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1. Introduction

Consider the following formal optimization problem. Let {Q} denote a
sequence of random vectors, and define the sequence (1.1) of n dimensional
vectors {Xi, i = 0, * , k}, Xi = {Xi, * , Xi}, where k is a fixed integer and
ui is a control, which is an element of an abstract set Uji:

(1.1) Xi+ 1 = Xi + f1(Xi, ui, (i)
The object is to find the {ui} which minimizes

k-1
Ek Y-- fi (Xi, Ui, (i,

(1.2) i=o

Xi+ 1 = X? + f°(Xi, ui, (i), X? fixed,

subject to certain constraints. Sometimes it is convenient to augment the vector
Xi by adding X9, the "cost" component. Then, we write +Xi = (X?, Xi),
fi = (fi, fij) and
(1.1') Xi+1 = Xi + f(X i, Xi).
The constraints are

(1.3) ro(X0) =E0(X0) = 0, qO(XO) _ Eq0(XO, EXO) _ 0,

qi(Xk) Eqi(Xi, EXi) < 0, i = 1k,* ,
(1.4) rk(Xk) E4k(Xk, EXk) = 0,

where r0, q0, fk, and qi are vector valued functions. The qO is allowed to depend
on XO in order to fix or limit XO in some way. That is, some component of q0 (Xs)
may be q0(X0) = -XO < 0.
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668 SIXTH BERKELEY SYMPOSIUM: KUSHNER

The constraints Eqi(Xi, EXi) < 0 of (1.4) can be used to model or approxi-
mate a variety of constraints. For example, we can approximate the constraint
X. E A with probability 1 by letting qn be the expectation of a suitably smooth
approximation to the indicator of A. The constraint P {X,, j A, some n =
1, . .. , k} _ e can be modelled letting §( ) denote a suitably smooth approxi-
mation to the indicator of A and admitting the constraint g(Xl, * * *, Xk) =
E maxk 2 ". 1 9(X.) _ 1 - a. Note that g may have a "convex differential,"
although not necessarily a linear differential. See the comment after Theorem 3.1.

Necessary conditions for optimality in the form of Kuhn-Tucker conditions
or Lagrange multiplier rules are well developed for very general deterministic
discrete and continuous parameter problems [4], [11], and much of the recent
work depends heavily on abstractions of the well-known geometric methods of
nonlinear programming. In this paper, we apply some of the recent develop-
ments in abstract programming to obtain necessary conditions for (local)
optimality for several discrete parameter optimization problems. The results
are only typical of the possibilities and do not exhaust them. Hopefully, the
results will suggest useful computational procedures, although our investigations
along these lines are only beginning.

In [8] and [9], the author derived some necessary conditions for optimality
for a class of continuous parameter stochastic problems, and in [10] for a dis-
crete problem. The results in [8] and [9] are true "maximum principles" or
"minimum principles" in the sense used in control theory, while the result in
[5] is a necessary condition for a stationary point. Subsequent work was reported
in [1], [2], [3], [5], [12], [13]. The development in [3], for an essentially linear
problem (fi linear) with a convex cost, and where the ui are real numbers, seems
to be the only work in which programming ideas are explicitly used. However,
the programming approach gives better results with reasonable effort. Indeed,
by properly identifying quantities in the abstract work [11] with quantities in
the stochastic problems, we obtain and extend most previous discrete parameter
results. Continuous parameter results will be reported elsewhere.

Section 2 cites the basic results from [11], which will be heavily used in the
sequel. Sections 3 to 5 deal with the discrete parameter problem. In Section 2,
the ui are measurable with respect to given a-algebras _ji; in Section 3, the ui
are allowed to depend explicitly on the states, Xi, and so forth; and in Section 5
a maximum principle is derived, analogous to the deterministic discrete para-
meter maximum principle [4].
2. Mathematical background

This section describes a somewhat weakened version of a result of Neustadt
[11], on an abstract variational problem which underlies the development of
the sequel. Let . be a Banach space which contains the sets B and Q. The
structures introduced next are abstract counterparts of these used in nonlinear
programming in Euclidean space. The terminology is slightly changed from that
of [11].
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DEFINITION 2.1. Let Z be a convex cone with vertex {0} in S7. If p is an
arbitrary ray of Z, let there be a cone Zp with a nonempty interior and vertex {O}
and p internal to Zp, and also a neighborhood Np of {0}, such that Z. naNp c- B.
Then Z is an internal cone to B at {0}.

DEFINITION 2.2. Let PV denote the set {P: pi > 0, Ev pi < 1}. Let K be a
convex set in 97 which contains {O} and some point other than {0}. Let w1, ,wv
be in K and let N be an arbitrary neighborhood of {0}. Let there exist an eo > 0
(depending on v, w. *, wv, and N) so that, for each E in (0, eo], there is a con-
tinuous map ;£i) from pv to J7 with the property

(2.1) (Th) { fv fiwi±N)}Q.

Then K is a first order convex approximation to Q.
2.1. A basic optimization problem. Let 87 contain the set Q'. Find the

element k in Q' which minimizes (o(w) subject to the constraints pi(w) = 0,
i = 1,* *,m, gpi(w) . 0, i = 1, , t. We say that k is a local solution to
the optimization problem (or, more loosely, the optimal solution) if, for some
neighborhood N of {O}, go9(w) _ go(ib) for all w in Tv + N which satisfy the
constraints. Let k denote the optimal solution. The constraints Hi for which
59- i =_- i(b)= 0 for i = 1, *. , t are called the active constraints. Define the
set of indices J = {i: gp i(w) = 0, i > 0}u {O}.

