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We obtain necessary and sufficient conditions for the Marchenko-Pastur theorem for
matrices with IID isotropic rows. Our conditions are related to a weak concentration
property for certain quadratic forms of the rows.
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1 Introduction

The Marchenko-Pastur (MP) theorem [15] is a classical result in random matrix theory.
It states that, with probability one, the empirical spectral distribution of

Σ̂n =
1

n

n∑
k=1

xpkx
>
pk (1.1)

converges weakly to the MP law with parameter ρ > 0 as n→∞ and p = p(n) = ρn+o(n)

if {xpk}nk=1 are IID copies of an isotropic Rp-valued random vector xp satisfying certain
conditions.

In the simplest case, the entries of xp = (Xp1, . . . , Xpp) are assumed to be IID copies
of a zero-mean random variable with unit variance (e.g., see Theorem 3.6 in [4]). More
generally, the entries can be any independent zero-mean random variables that have
unit variance and satisfy Lindeberg’s condition

lim
p→∞

1

p

p∑
k=1

EX2
pkI(|Xpk| > ε

√
p) = 0 for all ε > 0 (1.2)

(see [20]). The independence assumption can be relaxed in a number of ways. E.g., in
[19], the MP theorem is proved for isotropic xp having a log-concave distribution.

All of the above assumptions imply that the quadratic forms x>p Apxp concentrate
near their expectations up to an error term o(p) with probability 1− o(1), where Ap is
any p× p complex matrix with the spectral norm ‖Ap‖ 6 1. This concentration property
is a widely used technical tool in random matrix theory. In fact, this condition alone is
sufficient for the MP theorem (see [2], [5], [9], [11], [19], Theorem 19.1.8 in [21], and
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[27]). Recently, it has been proved in [8] that the extreme eigenvalues of Σ̂n converge
in probability to the edges of the support of the limiting MP law when a version of the
concentration property holds (see also [26]). There are many papers closely related to
the MP theorem, where some other dependence assumptions are considered. E.g., see
[1], [6], [7], [12], [16], [17], [18], [22], and [24].

As noted in [1], the concentration property is not a necessary condition for the MP
theorem. In this paper, we show that this condition becomes necessary and sufficient if
we consider only a restricted class of quadratic forms.

The paper is structured as follows. Section 2 contains our main results. Section 3
deals with the proofs. Some additional results are given in an Appendix.

2 Main results

We now introduce some notation that will be used throughout the paper.
For each p > 1, let xp be an isotropic random vector in Rp, i.e. Expx>p = Ip for the

p × p identity matrix Ip. Assume further that all random elements are defined on the

same probability space. Let also Σ̂n be given in (1.1), where {xpk}nk=1 are IID copies of

xp. In what follows, Σ̂n and xp will be independent.
Define the MP law µρ with parameter ρ > 0 by

dµρ = max{1− 1/ρ, 0} dδ0 +

√
(b− x)(x− a)

2πxρ
I(x ∈ [a, b]) dx,

where δc is a Dirac function with mass at c, a = (1 − √ρ)2, and b = (1 +
√
ρ)2. In this

paper, all measures are defined on the Borel σ-algebra of R. For a real symmetric p× p
matrix A with eigenvalues λ1, . . . , λp, its empirical spectral distribution is given by

µA =
1

p

p∑
k=1

δλk

and ‖A‖ denotes the spectral norm of A.
We can now state our main result (proved in Section 3).

Theorem 2.1. Let p = p(n) satisfy p/n → ρ > 0 as n → ∞. If xp is isotropic for all
p = p(n), then the following conditions are equivalent:

(i) µΣ̂n
converges weakly to µρ almost surely as n→∞,

(ii) for all ε > 0,

1

p

[
x>p (Σ̂n + εIp)

−1xp − tr(Σ̂n + εIp)
−1
] P→ 0, n→∞.

Furthermore, (i) implies that x>p xp/p
P→ 1.

