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Necklace-Ring Vector Solitons
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We introduce novel classes of optical vector solitons that consist of incoherently coupled self-trapped
“necklace” beams carrying zero, integer, and even fractional angular momentum. Because of the stabi-
lizing mutual attraction between the components, such stationary localized structures exhibit quasistable
propagation for much larger distances than the corresponding scalar vortex solitons and expanding scalar
necklace beams.
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Spatial optical solitons (or self-trapped optical beams)
have attracted significant attention during the last few years
due to an impressive experimental progress in generat-
ing such beams in different types of nonlinear bulk media
[1]. Since the pioneering paper by Chiao et al. [2], the
self-trapped optical beam is viewed as a guided mode of
the effective waveguide it induces in a nonlinear medium,
and such beams are usually associated with the fundamen-
tal guided modes (i.e., the modes without nodes). Nev-
ertheless, in the earlier days of nonlinear optics, it was
noticed that the light self-trapping may also occur for
higher-order beams of a radial symmetry [3]. More re-
cently, the self-trapped azimuthally periodically modulated
beams, “necklace-ring” beams, were shown to exhibit
quasistable propagation in a self-focusing Kerr medium
[4,5]. One of the main properties of the necklace-ring
beams is their ability to transport several times the criti-
cal power of the fundamental beam in a nonlinear Kerr
medium, known itself to exhibit catastrophic collapse (or
blowup) phenomenon. However, the necklace-ring beams
do not exist as stationary self-trapped structures, and they
expand with propagation because adjacent bright “petals”
on the ring structure differ in phase by p and, therefore,
the neighboring beamlets repel each other [4].

The repulsion and subsequent diffraction of the neigh-
boring petals of the self-trapped necklace beams are the
main physical mechanisms of their disintegration. In this
Letter, we show that the incoherent interaction between
the components of a composite (or vector) ringlike beam
allows one to compensate for repulsion of beamlets, thus
creating a new type of stationary self-trapped structures
exhibiting the properties of the necklace-ring beams. The
physical mechanism for creating such vector ring solitons
is somewhat similar to the mechanism responsible for the
formation of the solitonic gluons [6] and multihump vec-
tor solitary waves [7], and it is explained by a balance of
the interaction forces acting between the coherent and in-
coherent components of the composite solitons.

To introduce the concept of vector ring solitons, we
consider the interaction of N mutually incoherent optical
beams propagating in a self-focusing bulk nonlinear
medium. Equations for the slowly varying beam en-
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velopes En�x, y, z� can be written in the form of the
normalized coupled nonlinear Schrödinger (NLS) equa-
tions (n � 1, 2, . . . , N ),
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where the transverse, �x, y�, and propagation, z, coordi-
nates are measured in the units of �LD�k�1�2 and LD, re-
spectively, LD being the diffraction length. Function f�I�
describes the nonlinear properties of an optical medium,
and it is assumed to depend on the total beam intensity,
I �

P
jEnj

2.
For N � 1 (a scalar soliton), the well-known localized

solutions carrying an angular momentum are vortices with
the following structure: E � u�r� exp�imw 1 ikz�, where
r �

p
x2 1 y2 and w � tan21� y�x�. In order to establish

a link between the vortices and necklace beams, we note
that the vortex can be presented as a coherent superposi-
tion of two necklacelike beams, E � E1 1 E2, where

E1,2 � u�r�
Ω

cos�mw�
i sin�mw�

æ
eikz .

The purpose of this Letter is to construct novel types of
localized solutions of the NLS equations (1) using an in-
coherent superposition of the necklace-type components.
We look for the solutions in the form

En � u�r�Fn�w�eikz, (2)

with the self-consistency condition
P

jFn�w�j2 � 1. The
total intensity of such a localized mode is a function of
the radial coordinate only, I � u2�r�, and the components
of the ring vector soliton En complement each other creat-
ing a perfect ring structure, however, possessing no radial
symmetry by themselves. As we demonstrate below, such
composite solitary waves display the properties of both
vortices and necklace-ring beams being, however, much
more robust in the propagation.

To find the structure of the vector ring solitons, we sub-
stitute Eq. (2) into Eq. (1) and obtain
© 2001 The American Physical Society 033901-1
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(3)

Solutions of the first equation of the system (3) can be
found numerically as a discrete set of localized modes
with nodes, whereas the latter equation has an analytical
solution Fn�w� � an cos�mw� 1 bn sin�mw�, with inte-
ger m and the complex coefficients an and bn satisfying
the conditions
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n� � 0,
X
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2 � 1 . (4)

Equations (4) define exact solutions of the system (1) for
any N and, in the particular case N � 1, they describe a
scalar vortex with a � 1 and b � i.

Localized solutions of this kind are characterized by the
partial powers of the soliton components,

Pn �
Z

jEnj
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2
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2�P�m�,

where d �r � rdr dw, P�m� � 2p
R`

0 u2�r�r dr is the
power of a scalar vortex with the topological charge m,
and the total power is Ptot �

P
Pn � P�m�.