2.2. The basic necessary condition for optimality. First we collect some
assumptions.
ASSUMPTION 2.1. The (pi(w), i _ 1, are continuous at w and have Frkchet

derivatives ti at w, and {IV, * *, m are continuous and linearly independent.
Thus, [pi(2l + ew) - (pi(i)]/ - ti(w) -+ 0 uniformly for w in any bounded

neighborhood of 87.
ASSUMPTION 2.2. There is a neighborhood N of {0} in 87 so that, for all

inactive constraints, we still have sp-i( + w) < Ofor we N.
ASSUMPTION 2.3. Let the active constraints and also PO be continuous at 2).

Let

22 - i (W + EW) - _ i (W )

(2.2) E -~ci(w)
for all w in 87, and uniformly for w in any bounded neighborhood of {0}, where
ci(w) is a continuous and convex functional. There is some w and j E J for which
cj(w) > 0. There is a wfor which cj(w) < 0 for allj e J.
A case of particular importance is where the ci(w) are linear. Then we sub-

stitute the stronger Assumption 2.3'.
ASSUMPTION 2.3'. Let the active constraints and also (O be continuous at w

and have Frechet derivatives ci at ib (corresponding to 9- i) which are continuous,
and suppose that there is a w e 87 for which ci(w) < 0 for all i e J.
We now have a particular case of Neustadt [11], Theorem 4.2. The local

solution here is called a totally regular local solution in [11].
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THEOREM 2.1. Let Assumptions 2.1 to 2.3 hold. Let w be a local solution to
the optimization problem. Then there exist a,, * *m,aO, a_ *, not all
zero with a_ _ 0 for i _ 0, so that

m

(2.3) E CAi(w) + E aici(w) < 0
i=1 ieJ

for all w in K, where K is a first order convex approximation to Q' - _ Q,
and K is the closure of K in Go.

OBSERVATION. Let gi(-) = 0, i > 0. If there is a w e K for which cj(w) < 0
for all active j, then oo < 0, and we can set o = -1.

Define

B ={w: q (i + w) < (p4), i e J} u {0},
(2.4) 7= {W ti(l + W) = 0, i 1, , m}.

Then Theorem 2.1 is essentially a consequence of the result (see [11]) that the
intersection of X and any internal cone to B can be separated from K n Xt by a
continuous linear functional.

3. The stochastic variational formula when the controls are measurable over fixed
a-algebras

In the first part of this section, a stochastic optimization problem will be
treated in a fairly general way. We introduce only those assumptions which are
required to apply Theorem 2.1. Then, more specific conditions which guarantee
some of these assumptions are introduced.

3.1. A stochastic optimization problem. Definitions and assumptions. Let
, **, (, * be a sequence of random variables, where 40, . .. , (i are measur-

able on the a-algebra (4, . . *, (i), and define the random sequence {Xi} by
(1.1'). The measures on the 2(0, . .. , (i) do not depend on the selected control
sequence; the Xi are of the nature of "exogenous inputs." We seek the X0, * Xk,
UO, - *, Uk- which minimizes (1.2) subject to the constraints (1.3) and (1.4).

3.2. The admissible controls. For a vector Y with components Yi write
IYI = zi |P1 and |Y1|q = li ElIqlYi1q. Denote L ( ) the Banach space of 3
measurable random functions Y with norm llYi|q. Let Lq(M) be the Banach
space of n + 1 dimensional vectors Xi = (X, Xi) with norm EiXiliq=E|X91 +
IIX.I1 For a random matrix M = {Mij}, define ||MI1q = Ei j 11Mij||q. Suppose
that and X0 are a sequence of given a-algebras, and Ui a sequence of convex
sets. The .i, 0 and the measures on them do not depend on the chosen controls.
In this section the admissible control set, denoted by Ui, are the random variables
in Lp, (jib) which take values in Uifor givenp' _ 1. Then the Xi are measurable over
Xi, where M = i- 1 u Ji- 1 u M(i- 1) and XO is a random variable measurable
over the given a-algebra M. The set of admissible controls covers at least the
three cases:
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(i) the ui depend explicitly on some function of the co, * i* - j;
(ii) the ui depend explicitly on noise corrupted observations of the

O, . *, (i-, where the corrupting noise does not depend on the selected
control sequence;

(iii) a randomized version of (i) and (ii).
It is well known from linear programming on Markov chains that a ran-

domized control may give a smaller cost in a constrained stochastic optimization
problem, than a nonrandomized control. Our controls can be randomized by a
suitable choice of Hi. Let go, v0, * * *, vk denote a sequence of independent
random variables, which are also independent of the {Q} sequence and each of
which has, say, a uniform distribution on [0, 1]. (We suppose that the under-
lying probability space is big enough to carry these random variables.) Suppose
that the data field A c= (O,3 * , hi- 1) is available to the controller at time i.
(That is, Xi measures the information upon which the control depends.)
Randomization is achieved by letting Hi = -iu 2(vi) and 2O = 2(go). To
determine the actual control value ui (co), we need to draw a value of vi at random.