Remark 2.2. For istropic xp, the convergence in probability in (ii) can be replaced by
the convergence in L1. By Jensen’s inequality, the latter yields that

(iii) for all ε > 0 and An(ε) = E(Σ̂n + εIp)
−1,

1

p

[
x>p An(ε)xp − tr(An(ε))

] P→ 0, n→∞.

Under certain assumptions, (iii)⇒ (ii). E.g., one can assume that pP(|x>p y| > ε
√
p)→ 0

uniformly in unit y ∈ Rp as p→∞ for all ε > 0. This will be shown elsewhere.

By Theorem 2.1, the following condition is sufficient for the MP theorem:

[x>p Apxp − tr(Ap)]/p
P→ 0 as p→∞ for all sequences of real symmetric

positive semi-definite p× p matrices Ap with ‖Ap‖ 6 1. (2.1)
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A short proof of this fact for not necessarily isotropic xp is given in [27].
Condition (2.1) holds in many cases of interest. In particular, (2.1) ⇔ (1.2) if each

xp has zero-mean independent entries with unit variance (see Proposition 2.1 in [27]).
More complicated models satisfying (2.1) are given in [2], [3], [5], [9], and [25].

In general, (2.1) does not follow from (ii) in Theorem 2.1. Recall the following example
from [1]. Take p = 2q for q = q(n) and consider an isotropic random vector xp defined by

xp =
√

2(zqξ, zq(1− ξ)),

where zq is a standard normal vector in Rq, ξ is a random variable independent of zq,
and P(ξ = α) = 1/2, α ∈ {0, 1}. Assume also that n→∞ and p/n→ ρ > 0.

As either ξ = 0 or 1 − ξ = 0, the matrix Σ̂n will be block-diagonal with two q × q
diagonal blocks Σ̂n1 and Σ̂n2. It is easy to verify that each µΣ̂nk

converges weakly to µρ
almost surely and, as a result, the same is true for µΣ̂n

. Thus, (ii) in Theorem 2.1 holds.
However, (2.1) does not hold for Ap = Πp being the orthogonal projection on the first q
coordinates since

1

p
[x>p Πpxp − tr(Πp)] =

2ξz>q zq − q
p

P→ 2ξ − 1

2
, q →∞.

We now give necessary and sufficient conditions in the classical setting.

Corollary 2.3. Let p = p(n) satisfy p/n → ρ > 0 as n → ∞. If xp = (Xp1, . . . , Xpp) has
zero-mean independent entries with unit variance for all p = p(n), then µΣ̂n

converges
weakly to µρ almost surely as n→∞ iff (1.2) holds for given p = p(n).

This result proved in Section 3 is not new. As far as we know, it was initially obtained
by Girko via a different method (see Theorem 4.1 in Chapter 3 in [10]).

3 Proofs

Proof of Theorem 2.1. Let further n→∞ and p = p(n) = ρn+ o(n). Recall some useful
facts and definitions. For a finite measure µ with support in R+, its Stieltjes transform
on R+ is given by

S(ε, µ) =

∫ ∞
0

µ(dλ)

λ+ ε
, ε > 0.

The next lemma proved in the Appendix is a version of the Stieltjes continuity theorem.

Lemma 3.1. Let µ, µ1, µ2, . . . be random probability measures with support in R+. Then
µn converges weakly to µ a.s. iff P(S(ε, µn)→ S(ε, µ)) = 1 for all ε > 0.

Denote Sn(ε) = S(ε, µΣ̂n
). Then Sn(ε) = p−1tr(Σ̂n + εIp)

−1 by the definition of µΣ̂n
.

By the standard martingale argument,1

Sn(ε)− ESn(ε)→ 0 a.s. (3.1)

for any ε > 0. The latter and Lemma 3.1 imply that (i) holds iff

ESn(ε)→ S(ε, µρ) for all ε > 0. (3.2)

The next lemma that assumes neither (i) nor (ii) will play a key role in our analysis.

