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Necrostatin-1 analogues: critical issues on the
specificity, activity and in vivo use in experimental
disease models

N Takahashi1,2,9, L Duprez1,2,9, S Grootjans1,2,10, A Cauwels1,2,10, W Nerinckx1,3,10, JB DuHadaway4, V Goossens1,2,

R Roelandt1,2, F Van Hauwermeiren1,2, C Libert1,2, W Declercq1,2, N Callewaert1,3, GC Prendergast4,5,6, A Degterev7,

J Yuan8 and P Vandenabeele*,1,2

Necrostatin-1 (Nec-1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase (RIPK)

1 in cell death and inflammation. We studied three Nec-1 analogs: Nec-1, the active inhibitor of RIPK1, Nec-1 inactive (Nec-1i), its

inactive variant, and Nec-1 stable (Nec-1s), its more stable variant. We report that Nec-1 is identical to methyl-thiohydantoin-

tryptophan, an inhibitor of the potent immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO). Both Nec-1 and Nec-1i

inhibited human IDO, but Nec-1s did not, as predicted by molecular modeling. Therefore, Nec-1s is a more specific RIPK1

inhibitor lacking the IDO-targeting effect. Next, although Nec-1i wasB100� less effective than Nec-1 in inhibiting human RIPK1

kinase activity in vitro, it was only 10 times less potent than Nec-1 and Nec-1s in a mouse necroptosis assay and became even

equipotent at high concentrations. Along the same line, in vivo, high doses of Nec-1, Nec-1i and Nec-1s prevented tumor necrosis

factor (TNF)-induced mortality equally well, excluding the use of Nec-1i as an inactive control. Paradoxically, low doses of Nec-1

or Nec-1i, but not Nec -1s, even sensitized mice to TNF-induced mortality. Importantly, Nec-1s did not exhibit this low dose

toxicity, stressing again the preferred use of Nec-1s in vivo. Our findings have important implications for the interpretation of

Nec-1-based data in experimental disease models.

Cell Death and Disease (2012) 3, e437; doi:10.1038/cddis.2012.176; published online 29 November 2012
Subject Category: Experimental Medicine

Depending on the cellular context, tumor necrosis factor

(TNF) induces receptor-interacting protein kinase (RIPK)-1

and RIPK3 kinase-dependent necrotic cell death (regulated

necrosis or necroptosis).1–5 In certain conditions, such as

deficiency or inhibition of cIAPs, RIPK1 kinase activity can

mediate apoptosis.6–8RIPK1 andRIPK3 interact through their

RIP homotypic interaction motif domain and initiate necrop-

tosis via phosphorylation-driven formation of a signaling

complex within TNFR1-induced complex II (the necro-

some).4,7 Necrostatin-1 ((Nec-1; 5-((1H-indol-3-yl)methyl)-3-

methyl-2-thioxoimidazolidin-4-one), originally identified in a

screen for chemical inhibitors of necrotic cell death in human

U937 cells,9 is an allosteric inhibitor of RIPK1.10 Nec-1 does

not affect RIPK1-mediated nuclear factor kB (NF-kB) activa-

tion,10 in line with the dispensable role of RIPK1 kinase activity

in this process.11 For several kinases, the catalytic activity is

regulated by the phosphorylation status of the activation

segment (T-loop), located in the kinase domain.12 The

unphosphorylated activation segment, locked into an inactive

conformation, is converted by phosphorylation into an active

conformation. Homology modeling using B-RAF as a tem-

plate, structure–activity relationship (SAR) and mutant ana-

lysis showed that Nec-1 stabilizes the inactive conformation of

RIPK1, functioning as an allosteric inhibitor.10

Because RIPK1 deficiency in mice causes postnatal death

due to its indispensable platform function leading to NF-kB13

and mitogen-activated protein kinase signaling,14 Nec-1 has

been instrumental in studying the contribution of RIPK1

kinase-dependent necroptosis in various pathologies invol-

ving cell death.9,15–20 We previously reported that treatment

with Nec-1 or genetic ablation of RIPK3 protected mice from

lethality associated with TNF-induced systemic inflammatory
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response syndrome (SIRS), suggesting that a RIPK1/RIPK3-

