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NECESSARY AND SUFFICIENT CONDITIONS FOR
THE GHS INEQUALITY WITH

APPLICATIONS TO ANALYSIS AND PROBABILITY

BY

RICHARD S. ELLIS^) AND CHARLES M. NEWMAN^)

Abstract. The GHS inequality is an important tool in the study of the Ising
model of ferromagnetism (a model in equilibrium statistical mechanics) and
in Euclidean quantum field theory. This paper derives necessary and
sufficient conditions on an Ising spin system for the GHS inequality to be
valid. Applications to convexity-preserving properties of certain differential
equations and diffusion processes are given.

I. Main results. In this paper we extend earlier results on the Griffiths-
Hurst-Sherman (GHS) inequality [EMN] and apply them to derive
convexity-preserving properties of certain differential equations and diffusion
processes. The GHS inequality is an important tool in equilibrium statistical
mechanics and Euclidean quantum field theory. (For a discussion of physical
applications, we refer the reader to the introduction and references of
[EMN].) The inequality will be discussed in §11 of this paper in order to
highlight the connection between statistical mechanics and differential
equations. Theorem 2.4 of §11 gives necessary and sufficient conditions for
the GHS inequality to be valid and is the main technical tool used in deriving
the results of the present section. A self-contained proof of this theorem is
given in §IV. The theorems of §1 are proved in §111 with the aid of the results
in §11.

In order to state our results, we define three classes of real-valued
functions:
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T = { F] K: R -» R is even, continuous, and   lim V(x) ■> oo},

°V"C = Í V\V E %V(x) = const +jXG(y) ay

with G(0) = 0 and G convex on [0,oo) 1,

exp(- %) - {/]/ - exp(- V) for some V E %}.

We will say that a finite measure p on R belongs to exp(—%) if p is
absolutely continuous with respect to Lebesgue measure dx and dp/dx E
exp(—%). Note that the class % in (1.1) can be characterized in various
ways (V denotes dV/dx):

% = { V\ V E % V, is differentiable except at x = 0,
(1.2)

V is convex on (0,oo), and lim V'(x)<0\,
x-*0+ >

% - {K|F E Tand K(x) = F, (x) - y|x| for some y > 0,
0-3) , rwhere Vx E C (R) with Vx convex on [O»«»)}.

Theorem 1.1. Given f E exp(-Tc) and V = 0 or V E%,we denote by
u(t, x) the unique L2(R;dx) solution of the parabolic partial differential equation

(1.4) ~ = -Hvu   (t>0,xER),       u(t,-)-*f  ayf->0+,

where Hv is the differential operator,

(1.5) Hv--\ ¿+F<*)'-

Then for all t > 0, u(t,-) E exp(- %).

For V E T, there exists a basis {fi,; /" = 0,1,2 ...} of L2(R;dx) consisting
of eigenfunctions of Hv:

HyQ¡ = Efi„      i = 0,1,2,
where QQ> 0 and E0 < Ex < E2< • • • [Ti, Chapter 5], [SI, Theorem II. 1.5].
Hv may be thought of as the Hamiltonian of a one-dimensional quantum
mechanical system, and our next result concerns the ground state ß0.

Theorem 1.2. IfVE%, then ß0 G exp(-%).

By way of comparison, we mention the result of [BL, Theorem 6.1]: If
V E T is convex on R, then fl0 = exp(- G) with G convex on R.

The GHS inequality has also been applied to properties of the eigenvalues.
It is known, for example [S2, p. 335], [S3], [EMN], that when V E %,
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THE GHS INEQUALITY 85

E2- Ex> Ex- E0 (with equality for V - const x2), and that (d/da)(Ex(a)
— E0(d)) > 0 for a > 0, where E0(a) < Ex(a) denote the lowest two eigen-
values of - \(d2/dx2) + V(x) - ax.

To apply the GHS inequality to probability theory, we associate to Hv, V
G %, an operator

T 13 ,   i-/   \    3
Lv=2^+F^Tx>

where

(1.6) F(x) - (d/dx) In ß0(x).

This definition is legitimate because ß0 > 0 an^ fy> e C2+a(R), any 0 < a <
1 [BJS, p. 136]. The operator Lv is the infinitesimal generator of a unique(3)
(up to choice of initial distribution) one-dimensional diffusion process Yvit),
t > 0, whose invariant distribution is (ß0(*))2 dx/f(Sl0(x))2 dx. For example,
when V(x) = x2, Yv(t) is the Ornstein-Uhlenbeck velocity process. We
follow the standard practice of writing Ex to denote expectations with respect
to the process Yv(t) with Yv(0) = x. The next theorem gives convexity-
preserving properties for the "backward" and "forward" diffusion equations
associated with Lv.