Lemma 3.2. Under the conditions of Theorem 2.1,

1 = E
x>p (Σ̂n + εIp)

−1xp/p

1 + ρx>p (Σ̂n + εIp)−1xp/p
+ εESn(ε) + o(1)

for any ε > 0 as n→∞.

1See Step 1 in the proof of Theorem 1.1 in [5] or Lemma 4.1 in [1] and the trace bound above (4.2).
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The proof of Lemma 3.2 is deferred to the Appendix.
Let us now show that (i)⇔ (3.3)⇔ (ii), where

E
x>p (Σ̂n + εIp)

−1xp/p

1 + ρx>p (Σ̂n + εIp)−1xp/p
= E

Sn(ε)

1 + ρSn(ε)
+ o(1) for all ε > 0. (3.3)

First, we prove that (3.2)⇔ (3.3). This will imply that (i)⇔ (3.3) as (i)⇔ (3.2).
Assume that (3.3) holds. By (3.1) and the dominated convergence theorem,

E
Sn(ε)

1 + ρSn(ε)
=

ESn(ε)

1 + ρESn(ε)
+ o(1). (3.4)

Therefore, Lemma 3.2 yields

1 =
ESn(ε)

1 + ρESn(ε)
+ εESn(ε) + o(1) (3.5)

and we see that ESn(ε) converges to the unique positive solution of the equation

1 =
S

1 + ρS
+ εS. (3.6)

Lemma 3.3. For all ε > 0, S = S(ε, µρ) is a unique positive root of (3.6).

Lemma 3.3 is proved in the Appendix. Combining this lemma with (3.4) and (3.5),
we get (3.3)⇒ (3.2). Conversely, assume that (3.2) holds. By Lemma 3.3, (3.2)⇒ (3.5).
Using Lemma 3.2 and (3.4), we see that (3.5)⇒ (3.3).

We have proved that (3.2)⇔ (3.3) and, as a result, (i)⇔ (3.3). Now, we need to verify

that (3.3)⇔ (ii). If (ii) holds, then (3.3) holds by the following fact: if ξn
P→ 0 and there is

C > 0 such that P(|ξn| 6 C) = 1 for every n > 1, then Eξn → 0.

Suppose (3.3) holds. Note that, by Expx>p = Ip and the independence of xp and Σ̂n,

E[x>p (Σ̂n + εIp)
−1xp|Σ̂n] = tr(Σ̂n + εIp)

−1 = pSn(ε).

Then (ii) follows from (3.3) and the next lemma, where we put Zn = ρx>p (Σ̂n+εIp)
−1xp/p

and Yn = Σ̂n (for a proof, see the Appendix).

Lemma 3.4. Let {Zn}∞n=1 be non-negative random variables such that EZn is bounded
over n. If Yn, n > 1, are random elements satisfying

E
Zn

1 + Zn
− E E(Zn|Yn)

1 + E(Zn|Yn)
→ 0, n→∞,

then Zn − E(Zn|Yn)
P→ 0.

We have proved that (i)⇔ (3.3)⇔ (ii). Let us show that (ii) implies that x>p xp/p
P→ 1.

Suppose (i)–(ii) hold. Then

1

p

[
x>p (εΣ̂n + Ip)

−1xp − tr(εΣ̂n + Ip)
−1
] P→ 0

for any given ε > 0. Hence, we can find {εn}∞n=1 that slowly tend to 0 and are such that

∆n =
1

p

[
x>p (εnΣ̂n + Ip)

−1xp − tr(εnΣ̂n + Ip)
−1
] P→ 0.

