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Necessary Condition for Observer-Based Chaos Synchronization
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We consider observer-based synchronization of chaotic systems. In this scheme, for a given chaotic
drive system, response system is chosen in observer form. We show by examples that many response
systems proposed in the literature are of this form. We give a necessary condition for synchronization
and a selection criterion for appropriate synchronization signal in this case. We apply this idea to
synchronization of well-known hyperchaotic Réssler system. [S0031-9007(98)08057-0]

PACS numbers: 05.45.Xt, 43.72.+q

Although the idea of synchronization of chaotic sys-for the cases < n, I = n, and [ > n, corresponding
tems may seem impossible to achieve, it was shown imbservers are called reduced, full, and expanded order
[1,2] that for certain chaotic systems such synchronizaebservers, respectively. We note that the classification
tion is possible. This subject then received a great dealf observers based on the order is not important for
of attention among scientists in many fields; see, e.g., [3-6ur discussion here. But we included it to emphasize
7]. Such synchronized chaotic systems usually consist dhat, although many schemes proposed in the literature
two parts: a generator of chaotic signals (drive systeminay seem different mainly because of the order of the
and a receiver (response) system. The response systenpi®posed response systems, they could still be considered
usually a duplicate of a part (or whole) of the drive sys-as special cases of the observer form given by (2). For
tem and some signals generated in the drive system amore details on nonlinear observers, see [10], and for
used as synchronization signals in the response systetimear observers, see [11].

Although many synchronization schemes are proposed in Next, we will show that some well-known synchro-
the literature, most of these schemes do not give a systemization schemes proposed in the literature are actually
atic procedure to determine the response system and tlobserver based. First we consider the well-known Pecora-
synchronization signal. Recently an observer-based syr€arroll scheme proposed in [1]. Consider (1) and as-
chronization scheme has been proposed in [8,9], whickume that we can divide the state space into two parts as
gives a systematic design procedure to guarantee synchro-= (u; u;)” with u; € R™, u, € R*™, and consider
nization for certain chaotic systems. the following system:

In this Letter we will consider the observer-based . _—
synchronization scheme. First we will show that many u = filur, up), y = falur, ua),
synchronization schemes proposed in the literature are ob- v = folu,v), 3
server based. Then we will consider two problems con- here th it denotes the t H
cerning observer-based synchronization. Namely, we wilfVhere the superscriit denotes the transpose. Heyg,

give a necessary condition for synchronization and a cri-andf2 are appropriate partitionings ¢fin (1) andv €

nem ! . ;
terion for the selection of an appropriate synchronizatiorfe . In this scheme, the first two equations represent

signal among various candidates satisfying the necessasg drive SVS‘e”?' the last equat|pn (epregents the response
condition. stem, andu; is the synchronization signal. Assume

that the subsystems, and v synchronize, i.e.yu, — v

ast — o, According to the observer scheme, here we
w=f), s=h@, (1)  have s = u; = Cu with C = (I 0), with [ € R"™*",

whereu € R”, f: R — R" andh: R” — R” are dif-  8(v.s) = fa(s,v), andu, = (s v). Sincem < n, this

ferentiable functions, ans is the synchronization signal Scheme is actually a reduced order observer scheme.

to be sent to the response system. Later, for simplicityHence, the Pecora-Carroll scheme proposed in [1] is

we will choosem = 1, i.e., a scalar synchronization sig- oPserver based.

Let a chaotic (drive) system be given as

nal. An observer for (1) is another system of the form Next, we will give some specific examples. Consider
. the Lorenz system,
v=2g,s), u =k,s), () . .

where v ER/, g R'XR” - R’ and k: R' X ¥=Bb -x y=rmoy -z,

R™ — R" are differentiable functions. Let the error 7= —bz + xy. (€]

signal be defined ag = u — u,. The system (2) is
called a local observer for (1) #(r) — 0 ast — o for all

sufficiently smalle(0), i.e., when|le(0)|| = y for some
v > 0. If y =, then the observer is global. Also, x, = B(s — x,), z, = —bz, + sx,. (5)

