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NECESSARY CONDITIONS FOR THE CONVERGENCE OF

CARDINAL HERMITE SPLINES AS THEIR DEGREE

TENDS TO INFINITY

BY

T. N. T. GOODMAN

Abstract. Let §„_, denote the class of cardinal Hermite splines of degree n

having knots of multiplicity í at the integers. In this paper we show that if

/„ -»/uniformly on R, where/, e S^ i„ -» oo as n -» oo, and/is bounded,

then/is the restriction to R of an entire function of exponential type < s. In

proving this result, we need to derive some extremal properties of certain

splines &„j e Sn>J, in particular that ||©„^||00 minimises \\S\\X over S e

Sn>, with ||S«->|U = llSgn..

1. Introduction. For n = 1,2, . . .  and 1 < j < n, let

9„ = {/ G C"-*(R): f\(v, v + I) e C'Yv, v + 1)] and

/(n_1) absolutely continuous on (v, v + 1), V v G Z}.

We let Sn^ denote the set of all cardinal spline functions of degree n in

§„,, = {5 G C-'(R): S|(r, r + 1) £ wm V r e Z},

where 7rn denotes the set of all polynomials of degree at most n.

Throughout this paper, ||/|| will denote ess supxeR|y(jc)|.

In [6] Lipow and Schoenberg have shown that for odd n, 1 < s < \{n + 1),

and any function / with f(v) of power growth on R, v = 0,1, . . ., s — 1, there

is a unique SnyS G S„^ of power growth such that S^ interpolates /(,,) at the

integers. In [8] Marsden and Riemenschneider have shown that if / is the

Fourier-Stieltjes transform of a measure on (sw, jw), then S^J-*f-r) uni-

formly on R as n —> oo, v = 0,1, . . . , s — 1. The case s = 1 had previously

been proved by Schoenberg [10] who established in [11] the partial converse

that if/is bounded on R and Snl -»/uniformly on R as n —* oo, then/is the

restriction to R of an entire function of exponential type < it.

In §4 of this paper we generalise Schoenberg's result by showing, in

particular, that for any s = 1,2,. . . , if / is bounded on R and S„¿ ->/

uniformly on R as n -^ oo, then /is the restriction to R of an entire function
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232 T. N. T. GOODMAN

of exponential type < sir. To establish this result we need some extremal

properties of certain splines êBjJ G SB>J which may be regarded as generalisa-

tions of the Euler splines employed in [11]. For odd s these were defined by

Cavaretta in [1]. In §2 we define &n¡s for even * and show that for all s,

f G §^, 11/11 < 1 = \\S„J and \\f\ < ||gW|| implies

\fw(p +)| < \&ikJ(v +)|,        V v <E Z and k = n - s, . . ., n - 1.

In [1] Cavaretta shows that for odd s, S = Sní minimises ||S|| over all

S G Sn>J with

S<">|(,,,+ l) = (-ir||S„»)||>      V.eZ.

In §3 we show that for all s, S = &„s actually minimises \\S\\ over all

S G Sn. with ||S(n>|| = ||6g||.

2. The Euler-Chebyshev splines. In [1] Cavaretta shows there are functions

Sn?i in S„^ for n = 1,2, .. . and odd s < n, characterised by the following

properties:

S„> + 1) = (-OX»,       V*GR, (2.1)

S„iS(x) equioscillates between -1 and 1 at points

0 </?,<•••< ß < 1, (2.2)

Sn¡s is even or odd about x = \ as n is even or odd, (2.3)

St)W>0on(0, 1). (2.4)

We now construct functions S„^ in S„^ for n = 1,2, .. . and even s < n

which are also characterised by properties (2.1)-(2.4).

We shall need the following lemma. Its proof is almost identical to that of

Proposition 1 in [1] and so will be omitted.

Lemma 1. Let {/¡(x), . . . ,/t(*)} be a Chebyshev system in [a, b] and define

g¡(x) = (x - a)(x - b)fi(x),       i = 1,. . . , k.

Let F(x) be a continuous function on [a, b] which vanishes at a and b. Then

there exists a unique linear combination ^kj-\a¡g¡(.x) of best approximation in

the uniform norm to F(x). This best approximation is uniquely characterised by

a (k + \)-point equioscillation property, i.e. there exist k + 1 points a < x,

< • • • < xk+i < b where the error function assumes the value of its norm with

alternating signs.