By (i), µΣ̂n
converges weakly to µρ a.s.. The support of µρ is bounded. Hence, writing

εnΣ̂n =
∑p
k=1 λkeke

>
k for some λk = λk(n) > 0 and orthonormal vectors ek = ek(n) ∈ Rp,

k = 1, . . . , p, we conclude that

1

p

p∑
k=1

I(λk > δn)
P→ 0
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when δn = Kεn → 0 and K > 0 is large enough. In addition, we have

∆n −
x>p xp − p

p
= Un + Vn,

where

Un =
1

p

∑
k:λk6δn

(|x>p ek|2 − 1)

(
1

λk + 1
− 1

)
,

Vn =
1

p

∑
k:λk>δn

(|x>p ek|2 − 1)

(
1

λk + 1
− 1

)
.

We finish the proof by showing that Un
P→ 0 and Vn

P→ 0. By the independence of Σ̂n and
xp, we have E(|x>p ek|2|Σ̂n) = e>k ek = 1. Furthermore,

E|Un| = E[E(|Un||Σ̂n)] 6
2

p
E

∑
k:λk6δn

λk
λk + 1

6 2δn = o(1),

E|Vn| = E[E(|Vn||Σ̂n)] 6
2

p
E

p∑
k=1

I(λk > δn) = o(1).

Finally, we conclude that (x>p xp − p)/p = ∆n − (Un + Vn)
P→ 0.

Proof of Corollary 2.3. If Lindeberg’s condition (1.2) holds, then µΣ̂n
converges weakly

to µρ almost surely by Theorem 3.10 in [4]. Conversely, suppose the latter holds. Recall
the Gnedenko-Kolmogorov conditions for relative stability (see (A) and (B) in [13]):

if {Zpk}p>k>1 are non-negative independent random variables with EZpk → 0

uniformly in k as p→∞ and
∑p
k=1EZpk = 1 for all p > 1, then

p∑
k=1

Zpk
P→ 1 iff

p∑
k=1

EZpkI(Zpk > ε)→ 0 for all ε > 0.

As E[x>p xp] = p and x>p xp/p
P→ 1 by Theorem 2.1, the above conditions yield (1.2).

4 Appendix

Proof of Lemma 3.1. If µn converges weakly to µ a.s., then

S(ε, µn) =

∫
R+

µn(dλ)

λ+ ε
=

∫
R

f dµn →
∫
R

f dµ =

∫
R+

µ(dλ)

λ+ ε
= S(ε, µ) a.s.

for all ε > 0 as µn(R+) = µ(R+) = 1 a.s. and f = f(λ) is a bounded continuous function
on R, where f(λ) = (λ+ ε)−1, λ > 0, and f(λ) = ε−1, λ < 0.

Suppose now P(S(ε, µn)→ S(ε, µ)) = 1 for all ε > 0. Then

P(S(ε, µn)→ S(ε, µ) for all ε ∈ Q ∩ (0,∞)) = 1.

Taking into account that |S(ε, ν)− S(ε0, ν)| 6 |ε− ε0|ν(R+)/(εε0), ε, ε0 > 0, we get

P(S(ε, µn)→ S(ε, µ) for all ε > 0) = 1.

By Theorem 2.2 and Remark 2.3 in [23], the latter implies that µ̄n → µ̄ vaguely on the
compact set [0,∞] a.s., where, for a finite measure ν on R+, the measure ν̄ on [0,∞] is
defined by ν̄({∞}) = 0 and

ν̄(B) =

∫
B

ν(dλ)

λ+ 1
for all Borel sets B ⊆ R+.
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The function fz(λ) = (λ+ 1)/(λ− z) with f(∞) = 1 is continuous on [0,∞] for all z ∈ C
with Im(z) > 0. Hence, the above vague convergence implies that

s(z, µn) =

∫
R+

µn(dλ)

λ− z
=

∫
[0,∞]

fz dµ̄n →
∫

[0,∞]

fz dµ̄ =

∫
R+

µ(dλ)

λ− z
= s(z, µ)

a.s. for any given z. By the standard Stieltjes continuity theorem (e.g., see Theorem B.9
on page 515 in [4]), µn → µ vaguely a.s.. For probability measures, vague convergence
is equivalent to weak convergence. This finishes the proof of the lemma.

