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Abstract Constant decision-making underpins much of

daily life, from simple perceptual decisions about naviga-

tion through to more complex decisions about important life

events. At many scales, a fundamental task of the decision-

maker is to balance competing needs for caution and

urgency: fast decisions can be more efficient, but also more

often wrong. We show how a single mathematical frame-

work for decision-making explains the urgency/caution bal-

ance across decision-making at two very different scales.

This explanation has been applied at the level of neu-

ronal circuits (on a time scale of hundreds of milliseconds)

through to the level of stable personality traits (time scale of

years).

Keywords Decision-making · Personality · Bayesian

hierarchical models · Psychology

Life presents a constant stream of big and small decisions.

Decision-making organisms can maximize their rewards

by striking a careful balance between urgent decisions

and cautious decisions. Compared with cautious decisions,
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urgent decisions are fast, allowing the decision-maker to

act upon more decisions per unit time, and to avoid miss-

ing out on fleeting opportunities. However, fast decisions

are also more often wrong, which can have negative con-

sequences. Humans and other animals are sensitive to this

tension, and dynamically adjust the balance between cau-

tion and urgency, even in simple laboratory decision-making

tasks. In many cases, both humans and other animals can

even identify the precise quantitative tradeoff between cau-

tion and urgency which uniquely optimizes their rewards

(Balci et al., 2011; Evans & Brown, 2016; Simen, Cohen,

& Holmes, 2006; Starns & Ratcliff, 2012). This balance

between caution and urgency has been studied for decades

in humans and many other animals, from rats to bees and

even slime mould (Chittka, Dyer, Bock, & Dornhaus, 2003;

Evans & Brown, 2016; Latty & Beekman, 2011; Rinberg,

Koulakov, & Gelperin, 2006; Uchida & Mainen, 2003;

Wickelgren, 1977).

For rapid decisions, such as those about simple per-

ceptual categorization, the balance between caution and

urgency is known as the speed-accuracy tradeoff, and is

explained by mathematical accounts of decision-making

based on “evidence accumulation”. These accounts have

provided detailed explanations of behavioral and neuro-

physiological data related to decision-making for more than

50 years (see Fig. 1a). Evidence accumulation theories

assume that decisions are made by gradually accumulat-

ing evidence from the environment in favor of each pos-

sible choice. The first choice to accumulate a threshold

amount of evidence is selected. Through variations on this

basic theme, accumulator models of decision-making have

helped explain cognitive and neurophysiological aspects

of decision-making (Brown & Heathcote, 2008; Ratcliff,

1978; Ratcliff & Rouder, 1998; Roitman & Shadlen, 2002;
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Van Zandt, Colonius, & Proctor, 2000), and have been

used to understand dozens of important problems, from

clinical disorders (Ho et al., 2014), to alcohol intoxica-

tion (van Ravenzwaaij, Dutilh, & Wagenmakers, 2012), and

sleep deprivation (Ratcliff & Van Dongen, 2011).

A key success of accumulator-based theories of decision-

making is their natural explanation of the balance between

caution and urgency (see Fig. 1b). Accumulator theories can

explain the “speed-accuracy tradeoff” via the amount of evi-

dence required to trigger a decision, called the “threshold”.

When a high threshold is set, a lot of evidence must be col-

lected before a decision is made, leading to slow but careful

decisions. Conversely, when a low threshold is set decisions

are made quickly, but are more often wrong because they

are based on too little evidence. The threshold has been

linked to the firing rates of cortical neurons in monkeys,

and to the activity in cortico-thalmic networks in humans

(Forstmann et al., 2008; Heitz & Schall 2012; Roitman &

Shadlen, 2002). The speed-accuracy tradeoff is a flexible

setting which can be strategically adjusted, in less than a

second (Heitz & Schall, 2012). Much is known about the

neurophysiological substrates of this flexibility, and even

how they change in elderly humans (Forstmann et al., 2008,

2011; Heitz & Schall, 2012).

A

B

Fig. 1 Mathematical models of decision-making explain the trade-
off between caution and urgency. Top row (a) illustrates the basic
framework of accumulator models. Decisions are represented as a
race between accumulators which gather evidence in favor of com-
peting decision outcomes. The first accumulator to reach a threshold
amount of evidence triggers the decision. Bottom row (b) shows the
basic mechanism by which accumulator models explain the speed-
accuracy tradeoff. Lower thresholds lead to decisions based on less
evidence. These decisions are faster (because less time is required to
reach threshold) but more often wrong (because there is less time to
integrate out random variability)

Decision-making research has robustly found that par-

ticipants, both human and monkey, are able to adapt their

decision thresholds based on task instructions and require-

ments (Ratcliff, Smith, Brown, & McKoon, 2016). How-

ever, individual differences in these threshold values, and

the speed-accuracy tradeoff strategy that they represent,

have been seldom explored. The limited research that has

attempted to explore these differences has uncovered excit-

ing new findings, and greatly aided our understanding of

the decision threshold. For example, Forstmann et al. (2010)

extended previous findings of age-related differences in

threshold setting (Ratcliff, Thapar, & McKoon, 2001) and

its relation to white matter tracts within specific brain

regions (Forstmann et al., 2011), finding the strength of

the tracts between the presupplementary motor area and

the striatum partially explained individual differences in the

ability to successfully adjust their threshold setting when

under speed emphasis.