In [2], by usings = y as the synchronization signal, the
following response system is proposed:
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For u=(xyz)T €R? and s =y = Cu with C = Our approach is based on the concepts of detecta-
(0 1 0), the drive system (4) is in the form (1), and bility and observability, which are frequently used in
with v = (x, z,)T € R?, u, = (x, s z,)T, the response linear system theory; see, e.g., [11,13]. leE R"*"
system (5) is in the form (2). In this case=2 and and C € R™*" be given. The pair(C,A) is called

n = 3, hence (5) is a reduced order observer. detectable if there exists a matrik € R"*™ such that
For (4), by usings = x, the following response system the matrix A — KC is stable. The pairA — KC is
is proposed in [3]: called observable if for any set of (real or complex)
. _ S e oy numbersAy, ..., A, (not necessarily distinct but closed
Xy = Xr), =7rs SZr . . . .
= B0 _ ") Ir YroT (6)  under complex conjugation), there exists a makisuch
Zr = —bz, + 5y, that the eigenvalues of — KC are precisely the given
Here we have = x = Cu with C = (100), v = u, = humbers. Note that observability implies detectability,
(x, y» z,)T € R%. In this case,l = n = 3, hence the butthe converse is not necessarily true.
proposed structure is a full order observer. To motivate our analySiS, consider the well-known
In [5—7], the following hyperchaotic Réssler system is Pecora-Carroll scheme given in (3). Consider the follow-
considered (see also [12]), ing linearization of (3):
X| = —X3 — X3, Xy = x1 + 0.25x3 + x4, uy = Apuy + Apuy + oy(ur, up), ©
. 9
X3 =3 + x1x3, x4 = —0.5x3 + 0.05x4. (7) Uy = Apyuy + Apus + 0s(uy, u),
In [5], by usings = sinfx; + cosfx; as the synchro- .
nization signal, wher@ is a constant to be determined, a v = Ayuy + Apv + 0a(ur,v), (10)

full order observer similar to the one considered in [8,9] iSyhere. fori j = 1.2, A;; are appropriate matrices ang

used. In [6], by using a nonlinear functidn a full order  1epresent the remaining nonlinear terms.  If we define the
observer is proposed. In [7], two types of response SYSarror ase = u, — v, then the associated error dynamics
tems are proposed. The first one of these is a full ordejg given asé = Aspe + 02(u1,u2) — 02(u1,v). Hence

observer, and for the second one the following responsg gynchronization occurs, i.ee — 0 as ¢ — o, then

system is proposed: Ay, must be stable. To see the relation of this result
X1y = —X2r — X3, Xop = X1 +0.25x2, + (u + Dxy,, with detectability, letA = {A;;} denote the block matrix
having entriest;; and choos& = (K| KD with K, =

a4 ,
Xy =3 XXy, Ay + I, K, = Ay. Then the eigenvaiues of — KC

X4r = —0.5x3, + (u + 0.05)xy4,, are precisely—1 and the eiggnvglues ofy,. I_—|ence, if
- (8) the Pecora-Carroll synchronization scheme is successful,
po=—als, —s) = dpu, then the linearization is detectable. The scheme proposed

wheres = cosfx; + sinfxy, s, is defined similarlyg is  in [8] and [9] is based on a special full order observer
a constant to be chosen, aad> 0, 6 > 0 are appropri- design and depends on the selection of an appropriate
ate constants. Here we have= (x;---x4)7 € R*, s = feedback matrixK such thatA — KC is stable, hence
Cu with C = (0 cosf 0 sing), v = (x1, x4 )’ € detectability is also a requirement there. It follows that
R, u, = (x1,---x4,)7. In this case we havé = 5, for the schemes of [1,8,9], detectability is a necessary
n = 4; hence (8) is an expanded order observer for (7). condition. However, these schemes are proposed for
The examples given above show that the observersome special systems, and whether such a necessary
based synchronization is a very common scheme. Nextondition also applies to all kinds of observer-based
we will consider the following problems concerning schemes, irrespective of the order of the observer, remains
observer-based synchronization: as an interesting question. The following well-known
Problem 1: Given the drive system dynamics [i.£., result from system theory shows that the answer to this
in (1)], to determine appropriate synchronization signalgjuestion is affirmative under some mild conditions.
[i.e., & in (1)], which may (or conversely, may not) lead Lemma 1: Consider the system given by (1) and the

to synchronization. observer given by (2). Assume that all functions are
Problem 2: To develop a selection procedure among thdifferentiable. Without loss of generality, lgt0) = 0,
various synchronization signal candidates. h(0) = 0, and letA = Df(0), C = Dh(0), i.e., the Jaco-

In most of the examples given in the literature, prob-bians atu = 0. If the error dynamics is asymptotically
lem 1 is solved by a trial and error procedure, and arstable ate = 0 (i.e., synchronization occurs for all suffi-
appropriate Lyapunov exponent of the error dynamics iciently small||e(0)]]), then the paifC, A) is detectable.
used as a selection criterion for problem 2. We will give Proof: See [10,14,15].