Proof of Lemma 3.2. Proceeding as in [27], we now do some algebraic computations.
Let xp,n+1 = xp,

An = nΣ̂n =

n∑
k=1

xpkx
>
pk, and Bn = An + xpx

>
p =

n+1∑
k=1

xpkx
>
pk.

For any given ε > 0, the matrix Bn + εnIp is invertible and

p = tr
(
(Bn + εnIp)(Bn + εnIp)

−1
)

=

n+1∑
k=1

x>pk(Bn + εnIp)
−1xpk + εn tr(Bn + εnIp)

−1.

Taking expectations and using the exchangeability of {xpk}n+1
k=1 ,

p =(n+ 1)Ex>p (Bn + εnIp)
−1xp + εnEtr(Bn + εnIp)

−1. (4.1)

Recall the Sherman-Morrison formula:

(C+xx>)−1 = C−1−C
−1xx>C−1

1 + x>C−1x
if x ∈ Rp, C ∈ Rp×p is positive definite, and C = C>.

In particular, by a direct calculation,

trC−1 − tr(C + xx>)−1 =
x>C−2x

1 + x>C−1x
6 ‖C−1‖ x>C−1x

1 + x>C−1x
6 ‖C−1‖,

x>(C + xx>)−1x =
x>C−1x

1 + x>C−1x
6 1. (4.2)

Since ‖(An + εnIp)
−1‖ 6 (εn)−1, the latter implies that

Etr(Bn + εnIp)
−1 = Etr(An + εnIp)

−1 + o(1) and Ex>p (Bn + εnIp)
−1xp = O(1).

Thus, by (4.1),

p/n = Ex>p (Bn + εnIp)
−1xp + εEtr(An + εnIp)

−1 + o(1). (4.3)

Recall that An = nΣ̂n. Then tr(An + εnIp)
−1 = (p/n)Sn(ε) and, by (4.2),

Ex>p (Bn + εnIp)
−1xp = E

x>p (An + εnIp)
−1xp

1 + x>p (An + εnIp)−1xp

= E
x>p (Σ̂n + εIp)

−1xp/n

1 + x>p (Σ̂n + εIp)−1xp/n

=
p

n
E

x>p (Σ̂n + εIp)
−1xp/p

1 + ρx>p (Σ̂n + εIp)−1xp/p
+ o(1).

Combining the above relations, we obtain the desired result.
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Proof of Lemma 3.3. Denote further C+ = {z ∈ C : Im(z) > 0} and let

s(z, µρ) =

∫ ∞
0

µρ(dλ)

λ− z

be the Stieltjes transform (on C+) of µρ. It is well-known (e.g., see Remark 1.1 in [5])
that s = s(z, µρ), z ∈ C+, is a unique solution in C+ of the equation

ρzs2 + (ρ+ z − 1)s+ 1 = 0 or, equivalently, 1 =
s

1 + ρs
− zs. (4.4)

Letting z → −ε < 0 and using the dominated convergence theorem, we conclude that
s(z, µρ)→ S(ε, µρ) and (4.4) becomes (3.6).

Proof of Lemma 3.4. We have

E
Zn

1 + Zn
− E E(Zn|Yn)

1 + E(Zn|Yn)
= E

Zn − E(Zn|Yn)

(1 + Zn)(1 + E(Zn|Yn))

= E
Zn − E(Zn|Yn)

(1 + E(Zn|Yn))2
− E (Zn − E(Zn|Yn))2

(1 + Zn)(1 + E(Zn|Yn))2

= −E (Zn − E(Zn|Yn))2

(1 + Zn)(1 + E(Zn|Yn))2
.

As a result, we see that
(Zn − E(Zn|Yn))2

(1 + Zn)(1 + E(Zn|Yn))2

P→ 0.

Since EZn is bounded and Zn > 0 a.s., we conclude that Zn and E(Zn|Yn) are bounded

asymptotically in probability and Zn − E(Zn|Yn)
P→ 0.
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