3.3. Assumptions and notation. Notation will frequently be abused by using
the same term for a function and for its values. Let ui e Ui. Let ICi denote the
pointwise internal cone to Cj - fi at {0}; that is, ICi is a convex cone of random
variables in LP,(J1) with the property that, if bui E ICi, for s = 1, * , v, then

v

(3.1) fii + E ftu c- Ui for all co for fis . °, E fib . 1 and 0 _ E <.o,
s=l S

where Eo > 0 may depend on the bui. Also, bui Ec (L)P
Let bus = (OuS, * **, Au[.1) EIC= ICO X ... X ICk -1. Write

v v

6uJ(f) - fiEAbus, u(f) _ EPsbus,
s=1 s=1

(3.2) 6X = 5TXi +fi,x5Xi + fi " u,
a-Xi(f) = E AM,

S

We have

(3.3) Xi+ 1(f) X i (( ) + fi(Xi(P), iai + E6U(f), 'i).
Let rox denote the matrix aro(x)/ax and x0, denote rox evaluated at io. Let

i,.e denote Oqj(x, e)/Oe, i > 0, the derivatives with respect to the second vector
argument of Qi(, ). We also use qi x = q EXf) and qox = 2q0(x)/1x. Also

Of(X, U, 4) OfPX, U,
(3.4) f = -ax fiL X - x

and q1 = qi(Xi)
Fix bui eICi for all i = 0, , k - 1 and s = 1, ,.
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ASSUMPTION 3.1. Assume ui e Ui, and for any sequence ui e Ui, and any XO
satisfying the constraints, assume that the Xi given by (1.1') are in Lp(2i) for
given p > 1 and i = 0, * , k. The 5Xi given by (3.14) are in Lp(i) for any
bui Ce ICi.
ASSUMPTION 3.2. The ICi contain at least one point other than the origin.
ASSUMPTION 3.3. For eo _ e > 0, where E% > 0 depends on the bWui, suppose

that the Xi(f3) given by (3.3) are continuous in ,B in Lp(2i), and that

(3.5) 1X1i(P) - Xli - esXi(fl)ip = O(E)
uniformly in = (p,,** *, Pm), for fs _ 0, Is fs = 1.

ASSUMPTION 3.4. For a real number K1,

E~qi(XJ)| . K1(1 + EIXiIP), i 1, k,
(3.6) EIri(XJ)I < K1(1 + EIXiiP).
ASSUMPTION 3.5. Let 4i x,xi e,' ,x and 7i e exist and be continuous, and

14iiell1 < °, 11qixip/(p- 1) < oo. Let Ni denote an arbitrary bounded neighborhood
of {0} in Y. Then all the following tend to zero as E -- 0, uniformly for pi in N1
(and also for ri,x, 7ije replacing qi x, and qi e' respectively),

li~qe(xi + evi, EXi + eEvi) - qi e(Xi, EX1)|1,

(37)Ik(Xi + evi, EXi + eEvi) - qi,(Xi, EXi)IIpI(p1).
ASSUMPTION 3.6. Define the linear maps Ro, k (from yo E Lp(A0) and

Yk e Lp (k) to the appropriate Euclidean space), and suppose that the components
are linearly independent for each i. Then

(3.8) Riyiy E[fi,X-yi + fieEyi].
ASSUMPTION 3.7. For the inactive constraints qi, suppose that there is a

neighborhood Ni of the origin in Lp(Mi) for i > 0 and in Lp(.24o) for i = 0, for
which qii(Xi + yi) < 0, qJ(Xo + yo) < 0, for yi Ni, i > 0, yo eN0. Suppose
that there is an Xi in Lp(A4t), i > 0, and XO e Lp(30) so that

E[qdx . Xi + 4i,eEXi] < 0 for all active qii
(3.9) E[qj,. Xo + qo,eE-X0] < 0 for all active qi.
ASSUMPTION 3.8. Assume that fA, f.°u are continuous in x and u and

i x||p/(p 1) < °O and I|| i.p'/(p'_ 1) < oo. For a real K1,
(3.10) Ifi°(Xi, ui, Xi)| < K1(1 + iXiXP + luiiP )

and

IifX (Xi + Evi, ti + E6bu1i)) -Xjjj p/(p-1) 0,

(3.11 ) | | f. "(Xli + Esv,i1i + ECbu(i)) fiAuU|I p'/(p, -l) 0,

as e- 0, uniformly for vi in Ni and in 3,for i =. 0O*, k 1.
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3.4. Identification with the definition in Section 2. Define Y to be the space
in which X0, ..., Xk lie, namely, Y = Lp(4o) x ... x Lp (k), and let Q'
denote the set of all sequences in Y which are solution to (1.1') for the class of
allowed controls and initial conditions.

Assumption 3.8 implies that (3.5) can be replaced by

(3.12) |i|Xi(p) - Xi - 6X-i(p)iIp =(£),
since, by (3.5), we can show that

(3.13) Elfi°(Xi(p), ui + 86u1(f), () -fi (Xi, ii, Xi) -gfi0,xXbXi(p) - efi0,xcbui(p)i
_ Ifix (gi + Oe p(Xi(/3) - xi), ui + Q£0bui(p3), 'i) - x bxi(fl)I

+ e f, "(Xi + oE, (X (l) - Xi), i + e0£, u(fi),f - fA%4 Iui(fl)I
where O0 is a random variable in [0, 1], and we can complete the assertion
by using Holder's inequality. Then it is straightforward to verify that the set
K E Y (given by (3.2) or (3.14)) of all vectors X0, * , MXk corresponding to
bui cICi, 6X0 E M, is a first order convex approximation to Q _ Q'-

X0,X- } S. One can write

bxi+l = mi + fixbxai +fiubui

3X. E F(j, i)fj-"16uj-1 + F(O, i)3Xo,
(3.14) j=1

F(j, i) = (I +!i1 (I +,ix)I j < i,
F(i, i) = I.