We attempt to further explore individual differences in

the speed-accuracy tradeoff by establishing a link between

this decision-making component and the previously-

unrelated concept of “need for closure”. Need for closure

(NFC) is a personality trait, defined by a desire for answers

and conclusions compared with confusion and ambiguity

(Kruglanski, 1989; Webster & Kruglanski, 1994a). People

who have a high need for closure tend to “[have a] desire for

predictability, preference for order and structure, discomfort

with ambiguity, [as well as having high levels of] deci-

siveness, and close-mindedness” (Webster & Kruglanski,

1994b, p.1049; though also see Barkley-Levenson and Fox

(2016), who found mixed results regarding the relationship

between the NFC sub-scale of decisiveness and differ-

ent types of impulsiveness). People with a low need for

closure tend to be the opposite, being adaptable, open-

minded, less focused on certainty, and happy to expend

longer periods of time before taking action (Kruglanski,

1989, 2004; Webster & Kruglanski, 1994a, b). Need for

closure has been related to judgments of social stimuli

(e.g., stereotyping; Kruglanski, 2004), although more recent

research has found that it also predicts negative evalua-

tions of category-inconsistent non-social stimuli (Rubin,

Paolini, & Crisp, 2011) and poorer mental health (Roets &

Soetens, 2010).

Need for closure and decision thresholds are defined at

very different time scales, with decision threshold being

adaptable within seconds (Forstmann et al., 2008; Heitz &

Schall, 2012), while need for closure is a stable personality

trait. Nevertheless, there appears to be some common theoretical

underpinnings between the two constructs. Both concern

a tendency towards hastiness (low decision threshold, and

high need for closure) or tardiness (high decision threshold,
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and low need for closure). This leads us to investigate a

hypothesized negative correlation between need for closure

and decision thresholds.

In the following two experiments, we link the speed-

accuracy tradeoff setting with the need for closure. Speed-

accuracy tradeoffs were measured in rapid perceptual

decision-making, where most decisions required much less

than 1 s. By contrast, need for closure was measured by

a questionnaire which probed participants about long-term

personality traits (see Fig. 2). We further demonstrate that

a unified mathematical theoretical framework accommo-

dates both rapid decision-making speed-accuracy tradeoffs

and the need for closure. This framework uses a generative

statistical model to accommodate both quantities, via the

threshold parameter of an evidence accumulator.

Experiment 1

Method

Participants Forty-nine participants were recruited from

an undergraduate psychology pool and from the general

university population for the first experiment. Participants

were reimbursed with a AUD$25 voucher redeemable at

a large shopping chain. Data from two participants were

rejected because of close-to-chance-level accuracy rates in

the perceptual discrimination task.

Procedure The need for closure scale was administered

online, following the standard procedure (Kruglanski, 1989;

Webster & Kruglanski, 1994a). There were 41 items in

total, of which 11 were reverse-scored. We replaced the

original Decisiveness subscale with updated decisiveness

items as suggested by Roets and van Hiel (2007). Half

of the participants completed the need for closure survey

before the perceptual discrimination task, and half com-

pleted the tasks in reverse order. Both tasks were completed

within a one hour session. Participants completed the 41

items of the Need for Closure scale online, using a 7-point

Likert scale to respond with each item: strongly disagree,

disagree, partially disagree, neutral, partially agree, agree,

strongly agree. Following the items of the NFC scale, par-

ticipants indicated their gender. Participants were also given

the option to enter their age and their ethnicity (Caucasian,

Aboriginal, Torres Strait Islander, African, Asian, Other).

For the perceptual discrimination task, we used stimuli

made of 64 × 64 pixel black-and-white patches (see also

Fig. 2 Methods and analyses. Our experiment (top row) included a
standard questionnaire to estimate individual subjects’ need for closure
(a well-established personality trait), as well as a simple percep-
tual decision-making task in which subjects classified random-pixel
squares as either lighter or darker than a criterion. During some parts
of the decision-making task, instructions and feedback emphasized
urgency (“speed-emphasis”); during other parts they emphasized cau-
tion (“accuracy-emphasis”). For each subject, this procedure resulted
in a need for closure score, and a joint distribution over response

latency and response choice separately for the speed- and accuracy-
emphasis conditions. A parallel-data-streams analysis (middle row)
used a hierarchical Bayesian framework to estimate the parameters
of an accumulator model of decision-making for each subject. The
model parameter corresponding to the speed-accuracy tradeoff (the
threshold parameter) correlated with need for closure scores from the
questionnaire, and the other model parameters did not. An integrated
data analysis (bottom row) simultaneously accounted for threshold
parameters and need for closure scores
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Ratcliff & Rouder, 1998). The squares measured 2.5 cm ×

2.5 cm on screen, and each pixel in the square was randomly

assigned to either black or white. There were two categories

of stimuli: pixels in “light” squares had a 53% probability

of being white, and pixels in a “dark” square had a 47%

chance of being white. Presentation of stimuli on a computer

screen was made dynamic by repeatedly cycling through

four squares, chosen at random and independently for each

decision trial from a pre-generated set of 50 squares from

each category. Cycling occurred at a rate of 67 Hz, and

continued until a response was made.

In the perceptual decision-making task, participants

made 416 decisions. Each time, they had to choose whether

the stimulus was predominately light or dark, by pressing

“D” or “L” on the keyboard. Participants had up to 5 s

to respond. At the beginning of accuracy-emphasis blocks

the following instructions were given: This is an accuracy

emphasis block. Be careful, try to minimise your errors,

even if that means your responses are quite slow. In speed-

emphasis blocks the instructions were: This is a speed

block. Go quickly, don’t worry about making a few extra

mistakes, we are interested in fast decisions. During the

accuracy-emphasis blocks, Try to respond *accurately* was

displayed on the screen during all trials, while in the speed-

emphasis blocks Try to respond *quickly* was displayed. In

both emphasis conditions feedback was given for correct or

incorrect responses: CORRECT (in green font) or INCOR-

RECT (in red font), respectively. Additionally, if responses

were made less than 250 ms, TOO FAST (in red font)

was displayed. Each participant completed four blocks (two

of each emphasis) of 104 trials which took approximately

25 min in total including compulsory one-minute-minimum

breaks between each block.