dependent pathway drives TNF-induced mortality.21 How-

ever, literature and our own observations raised some critical

issues regarding Nec-1’s specificity, its appropriate control

and the effective concentration especially in murine experi-

mental disease models. Regarding the kinase specificity of

Nec-1, of 98 human kinases, only PAK1 and PKAca are

partially inhibited by Nec-1.22 Targets of Nec-1 activity other

than RIPK1 have also been suggested, for example, in T-cell

receptor signaling.23 The Nec-1 analog, Nec-1 stable (Nec-

1s) (7-Cl-O-Nec-1) was41000-fold more selective for RIPK1

than for any other kinase out of 485 human kinases.24Another

issue is that RIPK1 kinase activity is not only confined to

necroptosis but is also involved in ERK activation25 and in

apoptosis when IAP is depleted.6–8 Altogether, these results

argue for a careful interpretation of the biological effect after

in vivo Nec-1 administration. Moreover, a selection of

appropriate controls and consideration of the effective

concentrations is very important in interpreting the results

obtained using Nec-1. Strikingly, before being identified as a

RIPK1 kinase inhibitor, Nec-1 under its alternative name

methyl-thiohydantoin-tryptophan (MTH-Trp) had been

described as an inhibitor of indoleamine 2,3-dioxygenase

(IDO).26 IDO, which is an immune regulator,27 catalyzes the

first and rate-limiting step of tryptophan catabolism, leading to

the formation of kynurenine.28 IDO activity is induced by

several pro-inflammatory stimuli, including lipopolysacchar-

ides, bacterial DNA and type I/II interferons.29–31 Mounting

data suggest that IDO controls the flux between the pathways

leading to pro- or anti-inflammatory cytokine production.32

IDO activity is induced in patients with shock and trauma,33

and blockage or deficiency of IDO partially protects mice

against endotoxemia.34 Kynurenine has also been identified

as an ‘endothelium-derived relaxing factor’ mediating inflam-

mation-induced pathological hypotension.35Clearly, targeting

IDO by Nec-1/MTH-Trp might be important in some in vivo

models of inflammation. Therefore, we examined IDO

inhibitory activity of Nec-1 and its derivatives.

The second issue relates to differential RIPK1 inhibitory

potencies of Nec-1 derivatives. Nec-1 consists of an

indoleamine and a thiohydantoin moiety, also called thioxo-

imidazolidinone. The SAR analyses of Nec-1 revealed that

elimination of the methyl group in the thiohydantoin moiety

completely abolished its inhibition of human RIPK1 and of

TNF-induced necroptosis in Fas-associated protein with

death domain (FADD)-deficient Jurkat cells, a human T cell

line.10 Demethylated Nec-1 is referred to as Nec-1 inactive

(Nec-1i) (5-((1H-indol-3-yl)methyl)-2-thioxoimidazolidin-4-

one). It is often used as an inactive control in studies using

Nec-1 to exclude nonspecific off-target effects inherent to

inhibitors. Moreover, a small group substitution at the seventh

position of the indole of Nec-1 and a change from thiohy-

dantoin to hydantoin strongly enhanced its inhibitory activ-

ity.10,36 One variant also improved in vivo stability: Nec-1s or

7-Cl-O-Nec-1 (5-((7-chloro-1H-indol-3-yl)methyl)-3-methyli-

midazolidine-2,4-dione) was effective in reducing brain

injuries.9,18 Surprisingly, we found that the ‘inactive’ Nec-1i

still inhibited TNF-induced necroptosis in mouse cells and

became equipotent at higher concentrations. Furthermore,

it was equipotent to Nec-1 in protecting against lethal

TNF-induced SIRS in vivo. As Nec-1i is inactive on purified

recombinant human RIPK1 but active in cellular and in vivo

conditions, at least in the mouse system, a third issue is

raised. What is the optimal concentration for administering

Nec-1 in vivo and how to discriminate it from its ‘inactive’

variant Nec-1i? These issues prompted us to compare the

inhibitory activities of Nec-1, Nec-1i and Nec-1s on human

RIPK1 kinase, human IDO, mouse cellular necroptosis and in

an in vivo necroptosis model, namely TNF-induced SIRS.21

Results

Characterization of Nec-1, Nec-1i and Nec-1s on a RIPK1

and RIPK3 kinase assay and on TNF-induced necropto-

sis. SAR analysis revealed that Nec-1i, which lacks a methyl

group on the thiohydantoin moiety, lost its RIPK1 inhibitory

activity, whereas substitution of thiohydantoin with hydantoin

and introduction of chlorine at position 7 of the indoleamine

moiety yielded a more stable inhibitor, Nec-1s, also called

7-Cl-O-Nec-1.9,10,36 We performed an in vitro kinase assay

using recombinant human RIPK1or RIPK3 in the presence

and absence of these compounds. RIPK1 autophosphoryla-

tion was evident and was potently inhibited by Nec-1 and

Nec-1s in a dose-dependent manner (Figure 1b). Nec-1s

was equipotent to Nec-1, confirming published results.9,10,36

The demethylated variant of Nec-1, Nec-1i, only showed

minor inhibitory activity on human RIPK1 autophosphoryla-

tion at the highest concentration (100 mM) (Figure 1c),

indicating a more than 100-fold lower inhibitory activity of

Nec-1i as compared with Nec-1. In addition, none of the

compounds was able to block RIPK3 autophosphorylation

(Figure 1c), confirming that these compounds specifically

target RIPK1 and not RIPK3 in the necroptotic pathway.10

Next, we compared the efficiency of these compounds to

modulate TNF-induced necroptosis in mouse L929sA cells.

