which grows to
infinity with . So, at high SNRs, Lasso can significantly
outperform thresholding because we require the estimator
to recover all the nonzero components, even the very small
ones.

5) The high SNR limit (22) matches the sufficient condition
in [28] for the noise-free case, except that the constant in
(22) is tighter.

6) We have emphasized dimensionless quantities so that the
normalizations of and are immaterial. An equivalent to
(19) that depends on the normalizations defined herein is

Threshold Selection: Typically, the threshold level in (16)
is set by trading off the false alarm and missed detection prob-
abilities. Optimal selection depends on a variety of factors in-
cluding the noise, component magnitudes, and the statistics on
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Fig. 4. Simulated success probability of thresholding detection for � � ��� and many values of �, �, , and . Each subgraph gives simulation results
for � � ��� �� � � � � ��� and � � ���� ��� � � � � ����� for one � � � pair. Each subgraph heading gives � � �, so � �� ������ for the three
columns and � �� ���� ��� for the three rows. Each point represents 1000 independent trials. Overlaid on the intensity plots (with scale as in Fig. 1) is a black
curve representing (19).

the number of nonzero components. The proof of Theorem 2
(see Appendix C) sets the threshold level to

where depends on . Thus, the threshold selection explicitly
requires knowledge of .

If is not known, but has a known statistical distribution, one
can use the threshold, , where is the expected
value of . A straightforward modification to the proof of The-
orem 2 shows that if has a distribution such that

almost surely, then the threshold will work as well.
Of course, if is actually known a priori, one can do slightly

better than thresholding with the MC algorithm, obviating the
need for threshold selection.

Numerical Validation: Thresholding is extremely simple and
can thus be simulated easily for large problem sizes. Fig. 4 re-
ports the results of a large number Monte Carlo simulations of
the thresholding method with . The sufficient condition
predicted by (19) matches well to the parameter combinations
where the probability of success drops below about . To
avoid the issue of threshold selection, we have used the max-
imum correlation estimator (18) instead of (16).

V. CONCLUSION

We have considered the problem of detecting the sparsity pat-
tern of a sparse vector from noisy random linear measurements.

Necessary and sufficient scaling laws for the number of mea-
surements to recover the sparsity pattern for different detection
algorithms were derived. The analysis reveals the effect of two
key factors: the total SNR, as well as the MAR, which is a mea-
sure of the spread of component magnitudes. The product of
these factors is times the SNR contribution from the smallest
nonzero component; this product often appears.

Our main conclusions are as follows.

• Necessary and sufficient scaling laws. As a necessary
condition for sparsity pattern detection, we have proven a
lower bound on the minimum number of measurements
for ML estimation to work. We also derived a sufficient
condition for a trivially simple thresholding estimator.
With fixed SNR and MAR, both the necessary and suffi-
cient scaling laws have the form .
However, the effect of the SNR and MAR can be dramatic
and is what primarily differentiates the performance be-
tween different algorithms.

• Self-noise limits at high SNR. Thresholding may require as
many as times more measurements than ML
estimation, which is significant at high SNRs. The factor

has an interpretation as a self-noise effect.
As a result there is a self-noise limit: As ,
thresholding achieves a fundamentally worse scaling than
ML. Specifically, ML may in principle be able to detect
the sparsity pattern with measurements. In
contrast, due to the self-noise effect, thresholding requires
at least . Unfortunately, the more
sophisticated Lasso and OMP methods also require

scaling.
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• Lasso, OMP and dependence on MAR. Lasso and OMP,
however, have an important advantage over thresholding
at high SNRs, which is their ability to deal with a large
range in component magnitudes. Specifically, thresholding
may require up to times more measurements than
Lasso. Thus, when there are nonzero components that are
much below the average component energy, thresholding
will perform significantly worse. However, when the
components of the unknown vector have equal magnitudes

, Lasso and thresholding have asymptotic
scaling within a constant factor.

While the results provide insight into the limits of detec-
tion, there are clearly many open issues. Most importantly, the
well-known “practical” algorithms—Lasso, OMP, and thresh-
olding—all appear to have a scaling of at least

measurements as . In contrast, ML may be able
to achieve a scaling of with sufficient SNR. An
open question is whether there is any practical algorithm that
can achieve a similar scaling at high SNR.

A second open issue is to determine conditions for partial
sparsity recovery. The above results define conditions for recov-
ering all the positions in the sparsity pattern. However, in many
practical applications, obtaining some large fraction of these po-
sitions would be adequate. Neither the limits of partial sparsity
recovery nor the performance of practical algorithms are com-
pletely understood, though some results have been reported in
[25]–[27], [38].