The most important characteristic of the vector ring soli-
ton is its angular momentum M �

P
Mn, where
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Z
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µ
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n
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nbn�P�m�. (5)

A ratio of the total angular momentum of the vector ring
soliton to its total power, M�P�m�, can be regarded as an
analog of “spin” of an optical beam. In particular, for
the vector vortices (when bn � 6ian) this ratio is zero
or integer, M�P�m� � m. However, in a general case de-
scribed by Eq. (5), this value is not necessarily integer and,
therefore, the vector ring solitons and its components can
possess a fractional value of the spin. Such an unusual
result is a direct manifestation of the wave phase which
is a nonlinear function of the polar angle w, and it de-
scribes a screw dislocation of the soliton wave front. Such
a case resembles the recently studied modulated scalar
necklace beams [5]; however, in our case we suggest, for
the first time to our knowledge, stationary localized struc-
tures carrying a fractional angular momentum (see dis-
cussions below).

We have identified several different classes of exact lo-
calized solutions described by Eqs. (1). In order to test
their robustness to the propagation, we have performed
a series of numerical simulations for a two-component
model (N � 2), also selecting a saturable nonlinearity
f�I� � I��1 1 sI� in order to eliminate collapse. Such
a saturable nonlinearity describes, in a greatly simplified
isotropic approximation, the screening spatial solitons in
photorefractive optical materials. In all simulations dis-
cussed below we select the saturation parameter s � 0.5,
since this value is closer to the experimental situation.
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First, we analyze the simplest solution of this type that
has equal powers in each component, P1,2 �

1
2 P�m�, and

is characterized by the amplitudes

a1 � �1 1 p2�21�2, b1 � ipa1,

a2 � pa1, b2 � 6ia1 ,
(6)

with real p [ �0; 1�. We start from the solution (6) with
m � 1 which, for p � 0, represents an incoherent super-
position of two dipole modes. Such a localized solution
displays a long-term stable dynamics up to the propagation
distances of almost 55 diffraction lengths, then it exhibits
a symmetry-breaking instability and decays into three iso-
lated vector solitons that fly away along the radial direc-
tions [see Fig. 1(b)].

For comparison, in Fig. 1(a) we present the correspond-
ing breakup of a scalar vortex with m � 1. In spite of
the fact that the total beam intensities in both cases are
absolutely identical, the splitting dynamics presented in
Figs. 1(a) and 1(b) are remarkably different. In the former
case, the vortex decays into a pair of scalar solitons with
transformation of the vortex angular momentum into the
linear momenta of the partial solitons flying away along the
tangential directions [8]. In contrast, the vector ring soli-
ton in Fig. 1(b) has a planar wave front and a zero spin,
and the soliton trajectories have only normal components.

A common feature observed for all vector ring solitons
with zero spin is that their breakup occurs with a splitting
into an odd number of filament solitons, unlike an even
number of solitons produced by the symmetry-breaking
instability of scalar vortex solitons. Thus, the symmetry-
breaking instability of the vortex ring solitons with zero to-
tal spin is accompanied by the birth of additional solitons.
We note also that the intensities of each of the components
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FIG. 1. Dynamics and symmetry-breaking instability of the
ring solitons with m � 1: (a) scalar vortex and (b) vector ring
soliton (6) for p � 0. Arrows show the trajectories of the flying
solitons after the instability-induced splitting.
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are symmetrically modulated, as clearly seen in Fig. 1(b),
but the total beam intensity is uniform.

Self-trapped localized structures consisting of a large
number of petals, or necklace-ring beams, exhibit a strong
effective stabilization even for the Kerr medium [4]. We
observe similar features for the vector necklace-ring soli-
tary waves, and in Figs. 2 and 3 we present the dynam-
ics of the vector solitons for m � 6. For comparison, we
show as well the expansion of a scalar necklace beam with
12 lobes and the breakup of a scalar vortex into eight fila-
ment beams [see Figs. 2(a) and 2(b)].

To compare the beam dynamics and instability-induced
splitting in all those cases, we introduce, for the neck-
lace beams, the propagation distance when the necklace
increases its radius by the factor of 2, the so-called ex-
pansion length Le. The vortex dynamics is characterized
by the propagation distance on which its breakup occurs,
the splitting length Ls. For the dynamics of the necklace
beam created by the input E�z � 0� � u�r� cos�6w�, we
find Le � 50, whereas for a scalar vortex, Ls � 35 (see
Fig. 2).

As is shown in Fig. 2(c), the vector necklace-ring soliton
breaks up into 15 filaments with a ratio of the component
powers modulated along the ring. Corresponding physical
parameters are the splitting distance of the ring, Ls � 55,
and the distance at which the ring structure becomes twice
as big, Le � 110. A comparison shows that an effective
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FIG. 2. Evolution of three types of ring beams at m � 6:
(a) scalar necklace beam, E�z � 0� � u�r� cos�6w�; (b) scalar
vortex, E�z � 0� � u�r� exp�i6w�; and (c) vector ring soliton
(6) for p � 0. The frames in (a),(b) at z � 80 show a superpo-
sition of the structures at different propagation distances.
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“lifetime” Ls of the vector ring soliton with m � 6 is up
to 60% larger than that of the corresponding scalar vortex,
and the expansion of the vector ring soliton is 2 times
slower than that of the scalar necklace beam. Although
expansion of scalar necklace beams decreases significantly
with an increasing of the number of petals [4], we use this
value for comparison, as we observe the similar behavior
for vector necklaces.