(3.15).

ofi,X

Identify the components of ro and rk with A1, , and pi, i > 0, with the
components of the qi, i > 0. Also (po EX°. The Ri of Assumption 3.6 is the
Frechet derivative of the vector valued map ri(Xi). The following Qi, i > 0,

0, yi E[4jx yi + 4ieEYi].
(3.16) Q0 * y -E [di. * yo + o0,eEyo]

are the Frechet derivatives of the vector valued maps qi at Xi. Thus, Assumption
2.1 is implied by Assumptions 3.4, 3.5, and 3.6. Assumption 3.7 implies
Assumptions 2.2, and 2.3' is implied by 3.1 and 3.4 through 3.8.
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That Qi is a Frechet derivative can be seen from the following brief calculation.
Let Ni denote an arbitrary bounded neighborhood of {O} in Lp(Si). There are
random variables 0 E [0, 1] (depending on e, vi) so that, for i > 0,

(3.17) e- e1IEqi(Xi + evi,EXi + &Evi) - Eqi(Xi,EXi)
- eEqi,(Xi, EXi) * vi -Eqie(Xi, EXi)EVi4

< IE[4i,.(Xi + e0vi, EXi + e0Evi) -qi,(Xi EXi)]vi
+ E[4i,e(Xi + e0vi, EXi + e0vi) - qi,(Xi, EXi)]Evij.

By using Assumption 3.5 and Holder's inequality, we can show that e -. 0 as
e -- 0 uniformly in vi, completing the calculation.

Note that, for the Frechet derivatives of the equality constraints to be linearly
independent, it is enough to consider ro(X) and rk (Xk) separately, since ro does
not depend on Xk and rk does not depend on X0.
Theorem 3.1 is the main result of this section. Let P' denote the (n + 1) row

vector (1, 0,. . . , 0). The prime on P' denotes transpose. While ro, rk, qi, i > 0,
do not actually depend on the X9, it is convenient to write (3.19) and subsequent
formulas as though they did. Thus, we write rk(Sk, EXk) for rk(Xk, EXk) and
rkX(Xk, EXk) for

(3.18) [ rk,x(Xk, EXk and so forth.

THEOREM 3.1. Let Assumptions 3.1 through 3.8 hold. There exists a scalar
P0 <0 . and there exist vectors ot, ak, and i < 0 i = 0. , k, not all zero,
such that

(3.19) p0E^XM° + Eot'[iox, + (EIro,e)]6XO + Eo4I[ik,x + (Erk,e)]c6Xk
k

+ E y i/4ix + (Eqiji)]5Xi < 0
i=O

for 6XO,..*, 6Xk c K, where qii = 0. Define the vectors pk,. pO:

Pk = p0P + [k,x + (Erk.e)]Otk + Wk', + (Ek e)]Ik,

(3.20)
Pi- = (I +fil-,.)pi + [4i-l +(Ea ile)J] i -

+ [fli_,x + (EKri_,e)]ai i, k _ i _ 1.

Then

(3.21) E<pI 1u1u 0

for all bui- 1 eIri -1 and

(3.22) E[po | o] = 0.
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PROOF. Equation (3.19) follows from Theorem 2.1 and the discussion pre-
ceding Theorem 3.1. Equations (3.21) and (3.22) are specializations of (3.19),
as follows. Let 5X0 = 0, buj = 0,j ¢ i - 1. Then 6Xj = F(ij)fi.1 6bui-1, and
(3.19) yields

(3.23) E{p0P'P(i, k) + O~kJUkx + (Erk,e)]F(i, k)
k

+ t j [I jx + (Ej,e)]P( i)}!i1,u6 i 0.
j=1

The bracketed term in (3.23) ispi. The closure of the first order convex approxi-
mation given by (3.2) and (3.3) is merely the set of solutions ( * **, 5Xk)
of (3.2) and (3.3) which can be obtained by using {bui} in the closure in Lp,(i)
of {ICi}. Thus,
(3.24) E[p~i-f1,,bui-.] < 0

for all bui- 1 E ICi- 1. Let B E -1 and suppose that (XB is the characteristic
function of B)

(3.25) EXBP'iJil,"6ui-l > 0.

Then bi - 1 XBbUi -1 EI i- 1 and we have EpJfi- l," bui- 1 > 0, which con-
tradicts (3.24). Thus, (3.21) holds.

Next, let bui = 0, i = 0. , k - 1. Then substituting 6Xi = F(O, i)6X0
into (3.19) yields

(3.26) Ep5X0 . 0

for all 5XO in Lp(3o). Using the argument which proved (3.21) and the fact
that -6XO E Lp(3O) if 5X0 is, gives (3.22). QE.D.

3.5. Remark on generalizations. The spaces Lp(Ai) can easily be replaced
by less restrictive spaces where, for example, each of the components Xi has
its own integrability property, (that is, Xi e LpJ, (ji)). Assumption 2.3 requires
only that the ci(x) be smooth and convex, whereas the "derivatives" Qi of the
qO,*** ,qk, EX°, were linear operators. The "convex" derivatives of Assumption
2.3 arise, for example, where, the cost to be minimized, or the state space con-
straints take the form E maxi IIXi - till, and Theorem 3.1 can be extended to
include constraints or costs of these forms. Constraints of the type P{X,, e A } >
1 - e can conceivably be inserted into the definition of Q', but we do not know
how to find a first order convex approximation to such a constrained Q'.
For illustrative purposes, we verify Assumption 3.3 under a specific set of

conditions on the fi.
THEOREM 3.2. Let ui e0i with p' p _ 1, and A c W('0o,. , 1i-l)u

S(vi), where the independent sequence {vi} is independent of the independent
sequence of matrices {Q} and

(3.27) Xi+1 = Xi + fM(Xi, ui, ti) = gi(Xi, ui) + tihi(Xi, ui).
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The moments satisfy EJ i q < co for all q = 1, 2, * - - . Let gi and hi be continuous
with bounded and continuous derivatives in Xi, ui. Then Assumption 3.3 holds.

PROOF. From the following estimate, for some real K,

(3.28) IXi+1| _ IXii + K(IXii + juil + 1) + K(IXii + Iuil + 1)14il),
we can deduce that all moments of |Xi exist up to order p', and similarly for the
moments of the MXi given by 6Xi+1 = 6Xi + ixbXi + fi,bui, or for the
moments of 3Xi(p).