Analyses Our first analysis for Experiment 1 involved cor-

relating estimated model parameters with need for closure

scores. The logic of this analysis is illustrated in the middle

row of Fig. 2. Need for closure scores were calculated for

each individual, by averaging the ratings provided for each

questionnaire item after reverse-scoring negatively-worded

items. Speed-accuracy tradeoff settings were estimated from

each participant’s decision-making data by fitting the lin-

ear ballistic accumulator model (LBA; Brown & Heathcote,

2008). The LBA model assumes that each decision is a

race between two accumulators, corresponding to “light”

and “dark” response choices, in this case. The accumula-

tors gather evidence in favor of each choice until one of

them reaches a response threshold. Evidence accumulation

is a simple linear process, with a rate of increase that varies

randomly from decision to decision according to a nor-

mal distribution. The amount of evidence in favor of each

response choice before the decision begins (“start point”,

representing a priori bias) is also random from decision to

decision. The parameters of the model include: the thresh-

old amount of evidence required to trigger a decision, b; the

speed with which evidence accumulates, also known as the

“drift rate”, v; the range of the uniform distribution of start

points, A; the standard deviation of drift rates across trials,

s; and a constant offset amount of time taken for all process

other than the actual decision, including the time taken to

execute the motor response, and the time taken to perceive

the stimulus, t0.

To keep the model as simple as possible, we assumed that

the two accumulators racing to make the decision shared

identical parameters except for their drift rate distributions.

In the accumulator whose response matched the actual iden-

tity of the stimulus (e.g. the accumulator corresponding to

the response choice “dark”, when the stimulus really did

contain more black pixels than white pixels), the mean

of the normal distribution of drift rates was freely esti-

mated, and the standard deviation of this distribution was

fixed at s = 1, to satisfy a mathematical scaling prop-

erty of the model. For the other accumulator the mean

was fixed at zero (i.e., v = 0)1 and the standard devi-

ation was freely estimated. We also considered a model

that allowed a bias in responding for bright or dark stim-

uli, by allowing a difference in the threshold value for the

two accumulators. This model did not appear to improve

the fit to the data and lead to qualitative identical findings

for the first analysis (a statistically reliable correlation of

r = −.29 between decision threshold and need for closure

score).

To model the difference between the decisions made

under speed-emphasis and those made under accuracy

emphasis, we allowed different decision threshold parame-

ters for the two conditions (bspeed and baccuracy) and also a

non-zero mean drift rate for the accumulator corresponding

to the incorrect response under speed-emphasis (i.e. allow-

ing v > 0) (Rae, Heathcote, Donkin, Averell, & Brown,

2014).

We estimated the parameters of the model from data

using a hierarchical Bayesian approach. Each individual

subject was allowed their own parameters, but these were

constrained to follow normal distributions—truncated to

positive values—across participants. Each group-level dis-

tribution was itself defined by two parameters, a mean and a

standard deviation. Diffuse, relatively uninformative priors

were placed on the parameters of the group-level distribu-

tions, with positive-only truncated normal distributions for

the priors on mean parameters and gamma distributions for

the priors on standard deviation parameters. The complete

1This simplifying assumption was used in order to improve parameter
estimation. When freely estimated, the drift rate estimated very close
to 0, but the model resulted in poorer overall parameter estimates.
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model for all participants and the associated hierarchy, and

priors can be specified as follows:

Data level :

(RTi, respi) ∼ LBA(Ai, baccuracy,i, bspeed,i,

t0,i, vi, vincorrect,speed,i, si)

Group level :

Ai ∼ N+(μA, σA)

baccuracy,i − Ai ∼ N+(μb,accuracy, σb,accuracy)

bspeed,i − Ai ∼ N+(μb,speed , σb,speed)

t0,i ∼ N+(μt0, σt0)

vi ∼ N+(μv, σv)

vincorrect,speed,i ∼ N+(μv,incorrect,speed ,

σv,incorrect,speed)

si ∼ N+(μs, σs)

P rior distributions :

μA, μb,accuracy, μb,speed ∼ N+(2, 2)

μv ∼ N+(3, 3)

μv,incorrect,speed ∼ N+(2, 3)

μt0 ∼ N+(.5, .5)

μs ∼ N+(1, 1)

σA, σb,accuracy, σb,speed ∼ Ŵ(1, 1)

σs, σt0 ∼ Ŵ(0.2, 0.2)

σv, σv,incorrect,speed ∼ Ŵ(1, .5)

Above, the subscript i indexes participants, N+(μ, σ )

indicates a normal distribution with mean μ and standard

deviation σ , truncated to strictly positive values (we use

Greek letters for parameters that are shared across the entire

group of participants).

Samples were drawn from the posterior distribution over

parameters by Markov chain Monte-Carlo, with propos-

als generated by differential evolution (Turner, Sederberg,

Brown, & Steyvers, 2013). We ran 20 parallel chains, with

5,000 iterations for burn-in followed by 3,000 iterations

after convergence. Initial samples for group-level parame-

ters were drawn from the prior distributions. Initial samples

for individual-level parameters were drawn from broad dis-

tributions covering more than double the width of parameter

values observed in other fits of the LBA model to perceptual

decision-making experiments.

The posterior distributions over the parameters of this

model were used to calculate point estimates of decision

caution settings, for every participant, with our point esti-

mate being the mean of the distribution. As is standard,

decision caution was operationalized as the average amount

of evidence accumulation required to trigger a decision

(b − A
2 , see also Forstmann et al., 2010, 2011). Decision

caution was calculated this way for both accuracy-emphasis

and speed-emphasis conditions.