a necessary condition for problem 1 which is based on According to Lemma 1, if the paifC,A) is not de-

linearization and propose a novel selection criterion fortectable, then synchronization cannot occur when a dif-
problem 2 which is based on the singular values of thderentiable observer in the form (2) is used. Hence, the
linearized system. detectability is a necessary condition for synchronization
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when all dynamics differentiable. Therefore, the synchrohave p = 1 in this case, and by choosing an appropri-
nization signals should be chosen so thé&f,A) is at ate R, we obtain the characteristic polynomial df,,
least detectable. This result gives an answer to probas detA/ — Ax) = A*> — aA + 1, which is unstable for
lem 1 posed above. The conditions for a p@rA) to a > 0. Hence, in this case, synchronization is not pos-
be detectable can be found in standard textbooks on lirsible by using differentiable observers. At this point, we
ear system theory; see, e.g., [11,13]. To apply this idea toote that in [16], a different synchronization scheme based
some well-known systems, we give such a condition in then impulsive coupling is given (i.e., a synchronization sig-

sequel. nal is used only at certain instances), and it was noted that
For a given pair(C,A), we define the observability synchronization is possible with= z. This result does
matrix Q as not contradict our conclusion, since in this case the re-

0 =[CT ATCT APTCT ... A= DT T (11) ZE)f?er:Zitisg/;Lem contains impulsive terms; hence it is not
The pair (C,A) is observable if de@ # 0. Now as- Next, we consider problem 2. Let and C denote
sume thatm =1 (i.e., a scalar synchronization sig- the |inear parts off and h, respectively. We will
nal) and that dep = 0. Furthermore, assume that the assume thatC, A) is observable, since this condition is
first p (p <n) rows of Q are linearly independent gyfficient in many cases. Suppose that for a gidethe
but the firstp + 1 rows are linearly dependent. Let candidates foc satisfying the observability condition are
R € R""P*" pe an arbitrary matrix such tha = parametrized, e.g., b§ € Q C RY. Then the problem
[CT ATCT...AP=DTCT RT]" is nonsingular. In this s to find 6, € O which yields better synchronization
case, the matrixA = PAP~' has a block-lower trian- properties. One approach may be to calculate appropriate

gular form A = [AqAp] with A, = [Andx]", Ay = Lyapunov exponents of the error dynamics and choose
[0 A5)", where A;; € RP*P. The pair(C,A) is de- ¢ accordingly. This approach is widely used in the
tectable ifA,; is stable. literature, see, e.g., [1,5,7]. Here we will propose a

Next, we will apply the necessary condition given gifferent selection procedure, which may be easier to
above to the synchronization of some well-known chaotioapp|y_ Let 0(0) be the observability matrix given by
systems. First, consider the Lorenz system given by (4%11). Since de@(d) # 0 is required for observability,
and letA be the linear part when (4) is written as (1). If jt is reasonable to expect that the observability hence
s = x is used, then we havé = (1 0 0), and deQ = 0;  synchronization properties become poorer @) is
hence (C,A) is not observable. To test detectability, closer to being singular. This property can be justified

we note that in this casp = 2, and by choosingt =  apalytically by using singular values af; see, e.g.,
(00 1) and usingA = PAP~', we obtainA» = —b,  [11]. For a given eigenvalue set, by usilg= QAQ !
which is stable _forb > 0. Hence, synchronization may gnd ¢ = CO!'=(10,...,0), one can easily find the
be achieved withs = x. For s =y, we haveC =  required gaink such that the eigenvalues of — K¢

(0 10), and similar calculations show that the péi, A)  are precisely the given set. Then the required gain is
is not observable, bup =2 and we haved, = —b, g = g~!k; see [11]. Hence, a® is closer to being
which is _stable_forb > 0. Hence synchronization may singular, larger gains will be required to stabilize—

be possible withs =y. For s =z, we haveC = gc. such larger gains will result in larger transients

(00 1), and(C,A) is not observable. We have =1 iy the error dynamics, and this may result in the loss
in this case, and by choosing an appropriéi¢ we  of synchronization. Motivated by this argument, as
obtain the characteristic polynomial fdr,, as detAl — N0~ = [omin(Q)]", Where omin(Q) is the minimum
Ap) =A%+ (B + DA + B(1 —r). Hence for B> singular value o0, and|| - || is the matrix norm induced

0, we needr <1 for detectability. Hence, ifr >  py the standard Euclidean norm, we propose the following
1, synchronization cannot occur with a differentiable sejection criterion for appropriate.:

observer.