Fix E > 0 and write

(3.29) Xi+1((f) = Xi(pl) + gi[Xi((p), di + buiu(P)] + Xihi[Xi(fl), ii + Eui (M)].
From the relation, for some real K,

(3.30) 1Xi+l1(p) - X{+l(p)I _ K|Xi(/3) - Xj(1)(l + i4il)
+ eKjbui(f3) - 5u1(P)I(1 + II)

and the relations 15uj() - bui(u)i -- 0 in L,,(i) as ,/3, we conclude that
Xi(p) is a continuous LP(i - 1 ) valued function of /3, for any E > 0. Next, define
the sequence Yi = Xi(p) - i,

(3.31) Yi + 1 = Yi + [g1(Xi + Yi, hi + ebui (P)) + cihih(X + Yi, i2 + EMui,(/))]
- [gi(Xi, fii) + 1ihi(Xi, us)] .

From (3.31), we can easily show that E11PlYi1P = 0(E), uniformly in P. Next,
Zi = Y. - e6X1 satisfies, for random Oi E [0, 1], which may depend on e and ,

(3.32) ZO = 0
2Zi+ = Zi + [0ix + Xihix]Zi

+ [gix(Xi + OiYi, ti + eoibui (f)) -i--] i

+ Xi[hi x(Xi + Oiri, ti + coibui(/)) - i

+ E[gi"(i, + oi iai + sOibiu(f)) - "i (fA)
+ e~i[hi,.(!i + oiyil ti + e6ibui(fl)) - hi ulbui(p)

This expression together with E1IP|Yi4P = 0(E), implies that E11PIZilp = O(E).
The proof is straightforward and only the following observation is needed.

(3.33) £[9ix(!i + OYi, ai + eoibui(fl )) 9i]P

is uniformly integrable with parameters E and /3, and goes to zero as e -. 0 with
probability 1. Thus, the expectation of the term goes to zero as e -.0, uniformly
in /3. Q.E.D.
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4. The multiplier rule when the control depends explicitly on the state

In Section 3,, the controls ui were measurable over the fixed a-algebras Ai,
and did not depend explicitly on the state. If we allow the controls ui to depend
on the Xi, then some condition must be imposed on the ui which guarantees
that replacing ui(Xi) by ui(Xi + iXi) + ebui(Xi + 6Xi) in (1.1) (where Xi+1 +
6Xi+ = Xi + 6Xi + f(Xi + 6Xi, ui + abui, hi)) alters the paths only the
order of e. In Section 3, ui(Xi + 6Xi) = ui(Xi). Thus, some smoothness on the
ui is required. In Theorem 4.1, we assume the form (3.27).
For simplicity of notation, it is assumed that ui depends explicitly on Xi, and

is not randomized. Subsequently, several extensions are stated.
4.1. Assumptions and notation. Let p = p' and let Y be as in Section 3,

where Hi = -(4o, . .. , Xi- 1) and X0 is the trivial a-algebra.
ASSUMPTION 4.1. Let Ui be a convex set, and let Ui denote the convex set of

controls which can be used at time i. We have ui e Ui if ui,. is bounded and con-
tinuous, and ui(x) e Uifor each x.

Again, let X4, * * *, Xk, 14 (X0) =-o`, 4, l(Xk-1) = 4-1 denote the
optimal solution. Assume that ICi, the internal cone to Ui - i at {0} exists and
contains some point other than {0}. Then, for any bui E ICi, bui, x is bounded
and continuous and ii(x) + e E'= 1 Pbui(x) c Ui for sufficiently small £, for all
x and P = (P1,*, f)eP.

ASSUMPTION 4.2. Assume that hix, gi x, hi, gi, are bounded and are con-
tinuous in their arguments. The {Q} are mutually independent, and all of their
moments exist.

ASSUMPTION 4.3. Assume that f.°x, fi°" are continuous in their variables and,
for some real K < oo,

Ifi0(x, u)I _ K(I + IxIP + IuIP),
(4.1) If.,°x(x, U)I + If.°"(x, U)I _ K(' + Ix|P-1 + uIp- 1)

Define 6X0(p) = Es 6X'0,
bui(fl, Xi) = E f356u8(Xi), bui(x) E ICi

S

(4.2) bXi_ + = X i + [ + i, x mi + i." i,

where we write bfi for buikvi) and also 6Xi(,() for 5Xi if btii takes the form
6uj(f3, Xi). With

"U i) (I + if .x A+ 1, " i 1, x) ( XA, x X ijjx ), j _
(4.3) P(i, i) =I,

we have

(4.4) mXi+1 =PF(i, i + 1)6Xi + fi.", &
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and

(4.5) Xi= F (j, i)1j 1 faui 1 + Ff(0, i)X5o.
j=1

We will use the notation = f(Xi, ui()), and so forth. If arguments of a
function are other than Xi, ui(Xe), or i, they will be explicitly inserted.
THEOREM 4.1. Let Assumptions 4.1, 4.2, 4.3, and 3.4, 3.5, 3.6, 3.7 hold.

Define pk by (3.20) and pi, i < k, by

(4.6) pi 1= (I 1,. + x [qi i, +x (Ei 1,ei)}]//1
+ ++ (Eriie)]°ii1

Then (4.7) and (4.8), the analogs of (3.21) and (3.22), hold, for all bi- 1 e -1,

(4.7) E[poIlo] = Epo = 0,
(4.8) E[ Aii- gl 0.ui1
PROOF. First we verify that Assumption 3.3 holds. By Assumption 4.2,

(4.9) 1Xi+ll < K(1 + l4il)(1Xil + juj(XJ1)|
and, since Iui(x)l < K(1 + lxi), all moments of Xi exist; similarly, so do all
moments of 6Xi, where MXi is given by (4.2) for bui e ICi and 5X0 is an arbitrary
n vector.