For p fi 0, we have two types of localized solutions
corresponding to two different signs of b2 in Eqs. (6).
Both of them have equivalent component envelopes
and powers but different values of the total momentum
M � M1 1 M2,

M1 � 6M2 �
mp

1 1 p2 P�m�.

While one of these solutions has a zero angular mo-
mentum, the total spin of the other solution is nonzero,
M � 2M1, and it can be fractional. The dynamics of two
such solutions differ dramatically, as shown in Figs. 3(a)
and 3(b). For the vector ring soliton with fractional
spin M�P�6� � 5.76 [see Fig. 3(a)], a centrifugal force
dominates and the ring structure breaks similarly to the
vortex breakup [cf. Fig. 2(b)]. Dynamics of the solution
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FIG. 3. Evolution of the vector ring solitons with a nonzero
spin in each component, m � 6 and p � 0.75 [see Eqs. (6)].
(a),(b) Intensities of the vector rings with nonzero and zero total
spin, respectively.
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with zero total spin follows a different scenario, as shown
in Fig. 3(b) [cf. Fig. 2(c)], and it represents a type of the
symmetry-breaking instability when the interaction and
mutual guiding of filaments produce new solitons.

We emphasize that two different scenarios of the
instability-induced dynamics presented in Figs. 3(a) and
3(b) are governed by the total (zero or nonzero) spin of
the structure. For small values of p, the ring soliton with
a fractional spin breaks up into vector solitons of different
sizes. Since a vector soliton with a lower power has a
larger radial velocity, the whole structure expands with
rotation, but it does not preserve its radial symmetry.

For larger values of the parameter p, the components
of the vector ring soliton change their structure from the
necklace type to the full ring, and for p � 1 such a solution
reduces to a two-component vortex ring with, respectively,
zero or integer spin m. Such a transformation is seen as a
change of the modulation depth of the ringlike components
of the vector solitons [cf. Figs. 2(c) and 3(b)]. As a result,
the decay scenario changes as well and at p � 1, the vec-
tor vortex with zero total spin breaks up into 15 filaments
with equal powers in the components.

Another interesting structure described by Eqs. (3) car-
ries different powers and spins in each of the components,
and its parameters are

a1 � 1, b1 � iq, a2 � 0, b2 �
q

1 2 q2,

P1,2 �
1
2

�1 6 q2�P�m�, M1 � mqP�m�, M2 � 0 .

(7)

Here the parameter q [ �0; 1�, and in the limit q � 0 this
solution coincides with Eqs. (6) for p � 0. For q close to
1, the main features of the symmetry-breaking instability
discussed above remain valid, but the dynamics becomes
more complicated, due to a strong guiding effect in the
regime where P1 ¿ P2. In the limit q � 1, the localized
solution (7) describes a scalar vortex in the first mode,
similar to that shown in Figs. 1(a) and 2(b).

A strong stabilizing effect of the incoherent interaction
of the azimuthally modulated beams can also be observed
for higher-order localized modes. In particular, we show
one of the examples in Fig. 4(a), where a scalar double-
ring vortex is completely destroyed at the distance z � 50
while the similar vector structure, but with zero spin, still
presents its ringlike shape [see Fig. 4(b)].

The scalar “necklace” beams have been observed
experimentally as expanding structures with a large num-
ber of petals [9]. Vectorial beam stabilization has been
recently observed in photorefractive crystals at mW pow-
ers for the double-dipole beams shown in Fig. 1(b) [10]
and also for the beams consisting of four and six beamlets
[11]. Composite beams were created in the way similar
to the multipole spatial solitons [12], by employing the
phase-imprinting technique. Although the photorefractive
nonlinearity is anisotropic and nonlocal, an effective
vectorial stabilization has been proved to be the key
033901-4
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FIG. 4. Two-ring solitons with m � 6. (a) Scalar higher-order
vortex and (b) vector double-ring soliton.

mechanism that allows one to generate quasistationary
composite light beams with modulated components.

In conclusion, we have presented novel classes of sta-
tionary optical beams in the form of vector ring spatial
solitons that consist of necklace-type components. Such
vector solitons exhibit quasistable propagation for much
larger distances than the corresponding vortex solitons and
scalar necklace beams, demonstrating the features of both
those types of self-trapped ringlike structures. Similar to
the scalar vortex solitons, the vector ring solitons exhibit
the symmetry-breaking instability that is accompanied by
a transformation of the (integer or fractional) angular mo-
mentum into the linear momenta of the individual soliton
beamlets flying away. Our approach may also be useful for
other problems, e.g., for the study of a mixture of several
Bose-Einstein condensates trapped by a parabolic poten-
tial, or for the dynamics of “braided light” in plasmas [13].
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