Our second analysis involved an integrated model which

jointly addressed decision thresholds and need for clo-

sure scores. Although the correlation of decision threshold

estimates and need for closure scores is helpful in under-

standing that these measures are related, such an analysis

still leave the question as to whether both sources of data

can be accounted for under a single, joint process model,

and whether this single model can adequately account for

empirical data (de Hollander, Forstmann, & Brown, 2016).

In addition, the correlation analysis only focuses on a point

estimate of decision threshold, which has been criticized

by researchers in the past (Kruschke & Liddell, 2015;

Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2016),

whereas our joint model uses the full posterior distribution.

Using a single-step, joint model approach to the analysis

of related but separate data streams has several impor-

tant advantages—for recent and in-depth discussions of

these issues, see de Hollander et al. (2016), Forstmann

et al. (2015). As a concrete example, consider a potential

weakness of the more traditional analysis presented above.

Imagine a participant for whom there were two different

parameter settings which led to nearly-equivalent goodness

of fit (this is quite plausible, with finite sample sizes).

If one of those parameter settings provided marginally

better goodness-of-fit than the other, but was also inconsis-

tent with the participant’s need for closure score, then the

other parameter setting would never be discovered. Such

anomalies can occur in the traditional separate-streams anal-

ysis because the information contained in need for closure

scores is not allowed to influence estimates of decision-

making parameters. That is a sub-optimal approach, given

the hypothesis to be investigated is that need for closure is

related to decision-making parameters.

For our joint-model analysis, we took the relationship

between decision threshold and need for closure to its log-

ical extreme and removed all individual subjects’ threshold

parameters from the model, replacing them instead by a

single group-level threshold parameter, modulated for indi-

viduals by their measured need for closure scores. The logic

of this analysis is illustrated in the bottom row of Fig. 2.

For each participant we estimated only five parameters

(down from seven parameters in the initial analysis). Those

parameters were A/b, t0, v, vincorrect,speed and s, with

the same hierarchical and prior specification as in the ini-

tial analysis, except for one difference: in order to more

accurately make need for closure a function of decision

threshold, A was estimated as a proportion of b, now being

A/b. The prior on μ for parameter A/b was a normal dis-

tribution truncated to the unit interval, with mean 0.5 and

standard deviation 0.3. Importantly, there are no individual-

subject parameters that can explain differences between
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participants in the speed-emphasis and accuracy-emphasis

conditions. We estimated a single threshold parameter, sep-

arately for speed and accuracy emphasis conditions, which

was shared among the entire group of participants (yspeed

and yaccuracy). Any variation from this group threshold in

each condition was only allowed as a function of the par-

ticipant’s need for closure score, modulated by an estimated

parameter for the group of participants, again separately

for the speed and accuracy emphasis conditions (kspeed and

kaccuracy , for the speed and accuracy conditions, respec-

tively). That is, the decision threshold for the ith partic-

ipant was set at yspeed +
kspeed

NFCi
for the speed condition,

and yaccuracy +
kaccuracy

NFCi
for the accuracy condition, where

NFCi was the ith participant’s need for closure score. The

priors for the group threshold parameters, y, were identical

for each emphasis condition, being N+(4, 3). The priors for

the NFC linking parameters, k, were also identical for each

emphasis condition, being N+(0, 3).

This new model was dramatically more constrained than

the standard model estimated in the initial analysis. The

standard model used a total of 343 parameters to explain

the entire data set (7 individual-level parameters for each

participant, and 14 group-level parameters to constrain the

distributions of the individual-level parameters across sub-

jects). The constrained model in this subsequent analysis

used 249 parameters (5 individual-level parameters per

participant, 10 group-level parameters to constrain the dis-

tributions of the individual-level parameters, and an extra 4

fixed parameters that were shared across individuals).

Results

In the first experiment, no participants yielded outlying or

exceptional scores for need for closure (z-scored range:

[−3.1, 1.5]). Basic descriptive statistics for the decision-

making and NFC data are presented in Table 1.

We first established that performance on the perceptual

decision-making task covaried with need for closure. We

calculated mean response time separately for data from

Table 1 Displays the descriptive statistics for the first experiment.
The columns show the mean response time (MRT) and proportion
correct (PC) for the speed emphasis (Speed) and accuracy emphasis
(Acc), as well as the need for closure (NFC) scores

Mean Speed MRT Acc MRT Speed PC Acc PC NFC

0.69 1.29 .81 .86 4.44

Median 0.66 1.19 .81 .89 4.49

St Dev 0.15 0.47 .08 .07 0.66

Minimum 0.47 0.70 .62 .68 2.37

Maximum 1.19 3.40 .94 .97 5.44

speed-emphasis and accuracy-emphasis conditions, sepa-

rately for each individual. Mean response times from the

speed-emphasis condition showed a statistically reliable (at

the α = .05 level) correlation with need for closure scores

(r = −.29). This correlation was in the expected direction,

with higher need for closure associated with faster decision-

making. There was no reliable correlation between need for

closure scores and mean RT from the accuracy-emphasis

condition.

Mean response time in a decision-making task is the

product of many cognitive elements. We used a decision-

making model to establish whether the observed correlation

between mean response time and need for closure was really

due to changes in the balance between caution and urgency,

as opposed to changes in other things such as process-

ing speed, or perceptual and motor delays (middle row of

Fig. 2). The joint distributions over response time and accu-

racy were used to estimate the parameters of the LBA model

(Brown & Heathcote, 2008). The model parameters yielded,

for each individual, estimates of: the threshold amount of

evidence required to trigger a decision, separately for deci-

sions made under speed pressure and made under accuracy

pressure; the time taken by perceptual and motor delays;

speed of evidence accumulation; and the variability in prior

decision bias and processing speed. Our specification of this

model fit the data well, as shown in Fig. 3a.