Theorem 1.3. (a) Given f G C(R), define

(1.7) h(t,x) = EJ(Yv(t)),
which is a solution of the Cauchy problem

oh/ôt = Lvh,      h(t,-)-*f  ast-*0+.
J/ß0/ G exp(-Tc), then for all t > 0, ß0(-)A(>>-) G exp(-%).

(b) Let p,(dx) denote the probability distribution of Yv(t) for t > 0. If
^Ô^Poidx) G expí-T,), thenforallt > 0, fi0" W*) £ expi-Tj.

(c) Both results (a) and (b) and their converses hold for the Brownian motion
process (F = 0) if we formally set ñ0 — I-

Remark 1.4. There are several simple extensions of these theorems which
can be obtained by utilizing more fully the results of Theorem 2.4 and
Proposition 2.7. First, all conclusions remain valid when/in Theorem 1.1 or
Q0/ in Theorem 1.3 has the form given by the right-hand side of (2.7) with
I < co. The same is true if ßo~Vo 1S assumed only to be in § (see Theorem
2.2). Second, all the results of this section extend in a natural way to the
analogous differential equations on a finite interval (—/,/) with Dirichlet
boundary conditions and to their related diffusion processes.

(3)It suffices to show that the boundary points ± oo are inaccessible (i.e., no explosions occur).
This follows easily from [M, p. 24] and properties of ßg.
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II. The GHS inequality. The GHS inequality arises in the study of certain
lattice models of ferromagnetism. These models consist of a finite family of
real-valued random variables {X¡; i = 1,..., N) whose joint probability
distribution on RN has the form

1 N—-— exp(-77(x„ ...,%)) II Pi(dx¡).
¿(hx,...,hN) /=1

H, the Hamiltonian, and Z, the partition function, are defined by
N N

(2.1) 77 (xx, ...,xN)=- 2 J¡jX¡Xj - 2 h¡x¡,
ij=l 1 = 1

N
(2.2) Z(hx, ...,hN) = j   exp(-H(xx, ...,xN))J[ Pt(dx).

JRN /=i

The indices /' and / typically label atomic sites in a crystal lattice A =
{1,..., N) of N sites. X¡ denotes the spin of the ith atom, J0 the interaction
strength between X¡ and Xp and h¡ the nonnegative external magnetic field
strength at the /th site.

Warning. One usually requires Ji} > 0 for all ij = 1.N. In this paper,
we relax this condition by allowing J¡¡ to be real for i = 1,..., N. See
Remarks 2.1 and 2.5 below.

The Pi are measures belonging to &, the set of even finite measures p
satisfying Jexp(kx2)p(dx) < oo for some k > 0. The choice of each p, as the
Bernoulli measure (S(x — 1) + 8(x + l))/2 defines a spin-^ Ising model
[Th, Chapter 5]. It is assumed (if necessary) that the Jy's are sufficiently small
so that the integral in (2.2) converges for all real h¡. An important thermo-
dynamic quantity is m(hx,..., hN), the average magnetization per site,
defined as

(2.3) m- 1 2STO-4 2 -J-lnZiA,...,**)-
The GHS inequality states [GHS] that in a spin- £ model

d3     In Z(/»,, ...,/>„)< 0   forall/^0,
(2.4) '   J   k

JH real   (i = 1,..., N),      Ju > 0   (1< / +j < N),

and any choice of (not necessarily distinct) sites ij,k E A.
Remark 2.1. For a spin- 5 model, the values of the /a's are not important

because the J¡¡ terms in the Hamiltonian (2.1) contribute only the constant
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THE GHS INEQUALITY 87

(2.5) A: In (ehxp(dx) < 0   for h > 0.
dh?     J

exp(2,/„) to (2.2). On the other hand, our necessary and sufficient conditions
in Theorem 2.4 refer to the GHS inequality in the extended form (2.4).

Notice that in its simplest form {N = 1, Jxx =0) (2.4) states that

dh3
Applied to (2.3), the GHS inequality implies that dfa/dhjoh,, < 0 so that, for
example, the magnetization mih,..., h) is a convex function of the external
field strength h when h > 0, J¡¡ real, J0- > 0 for /' *Aj.