APPENDIX A
DETERMINISTIC NECESSARY CONDITION

The proof of Theorem 1 is based on the following determin-
istic necessary condition for sparsity recovery. Recall the nota-
tion that for any , denotes the orthogonal
projection onto the span of the vectors . Additionally,
let denote the orthogonal projection onto the or-
thogonal complement of .

Lemma 1: A necessary condition for ML detection to suc-
ceed (i.e., ) is

for all and

(24)
where .

Proof: Note that is an orthogonal decom-
position of into the portions inside and outside the subspace

. An approximation of in subspace
leaves residual . Intuitively, the condition (24) requires that
the residual be at least as highly correlated with the remaining
“correct” vector as it is with any of the “incorrect” vectors

.
Fix any and , and let

That is, is equal to the true sparsity pattern , except that
a single “correct” index has been replaced by an “incorrect”
index . If the ML estimator is to select then the
energy of the noisy vector must be larger on the true subspace

than the incorrect subspace . Therefore

(25)

Now, a simple application of the matrix inversion lemma shows
that since

(26a)

Also, since

(26b)

Substituting (26a)–(26b) into (25) and canceling shows
(24).

APPENDIX B
PROOF OF THEOREM 1

To simplify notation, assume without loss of generality that
. Also, assume that the minimization in (8)

occurs at with

(27)

Finally, since adding measurements (i.e., increasing ) can only
improve the chances that ML detection will work, we can as-
sume that in addition to satisfying (14c), the numbers of mea-
surements satisfy the lower bound

(28)

for some . This assumption implies that

(29)

Here and in the remainder of the proof the limits are as , ,
and subject to (14c) and (28). With these requirements
on , we need to show .

From Lemma 1 in Appendix A, implies (24).
Thus

(30)
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where

and . The and superscripts
are used to reflect that is the energy lost from removing
“correct” index , and is the energy added from adding the
worst “incorrect” index. We will show that

(31)

where both limits are in probability. This will show that

which in turn, by (30) will imply that

and thus prove the theorem. We therefore need to show the two
limits in (31). We will consider the two limits separately.

A. Limit of

Let be the -dimensional space spanned by the vectors
. For each , let be the unit vector

Since has i.i.d. Gaussian components, it is spherically sym-
metric. Also, if , is independent of the subspace .
Hence, in this case, will be a unit vector uniformly distributed
on the unit sphere in . Since is an -dimensional
subspace, it follows from Lemma 5 (see Appendix D) that if we
define

then follows a distribution. See Appendix D
for a review of the chi-squared and beta distributions and some
simple results on these variables that will be used in the proofs
below.

By the definition of

and therefore

(32)

Now the vectors are independent of one another, and for
, each is independent of . Therefore, the vari-

ables will be i.i.d. Hence, using Lemma 6 (see Appendix D)
and (29)

(33)

in probability. Also

(34)

where follows from the fact that and hence
; is valid since for all

and, therefore, ; and follows from the
fact that is a unit-variance white random vector in
an -dimensional space, and therefore

a.s. and in probability. Combining (32)–(34) shows that

(35)

where the limit is in probability.

B. Limit of

For any , . Therefore

Hence

(36)

where is given by

Since is a random unit vector independent of
, and has i.i.d. components, the scalar is dis-

tributed . Therefore

(37)

in probability.
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Also, is a Gaussian vector with variance in each com-
ponent and is a projection onto an -dimensional
space. Hence

(38)

a.s. and in probability. Therefore

(39)

where follows from the definition of and (36); fol-
lows from (37); follows from (38); uses (27); and
uses (14a). Note that all the limits are in probability.

Comparing (35) and (39) proves (31), thus completing the
proof.

APPENDIX C
PROOF OF THEOREM 2

We will show that there exists a such that, with high
probability

for all (40a)

for all (40b)

Since , we can find an such that

(41)

Set the threshold level as

(42)

and define two probabilities corresponding to the two conditions
in (40)

for some (43a)

for some (43b)

The first probability is the probability of missed detection,
i.e., the probability that the energy on one of the “true” vectors,

with , is below the threshold . The second proba-
bility is the false alarm probability, i.e., the probability that
the energy on one of the “incorrect” vectors, with ,
is above the threshold . Since the correlation estimator detects

the correct sparsity pattern when there are no missed vectors or
false alarms, we have the bound

The result will be proven if we can show that and
approach zero as , , and satisfying (21). We analyze
these two probabilities separately. Specifically, we will first see
that choosing as in (42) ensures as long as

, regardless of the number of measurements. Then, we will
see that (21) along with (42) ensures .