Next, fix both E > 0 and the buf,, and write

(4.10) Xi+1(fl) = Xi(f3) + fA[X0(fl), Ii2(Xi(p)) + E&u(i, Xi(P))].
Using the Lipschitz conditions on fi, namely,

(4.11) |fi(a, b, )-fi(d,, b)I < K(1 + l)(la - dI + lb-b|),
and the bounds (1/ - = -Ifis- )

16XO(P) - 5Xo()I -Kip -p,
I6uJ(, X) - 6U1(J, i)l < Z lP5buit(x) -PAU7(

S

(4.12) <

1 {1fl - sI*5tbu(x)i + jbui(x) -
S

ibui(x) -bui()i _ Kjx -l,
we have that IXi(B) - Xi(p)ll, -O 0 as |,B- °l -- 0 for any p > 1, and any
e > 0. Thus, the Xi(/3) given by (4.10) are continuous in ,B in the Lp(Ai) sense.

Write
(4.13) Yj+1 = Yi + fi[iXi + Yi, fi(Xi + Yi) + sbui(fl, Xi + Yi)] -i
(see (3.31)). Again, using the bounds on fix, fi,. and t2ix, (for example,
jfi,.(x, u)l < K(I + kiil)(lxl + lul)) and the bound on ui,_ and bui ,, it is
straightforward to show that ||Yi||p = 0(e) for any p _ 1.
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Next, defining Zi = Yi- bXi(f), as in Theorem 3.2, we can show that
IIZill, = o(E) uniformly in 1- Thus, Assumption 3.3 holds.

Next, we show that X9(P) is continuous in P3 in the L,(Wi) sense for any E > 0.
This follows from (4.14) by an application of Assumption 4.3, Holder's
inequality, the Lipschitz conditions on t2(x) and bu(fl, x), and the continuity of
Xi(P) in fl in the LP(Ji) sense. We have

(4.14) fi°[Xi(f), tii(Xi(f3)) + ebuj(pB Xi(13))]
- fii°[Xi(p), zi(Xi(g)) + 6Ui(f, Xi(o))]

= fix('l 0C2)(Xi(P) - Xi(/))
+ fA,(Cl,a 2) [ui(Xli())- a(xi(1))

+ E bui(o, Xi(o)) - &5bui(f, X(fi())],
where, for some random Oi with values in [0, 1],

al = XJ(fl) + Oi(Xi(i) -xi(f))
(4.15) a2 = t"i(Xi(fl)) + seuj(P, Xi(fl))

+ oi [ti(Xi(o)) - ai(Xi(p)) + E3Ui(, Xi(o)) - ebui(fl, Xi(fl))].
We will not complete the details (which are quite straightforward), but it

can be shown that lIZ9 - Yi) 1 = o(e). Thus, the set {X0, * * , 5X6} given by
(4.2) is a first order convex approximation K to Q' - {X0, * ,k}
Now, (3.19) holds for (6X0, * * *, 6Xk) in K, the closure ofK in 9. By special-

izing (3.19), we get (4.7) and Ep;/fi_,'u-i- 1 < 0 for bii- 1 e ICi- 1. But K con-
tains those (&XY0 * , 6X0) which can be obtained by using the bui(*) in the
Lp( 4i) closure ICi ofICi and I? j contains pointwise limits of uniformly bounded
sequences in ICi. Thus, if XA(* ) is the characteristic function of an n dimensional
Borel set A and bui(*) e ICi, then XA(* )bui()* )-u(*) e ITCi. Equation (4.8) is
obtained by combining the last statement together with the argument which
led from (3.24) to (3.21). Q.E.D.

4.2. Extensions. Let yi({) be a continuous vector valued function with uni-
formly bounded and continuous derivatives. Let ui depend on yi(Xi), rather
than on Xi directly. Then Theorem 4.1 remains true if the u term in (4.6) is
replaced by u. y the conditioning in (4.8) is on yi(Xi), and the bui( ) are
functions of yi(Xi).

If the control has the form ui[yi(Xi, Xi_ , * , X0)], it is still possible to
derive a multiplier result, but the expressions are considerably more compli-
cated, since 6Xi may depend explicitly on 6Xi- 1, * * *, oXO.
The controls and initial condition can be randomized in the following way.

Let go, vo, * * , vk - 1 be independent random variables with values in [0, 1]
and which are independent of the {cQ} sequence. Let MO = M(go). In addition to
the conditions in Theorem 4.1, let ui depend on Xi and vi. Suppose that ui(x, vi)
is differentiable in x and measurable in both variables, and that ui,(x, v) is
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bounded and continuous, uniformly in v in [0, 1]. Also ui(x, v) e Uj, a convex
set. Then Theorem 4.1 remains true if the conditioning on Xi-l in (4.8) is
replaced by conditioning on Xi- 1 and vi_ 1.

5. A stochastic maximum principle

For the continuous time deterministic problem, where x = f(x, u) and pt
denotes the adjoint vector, relation (3.24) is p'f(Xi, ut) . p'(it, iti) for all
U, e U, or, equivalently, it is the u which maximizes p'f(4,, u). Under a con-
vexity condition, Halkin [6] and Holtzman [7] have proved a similar relation
for the discrete time deterministic case. The stochastic analogy of this result
is straightforward to derive, and we closely follow the treatment in Canon,
Cullum, and Polak ([4], pp. 84-93).
For the sake of concreteness, we treat essentially the analog of Theorem

3.1, with a more specific form of Assumption 3.3, although generalizations
are possible.
DEFINITION 5.1. With the fi defined in Section 3, and system (1.1') with

constraints (1.3), (1.4), the control problem is directionally convex if, for each
0 _ A < 1 and ui, u0' in Ui, there is a ui(A) E Ui so that, with probability 1, for
each Xi cE Lp(i),

ALf(Xi, ui, ti) + (1 -A)fi(Xi, ux', i) = fi(X1, ui()), (,

(5.1) 2f'°(Xi, ui) + (1 - A)fi°(Xi, u;') > fP(Xi, ui(A)).
EXAMPLE 5.1. A common and important example of a directionally convex

problem is fi(x, u, c) = gi(x, c) + ki(x, c)u,

(5.2) f'°(x, U) = g&9(x) + u'Qu,
where Q is nonnegative definite. Then ui(A) = Aut + (1 - A)uj£'.