We first consider the case of odd n. For any p,q, 1 < q < p, we define

*Vu, = {/ G *V+I|[0, |]:/(2,)(0) = 0,    i = 0,...,p-q,

/W)G) = °> j = o,...,p).

It follows from the theory of Jerome and Schumaker [3] and Lorentz [7]
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CONVERGENCE OF CARDINAL HERMITE SPLINES 233

that dim V2p+l2q = q and any / in V2p+i,29 bas at most q + 1 zeros in [0,^].

Thus if x(x — ̂ )f(x), i = 1, . . . , q, form a basis for V2p + l2q, then

(/,(x), . . . ,/,(*)} form a Chebyshev system on [0, j].

Now take any odd n and even s, 4 < s < n, and take any / in VHtS with

/(n) > 0. Let F denote the best approximation to / in the uniform norm in

V„_ 2;i-2- Then by Lemma 1, / — F equioscillates at points 0 </?,<•• • <

Â/2 < s- Let G = (/ - F)/\\f - F\\ and define &n¡s in §„,, by

"•i(*)     |(-l)"G(l-x),       |<jc<1,

&„(x + 1) - &„(*),       VxGR. (2.5)

For s = 2, let G be the element of Fn2 with ||G|| = 1 and G(n) > 0, and

again define Sni by (2.5). Since G(0) - G(j) - 0, 3 ¿8, € (0, ±) with |C?C/?,)|
= 1, and so S„ 2 equioscillates at ¿0! and ß2 = 1 — >81. Thus for all even s, &n¿

is characterised by properties (2.1) to (2.4).

Next consider even n. For any p,q, 0 < q < p, define

V2pM = {/ G »v|[fti]:/ÍU+l)(fl) = 0,   i - 0, ...,p- q - 1,

/«/+»(i) = o, y-€t....j»- l}.

Then dim V2p2q = q + 1 and any / in F^ 2(? has at most q zeros in [0, j].

Thus any basis for V2p2q forms a Chebyshev system.

Now take even n and even s,2 < s < n, and take any/in F„^ with/(n) > 0.

Let F denote the best approximation to / in the uniform norm in Vn_2js_2.

Then f — F equioscillates at points 0 < /?, < • • • < ßs/2+l < j- Now /' —

F' is in Fn_li and so has at most ^s — 1 zeros in (0, |). Thus ßi = 0 and

Â/2+i = b Let G = (/ - ¿O/U/ - F|| and define 6^ in §„_, by (2.5). Then
again &ns is characterised by properties (2.1)-(2.4).

We note that, for m = 1,2, ...,

S2m-i,i(*) = Hr^m-iC*).

S2m,.(*) = (-irM*-2-), (2-6)

where S„ denotes the Euler spline of degree n, see [11].

We also note that, for n = 1,2, ... ,

&nJx) = Tn(2x - I),       V*G[0, 1],

where Tn denotes the Chebyshev polynomial of degree n.

It therefore seems appropriate to refer to Sn>i as Euler-Chebyshev splines,

or ET-splines, following the similar terminology introduced by Cavaretta in

[1]. They satisfy the following extremal property which is related to a theorem

of Kolmogorov (see [2]).
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234 T. N. T. GOODMAN

Theorem 1. Suppose fin ®sn¡s

11/11 < 1

satisfies

and    |/<">||<||S£| (2.7)

then

[fik)(v+)\<\&<„kJ(v+)\,       V„eZ,   k = n-s,...,n-l.

Proof. We use an elementary and powerful technique introduced by

Cavaretta [2].

Without loss of generality we may take v = 0. Suppose / in ^ns satisfies

(2.7) and is periodic of period an even integer K. We shall assume |/(*J(0 + )|

> |S¡*j(0 + )| for some k, n — s < k < n — 1, and reach a contradiction.

Choose X so that A/(Á:)(0 + ) = S<*>(0 + ) and let g = &n¡s - Xf, noting that g

is also periodic of period K.

Since 11Xf 11 < ||S„S|| and because of the equioscillation of &n<s, g has at

least Ks distinct zeros per period. Thus, by repeated application of Rolle's

theorem, g("_i) has at least Ks distinct zeros per period. If k = n — s, then

g("_i)(0) = 0 and so g<-"-s+1'> has at least K(s — 1) + 1 zeros per period which

are not at integers. If k > n — s, then g<-"~s+i'> has at least K(s — 1) zeros per

period which are not at integers, and so g(k) has at least K(n — k) zeros per

period which are not at integers. But gw(0 + ) = 0 and so g(*+1) has at least

K(n — k — 1) + 1 changes of sign per period which are not at integers. Thus

for all k, g(n) has at least one change of sign per period which is not at an

integer. But this contradicts ^/^"'(x)! < S^"](x)| in every interval (v, v + 1),

v G Z.