This cellular assay surprisingly revealed only about 10-fold

lower inhibitory activity of Nec-1i compared with Nec-1

(Figure 1d). This relatively minor difference between Nec-1

and Nec-1i on mouse cells is in contrast with the absence of

any inhibitory activity of Nec-1i on human FADD-deficient

Jurkat cells.10 From these experiments, we conclude that

Nec-1i retains some inhibitory activity on TNF-induced

necroptosis on mouse cells, which becomes equipotent at

higher concentrations (10–100 mM) (Figure 1d). Although the

exact mechanism of this protection by Nec-1i is not known, it

may either reflect a species specificity, the existence of

additional targets or metabolization of Nec-1i resulting in an

active compound. Whatever the reason may be, it is obvious

that this observation has important implications for the use of

Nec-1i as a control in mouse experimental disease models.

Nec-1 and Nec-1i, but not Nec-1s, are predicted to inhibit

IDO with similar potency. Nec-1 has been identified as a

specific inhibitor of RIPK1 kinase activity.9,10 However, Nec-1

is identical to MTH-Trp, which has been described as a

potent inhibitor of IDO.26 The substrates of IDO are

indoleamines, such as tryptophan, serotonin, melatonin and

tryptamine.37 Hence, typical IDO inhibitors are indoleamine-

containing compounds, including 1-methyl-tryptophan

(1-MT)38 and MTH-Trp.26 Ample studies have used Nec-1

Necrostatin-1 analogues
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to inhibit RIPK1 kinase activity, but a potential IDO-inhibiting

effect in cellular or experimental disease models has not

been addressed before.

Nec-1, Nec-1i, Nec-1s and 1-MT contain an indole moiety

also present in L-tryptophan, the substrate of IDO (Figure 2a).

The crystal structures of human IDO (pdb-entries 2D0T and

2D0U) reveal the active site as a small distal pocket located

adjacent to the heme. The orientation of the ligand’s indole

moiety within this pocket is expected to be near-perpendicular

versus the heme, with N1 and C2 in the vicinity of the iron ion,

as to allow iron-bound dioxygen to react with the indole ring in

accordance with the proposed mechanism.39 We suspected

that the chlorine substituent of Nec-1s/7-Cl-O-Nec-1 might no

longer allow the indole ring to fit properly in the enzyme’s

narrow pocket. Subsequently, we have docked the substrate

L-tryptophan (L-Trp), the known IDO inhibitors (1-MT and Nec-

1/1-MTH-Trp) and the Nec-1 derivatives (Nec-1i and Nec-1s)

into the active site of human IDO pdb-entry 2D0T, using the

automated docking program AutoDock-Vina.40 This crystal

structure contains 4-phenylimidazole nitrogen-bound to the

heme’s iron ion. In preparing the enzyme’s structure model for

docking, this ligand was removed, leaving the heme unoccu-

pied. Given the enzyme’s mechanism, ligand docking poses

that leave no room for iron-bound molecular oxygen were

dismissed.

With L-Trp, a docking pose was obtained, showing an indole

position and orientation within the active site’s pocket that

corroborates the proposed mechanism (Figure 2b); its amino-

acid moiety resides in the tunnel-like entrance to the pocket.

Ser167 protruding from the surface of the pocket is in the

vicinity (4.6Å) of C7 of the indole moiety (Figure 2c). This

docking pose allows sufficient space for molecular oxygen

(Figure 2d). A similar overall pose was obtained with Nec-1

(Figure 2e) and at first sight also with Nec-1s (Figure 2f). Next,

we docked the L enantiomer of all ligands (L-Trp, 1-MT, Nec-1,

Nec-1i and Nec-1s) (Figure 3a) and calculated the distances

WB: GST WB: GST
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Figure 1 Activity of Nec-1, Nec-1i and Nec-1s in an in vitro RIPK kinase assay and a cellular assay for necroptosis. (a) Chemical structures of Nec-1/MTH-Trp, Nec-1i and
Nec-1s (b) Effect of Nec-1 variants on human RIPK1 kinase activity. Recombinant GST-hRIPK1 was preincubated with the indicated amount of inhibitor, and
autophosphorylation was determined by a radioactive ATP assay, followed by SDS-PAGE and transfer to nitrocellulose membrane. All reactions contained the same amount
of DMSO. The autophosphorylation observed in the presence of only DMSOwas set to 100%. (c). Effect of Nec-1 variants on human RIPK3 kinase activity. The procedure was
identical to b, but GST-hRIPK3 was used instead of GST-hRIPK1. (d). Effect of Nec-1 variants on TNF-induced necrosis. L929sA cells were preincubated for 1 h with the
indicated amounts of inhibitor or an equal amount of DMSO, and then treated with 1000 IU/ml of mTNF for 6 h. Cell death was measured as percentage of propidium iodide
(PI)-positive nuclei on images acquired with BD pathway
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of the respective indole’s H1 and C2 to the heme’s iron to

assess the spatial relationship between the ligand and the

molecular oxygen (red-mesh lines in Figures 2e and f;