We calculated the correlation—across participants—of

parameter estimates with need for closure scores, for all

parameters. As hypothesized, the only parameters for which

these correlations were statistically significant were the

parameters that influence the balance between caution and

urgency. The model-parameter-based measure of caution

calculated from data from the speed-emphasis conditions

correlated reliably with with need for closure (r = −.32).

The same caution measure calculated from data from the

accuracy-emphasis condition did not correlate reliably with

need for closure (r = −.05). Consistent with our hypothe-

sis, correlations with need for closure were specific to just

the threshold parameters: all correlations of other model

parameters with need for closure were smaller, and not sig-

nificantly different from zero: t0, r = .16; v, r = .11;

vincorrect , r = .2; and s, r = .24.

A joint model In order to attempt to account for both

latent variables within a single process model, we devel-

oped a mathematical decision-making model that linked

personality-level information (need for closure scores) with

the speed-accuracy tradeoff in perceptual decision-making.

This link was incorporated in a generative model (bot-

tom row of Fig. 2) such that need for closure scores

replaced the subject-by-subject estimates for the threshold

parameter. This eliminated some free parameters from the

model, replacing them instead with questionnaire data. In
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particular, the model allowed no differences between partic-

ipants for the threshold setting, both under speed-emphasis

and accuracy-emphasis conditions. Both conditions were

only allowed to have subject-by-subject variation through

their need for closure score, as a function of the linking

parameter, k.

The fit of the model to all individual participants is shown

in Fig. 3b. Despite to the strong constraints placed on the

model—with no parameters available to account for the dif-

ferences between speed-emphasis and accuracy-emphasis

conditions for individual subjects—the model still provides

a reasonable account of the data. The integrated model’s use

of need for closure scores to set threshold parameters nat-

urally accounts for the increasing difference between data

from speed-emphasis and accuracy-emphasis conditions as

need for closure increases.

If need for closure was not contributing to the joint

model, and therefore not linked to the decision thresh-

old, the linking parameter k would be zero. Instead, under

speed emphasis we found that the posterior distribution over

kspeed was well above zero, with the 99% highest poste-

rior density interval covering [1.742, 3.77]. In addition, a

Savage-Dickey test (Wagenmakers, Lodewyckx, Kuriyal, &

Grasman, 2010) yielded strong evidence against the hypoth-

esis that kspeed = 0 (BF10 > 2 × 106), also indicating

that the linking parameter was reliably greater than 0. As

expected from the previous correlations, we found the oppo-

site for the accuracy emphasis condition, with the 99%

highest posterior density interval being close to 0, cover-

ing [0.002, 2.267], and a Savage-Dickey test yielding weak

evidence in favor of the null hypotheses kaccuracy = 0

(BF01 = 1.9). Even with these very strict assumptions, and
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Fig. 3 Joint cumulative distributions over response times and choices
for Experiment 1 (panels a and b) and Experiment 2 (c and d). In each
panel, data are represented by circles, with red and green for incorrect
and correct responses. The left-most circle is the 10th percentile, aver-
aged over subjects, the next circle is the 20th percentile, and so on up
to the 90th percentile. Model fits are shown by the same percentiles
calculated from posterior predictive data, indicated by the solid lines.
a The left and right pair of distributions are for speed-emphasis and
accuracy-emphasis conditions, respectively, in Experiment 1. Posterior

predictive data are from the model with free threshold parameters. b

As for A, except that posterior predictive data are from the model with
threshold parameters determined by NFC scores. c Experiment 2, with
circles, squares, triangles, and diamonds, used to show data from the
0, 5, 10, and 40% motion coherence conditions, respectively. Poste-
rior predictive data were generated from the model with free threshold
parameters. d As for C, except that posterior predictive data were gen-
erated from the model where threshold parameters were determined by
NFC scores
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no free parameters for decision thresholds for individual

participants, the integrated decision-making model provided

a good account of the data.

In addition, to ensure the robustness of the method, we

carried out a permutation test on the joint model. This

involved fitting the same joint model to the same data,

except with the NFC scores shuffled randomly between

participants. This ensures that the NFC scores were—

by design—not related to the decision thresholds. If our

method is effective in only detecting when there is a true

relationship between threshold and NFC, then we would

expect to observe evidence in favor of the null hypothe-

sis, i.e. k = 0. Analysis of the permuted data set sup-

ported this, showing both a Savage-Dickey ratio in favor

of k = 0 for the accuracy emphasis condition (BF01 =

3.3, HDI [0.003,1.396]) and with no conclusive preference

for the speed emphasis condition (BF10 = 1.25, HDI

[0.025,1.366]).

Lastly, in order to quantitatively assess how well the joint

model fit the data, we compared it to two other models:

the original, freely estimated model, and a model that only

estimated a single threshold shared across all participants

for each condition (allowing for no individual differences).

We performed these comparisons using the model selec-

tion metric WAIC (Vehtari, Gelman, & Gabry, 2015),

and it should be noted that throughout this paper we have

chosen to calculate WAIC using the standard approach,

and report the expected log pointwise predictive density

(elpdwaic). This means that larger WAIC values indicate

a superior model. The NFC joint model clearly outper-

formed the single-threshold model (joint model WAIC =

−10137, fixed model WAIC = −12427.9), showing

that the inclusion of NFC was justified, and resulted in a

substantially improved fit. However, the freely-estimated

model outperformed both of these alternatives (WAIC =

−9820.2), suggesting that NFC should not be considered

as a complete replacement for freely-estimated decision

thresholds.