5.1. A comment on Theorem 2.1. Using the notation of Section 2, let Bi
denote the set {w: q(pw' + w) < (i(,)}u {0}, and let Zi denote a nonempty
internal cone to Bi. Define

(5.3) Z' = [0 {w: ti(w) = °}] n Zi.
i>0 ieJ

and assume that it contains a point other than {0}. Theorem 2.1 is a consequence
ofthe fact that, if % is optimal, then Z' and K (a first order convex approximation
to Q = Q'- t) can be separated by a continuous linear functional. (See
Theorems 2.1 and 4.2 in [Il].) Indeed, the proofs of Theorems 2.1 and 4.2 in
[11] imply that if Theorem 2.1 does not hold at a given W, (namely, if there is
a ray which is internal to both K and Z'), then for any neighborhood N of {0}
in A, there is a eE Q' n {N + ?vw} which satisfies the constraints for which
po(w2') <qp(po). Thus, if Theorem 2.1 does not hold at iw, then k is not an
optimal solution.
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5.2. A transformation of the control problem. The stochastic optimization
problem of Section 3 is equivalent to the following problem. Find the Xi, pi
satisfying piE fi(Xi, Oi, {i) and Xi+ 1 = Xi + vi, for which ro(X0) = rk(Xk) = 0,
qO(X) _ 0, qi(Xi) < 0 i > 0 and for which E Ei - 1 v? is a minimum. Denote
the optimizing variables by JO **,Sk, f0, * * - 1-

Since the variables to be chosen are now X0, * * *,Xk, PO, k* -1 with
both Xi and Pi in LP(3), redefine .Y to be

(5.4) 9 = LP(o) x ... x Lp(2k) x LP(,) x * x LP(k J.

Let the problem be directionally convex, and define

(5.5) Q' = {SO, * * *, Xk, V0, * *, Vk-l Vi CE cofi(Xi, Ui, hi), Xi+l = Xi + pi},

where co S is the convex hull of the set S. Namely, co fi(Xi, Ui, Xi) is the convex
hull of the set of random variables {fi(Xi, ui, (), ui E Ci}. Let K denote a first
order convex approximation to

(5.6) - {S0X ,XkvO, k - 1 -Q

Suppose that the inequality in Theorem 2.1 does not hold for some suitable
set of constants where K replaces K (using the identification of terms and
boundedness and continuity conditions in Section 3). Then the comment of the
last subsection implies that there is a ray which is internal to both Z' and K, a
neighborhood N of w, and a w = {O, *,k, o**, gk- 1} c n {N + b}
for which the constraints hold and

k-1 k-1
(PO() = E iU <E EZi=(p(i),

(5.7) i=Oi=0

Xi+i = Xi + 9i.

There are uWc-E i, >i0O. and ES Ai = 1 so that

vi = E ifi (Xi, ui),
S

(5.8) vi= E f , i).
S

By directional convexity, there is a iii E Ui for which

Vi= fi(Xi, t7i, (i)
(5.9) O <fio(Xi 1i).
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Thus, by combining (5.8) and (5.9), one gets Xi+1 = Xi + fi(Xi, Jj, (i) and
k-1 k-1

(5. 10) E 1 fi (Xi, 17i) <- E 1 fi (.9i, pi),
i=o i=o

which contradicts the optimality of {Xi, ui}. Thus, the inequality in Theorem
2.1 holds for K replacing K. Also, (3.19) holds for all 6Xi for which
{bXO,.. , 3Sk, 6V0, ,va-1} ek

Define the set K e Y:

(5.11) K = {&Xo' *,k, 6Vo * *, : Xi+ = -Xi + 6Vi, such that

A[pi - fi,-A x] e cofi(X , 17i, i) - fi, 6X e LP(O)}
for sufficiently small A. Theorem 5.1 gives conditions under which K is a first
order convex approximation to

Let

(5.12) ).[cfvi-6fX ] c f1i ( i, Ui, i) -i
for s = 1, * , v, and all sufficiently small A. The elements (Af > 0, E 4 = 1)

(5.13) i+ 6X + fi6X + [olfi(Xi, , ,) i

-6M + 6v4,
and 6v and their convex combinations for fis > 0, y2s fis = 1, namely,

(5.14) MX1+ 1(P) =Xi (fP) +f i, x i (fl) + E [ZE Afi (X1i, ,4SS,) - i]
s e

-Y1(13) + b(ifl),
and bvi(fl) = P.&vi are in K. We may write

c56+1(f) = [I + fa]Mi (fl) + '5Wi(P),
(5.15) 6W(fl) = SPS[4E*(Xi, U. , 4) -Y

6X1i(p) = E F(j, i)5WLj=l(p) + F(O, i)5X0o(P).
j=l

THEOREM 5.1. Let Assumptions 3.4 through 3.7 hold and assume that the
control problem is directionally convex. Also make the following assumptions:

(i) Ui is the convex set of functions in Lp(Ai) with values in the convex set
Ui; ICi contains some point other than zero;

(ii) the {Q} are mutually independent and all of their moments arefinite;
(iii) Ifi(x, u, ()I _ K(1 + Ic|)(1 + |uI + lxi) and lfjO(x, u)| _ K(1 + IuIP' +

IxIP) for a real K;
(iv) Ifi(x, u, t) -fi(u,U )i _ K(1 + iti)(ix -xi) and fi°(Xi, ui) is con-

tinuous in Xi in the 1I-lip norm for any ui in Lp,(i);
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(v) fi,,(x, u) is uniformly bounded and is continuous in xfor each vector u and
f,,° (x, u) is continuous in x in the || - IIp(p- 1) norm for each fixed u in LP, ().