We may extend to nonperiodic/in precisely the same manner as in [2].    □

3. An extremal property of ET-spIines. For « = 1,2, 1 < s < n, and

numbers a„

"„(a,,...,

, as, X, we define

(1-A) 0

(1-X)

(0

0

0

(1 -X)

(v) (•¡>"(:::-i)«-»

\l) \2/ '    ' \n-s- l)\n-s)
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CONVERGENCE of CARDINAL HERMITE SPLINES 235

This determinant has the following properties, which follow from the work

of Micchelli [9] or by using the method of Lee and Sharma [5].

For fixed 0 < a, < a2 < • • • < as < 1, IL/A) = IIn(a„ . . . ,as;X) is a

polynomial in X with real distinct roots of sign (-1)*. If a, > 0, IT„(A) =

aX"-s+1 + ..., where sign a = (_l)<*+1X»+*+i>. If «, = 0, IL,(\) = aX"'3

+ . . . , where sign a = (_l)<,+ 1XB+,>. If the nonzero a¡, i = I, . . ., s, are

symmetric about \, then II,,(A) is reciprocal.

Now fix 0 < a, < a2 < • • • < a, < 1 and take r, 1 < r < s. For x G [0, 1]

we define

U(x, X) = U„(au . . . ,ar_x, x, ar+„ . . . as; X)

= p0(x)X"-*+l +Pl(x)Xn-° +■■■ +Pn_s+l(x).

Then it is easy to show that

■^-n(i, x) = x^n(o, x),    j - o,...,»- s, (3.1)
dxJ dxJ

and
n(a,., X) = 0,       i # r. (3.2)

We now define the '5-spline'

B (x\ _ fPÂX - v)>       xG[v,v+l),   v = 0, . . . ,n - s + 1,

i 0,       x < 0 and x > n — j + 2.

From (3.1) we see that Br G Snj and from (3.2) we have Br(a¡ + v) = 0 for

all v G Z and /' ̂  r. Also

00

2   5r(x + i»)/' = f-s+iU(x, r1),       x G[0, 1). (3.3)
(. — -00

Now assume

n„(a„ ..,,«,; (-1)0 * 0. (3.4)

Then following the method of Schoenberg [11], we may write

(   S   Br(v + ar)f)     =    f   <*.t', (3.5)
^ C — -0O J y —-oo

where the series is convergent on some annulus about \t\ = 1 and |<o„| =

O(ß') as v -h> ± oo for some 0 < ß < 1.

We now define the 'fundamental spline'

£,(*)-   I <o„5r(* - ")•
r" — oo

Then
00

Lr(k + a,) =    2   M,(* + «r - ")

= Ô*o,       V*GZ,   by (3.5).
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236 T. N. T. GOODMAN

It follows from the theory of [9] that if S G S„   is of power growth, then

S 00

S(x) = 2     2    S(k + ar)Lr(x - k). (3.6)
r= 1  A: = -oo

Now take x in (0, 1). Then
3 n

— Il(x, X) = (-l)" + r+1/i!n„_1(a1, . . . , a,_„ ar+1, ...a/, X).

So, by (3.3),

2   B?>(p + x)f

= (-i)"+r+l»!/»-*+1n„-i(«i. • ■ ■, «,-.. «r+.. ....«,; r1)    (3.7)

Now

L^(k + x) =    2   "rBrn)(k + x - v)

and so

1 Lr<->(*+ *>**«( i »Ai i #«>o + *)A
A = -oo \ í = -oo /\7~-oo /

So by (3.7), (3.5) and (3.3),

2   Un\k + x)tk
k — -oo

(-l)" + r+1«!nn_1(a1, . . . , qf_!, qr+1, . . . , as; r1)

-7T7-In-■     v-5,8'n„(«„ ...,«,;< )

Then from (3.8) and the properties of n„(A), we have the following result.

{-\)r+sKWr\+\\ + ft/)    .