Discussion

Experiment 1 led to three key findings. Firstly, we found

that NFC scores showed a reliable negative correlation with

both the task mean reaction time, as well as the partici-

pant’s decision threshold, when the participant was under

speed emphasis, suggesting a relationship between NFC

and people’s decision urgency in situations requiring speed.

However, no such relationship was found in the condi-

tion where accuracy was emphasized. Secondly, we found

that NFC could successfully be integrated into a process

model of decision-making (the LBA), replacing the deci-

sion threshold without causing severe decrements in the

goodness of fit. We also found strong evidence for the link-

ing parameter to be greater than zero in the speed-emphasis

condition, k > 0, confirming that NFC was associated with

threshold settings. Lastly, we found that the freely-estimated

LBA model still outperformed the joint model, indicating

that not all of the variation in decision threshold could be

explained by need for closure.

An interesting, but unexpected finding was that the rela-

tionship between need for closure and decision threshold

was limited to decisions made under speed emphasis. A

possible reason for this finding could be that subject-to-

subject variation in participants decision-making strategy,

and therefore threshold setting, is much greater in accuracy-

than speed-emphasis conditions, obscuring any potential

relationship with NFC. Previous research has found that

participants behave very similarly when under accuracy-

emphasis as they do when under no instructions at all,

which suggests that performance under accuracy empha-

sis reflects the a default, unconstrained strategy (Forstmann

et al., 2008). We examine the robustness of this finding in

Experiment 2, but replicating the speed-emphasis condition

only. Experiment 2 also employed a much larger sample

of participants, by using group-wise recruitment methods

(although this also leads to higher rates of non-compliance

with experiment instructions). Finally, Experiment 2

extends the previous results to a new and more widely-

used perceptual decision-making task, using random dot

motion.

Experiment 2

Method

Participants Another 153 participants were recruited from

an undergraduate psychology pool, who were awarded

course credit for participation. Data from 23 participants

were removed due to poor accuracy (<90%) in the easiest

trials in the task (40% motion coherence), and data from 23

participants were removed due to failure to comply with the

speed-emphasis instructions (mean response times above

1.5 s, which is well above the maximum mean response time

found in the speed emphasis condition of Experiment 1 of

1.2 s). Additionally, the first block of all participants’ data

was considered as practice data, and were not analyzed.

Procedure The need for closure questionnaire was admin-

istered in an identical fashion to the first experiment. How-

ever, in this experiment all participants firstly completed

the perceptual decision making task, and then the need for

closure survey, as order of administration was found to not

effect the results in the first experiment. For the random
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dot motion perceptual decision task in Experiment 2, a

cloud of 40 white dots appeared on a black background

on the screen at the start of each trial, with each dot hav-

ing a diameter of 3 pixels. Within a trial, the dots always

remained within a 100 × 100 pixel box in the center of the

screen, and any dot that left this box was immediately ran-

domly replaced within it. During each trial, a portion of

the dots moved in a coherent direction towards either the

top-left or top-right of the screen, with the dots that were

moving coherently being re-sampled on every frame, at a

frame rate of 15 Hz. The portion of dots moving in a coher-

ent direction towards either the left or the right is known

as the “motion coherence”. We used four different levels

of coherence, randomly mixed from trial-to-trial: 0, 5, 10,

and 40%.

Participants indicated the direction that the dots were

moving using the keyboard. Participants were instructed

to respond as quickly as they could while maintaining a

reasonable level of accuracy. If participants made an error

on an easy (40% coherence) trial, a message of “ERROR

ON EASY TRIAL” was display on the screen in red. The

second form of feedback occurred if a participant took

longer than 5 s on a trial, where a message of “Trial timed

out” was displayed in white, following which the partici-

pant was asked to press the space bar to continue with the

task. All participants took less than one hour to complete

both the perceptual task and the need for closure question-

naire. Participants completed 5 blocks of 48 trials each, with

each block having 6 trials of each combination of motion

coherence and direction, in random order.

Analyses The analyses of Experiment 2 were very simi-

lar to those of the first experiment. The two accumulators

represented the “left” and “right” responses for this exper-

iment, rather than representing “light” and “dark” as in the

first experiment. The two accumulators shared all param-

eters except for drift rates. We allowed separate drift rate

distributions for each coherence condition. In addition to

this, the two accumulators shared the same drift rate dis-

tribution for the 0% coherence condition, as this condi-

tion presented no evidence for either alternative. Rather

than the incorrect response’s distribution mean being fixed

at zero, it was freely estimated for all other coherence

conditions. As there was only a speed condition in this

experiment, there was no need for separate thresholds for

speed and accuracy. The full model specification, including

prior, was:

Data level :

(RTi, respi) ∼ LBA(Ai, bi, t0,i,

v0,i, v5.c,i, v10.c,i, v40.c,i,

v5.i,i, v10.i,i, v40.i,i, si)

Group level :

Ai ∼ N+(μA, σA)

bi − Ai ∼ N+(μb, σb)

t0,i ∼ N+(μt0, σt0)

v0,i ∼ N+(μv0, σv0)

v{5,10,40}.c,i ∼ N+(μv,{5,10,40}.c, σv,{5,10,40}.c)

v{5,10,40}.i,i ∼ N+(μv,{5,10,40}.i, σv,{5,10,40}.i)

si ∼ N+(μs, σs)

P rior distributions :

μA, μb ∼ N+(2, 2)

μv0, μv{5,10,40}.i ∼ N+(2, 3)

μv{5,10,40}.c ∼ N+(3, 3)

μt0 ∼ N+(.5, .5)

μs ∼ N+(1, 1)

σA, σb ∼ Ŵ(1, 1)

σv0, σv{5,10,40}.{c,i} ∼ Ŵ(1, .5)

σt0, σs ∼ Ŵ(.2, .2)

For the second experiment, 28 MCMC chains were ran

in parallel for 4,000 iterations to burn-in, followed by 1,000

iterations after convergence. Initial samples for both the sub-

ject and group-level distributions were drawn from wide

distributions, similar to those of the initial experiment. As

with Experiment 1, the caution parameter was calculated as

b − A/2, using the mean of the posterior distributions as a

point estimate.