Figure 3). The D enantiomer of all ligands docked in a similar

fashion (result not shown). The positioning of the indole ring of

all ligands, except for Nec-1s, allows the accommodation of

iron-bound dioxygen (Figure 3b), which is a prerequisite for

substrate and competitive inhibitor binding.39 However, a

similar pose with Nec-1s results in a smaller H1-Fe distance

as compared with the other ligands (Figure 3b). Indeed, the 7-

Cl substitution in Nec-1s induces steric hindrance with the

protruding Ser167 at the pocket’s surface, causing a tilt of

the indole ring, thereby bringing its H1 closer to the iron ion of

the heme, leaving no room for molecular oxygen. This

suggests that Nec-1s, in contrast to Nec-1 and Nec-1i, will

not bind and inhibit IDO, a prediction that was experimentally

tested (next section).

Nec-1 and Nec-1i, but not Nec-1s, inhibit IDO enzyme

activity. As docking predicted differential binding of Nec-1

and its variants on IDO (Figure 3), we tested these

compounds together with a prototype IDO inhibitor 1-MT in

an IDO enzyme assay. Both Nec-1 and Nec-1i inhibited

IDO with a comparable EC50 to 1-MT (Figure 4a). In

contrast, Nec-1s did not inhibit IDO (Figure 4a), as predicted

by molecular docking (Figure 3b). These results indicate

caution when interpreting results using these compounds

in cellular assays or in vivo because Nec-1 is not only a

L-Tryptophan 1-MT Nec-1i Nec-1s/ 7-Cl-O-Nec-1

O2
SER

L-Trp L-Trp Indole ring L-Trp

SER

Nec-1

SER

Nec-1s/7-Cl-O-Nec-1

COOH COOH

NH2
NH2

CH3

CH3
CH3

N N N

N

N N N

N

N

N

N

H H

H

H

H

H ClH

S S

O O

O

O

H

Nec-1/MTH-Trp

Figure 2 Molecular docking of substrates, inhibitors and Nec-1 variants on human IDO. (a) Chemical structures of L-Trp, 1-MT, Nec-1/MTH-Trp, Nec-1i and Nec-1s.
(b) Surface view of IDO’s pocket-like active site, with the docked pose of L-Trp as seen from the enzyme’s heme in the foreground. (c) Same viewing position partly surfaced,
now showing Ser167 in relation to the ligand’s indole ring. (d) Same docking pose of L-Trp (amino-acid moiety clipped off for clarity) now as seen from the pocket entrance with
the heme on the right, with meshed surface showing the narrow pocket. The gap between the heme’s iron versus positions 1 and 2 of the indole ring leaves sufficient space for
the missing iron-bound dioxygen. (e) The docked pose of Nec-1 shows a symmetrical distance between the heme’s iron and position 1 or 2 of the indole ring, also allowing
sufficient space for dioxygen. (f) For the analogous pose of Nec-1s, the indole ring is slightly tilted due to a steric clash of Ser167 with the indole’s 7-Cl substituent. This brings
the indole ring substantially closer to the heme, suggesting that this pose no longer leaves sufficient space for molecular oxygen, or that Nec-1s may be unable to fit into the
pocket of dioxygen-bound IDO
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RIPK1 inhibitor but also a potent IDO inhibitor. Also,

Nec-1i potently inhibits IDO, as predicted by the docking

model. In contrast, Nec-1s is a more specific and therefore

superior RIPK1 inhibitor. As all these compounds share

the indole moiety, we questioned whether IDO inhibitors,

such as 1-MT, would interfere with cellular necroptosis.

1-MT did not show any inhibitory activity on TNF-induced

cytotoxicity on L929 cells at any concentration tested, ruling

out that IDO inhibitors in general could directly interfere with

necrotic cell death (Figures 4b and c).

1-MTL-TrpIndole ring L-Trp
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Figure 3 Molecular docking of substrates, inhibitors and Nec-1 variants on human IDO representing a similar docking pose for all ligands. (a) Vina dockings on human IDO
yielded highly similar poses for all ligands whether as L or D enantioner; only L enantiomers are shown. Top left: L-Trp with amino-acid moiety and meshed surface clipped off,
showing the narrow pocket; top center: L-Trp complete view; top right: L-1-MT; bottom left: L-Nec-1; bottom center: L-Nec-1i; and bottom right: L-Nec-1s. The latter shows a larger
tilt of the indole ring with respect to the pocket, due to a steric clash between Ser167 and the indole’s 7-Cl substituent. (b) Table with calculated distances between IDO’s heme iron
versus positions 1 and 2 of the respective indoles of the docked ligand poses. The red highlight indicates the smaller gap for molecular oxygen with the pose of Nec-1s
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In vivo Nec-1i is as protective as Nec-1 against lethality