(-iy+s+lKw;z¡(i + ftí)

2   LÍ">(A: + x)/* = ^—'--J-1    v       "'    if a   > 0,
*—o» n;-f+1(i-V)

n;-f(i - y)

fIC-f(l - a,/)

if a, = 0,    /■ > 1,

if a, = 0,    r = 1,

where Ä, ft, A, are constants (depending on r, «, «j,..., as) with K > 0 and

sign ft = sign A7. = (-1)', V ij.

We therefore have (see [4, p. 395]),

sign L<">(* + x) =     V    ;
s odd,

-1) ,    s even,
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CONVERGENCE OF CARDINAL HERMITE SPLINES 237

where

«-Í1,    Ífai>0' (3-9)
*      \ 0,     if a, = 0. V    '

We are now in a position to prove our result.

Theorem 2. If S G Sn>í sa/w/ieï ||,S|| < 1, then \\Sin)\\ < \\S%>\\.

Proof. Take ßx, . . ., ßs as in (2.2). By (2.3) we know the nonzero /?,-,

j = 1, . . ., s, are symmetric about ~ and so IL//?,, . . ., ßs; X) is a reciprocal

polynomial in A. If n and 5 are both even or both odd, then /?, = 0. Otherwise

ßx > 0. Thus in all cases, n„(/?„ . . ., ßs; X) is a. polynomial in X of even

degree and so

ii,(A,.,.,A;(-i)')*a-

Since (3.4) is satisfied, we may define the 'fundamental spline' Lr for

r = 1, . . . , s. Then for any S G SMÍ satisfying \\S\\ < 1, we have from (3.6),

|S(n)(*)| = 2   2 s(k + ß,)LP(x - k)
r= 1 k = -oo

< 2     2    |Lin)(* - *)|>       VxGR (3.10)
r= 1  /c = -oo

But it follows from (3.9) and (2.2) that equality is attained in (3.10) for

S-&„-   D
For j = 1 this result was proved by Schoenberg [11], and for s = n the

result follows immediately from the properties of Chebyshev polynomials.

It is clear from the proof of Theorem 2 that the condition ||5|| < 1 in the

statement of the theorem can be replaced by the weaker condition

\S(k + ßi)\ < 1,       V k G Z,   i - 1,.... s.

4. Limits of cardinal splines. We need a further property of ET-splines.

Lemma 2. For s = 1,2, ... , there are constants Ks such that ||S^|| <

Ks(sTr)n for all n > s and v = 0, . . ., n.

Proof. First suppose j is odd, s = 2/ — 1. It follows from the work of [1]

that for any n > s,

&n,s  =   $«,,   +  MlS„-2,l   +   •   •   *   +M,-lS„_2, + 2>1, (4.1)

where ju,, . . ., /*,_! are chosen to minimise ||Sn^||.

We first consider odd n > s. Then it follows from (4.1) and (2.6) that we

may write

Ks = H)("+,)/V|W|,
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238 T. N. T. GOODMAN

where

y  cos(2/- - 1)ttx        (n) ™   cos(2r - l)nx

9nV  >     A   (2r-l)"+1 '   ,-.   (Ir-l)-1

(n) £   cos(2r - 1)ttx

+ +X'-r?.(2r-l)—3

- 2 ^'"J^T'O + M->(2r - l)2 + • • • +X,<»_>I(2r - l)2'"2},
r-l    (2r — 1)

and X\"\ . . ., Xf"?l are chosen to minimise ||<f>„||.

Let A], . . . , X,_ ] be the unique solution of the equations

1 + (2r - 1)2A, + • • • + (2r - 1)2'"2A,_, = 0,       r = 1, ...,/- 1.

Let

*.<*)=i c°s(2r"Ht*{!+x¿2r- o2+• • • +x,_,(2r- o2'-2}.
r—t   (2r — 1)

Then ||(2/ - 3)"+tyjl -> 0 as n -* oo. Since ||6,|| < ||«,||, ||(2/ - 3)"+1<i»n|| -* 0

as n -* oo and so for r = 1, . . . , / — 1,

(f^lpO + A,(n)(2r - l)2 + • • • +A(»\(2r - l)2'"2} ̂0   as«

So X}n) -> \ as « -> oo, / = 1, . . ., / - 1. Thus

(2/ - 1)"+1^W=/„W + a„cos(2/ - 1)** + o( [§£-}]")

where f„(x) is of the form ~2,'rZ,\brcos(2r — 1)ttx and

an -> a = 1 + (2/ - 1)2a, + • • • + (2/ - I)2'-2*,-! =*= 0   as n

Now for each n, there is an integer/, 1 < / < It — 1, such that

•H2/- i )ancos> > °»

oo.

oo.

and so

P'-')"'M^)|>w+0([^t]")
So 3 5 > 0 such that

Writing

ín+1||<f>„||>ó\       VOí.