In [EMN] and [Sy] the GHS inequality was extended from spin- \ models
by studying classes of non-Bernoulli measures p, G S for which (2.4) is valid.
Inequality (2.4) is not true for all p¡ G &. In fact, the measures

Paidx) = a8ix) + ¿(1 - a)(8ix - 1) + 5(x + 1))   for § < a < 1
are simple examples for which even (2.5) fails. The following theorem gives a
somewhat complicated sufficient condition on the p/s for (2.4) to be valid.
The naturalness of this condition and its relation to exp(-%) will become
clear in the succeeding theorem.

Theorem 2.2 [EMN]. Given pE &, T an invertible 4x4 matrix, and
Fe9(R4) iBorel sets in R4), let pjiF) = p(T~lF), where pidx), \ =
ix(1\ ..., x(4)), denotes II4,_ip(¿&c(a)). We denote by § the class of all measures
p G S for which
(2.6) PB(n>PA(F)  forallFE<S>(R\),
where

B-i
1
1
1

- 1
A = 5

1
-1
- 1

1

1 1
-1 1

1 1
- 1 1

a«))!*« > 0, a = 1,..., 4).  Then inequality (2.4)and R4+ = {(x(I>,.,
holds if each p¡ G §.

Remark 2.3. A and B are orthogonal matrices. Hence if p G §, then so is
pidx) — expi-ßx2)pidx) for all ß for which p is a finite measure. We shall
need this later.

It was proven in [EMN] that a measure p with nonvanishing C1 density/
belongs to § if and only if / G exp(-%). The next theorem considerably
strengthens that result.

Theorem 2.4. Let p,.pN be even, finite inot identically zero) measures
on R. Then the following four statements are equivalent,

if) for each i, either p^dx) = const(5(x -y) + Six + y))for some y > 0,
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88 R. S. ELLIS AND C. M. NEWMAN

or else p¡ is absolutely continuous with respect to Lebesgue measure, and for
some 7 > 0 (7 = oo allowed)

«>      s- const expf- f*G(y) dy\      xE(-1,1),

0,      *ER\(-7,7),

where G(0) = 0 and G is convex on [0,7);
(ii) for each i, p,£§;
(iii) given M > 0 such that

( N N \N(2.8) Z(hx, ...,hN)=) exp\ 2 h¡X¡ + 2 J0x¡Xj\ Il fc(<&,) < oo
R \/=l ij=l ] i=\

for any h¡ real (1 < / < AO, Ju real, Ju < M (1 < i < N), 0 < Jy < M
(1 < i =£j < N), the following inequality is valid for any ix,i2,i3 E {1,..., N)
and any Jtí as in (2.8):

(2.9) a. g9, g,   lnZ(A„ ..., hN) < 0  for all h, > 0, / - 1.N;
'l      '3      'J

(iV)for each i and all ß > 0,

(2.10) -^lnje^e-^p^dx) < 0  /orû///i > 0.

Remark 2.5. As will be seen in the proof, it was essentially known from the
results of [EMN] that (i) ==> (ii) =* (iii) =» (iv) (with (iii) =» (iv) a triviality), and
a weak version of (ii) => (i) was also implicit in [EMN]. The essential new
ingredient presented here is that (iv) => (i), and the most striking corollary of
this new ingredient is the equivalence of (iii) and (iv). On the other hand, the
extended form of the GHS inequality given in (iii) excludes many (discrete)
measures of physical interest; e.g., the measures [G]

(n + l)~1{8(x - n) + 8(x - n + 2) + • • •
+ 8(x + « - 2) + 8(x + n)},

for n = 2,3.which define spin-«/2 models.
Remark 2.6. It follows from this theorem (by replacing p(dx) by

exp(—ßxx2)p(dx) for some /?, > 0) that for a finite even measure p, the
assumption, used in the definition of §, that p E & is redundant. From the
equivalence of (ii) and (iv) and from Remark 2.3, it also follows that (2.10)
need only be assumed true for all ß sufficiently large and is then automati-
cally true for all those ß (including negative values) for which
exp(—fix2)p¡(dx) is a finite measure.

As a consequence of Theorem 2.4, we have the following useful facts about
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THE GHS INEQUALITY 89

§ and exp(— %) which will be used in the next section.

Proposition 2.7. Suppose fxJ2, ...,/„,... G expí-Tj. Then
ia)fxf2Eexpi-X);
ih)fxix)pidx)E@ifpE§;
(c) gix) s fcxpi-ßix - y)2)pidy) E exp(-T£) for all ß > 0 if and only if

PE§;
(d) '//„ -»/in L2ÇR;dx) as n -> oo and f > 0, then f G exp(- %).