associated with TNF-induced SIRS. We have reported

that pretreatment with Nec-1 protected against lethal SIRS

caused by in vivo administration of TNF.21 Because both

Nec-1 and Nec-1i possess IDO inhibitory activity and IDO is

an important immunomodulatory molecule, we tested Nec-1i

in this model as well. Mice were pretreated with Nec-1 or

Nec-1i before challenge with a lethal dose of mTNF using the

same dose regimen as described before.21 Nec-1 protected

against TNF-induced hypothermia and lethality as reported

earlier (Figures 5a and b). Rather surprisingly, Nec-1i

protected equally well (Figures 5a and b), which is in line

with the equipotent inhibition in the cellular necroptosis assay

at higher concentrations (Figure 1d). Thus, the inhibitory

effect of Nec-1i might be due to the high dose of compounds

reaching equipotent concentrations in target organs, which

could mask the difference in the effective dose. In addition,

in vivo pharmacodynamics and metabolization may also

contribute to the equal protection. In order to discriminate

between Nec-1 and Nec-1i in vivo activities, we examined the

dose response in this model.

Nec-1 and Nec-1i sensitize towards TNF-induced SIRS

when administered at a lower dose. We evaluated the
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Figure 5 Nec-1 and Nec-1i show a paradoxical dose response in TNF-induced SIRS. (a) Effect of Nec-1 and Nec-1i on TNF shock-associated hypothermia. DMSO, Nec-1
or Nec-1i were injected i.v. at a dose of 6 mg/kg b.w. 17min before challenge with 10 mg mTNF i.v. (about LD100); Nec-1 and Nec-1i were equipotent in protection. (b) Survival
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between brackets. *Po0.05, **Po0.001 and ***Po0.0001
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dose response of both compounds using half (3mg/kg,

designated moderate (Mo)) and one-tenth (0.6mg/kg,

designated low (Lo)) of the initial dose (6mg/kg, designated

high (Hi)), assuming that the lower doses might reveal a

differential protective effect between Nec-1 and Nec-1i. The

half dose was still as protective as the initial dose (Figures 5c

and d). Surprisingly, at the lowest dose both Nec-1 and Nec-

1i even sensitized mice to TNF-induced shock, evidenced by

accelerated hypothermia and decreased survival rate

(Figures 5c and d). Importantly, these results indicate that

at a lower dose both Nec-1 and Nec-1i gain a toxic effect,

making it impossible to establish differences by subsaturat-

ing doses. The toxic effect is a specific in vivo phenomenon

as it was not observed in vitro in the cellular necroptosis

assay (Figure 1d).

Next, we questioned whether the sensitizing effect of Nec-1

involved cell death processes. We have shown earlier that

inhibition of necroptosis by Nec-1 or RIPK3 deletion resulted

in reduced release of cellular content into circulation.21 The

levels of the liver enzymes aspartate aminotransferase and

alanine aminotransferase, as well as the cellular disintegra-

tion marker lactate dehydrogenase, increased by TNF

administration in the control group in a highly significant

manner, as reported earlier.21 Creatinine levels rather

declined after TNF administration, most likely reflecting

muscle catabolism (Figure 5e). Pretreatment with Nec-1 at

high dose reversed these changes almost completely

(Figure 5e), indicating protection against cytolysis, as

reported previously.21 Pretreatment with Nec-1 at low dose

did not increase the levels of most of these soluble markers,

suggesting that mechanisms other than cellular damage are

involved in sensitization.

Nec-1s protects against TNF-induced SIRS without

sensitization effect. As Nec-1s is a potent inhibitor of

RIPK1 and cellular necroptosis (Figures 1b and c) while

lacking IDO inhibitory activity (Figure 4a), we tested it in the

TNF-induced SIRS model with doses that were protective

(Hi: 6mg/kg) and sensitizing for Nec-1 (Lo: 0.6mg/kg). Nec-

1s protected as well as Nec-1 at the high dose, but did not

sensitize at the low dose. In the same experimental set-up,

Nec-1 exhibited protection or sensitization pending on the

dose used (Figures 6a and b), confirming previous findi-

ngs (Figures 5c and d). Pretreatment with Nec-1s at high

dose provided statistically significant protection.

Pretreatment at a lower dose was comparable to the control

group. Therefore, Nec-1s is not only a more specific inhibitor

that does not interfere with IDO but is also a superior inhibitor

suitable for use in vivo lacking a paradoxical sensitizing effect

in TNF-induced lethality. As all Nec-1 derivatives were

protective at high dose, this effect most probably is mediated

by RIPK1 inhibition. On the other hand, because Nec-1 and

Nec-1i, but not Nec-1s, were able to block IDO in vitro,

we speculate that the sensitizing effect of Nec-1 and Nec-1i,

but not Nec-1s, at lower dose in vivo may involve IDO

targeting, although further research is required to support

this hypothesis.