A. Limit of

Consider any index , and define the random variable

(44)

Since is a linear combination of vectors and the
noise vector , the vector is independent of . Also, has
independent Gaussian components with a per-component vari-
ance of . It follows from Lemma 2(b) in Ap-
pendix D that each is a chi-squared random variable with
one degree of freedom. Since there are indices not in

, Lemma 4 in Appendix D shows that

(45)

where the limit is in probability.
Therefore

where all limits are in probability and follows from the defi-
nition of in (42); follows from the definition of in (44);
and follows from the limit in (45). Therefore

B. Limit of

We first need the technical result that
. To prove this, observe that

(46)

where follows from (19); follows from and
; and follows from the definition of in
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(20) from which . Note that this limit involves
entirely deterministic quantities.

Now consider any index . Observe that

where

Therefore

(47)

where

We bound the terms from below and and from above.
First consider . Starting with the definition of , we have

the deterministic inequality

(48)

where follows from (42); follows from (8); follows
from (19); and follows from (41). Also, since each vector

is an -dimensional real vector with i.i.d. com-
ponents, Lemma 2(a) in Appendix D shows that is a
chi-squared random variable with degrees of freedom. Now
since there are elements in , condition (46) and Lemma
3 in Appendix D show that

where the limit is in probability. Therefore, (48) implies that

(49)

where again the limit is in probability.
For the term , observe that each is a Gaussian -dimen-

sional vector with independent components and total variance

Thus, as before, condition (46) and Lemma 3 show that

where the limit is in probability. Therefore, using the definition
of in (42)

(50)

where the limit is in probability.
Finally, to bound , Lemma 5 in Appendix D shows that

follows a distribution. Since there are terms
in , Lemma 6 and the condition (46) in Appendix D show
that

(51)

in probability.
Substituting (49)–(51) into (47), we have that

where the limit is in probability and the last step follows from
the definition of in (20). This implies that

Hence, we have shown both and as ,
and the theorem is proven.

APPENDIX D
TAIL BOUNDS OF CHI-SQUARED AND BETA

RANDOM VARIABLES

The proofs of the main results above require a few standard
tail bounds for chi-squared and beta random variables. A com-
plete description of chi-squared and beta random variables can
be found in [39]. We will omit or just provide some sketches of
the proofs of the results in this section since they are all stan-
dard.

A random variable has a chi-squared distribution with
degrees of freedom if it can be written as , where
are i.i.d. . For this work, chi-squared random variables
arise in two important instances.

Lemma 2: Suppose is an -dimensional real random
vector with a Gaussian distribution . Then

(a) is chi-squared with degrees of freedom; and
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(b) if is any other -dimensional random vector that is
nonzero with probability one and independent of , then
the variable

is chi-squared with one degree of freedom.
Proof: Part (a) follows from the fact that the norm

is a sum of squares of unit-variance Gaussian random vari-
ables, one for each component of . Part (b) follows from the
fact that is a unit-variance Gaussian random vari-
able.

The following two lemmas provide standard tail bounds.

Lemma 3: Suppose that for each , is a set
of chi-squared random variables with degrees of
freedom. The variables may be dependent. If

then

where the limit is in probability.
Proof: A standard tail bound (see, for example [23]), shows

that for any

So, using the union bound

where the limit is due to the fact that . This
shows that

in probability. Similarly, using the tail bound that

one can show that

in probability, and this proves the lemma.

Lemma 4: Suppose that for each , is a set of
chi-squared random variables with one degree of freedom. Then

(52)

where the limit is in probability. If the variables are independent,
then we have equality in the limit in that

(53)

in probability.
Proof: This uses similar tail bound arguments, so again

we will just sketch the proof. Since each is a chi-squared
random variable with one degree of freedom, we have the bound
(see, for example, [40]), that for any

where is the complementary error function. Combining this
with the union bound, we see that for any

This proves the limit (52).
For the other limit, we use the bound (also found in [40]) that

for any

So, if the variables , , are independent

where the final limit can be shown for any using
L’Hôpital’s rule. This shows that

in probability. Combining this with (52) proves (53).

The next two lemmas concern certain beta-distributed
random variables. A real-valued scalar random variable

follows a distribution if it can be written as
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, where the variables and are inde-
pendent chi-squared random variables with and degrees of
freedom, respectively. The importance of the beta distribution
is given by the following lemma.

Lemma 5: Suppose and are independent random -di-
mensional vectors with and having any dis-
tribution that is nonzero with probability one. Then the random
variable

is independent of and follows a distribution.
Proof: This can be proven along the lines of the arguments

in [15].

The following lemma provides a simple expression for the
maxima of certain beta distributed variables.

Lemma 6: For each , suppose is a set of
random variables where . If

(54)

then

in probability. If, in addition, the random variables are in-
dependent, then

in probability.
Proof: We can write where

and are independent chi-squared random variables with one
and degrees of freedom, respectively. Let

The condition (54) and Lemma 3 show that in proba-
bility. Also, Lemma 4 shows that

in probability. Using these two limits along with (54) shows that

where the limit is in probability. The other parts of the lemma
are proven similarly.
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