Proof. Part (a) follows trivially from the definition of % while part (b)
follows directly from the equivalence of (i) and (ii) in Theorem 2.4. Part (c) is
an immediate consequence of (ii) and (iv) in Theorem 2.4 since

gix) = exp(-/k2 + Infe^e-^pidyij,

so that (d3/dx3) In gix) < 0 for x > 0 if and only if p G §. To prove part
(d), we first note that by the equivalence of (i) and (ii) in Theorem 2.4, the
measures f„ix) dx obey inequality (2.6). Since this inequality is preserved
under L2 limits, it follows that/(;c) dx E §. But since/ > 0,/must belong to
exp(-%).   D

III. Proofs of Theorems 1.1,1.2, and 13.
Proof of Theorem 1.1. We define the function u(t,x) satisfying (1.4) by

the formula
(3.1) u(t,-) = exp(-tHy)f,
where exp(—tHv) is the continuous L2(R;dx) semigroup generated by — Hv
[K, pp. 348, 491]. We first prove Theorem 1.1 for V = 0. Indeed, denoting
3/3.x by Z>, we have

(3.2) uit,x) = exp( ̂  )/(*) = -J=. /exp(-(x - yf/2t)fiy) ay.

Thus the result follows from Proposition 2.7(c). Now given K £ Tc, we have
by the Trotter product formula [C] that

«(/,.) =nlim[exp(¿Z)2)exp(- ±v) f,
so that the result follows by Proposition 2.7(a), (c) and (d) once we show that

"w(«y) > 0. We defer this until after the proof of Theorem 1.3.   □
Remark 3.1. It is a consequence of the positivity of u and of Proposition

2.7(d) that «(/,-) G C'(R). In proving the positivity (see Lemma 3.3), we
actually show that u E C1+ß(R;C2+a(R)), any 0 < a,ß < 1, and hence u is
a classical solution of (1.4).

Proof of Theorem 1.2. We take fix) = expi~x2) and note that by the
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90 R. S. ELLIS AND C. M. NEWMAN

spectral theorem

00 = (¿ñ ^exp(""(i/^ " E°))f'

where (•,•) denotes the L2(R;dx) inner product. The result now follows from
Theorem 1.1, Proposition 2.7(d), and the strict positivity of ß0.   D

Proof of Theorem 1.3. We omit details in this proof, referring the reader
to [GS] for facts about diffusion processes. For any/ E C2(R), we have

(3.3) -(7/-£0)ß0/=ßo£/
(where we have dropped the subscript in Hv and Lv). Since h(t,x) satisfies
the backward diffusion equation

dh/dt = Lh,      h(t,-)-*f  asi->0+,
by (3.3)

h = exp(/L)/= îlôxexp(-t(H - E0))Q0f.
Part (a) of Theorem 1.3 thus follows from Theorem 1.1. For part (b), p„
which satisfies a forward diffusion equation, can be written as p, =
[exp(/L)]*p0, where [exp(rL)]* is the adjoint semigroup of exp(/L). By (3.3)

[exp(tL)]* = ß0[exp(-f(77 - E0))]*Sl¿x = ß0exp(-«(77 - E0))Q¿\

so that part (b) is also a consequence of Theorem 1.1. Part (c) is immediate
from Theorem 1.1 for the case V = 0.   □

Remark 3.2. The potential V and the drift coefficient F in Lv are related
by the Riccati equation

dF/dx + F2 - 2 V - 2Eo,      F(0) = 0.
By Theorem 1.2 and equation (1.6), we see that V E % implies F convex on
[0,oo), while the result of [BL, Theorem 6.1] (quoted after Theorem 1.2)
shows that V convex and in T implies F nondecreasing on [ 0,oo).

We end this section with some facts about the solution u of (1.4).

Lemma 3.3. The function u defined in (3.1) is strictly positive and belongs to
Cx+ß(R;C2+a(R)),anyO< a,ß < 1.