Next, we applied the same approach as the second anal-

ysis of the first experiment, although we now only had a

single set of linking parameters due to there being no accu-

racy emphasis condition in this experiment. As with the

analysis for the first experiment, the same hierarchical and

prior specification was used as the first analysis, with the

exception of A being estimated as a proportion of b. The

prior on μ for parameter A/b was changed to respect the

new definition, using a normal distribution truncated to the

unit interval, with mean 0.5 and standard deviation 0.3.

Again, a decision threshold was generated for each partic-

ipant by the equation y + k
NFCi

, with the same priors on

these parameters as in Experiment 1. We drew 4,000 sam-

ples from each chain during burn-in, followed by 1,000

samples after convergence.

Results

Table 2 provides descriptive statistics for the decision-

making and need for closure data from Experiment 2.
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Table 2 Displays the descriptive statistics for the second experiment

MRT PC NFC

Mean 1.10 .78 4.41

Median 1.13 .78 4.44

St Dev 0.22 .06 0.62

Minimum 0.56 .62 2.98

Maximum 1.50 .88 6.22

The columns show the mean response time (MRT) and proportion cor-
rect (PC) for the speed emphasis condition used, as well as the need
for closure (NFC) scores

The range of need for closure scores were not exception-

ally large or small (z-scored range [−2.29, 2.91]), though

participants did appear to show more variability than the

first experiment. The correlation between need for closure

scores and the response times of the perceptual task was

weaker (r = −.15), and was no longer reliable, t(105) =

−1.57, p = 0.12. The parameter-based measure of response

caution found through application of the LBA also corre-

lated more weakly with need for closure score (r = −.12),

although maximum threshold distance (b) was found to cor-

relate better (r = −.17). However, both were not found

to be reliable (p > 0.05). Unlike the first experiment, two

parameters correlated with need for closure score slightly

more than response caution: v0, r = .14; s, r = .15. How-

ever, all other parameters correlated with need for closure

score less than response caution: t0, r = −.118; v5.c, r =

.004; v10.c, r = −.002; v40.c, r = .03; v5.i , r = .05;

v10.i , r = .03; and v40.i , r = −.1. Additionally, all other

parameters correlated with need for closure score less than

maximum distance from threshold.

In order to integrate the need for closure scores with the

speed-accuracy tradeoff in the perceptual task, we used the

same mathematical function as the first task for our single

speed emphasis condition, being: bi = y + k
NFCi

, where bi

and NFCi are the decision threshold and need for closure

score for the ith participant, respectively. The parameter

y is the population-level threshold intercept, and k is the

population-level constant which links threshold with need

for closure. Our analysis showed that the central result from

the first experiment was replicated in the second experi-

ment: the parameter k, which measures the association of

need for closure scores with thresholds, was reliably differ-

ent from zero. The 99% highest posterior density interval

for k did not include zero, covering [0.06, 3.61]. In addition,

a Savage-Dickey test yielded reliable evidence against the

hypothesis that k = 0 (Bayes factor 6.2-to-1). The Bayes

factor from the Savage-Dickey test was fairly robust against

prior specification; for example, it remained greater than

2.1-to-1 against the hypothesis of k = 0 for a range of priors

as narrow as N+(0, 1) (2.15) and as broad as N+(0, 6) (8.3).

To put these prior distribution in perspective, compare to

the mean posterior estimate, which was k = 1.67. Despite

the lack of reliable correlations in descriptive statistics and

separately-estimated model parameters, the joint modeling

of Experiment 2 confirmed the central finding that need for

closure and decision thresholds share some variance, at a

deep level.

We also performed the same robustness check using ran-

domly permuted data for Experiment 2 as in Experiment 1.

Again, we found evidence for the hypothesis that k = 0

when using the randomly permuted data (BF01 = 4.3,

HDI [0.001, 1.174]).

Lastly, we again performed the same comparison

between potential candidate models to help assess how well

need for closure accounted for the threshold value when

compared to a freely estimated model, and a model with no

variation in threshold. Although the differences in model fit

were smaller than in Experiment 1, we again found that the

joint model was preferred over the model with no individual

differences (joint model WAIC = −14324.7, fixed model

WAIC = −14327.0), suggesting some impact of need for

closure, though the difference is quite small (2.3), suggest-

ing a much weaker effect than Experiment 1. Again, the

freely estimated model was the best (WAIC = −14232.2),

suggesting that need for closure can’t account for all of the

variance in threshold.

Discussion

The aim of our second experiment was to provide a con-

ceptual replication of the first, with a new paradigm and

larger sample size. Experiment 2 provided some interest-

ing findings. Firstly, unlike the Experiment 1, we failed to

find a reliable correlation between reaction time and need

for closure, or decision threshold and need for closure. We

also found a great deal less divergence between the other

parameters and need for closure. However, when applying

our joint model analysis, we still found need for closure

to be related to decision threshold, and to do a good job

of accounting for experimental data when used in place

of the threshold. These results are consistent with the idea

that need for closure and decision thresholds share some

common variance, but that decisions under speed-emphasis

are required to make this relationship apparent. It seems

likely that, by removing the accuracy-emphasis condition

in Experiment 2, the speed-emphasis instructions were less

effective than in Experiment 1.