Discussion

Nec-1 has been described as a specific inhibitor of RIPK1

activity, efficiently protecting cells from TNF-induced necropto-

sis.9,10Nec-1 has beenwidely used to examine the involvement

of RIPK1 activity in cell death and inflammation in murine

disease models. However, some critical issues concerning its

in vivo use are emerging. We addressed three major questions

on the specificity, the appropriate control and the effective dose

of Nec-1 and its derivates, Nec-1i and Nec-1s.

Nec-1s is41000-fold more selective than any other kinase

out of 485 human kinases.24 Nec-1 was recently found to

inhibit two other kinases,22 indicating that Nec-1-mediated

protection may involve targets other than RIPK1 activity. NO-

induced necroptosis41 and inhibition of T-cell proliferation23

are inhibited by Nec-1 independently of RIPK1 kinase activity,

suggesting also in vivo the existence of additional targets. The

chemical identity of Nec-1 andMTH-Trp as RIPK1 inhibitor9,10

and as IDO inhibitor26may complicate the interpretation of the

in vivo effects of Nec-1. As IDO is upregulated in inflammation

and has a major immunomodulatory role, double reactivity on

RIPK1 and IDO may have important in vivo implications.

Molecular modeling predicted that Nec-1 and Nec-1i, but not

Nec-1s, would inhibit IDO. The 7-Cl on the indole in Nec-1s

probably causes steric hindrance, resulting in a tilting of the

indole ring in the IDO catalytic pocket. The first step of the IDO

reaction requires substrate binding involving the iron dioxygen

at the heme of the catalytic pocket. The tilted indole ring of

Nec-1s probably no longer competes with the substrate

(Figure 2d and Figure 3a). This prediction was confirmed by

an enzymatic IDO assay. The differential inhibition of IDO by

Nec-1/1-MTH-Trp and Nec-1i versus Nec-1s provides a good
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avenue to avoid interference of IDO targeting. However, 1-

MT, a classical IDO inhibitor,26 had no effect in the cellular

necroptosis assay, excluding the direct implication of IDO in

necroptosis.

A second important issue is the use of Nec-1i, a

demethylated variant of Nec-1, as an inactive control. Nec-1i

is 4100-fold less active on human recombinant RIPK1 than

Nec-1 and Nec-1s, in line with previous reports.9,10,36 In

contrast to the absence of any effect on necroptosis in human

FADD-deficient Jurkat cells,9,10,36 in mouse L929 cells, Nec-1i

consistently inhibited necroptosis only 10-fold less than Nec-

1, even resulting in complete inhibition at higher concentra-

tions. This surprising observation may reflect species speci-

ficity of Nec-1i. By methylation of its thiohydantoin moiety in

some cells or even in vivo, Nec-1i might be converted to a

Nec-1-like inhibitory compound. In line with this partial

necroptosis blocking activity of Nec-1i in cellular systems,

we found that Nec-1i administration in vivo also inhibits TNF-

induced SIRS. These findings argue against the in vivo use of

Nec-1i as a ‘silent’ control because Nec-1i can still target IDO,

and in mice, it is apparently equipotent to Nec-1 in blocking

TNF-induced SIRS. It would be worthwhile to check whether

the demethylated form of Nec-1s could be a negative control

for RIPK1 targeting on cells and in vivo.

There is a third issue. Mice were sensitized to TNF-induced

SIRS when 10-fold lower doses of Nec-1/MTH-Trp or Nec-1i

were administered (0.6mg/kg). This paradoxical finding has

major implications for the interpretation of dose-dependent

effects of Nec-1 in murine experimental disease models and

may also explain some controversies in the literature. Indeed,

in contrast to our earlier publication,21 Nec-1 was reported to

exacerbate TNF-induced SIRS.42 Another group also

reported that Nec-1 worsens the outcome of a peritoneal

sepsis model.43 Both publications concluded that RIPK1

kinase activity is necessary for survival from sepsis. However,

in these reports, the dose of Nec-1 used was comparable to

the low dose in Figures 5 and 6, explaining the sensitizing

effect. From the current study, we argue that this sensitization

is not the result of RIPK1 targeting and necroptosis. First,

cellular necroptosis assays at low concentrations of Nec-1

and Nec-1i do not show such sensitization. Second, Nec-1s,

which is an equipotent RIPK1 inhibitor,9,10,36 does not

sensitize TNF-induced SIRS. Third, sensitization at these

low doses of Nec-1 and Nec-1i is not accompanied by the

enhanced presence of tissue-damage markers, suggesting

that toxicity mechanisms other than RIPK1-mediated necrop-

tosis may be involved. This sensitization was not shared by

Nec-1s. Therefore, the involvement of RIPK1 can be

excluded. Because both Nec-1 and Nec-1i target IDO,

whereas Nec-1s does not, the blocking of IDO could be

implicated. This remains to be investigated. Another issue is

that these compounds may be metabolized differently,

generating toxicity in one case and not in the other. In this

regard, it is interesting to note that hydantoinase activity has

been reported in mammalian cells, which corresponds to

dihydropyrimidinase activity.44 Such enzymes can partly

hydrolyze thiohydantoin compounds, and thiohydantoins

have been described as unstable under typical biochemical

incubation conditions.45,46 That thiohydantoin-containing

necrostatins, such as Nec-1 and Nec-1i, exhibit a sensitizing

phenotype at a low dose is in contrast to the nonsensitizing

phenotype of Nec-1s, a hydantoin variant. Thiohydantoins

and hydantoins might be metabolized differently, generating

different metabolites.