Proof. For n = 1,2,..., take V„ E C'(R) so that V„ is bounded and
Iimn^M V„(x) = V(x) for each x E R. Let u„ E Cx+ß(R;C2+a(R)), any
0 < a,ß < 1 [F, Theorem 10, p. 72] (also u„(t,-) E L2(R;dx)) solve the
Cauchy problem

du„      i   d2!/.
if = i"oV ~Kn"'"   M"(/'')_>/ as'-*° •

Without loss of generality, we may assume that each Vn and Fis nonnegative,
and thus by the maximum principle [F, Chapter 2]
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(3.4) 0 < un < sup/(x),      n = 1,2,-
x

By [F, Theorem 15, p. 80] we conclude the existence of a function wft,x) G
C1+/?(R;C2+a(R)), any 0 < a,ß < 1, such that un->w uniformly on
compacta and which solves (1.4). Since the approximating «„(/,•) G L2(R;dx),
we see that wit,-) E L2iR;dx), and hence w = «. By (3.4), u > 0 and thus by
[F, Theorem 5, p. 39] u > 0.   O

IV. Proof of Theorem 2.4. We first state a lemma which will be used several
times in the proof.

Lemma 4.1 [EMN]- Suppose that V: R-*R is even and Cx. Then the
following statements are equivalent.

(a) V is convex on [0,oo);
(b)

K(x<'> + x(2> + x<3> + x(4)) + F(jc<«> + x™ - x™ - x<4))

+ Vixw - x™ + x™ - *(4)) + K(x(1> - x™ - x0) + xw)

> Vix™ + x<2> + x(3> - x(4)) + F(jc(1) - x(2> + x<3) + x(4))

+ Vixw + x™ - x™ + x<4)) + K(*(I> - x(2) - x(3) - x(4))   on R4+;

(c) p(c/x) = exp(- Vix)) dxE§.

Remark 4.2. Part (b) can be written as

i-xx)M) > ¿ "'
o=l      ' a=l

where x = (x(1),..., xw) and A and B were defined in Theorem 2.2.
Proof. We first show that (b) is equivalent to

[ V'ixw + jc(2> + x<3)) - V'ix™ + x(2) - x<3))]

(4'2) - [ F'(*(1) - x(2> + x<3>) - V'ixw - x& - x™)] > 0   onR3+.

Indeed, by the evenness of V we may rewrite (b) as

(4.1) S ^((A-'x)00) > 2 ^((B-'x)(a))   onR4.,

^(4) J'{[F(x(,> + r^4> + x(2) + x(3))

- V'ix^ + rx(4) + x(2) - x(3))l
(4.3) J

-[F'(*(1) + rx(4>-;c(2)+ *<*>)

- V'ixw + rxw - x(2) - x(3))]} ¿r> 0   on R4..

Dividing by x(4) and letting x(4) -» 0 shows that (4.3) implies (4.2). To see that
(4.2) implies (4.3), we note that by the symmetry of V we may assume without
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92 R. S. ELLIS AND C. M. NEWMAN

loss of generality that ;t(4) < xm. Now the equivalence of (a) and (b) follows
from the fact that for an odd continuous V, (b) is equivalent to the convexity
of V on [0,oo). This is an elementary exercise with convex functions (see
[EMN, §4] for more details). The equivalence of (b) and (c) follows from the
fact that when stated in terms of V, inequality (2.6) for p is just (b).   □

We break the proof of Theorem 2.4 into four natural parts. The last part
contains what is essentially new beyond the results of [EMN]; it is also
technically the most difficult.

Proof that (i) =» (ii). We write p for p¡. When p(dx) = const(5 (x - y)+
8 (x + y)), the proof that p E S is an elementary calculation. We suppose
now that p is absolutely continuous and first consider the case when 7 = oo
and G in (2.7) is continuous at the origin (by its assumed convexity, G E
C((—I,I) \ {0})). The result then follows from the equivalence of (b) and (c)
in Lemma 4.1. If G is not continuous at the origin, we may write it (as in
(1.3)) as G(x) — G(x) — y sgn(x) with G continuous on R and convex on
[0,co) and y > 0. We then approximate G as lim„_>00G„, where

|CW,   M>./„,
[G(x)-nyx,       \x\<l/n,

and correspondingly approximate p by

(4.4) p„ (dx) = const expf -J  G„ (y) ay J dx.

Since G„ is continuous at the origin and convex on [0,oo), p„ E §. Hence
p E § because inequality (2.6) is preserved under the limit p„ -» p. It only
remains to consider the case when 7 < oo. We now approximate G by

G(x),      \x\<I-l/n,
G„(x) =   G(I- 1/ri) + an(x -1+ 1/n),      x>I- 1/n,

G(-I+l/n) +a„(x +I-l/n),      x<-I+l/n,

where the a„'s are chosen so that an -> oo and a„ > D+G(I — 1/n). Again, it
follows that each p, defined by (4.4), is in §, and thus p E §.