, ,      £   cos(2r - \)ttx

gn{) ' rh      (2r _   !)-     '

(4.2)
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we have

||¿>)||<w>(l+± + ±+...)<2^

for« = 1,2, ... and v < n. Also ||s<">|| = 2||g<n-1>|| < 4^n~l. So

||*ir)|| < 4w—"{1 + |Xf">| + • • • + \\£\\},        v < »,

and so there is a constant AT such that

¡c^ll < Kit"   for all n > s and v < n.

Thus

Ks
IS&II = ll^ll/IWI < -y («)",       V n > s,    v<n,

by (4.2) and (4.3).

The result for even n follows similarly.

Next suppose s is even, s = 2/. We first note that

Sk-'>(x)/||S$||=x-i,       VxG(0,l).

So

S„2 = (-1)["/2,A/||A|1,

where

«(*)-

It follows that for even n,

where

00       /     |\*+1 OO 1

2   l   /.     cos 2kw(x - 4) +  2 ——    if"
c-i      *" V        2/     fc-i (2*)"

2   ^"Ij,     sin 2A:ir(x - \)   if « odd.

even,

K, - (-ir>n/wi,

v*+l

*.(*) = M + 2 M^cos 2M* "i) + W 2 ^î^i-cos 2M*

+ • • • +A'(-i 2 tP^-2^2Hx -ï).
&=1 A:"

and ft A^, . . . , A/?, are chosen to minimise ||</>„||.

For odd n,

(n-D/2.*„ - (-ir"w>»/wi.
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240 T. N. T. GOODMAN

where

*„(*)-  2 ^^sin2^(x-i) + A1<")2 ̂ £^tin2far(*-f)
k=l        K k-\ k'

+ ---+^).2i^^sin2/:W(x-i),

and A{n), . . ., A/"*, are chosen to minimise ||<f>„||.

The result now follows by the same method as for odd s.    □

We now apply Lemma 2 and Theorems 1 and 2 in proving the following:

Lemma 3. For s = 1,2, ...,   there are constants Ls such that if S in Sn^

satisfies \\S\\ < 1, then \\S(k)\\ < Ls(sir)k,for all n > s and k < n - s.

Proof. Take S in Sn¡s with ||S|| < 1. Then by Theorem 2, ||S(">|| < ||S(„nJ||.

So by Theorem 1,

|S(*)(y+)|<|S^)(»'+)|,       VkEZ,   k-n-s+1.n- 1.

So by Lemma 2,

||S<»>|| <Ks{sTr)n (4.4)

and

\Sw(v+)\<Ks(s7t)",       VrGZ,    k = n-s+l,...,n-\. (4.5)

It follows from (4.4) and (4.5) for k = n - 1   that  ||5(n_,)|| < 2Ks(sTi)n.

Proceeding in this manner we deduce that

||S<»-*+,>||<5jÇ(«r)". (4.6)

Let T(x) = S(Mx), where M = [jKssn + }irs]-l/^-s+1\ Then

\T<"-s+l\x)\ = A/"-*+I|5("-*+1)(*)|

<[\Kss»+^]-lsKs(™y       (by (4.6))

= 2^-'<||Sr/+V)||-

So by a theorem of Kolmogorov (see [2]), for k < n — s,

|r<*>||<||S<*2,+I||<2*r*        (see [11]). (4.7)

So

||5(*)|| = m -*|| r(*>|| < M ~k2TTk       (by (4.7))

= 2[^Ks(s,y]k/{r-s+l\s,)k<LÁs,)k,

where L, = max{2, Ks(sTrf}.    □

By the method of Schoenberg [11], we may deduce from Lemma 3 our final

result.
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CONVERGENCE OF CARDINAL HERMITE SPLINES 241

Theorem 3. For a given natural number s, suppose fn G S, ^, where in —* oo

as n —» oo. Iff„ —>/ uniformly on R anrf/ is bounded, then f is the restriction to

R of an entire function of exponential type < s.
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