Our data indicate some major issues concerning the

specificity, the appropriate control and the dose of Nec-1

and its derivatives, and may have major implications for the

use in experimental disease models and the interpretation of

the published data. Many conclusions drawn on the use of

Nec-1 in experimental disease models may require reevalua-

tion. The use of Nec-1s, which does not target IDO, provides a

perfect alternative. Moreover, considering the increasing

number of pathological conditions involving RIPK1/RIPK3-

dependent necroptosis, Nec-1s may offer a promising

therapeutic option for the treatment of these conditions.

Nec-1 is still a commercially available option, which can only

be used in conditions where involvement of IDO is clearly

excluded by use of 1-MT.

Material and Methods
Cells, cytokines and reagents. L929sAhFas cells were generated as
previously described47 and are referred to as L929sA cells for simplicity. Cells
were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10%
fetal calf serum, penicillin (100 IU/ml), streptomycin (0.1 mg/ml) and L-glutamine
(0.03%). The recombinant mouse TNF used for in vivo experiments and human
TNF for in vitro experiments were produced in Escherichia coli and purified in our
laboratories. The activity and endotoxin contamination of mTNF, determined by
MTT assay and the Limulus amebocyte lysate assay (Kabivitrum, Trenton, NJ,
USA), was 1.7� 108 IU/mg and 0.47 EU/mg, respectively. Activity of human TNF
used in vitro was 3.3� 108 IU/mg. The 5-diphenyltetrazolium bromide (MTT;
Sigma Aldrich, St. Louis, MO, USA) was used at 500mg/ml. Nec-1 (full name, 5-
((1H-indol-3-yl)methyl)-3-methyl-2-thioxoimidazolidin-4-one) and Nec-1i (full name
5-((1H-indol-3-yl)methyl)-2-thioxoimidazolidin-4-one) were purchased from Calbio-
chem (San Diego, CA, USA). Nec-1s (full name, 5-((7-Cl-1H-indol-3-yl)methyl)-3-
methylimidazolidine-2,4-dione) was prepared and kindly provided by Brigham and
Women’s Hospital, Inc, Boston. See website for structures and nomenclature
(http://www.nature.com/nchembio/journal/v1/n2/compound/nchembio711_ci.html).
1-MT (Sigma Aldrich) was dissolved in PBS.

In vitro kinase assay. Recombinant human RIPK1 (aa 1–497) and
RIPK3 (aa 1–439) were produced in Sf9 insect cells as GST-fusion proteins.
GST-fusion constructs were obtained by cloning hRIPK1 and hRIPK3 cDNA into
the BamHI restriction site of the pAcGHLT vector (BD Bioscience Benelux N.V.,
Erembodegem, Belgium), and recombinant baculovirus was obtained after
cotransfection of these constructs with BaculoGold linearized baculovirus (BD
Biosciences) into Sf9 cells according to the manufacturer’s instructions. Sf9 cell
pellets were resuspended in 20mM Tris-HCl pH 8.0, 200mM NaCl, 1 mM EDTA,
0.5% (v/v) Igepal CA-630 and EDTA-free Protease Inhibitor Cocktail Tablets
(Roche Diagnostics Belgium N.V., Vilvoorde, Belgium). Lysates were incubated on
ice for 30min. Insoluble proteins were removed by centrifugation. The supernatant
was applied to a Glutathione Sepharose 4FF column (GE Healthcare, Diegem,
Belgium) preequilibrated with PBS pH 7.4. The GST-tagged RIP kinase was eluted
from the column with 50mM Tris–HCl pH 8.0, 100mM NaCl and 10mM reduced
glutathione. Fractions containing the RIP kinase were pooled and further purified
using a Superdex 75pg column (GE Healthcare; running buffer: 20 mM Tris–HCl
pH 8.0 and 100mM NaCl). The purity of the fractions was checked by means of
SDS-PAGE, and the RIP kinase fractions were pooled and stored at � 70 1C. For
in vitro kinase assays, recombinant human RIPK1 and RIPK3 (0.2 and 0.75mg,
respectively) were incubated in 30ml kinase assay buffer (20mM HEPES-KOH,
pH 7.5, 2 mM DTT and 10mM MnCl2 (for RIPK1) or 10mM MgCl2 (for RIPK3,
respectively) supplemented with 10mM cold ATP and 10mCi 32P-g-ATP for 30min
at 30 1C in the presence of different concentrations of Nec-1, Nec-1i and Nec-1s.
The amount of DMSO was equal in all samples. Samples were separated by SDS-
PAGE, transferred to a nitrocellulose membrane and exposed to chemilumines-
cence films (Amersham Hyperfilm ECL, Amersham, GE Healthcare, Diegem,
Belgium). After obtaining the autoradiogram, GST-hRIPK1 and GST-hRIPK3
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levels were revealed with an anti-GST western blot on the radioactive membrane
(image acquired on an Odyssey infrared scanner, Odyssey LI-COR Biosciences
GmbH, Bad Homburg, Germany).