Proof that (ii) =» (iii). For each /, we choose /?, > 0 so that 0 < J¡¡ + ß,
and letting p¡(x) = exp(—/?(jc2)p,(.x), we rewrite (2.8) as

/ N N \ N
Z(h) = J exp  2 h¡X¡ + 2 Jfrx,] II ft(^i).

R \i=i ij-=l ) 1 = 1

where h = (hx,..., hN), each p¡ E &, and each J¡¡ > 0. By Remark 2.3, each
Pi E §, and thus the result follows from [EMN, Theorem 1.1 and Proposition
4.1]. In order to keep the present paper self-contained, we shall give a new,
independent proof, for which we need two lemmas.
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(4.5)

Lemma 4.3. IfpE§, then for all mm,..., m(4) = 0,1,2,

o < [ (joy... (X<4>r<4,pB(¿x)

= +f(x«yi>.-.yxwrwpA(dx),

where the minus sign holds if all the mSaX are odd, the plus si¿n holds if all the
m(a) are even, and both terms are zero in all other cases.

Proof. Because of the symmetry of p, both sides of (4.5) vanish unless the
m(a) are either all even or all odd [EMN, Theorem 2.5(c)]. In the even case,
the symmetry implies that the term involving pB equals the term involving pA,
and both are positive. We now turn to the case where the m(a) are all odd.
Setting F(xil\ .... x(4)) = ^4_1(;c(<,))m<°, and noticing that B = SA, where

S =
1      0
0 -1
0      0
0      0

0 0
0 0
- 1      0
0 - 1

we have

(4.6) ( FdpB = ( Fc/psA = - [ FdpA,
JR* JR* JR*

by oddness properties of F. This gives the equality in (4.5) (with the choice of
minus sign). To show the nonnegativity in (4.5), we define p — Pb — Pa and
find, using (4.6), the symmetry of p, and oddness properties of F, that

2Í FdpB=( F dp
■V jr*

= 16 f F dp
JVL\

,(D ,(4) F(owxw,..., owxw) dp(4)V(4K

•<«>-±l

But this is positive since p E § implies that p is a positive measure on R+.
D

Given h = (hx,.. .,hN)E RN, we write h > 0 if each h¡ > 0. For
hm, ...,h^E RN, T an invertible 4X4 matrix, we let h, = (ä/1), ..., /¡/4))
G R4, i = 1,..., N, and define

A<?> = ((T-'h,)(tf),.... (T-1hVv)(<')) G RN,      0 = 1,..., 4.

Lemma 4.4. Let h -»/(A) be an even real-valued function in CirRN). Then
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33/(A)
dh,dh,dhk> 0  for all ij,k = 1,... ,N,allh > 0,

if

(4.7) 2 fihAa)) > 2 fihBa))   for all A<»>.A<4> > 0.
a=l a~l

We omit the proof as it is similar to that of Lemma 4.1.
We return to the proof that (ii) =*> (iii) in Theorem 2.4. By the restriction on

the J¡/s, we note that Z(h) is an entire function of its arguments. Hence, by
Lemma 4.4, we must show

,. _, Z (A«,.... A<4>) = fi Z(AáP>) - A Z(hP) > 0
K*'°) a=l a-1

forallA(,), ...,A(4)>0.
Given x_(,),..., x(4) E R* and setting x, = (*/'>.x/4)) E R4, we can
rewrite Z as

Z =/r4jv expi 2 <B-V/>) - «pi 2 <A-V/>)

In \  n
Xexpl  2 ^<Xi^>| H P¡{dx¡),

i = i
where < •,-> denotes the R4 inner product. Setting

N N
T(dxx,..., dxN) = II (ft)nW - IT (Pi)A(dxt)

«=i /=i
and using the fact that A and B are orthogonal matrices, we have

Z - /r4„ exp( 2 <fc, BX/>| - expí £ <b,, Ax,)J

/   w \  IV
Xexp   2 Jfa, xy>   II ft(¿x,)

\V-i //=i

= i4/vexP 2 <h- x-> + 2 Jíi(x¡> *j> K¿xi> •••. «M-
R \/=l v = l /

Now (4.8) follows if we can show the_nonnegativity of all the multi-Taylor
coefficients of Z at the origin (since Z is an entire function of the A/a), Jy).
Since each A/a) and Jy are nonnegative, it suffices to prove
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J(x<f^•■(^^V1>•••.^)>o
R   ,= i

foraUw/a) = 0,1,2.
But this follows from Lemma 4.3.   □

Proof that (iii) => (iv). We choose Jxx = - ß, Jy = 0 for all 2 < ij < N,
hx = h, h¡ = 0 for i = 2,..., N, and i, = i2 = i3 = 1. Then inequality (2.9)
becomes identical to inequality (2.10).