Then, for pk,pi given by (3.20), equation (3.22) holds and (3.21) is replaced by
the maximum principle.

(5.16) E[pi+ lfi(,ti, ui, Xi) | ji] E[pi+ lfi(li, iai, Ci | Hi

with probability 1 for any ui in Ui.
PROOF. Suppose that K is a first order convex approximation to Q. By the

discussion prior to the theorem, equation (3.19) must hold for all cXi of the form
(5.15). Setting ut S = 0 and 6X0 #6 0, we get (3.22) as in Theorem 3.1. Equation
(5.12) follows by letting us' = ijj 76 i, &X0 = 0 and uitS = ui # ii, substi-
tuting (5.15) into (3.19), and using the definitions of fi and pp. We have only
to show that K is a first order convex approximation to Q.

Clearly, K is a convex cone, with typical elements {6X,,.... , 6M, v, **
Mv-..1}, and their convex combinations {6XO(fi), . *, 6Xk(fl), 6to(1) .*,
&vk-1(p)} are given by (5.14). Consider the mapping {X0(p), ,AX(f),
Po(f), * 1**,k-G6)} from P' to I, forthe fixed sequence of controls {U'S}:

X.i1(fl) = Xi(pi) + Vi~(p),

(5.17) rs(if) = f(X0(f), i, {i )
E
pE [E Aifi(Xi(p), us'i ) fi(Xi(f)Xi),Xi)]
S e

XY0(A) = So + 86£Xo(fl),

where Af > 0 and Ee Z = 1. Under (iv) of the theorem, the maps Xi(f) to
LP(2j) and pi(p) to LP(Ji+ 1 ) are continuous functions of 13, for P3 E P', and any
1 > e > 0. Thus, the composite map (taking {X0(p), * *, &(P), P0(O),*,
hk- 1()} into T) is a continuous Y valued function of fl.

Using (v) it can be shown that

(5.18) Xl(fl) = + ssXa(i(p) + O1 i

Vij(f) = j3 + &5ts (fl) + 02,i

where °l i and 02,i are of the order of o(e) in L,(3j) and L,(3i+ 1), respectively.
Then, K is indeed a first order convex approximation. The details of the last
two steps involve straightforward expansions and estimates, as in Theorems
3.1, 3.2, and 4.1, and are omitted. They are probabilistic versions of the cited
result ([4], pp. 84-93). Q.E.D.
The definition of a directionally convex problem holds if the control ui

depends on a function of the state Xi. Under directional convexity and the
conditions of Theorem 4.1, Theorem 4.1 holds with equation (4.8) replaced by

,519Ea[rpt + fi (li I, .i 1 ii] < Er#.p . firl^,. ,-,|i 1j.1
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6. A relation with dynamic programming

For simplicity of presentation, this section will be largely formal. Suppose
that the problem is directionally convex, and there are no constraints ri and qi.
Let ui depend on Xi and define the (dynamic programming) costs

Vi~x inf E[XO |Xi = E]E[X1|X =
(6.1) Ui, ",Uk-1

Vi(x) = Vi(x) -XO.
Define

k-1

(6.2) Wi(Xi; Xi, , 'k-1) = k- Xi= fi(Xiv, ti).
j=i

Then drop some arguments for notational simplicity and write

(6.3) grad Wi = Wi, = grad Wi(Xi; (i, -.., k-l)
evaluated at x = Xi; similarly, for Vix Then grad Wk = Wkx = 0 and

(6.4) wi = (I + i.x + fi,+ui,x)i
Thus,

(6.5) Wi x = -pi, (Wi x, 1) = -Pi,
(6.6) Vi(x) = E[Wi1 Xi = x],
and

(6.7) Vi,x (x) = E(I + fi,) Pi + 1, x + EfLX .

We must have p0 < 0, since there are no constraints ri, qi, and not all the p0,
ti, Hi can be zero. Thus, we set p0 = -1.
Bytheprincipleofoptimality,EVi+l(T + fi(x, fij,Xi)) < EVi+l(T + fi(x, uEi)),

where u, is the control which, for given ui & fii, satisfies

(1 - 8)fA(x, fi, i) + PfL(x, ui, Ci) = fM(x, Ue, di),
(6.8) (1 - e)fi (x, fi) + efi (x, ui) > fPi(x, u).

Noting that V, + 1 (x) _ Vi + 1 (x) ifx = x, and i0 < xO, we get

(6.9) EVi+1(x + fi(x, us, (i)) < EVi+1(x + fi(x, up, i))
Thus, < EVi+1(x + (1 - e)fi(x, a, Of) + efi(x, ui, (i))
(6.10) 0 EVi+ 1, x ( + fi (x, i, i)) [fi (x, u, ii) - A(X,xii, i)],
where Vi+1 x = grad Vi+1(x), evaluated at x + fi(x, ai, hi). With the identi-
fication (6.5) and Vi+1j,(Xj+1) = E[Wi+j,IXi+1], we get precisely the maxi-
mum principle

(6.11) E[p+1(fi(Xi, fi, i) - fi(Xi, ui, ci))(Xi] > 0.
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