IDO enzymatic assay. The assay has been described in detail elsewhere.48

Recombinant human IDO was expressed and purified as described.49 The IC50

inhibition assays were performed in a 96-well microtiter plate as described
before.49 Briefly, the reaction mixture contained 50mM potassium phosphate
buffer (pH 6.5), 40mM ascorbic acid, 400mg/ml catalase, 20mM methylene blue
and B27 nM purified recombinant IDO per reaction. The reaction mixture was
added to the substrate, L-tryptophan (L-Trp), and the inhibitor. The Nec-1/MTH-Trp,
Nec-1i and Nec-1s compounds were serially diluted in three-fold increments,
ranging from 100mM to 1.69 nM, and the L-Trp was tested at 100mM (Km¼ 80
mM). The reaction was carried out at 37 1C for 60min and stopped by the addition
of 30% (w/v) trichloroacetic acid. The plate was incubated at 65 1C for 15min to
convert N-formylkynurenine to kynurenine and was then centrifuged at 1250� g
for 10min. Finally, 100ml supernatant from each well was transferred to a new
96-well plate and mixed at equal volume with 2% (w/v) p-dimethylamino-
benzaldehyde in acetic acid. The yellow color generated from the reaction with
kynurenine was measured at 490 nm using a Synergy HT microtiter plate reader
(Bio-Tek, Winooski, VT, USA). The data were analyzed using GraphPad Prism 4
software (GraphPad Software, Inc., San Diego, CA, USA).

In vitro cell death assay. L929 cells were seeded the day before analysis at
1� 104 cells in 100ml per well in 96-well adherent plates suitable for imaging
purposes. The next day, cells should have a confluence rate of maximal 80% upon
induction of cell death. For short-term assays (o6 h), nuclear staining with, for
example, PI (3mM final concentration) and Hoechst (1mM) was included with the
treatment. For long-term assays, PI/Hoechst staining was performed at least
30min before measurement. Image acquisition was performed using a BD
Pathway 885. Images of at least 1000 cells were taken using a � 10 objective and
the image montage feature of the equipment. Data acquisition and data analysis
were performed using the Attovision software package, BD Bioscience Benelux
N.V. A segmentation mask, identifying each single nucleus as region of interest
was set on the Hoechst image. The measurement parameter for cell death is the
% of PI-positive nuclei.

Molecular docking. Protein molecule A of the human IDO crystal structure
2D0T,39 containing the inhibitor 4-phenylimidazole as well as two molecules of 2-
(N-cyclohexylamino)ethane sulfonic acid in its active site, was selected for docking
experiments with AutoDock-Vina40 using AutoDockTools50 for preparations of
enzyme and ligands. Except for the heme group and its central iron ion, all waters
and non-covalent ligands were removed. Both enantiomers of all ligands were
docked, these were drawn in 3D with Avogadro51 and were minimized with the
MMFF94 force field.52 Vina box settings were: size x, y¼ 16 Å and z¼ 18 Å
centered at x¼ 59.2, y¼ 53.2 and z¼ 20.7; docking exhaustiveness was set at
32. Only those poses were evaluated of which the indole group was found in the
small cavity where the original 4-phenylimidazole resides.

Mice. Female C57BL/6J WT mice matched for gender and age were
purchased from Janvier (Le Genest, France). All mice were bred and housed at
the VIB Department for Molecular Biomedical Research in the specific pathogen-
free animal facility. All experiments on mice were conducted according to
institutional, national and European animal regulations. Animal protocols were
approved by the ethics committee of Ghent University. Mice were used at the age
of 8–14 weeks.

Injections and monitoring. mTNF and inhibitors were diluted in endotoxin-
free PBS and injected in a volume of 0.2 ml. Nec-1, Nec-1i and mTNF (7,5mg)
were injected intravenously unless otherwise indicated. Inhibitors were given
17min before mTNF injection. Control mice received an equal amount of DMSO
(6%) dissolved in PBS before the mTNF challenge. Rectal body temperature was
recorded with an electric thermometer (model 2001; Comark Electronics, Norwich,
UK). Body temperature and mortality were monitored for 48 and 72 h, respectively.

Statistical analysis. Statistical analysis was performed using Prism software
(GraphPad Software, Inc.). Body temperature is shown as means±S.E.M. and
compared with one-way analysis of variance with Bonferoni posttest. Survival
curves were compared using log-rank Mantel–Cox test.
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