Proof that (iv) => (i). Writing p for p¡, we express p as the weak limit of pß
as ß -» oo, where

^ = fVß/rr e-^-y^pidy)
(i.e., jfdp = limß^00jfdpß for any bounded continuous/). As in the proof of
Proposition 2.7(c), it follows from (2.10) that

dJ£**t^-Vß(0)-j*Gß(y)dy

with 6^(0) = 0, Gß smooth (in fact, real analytic), and Gß convex on [0,oo)
(i.e., d2Gß/dx2 > 0 for x > 0). It thus suffices to show that the only finite
measures obtainable as weak limits of such pß's are those given in Theorem
2.4(i). This will be done after a somewhat long-winded series of elementary
lemmas.

Lemma 4.5. Define yß = sup{x|;c > 0, Gßix) = 0). Then lim sup^^y^ <
co.

Proof. Since Gß(0) = 0 and Gß is convex on [0,oo), it follows that on
[Oify], Gß < 0 and exp(- Vß) is nondecreasing. Then for all x,e > 0 with
x + e < yß,

(4.9) Pßi[e,x + e]) >jPßi[-x,x]).

If lim supyß = oo, then by choosing an appropriate subsequence of /?'s and
taking the limit of (4.9), we would have for all x,e > 0 that p([e,x + e])
> £ p((—x,x)). But this is impossible for a finite measure p.   □

By choosing a subsequence of /?'s (if necessary), we may now assume
without loss of generality that y«, = hmß^tnyß exists and is nonnegative.

Lemma 4.6. If for some xx > 0, Urn sup/3_>00G!i8(xj) — co, then p((x,,oo)) = 0.

Proof. If Gß(xx) > 0, then on [x„oo), G'ß > 0 and Gß is nondecreasing.
Thus for xx < x2 and £ > 0,

(4 10) Vß {X2 + ^)> Vß {Xl + ° +1 Vß'{Xx + W*2 ~ Xx)
> Vß(xx + i)+Vß'(xx)-(x2-xx).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



96 R. S. ELLIS AND C. M. NEWMAN

Exponentiating (4.10) and integrating the resulting inequality yields that

(4.11) Pß([x2,co)) < expi-Gß(xx) • (x2 - xx))pß([xx,cx))).

Thus, if lim sup Gß(xx) = oo, then p((x2,oo)) = 0 for all x2 > xx, which
implies that p((x„oo)) = 0, as desired.   □

Lemma 4.7. Define KB = -inf{Gß(x)\x > 0). Then if Kß > 0 (so that
yß > 0),
(4.12) Gß (x) < - V2 + Kß\x - yß/2\/yß m Fß (x),      x E [0^],
(4.13) Gß(x) > Kß(x-yß)/yß,      x E[yß,<x).

Proof. Pick w > 0 so that Gß(w) = - Kß. Then 0 < w < yß, and using
the convexity of Gß and the fact that Gß(0) = 0, we have

(4.14) GB (x) < - Kßx/w < - Kßx/yß,      x E [0,w],

Gß (x) < Kß (x - yp)/ (yß - w) < Kp (x - yß)/yß,
(4-15) xE[w,yß],

Gß(x) > G'ß(yß)- (x -yß) > Kß(x -yß)/(yß - w),
(4.16) =r        nxE[yß, oo).

Now (4.16) implies (4.13) while (4.12) follows from (4.14) and (4.15) since
Fß(x) in (4.12) is just max{ - Kßx/yß,Kß(x - yß)/yß).   D

Lemma 4.8.7/lim sup Kß - oo, then
o(x) = (8(x-y) + 8(x+ y))/2   with y = yM.