As another example frequently used in the literature, 0+ = maxomin(0(0)). (13)
consider the Rossler system given below, o0
X=-y -z y=x + ay, To illustrate the ideas presented above, consider the
. (12)  hyperchaotic Rossler system given by (7). Let us express
¢=—erta tb, (7) in the form of (1) withu = (x; ---x4)7, f(u) = Au +

and let A denote the linear part when (12) is writ- o(u), where A is the linear part antdb(u) = (003 +

ten as (1) withu = (x y z)7. If s = x is used, then x;x3 0)". We will chooses = Cu, whereCT € R* is
detQ = a + ¢, and the synchronization may be possiblea vector to be determined. First consider the casex;,
whena + ¢ # 0. We note that in this case (exponen-i = 1,2,3,4, i.e., plain phase variables. In this case,
tial) synchronization is guaranteed with the full order ob-C7 is the ith unit vector. A simple calculation shows
server given in [9]. Ifs = y is used, then d&® = —1, that with s = x; or s = x,, the observability condition
hence synchronization may be possible. ko# z, we  holds and synchronization may be possible, whereas with
have dep = 0, hence(C,A) is not observable. We s = x3 or s = x4, detectability condition does not hold,
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hence synchronization is not possible with a differentiablen about 9 time units. We also considered the case

observer. In [5], a full order observer is proposed,C = (sinf 0 cosf 0), which is used in [5], and by

and it was reported that synchronization is not observedsing appropriate Lyapunov exponenfis= 7/3 was

when a plain phase variable is used as a synchronizatiarported as the best choice. By using (13), we obtained

signal. According to our results, this is justified for 6. = 0.547, which resulted in o,;,(Q) = 0.2068.

s = x3 0r s = x4. In[7], a full and an expanded order As compared with the cases = x;, which has

observer are proposed and it was reported that ferx,, onin(Q) = 0.2032, we expect slight improvement.

synchronization is possible. Below we will show thatIn this case, K = (3.2873 —3.5414 0.4899 —1.5334)7

this is also possible fos = x;. Note that fors = x;, leads to the same eigenvalue set. By using these and

we haveoni, (Q) = 0.2032, whereas fox = x, we have the sameu(0), v(0) as given above, simulation results

omin(Q) = 0.0008; hence according to (13}, = x; isa are similar to that of case 1 in Fig. 1, with a slightly

better choice. In the simulations, we use the followingfaster sychronization (in about 11 time units). Finally,

full order observer proposed in [8,9]: we considered the cas€ = (0 cosf 0 sind) used in
. [7], and by using (13) we obtained. = 0.6 as the
v=Av + o) + K(s — Cv), (14) best choice, which resulted A, (Q) = 0.1621. In this

wheres = Cu, andK is to be determined. Far = x, case,K = (—9.6911 —4.1926 —0.4888 2.0024)” leads

we haveC = (1 000), and (C,A) is observable. By to the same eigenvalue set. As can be seen, here gains

using § ={-1, —0.8, —0.6, —0.5} as the eigen- are relatively larger than the ones obtained in previous

value set, we obtainedk = (3.2 —3.5198 0.4923 cases, which is due to a relatively small;,. In this

—1.4583)T as the required gain. With these choices,case, in our simulations with the sam@) andv(0) = 0

we simulated (7) and (14) fou(0) = (—20 00 157  we could not observe synchronization. But with the

and v(0) = 0, and the Euclidean norm of the resulting same u(0) and v(0) = (=10 0 0 10)”, synchronization

error e = u — v is shown in Fig. 1 as dashed lines. is achieved (in about 12 time units). In this case we

We note thatu(0) is chosen according to [12]. Here have |le(0)|| = 11.18, which is smaller than the cases

[le(0)]| = 25, which is relatively large, yet synchroniza- considered previously, and apparently this is due to

tion is achieved in about 13 time units. We also searchedmallero iy, .

various candidates forC and for C = (100 —1)7

we obtained o, (Q) = 0.4597, which is the largest

value we found in our search. This indicates that

s = x; — x4 may be a better choice than= x;. In

this caseK = (24237 —3.1102 0.243 07763)T Ieads *Email address: morgul@ee.bilkent.edu.tr
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