General discussion

The balance between caution and urgency in decision-

making has been extensively studied, especially for rapid



Mem Cogn (2017) 45:1193–1205 1203

decisions about simple stimuli. This balance is known as

the “speed-accuracy tradeoff” and is explained by dominant

accumulator-based theories of decision-making. In those

theories, decision thresholds set the amount of evidence

that is required to trigger a decision, and these thresh-

olds manage the speed-accuracy tradeoff. The nature and

operation of decision thresholds has been elaborated using

neurophysiological recordings from brain imaging and from

single-neuron recordings, and also using behavioural data

including joint distributions over response time and accu-

racy.

Our study found a potential link between response cau-

tion in rapid decision-making and a previously unrelated

personality trait known as “need for closure”. Need for clo-

sure describes a stable, long-term personality trait, which

presents on a very different time-scale to that of the rapid

decision speed-accuracy tradeoff. Despite important differ-

ences in their administration, which is bound to result in

unique sources of noise between measures, and the differ-

ent time-scales of caution which these measures attempt

to assess, we found a link between these constructs in

Experiment 1. These findings showed that our model-based

measure of response caution (i.e. speed-accuracy tradeoff)

in a speed-emphasis condition of a perceptual task not

only correlated sizeably with need for closure scores, but

that integrating need for closure scores into a mathemati-

cal model where need for closure score replaced response

caution produced a good fit to the data, even with this

extra constraint. These findings suggest the potential of

some general underlying caution construct, which influ-

ences some part of both people’s short-term caution states

(response caution), and long term caution states (need for

closure/desire for structure and lack of ambiguity).

Although future research is needed to uncover why the

relationship was only present in the speed-emphasis condi-

tion, and not in the accuracy-emphasis condition, one poten-

tial reason mentioned in the first experiment is the default

strategy participants have been found to use under accuracy

emphasis (Forstmann et al., 2008). Previous research has

found participants perform similarly when under no instruc-

tion, or accuracy emphasis, suggesting that participants treat

accuracy emphasis conditions as one where they should per-

form naturally. This could potentially result in a greater

variability in the decision threshold seen under accuracy

emphasis, with different participants using their different

default strategies, when compared to speed-emphasis where

participants are all focused on a single strategy.

In addition, we were able to partially replicate this find-

ing, with a much larger sample of participants, and a

different perceptual task. Although the correlation between

response caution and need for closure score was much

weaker, and no longer statistically reliable, the same trend

was still observed. The strength of the link was much lower

than in Experiment 1 (based on an independent streams

analysis), but an integrated model analysis still supported a

link between the two measures, and provided an adequate

fit to the data. In addition, although our exclusion criteria

were theoretically based upon task performance expecta-

tions, meaning that they are not subject to bias, there were an

unusually large amount of participants who performed the

task incorrectly or poorly, and therefore, had to be excluded.

Taken in combination with the weakened size of the rela-

tionship between need for closure and decision threshold in

this experiment, the results of the replication should prob-

ably be interpreted with some caution, and further research

is needed to more conclusively confirm and explore this

relationship.

The weakened support for the main hypothesis observed

in the second experiment raises questions about the effect,

and about our second experiment. It is possible that the dif-

ferent perceptual tasks used in the two studies contributed

to the different results. Although there is no obvious theo-

retical reason as to why a brightness task’s response caution

should be a better measure than that of a random dot

motion task, one could speculate that the different levels

of difficulty may have effected the measure of response

caution. Research into speed-accuracy tradeoffs and perfor-

mance optimality have suggested that in paradigms where

there are multiple levels of difficulty intermixed into a task,

participants may use a response caution setting which col-

lapses over the course of a decision (Cisek, Puskas, &

El-Murr, 2009; Ditterich, 2006; Drugowitsch, Moreno-Bote,

Churchland, Shadlen, & Pouget, 2012; Thura, Beauregard-

Racine, Fradet, & Cisek, 2012). As our model assumes a

fixed response caution setting over the course of a deci-

sion, if participants were using some collapsing setting then

this may have led to inaccuracy in our measured response

caution, which could potentially explain the diluted effect.

A second potential reason for the diluted effect in the

second experiment is that the link between response cau-

tion and need for closure is actually weaker than originally

thought, and that the first experiment overestimated the

strength of such a link. However, the finding of the same

trend of results in the second experiment appears to suggest

that some link, despite its weak strength, is in fact present.

Alternatively, one could also suggest that the strength of the

link measured in the first experiment was actually correct,

and the second experiment’s finding was an underestima-

tion of the effect. Further research is needed to help confirm

the existence of this link between response caution and need

for closure, and if so, to narrow down more accurately the

exact strength of this relationship. For example, sampling

differences between the two studies need to be investigated.

Lastly, one could potentially take the difference between

our correlation analysis and our joint model analysis as

being reflective of the differences between point-estimate
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analysis, and using the full Bayesian posterior. Joint mod-

eling of data streams which are hypothesized to be related

allows the discovery of relationships which can be obscured

by separate analyses (de Hollander et al., 2016).

Future research should also explore how other personal-

ity constructs may relate into the speed-accuracy tradeoff, or

show clear paths of divergence. Prior research has demon-

strated that the need for closure is associated with several

variables that may also be related to speed-accuracy trade-

off, such as impulsivity, the need for cognition, and fear

of invalidity (Webster & Kruglanski, 1994b). However, the

moderate size of these associations confirms the divergent

validity of the need for closure construct (absolute rs ≤

.28). Consequently, although these other variables may be

related to speed-accuracy tradeoff, they are unlikely to fully

account for the effects that we observed. It would be use-

ful to follow up such speculation, and investigate whether

need for closure is in fact the main construct that relates the

speed-accuracy tradeoff, and not one of the constructs that

it shares a relationship with.
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