Proof. If lim sup Kß = oo, then by (4.13) lim sup Gß(x) = oo for any
x > y^. Hence by Lemma 4.6 p((y«„oo)) = 0. If yM = 0, then p(x) = 8(x),
and we are finished. In order to complete the proof, we suppose y x > 0 and
proceed to show that pft-y^y«,)) = 0. To accomplish this, we use (4.12) to
derive that for 0 < xx < x2 < yß,

Vß(xx) = Vß(x2) -fXlGß(y)dy> Vß(x2) - fx%(y) dy

(4.17) >Vß(x2)-(Xl2Fß(y)dy-(y<>    Fß(y)dy
Jo Jyß-xX2

= Vß(x2) + Kß(x2-xx)2/4yß,

where xX2 = (x2 — xx)/2. Exponentiating (4.17) and integrating the resulting
inequality leads to the fact that for p,e > 0 with p + e < yß,

P/»([-ri.M]) < 2exp(-Ay2/4y/3)p/j([e,p + e]).
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Hence, if lim sup Kß = oo, it follows that for p + e <yx, p((-w,u)) = 0.
Letting e -> 0 gives p(( -y^yj) = 0, as desired.   □

Lemma 4.9. If lim sup^^Kß < oo, then p({x)) = Ofor every x¥=0.

Proof. For 0 < xx < x2,

Vß (*a) = Vp (xx) + f% (y) dy> Vß (xx) - Kß (x2 - xx),

so that for 0 < e < xx < x2,
(4.18) Pß([x2 - e,x2 + e]) < exp(Kßix2 - xx))pß([xx - e,xx + e]).

Thus, letting ß -» oo, we have
P(ix2)) < °((x2 - £>X2 + <0)

(4.19)
< exp(Kaa(x2 - xx))p([xx - e,xx + ej),

where K^ = lim sup Kß. Given x2 > 0, we pick xx E (O.Xj) such that pi{xx))
= 0 and let e -* 0 in (4.19) to show that p({x2}) = 0.   □

Lemma 4.10. If lim supp^Kß < oo and for some x > 0, lim supß^G^x)
< oo, then pix) is absolutely continuous on i~x,x) and

-r- = const expj - j G ( v) dy j,      x E ( - x,x),

where G (0) = 0 and G is convex on [ 0,x).

Proof. Under the assumptions of the lemma, there exists a constant

K = lim sup(max{Kß,Gßix)Y) < oo
/3-»oo

such that

(4.20) \Gß (jc)| =\V'ßix)\<K,       xE[- x,x],
and thus we have that

(4.21) Vß(0) - K5c < ^ (*) < ^ (0) + Kx,       x E[ -x,x].

If liminf Vß(0) = —oo, then by the second inequality in equation (4.21)
lim sup pß((—x,x)) = co. If lim sup 1^(0) = oo, then by the first inequality
in (4.21), lim inf pß((-x,5c)) = 0, which by (4.18) would imply that

lim inf pß([x2 - e,x2 + e]) = 0   for all 0 < e < x2.

Since p is finite and not identically zero, neither of these two cases is possible,
and consequently 1^(0) is bounded above and below as ß -» co. By choosing
a subsequence of ß's (if necessary), we may assume without loss of generality
that lim^^F^O) = VK exists. Since the Gßs are convex and uniformly
bounded on [0,x] (by (4.20)), we may assume, again without loss of generality
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(by choosing a subsequence, if necessary), that there exists a convex function
G on [0,3c] such that G(0) = 0 and Gß-*G pointwise on [0,5c]. Since G must
be continuous on (0,3c), it follows that Gß->G uniformly on compact subsets
of (0,3c). After extending G to [-x,x] by oddness and using (4.20), we have
that

W= Vp{0)+ {XGß(y)dy^Vaa+ fG(y)dy   asjS^oo
•'0 •'o

uniformly on [ — x,x]. Hence
p(dx) = lim  exp(— Vß(x)) dx

has the stated form.   □
Proof that (iv) => (i) completed. By Lemma 4.8, it suffices to consider the

case when lim sup Kß < oo. If for all 3c > 0, lim sup Gß(5c) < oo, then by
Lemma 4.10 p has the form given in (i) with 7 = oo. On the other hand, if for
arbitrarily small 3c > 0, lim sup Gß(x) = oo, then by Lemma 4.6, p(x) =
8 (x), and we are finished. Consequently we may define

x0 = inf {3c 3c > 0, lim sup G0 (x) = oo 1

and assume without loss of generality that 0 < x0 < oo. It then follows that
p((x0,oo)) = 0 by Lemma 4.6, that p({xQ)) = 0 by Lemma 4.9, and that, for
any e > 0, p on (—(x0 — e),x0 - e) is absolutely continuous with the form
given by Lemma 4.10. Letting e -» 0, we obtain the form of (i) with 7 =» x0.
D
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