
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

12-2014

Need for Data Processing Naturally Leads to Fuzzy Logic (and Need for Data Processing Naturally Leads to Fuzzy Logic (and

Neural Networks): Fuzzy Beyond Experts and Beyond Probabilities Neural Networks): Fuzzy Beyond Experts and Beyond Probabilities

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Hung T. Nguyen
New Mexico State University - Main Campus, hunguyen@nmsu.edu

Songsak Sriboonchitta
Chiang Mai University, songsakecon@gmail.com

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Engineering Commons

Comments:

Technical Report: UTEP-CS-14-79

Recommended Citation Recommended Citation
Kreinovich, Vladik; Nguyen, Hung T.; and Sriboonchitta, Songsak, "Need for Data Processing Naturally
Leads to Fuzzy Logic (and Neural Networks): Fuzzy Beyond Experts and Beyond Probabilities" (2014).
Departmental Technical Reports (CS). 870.
https://scholarworks.utep.edu/cs_techrep/870

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/870?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Need for Data Processing Naturally Leads to

Fuzzy Logic (and Neural Networks): Fuzzy

Beyond Experts and Beyond Probabilities

Vladik Kreinovich1, Hung T. Nguyen2,3, and
Songsak Sriboonchitta3

1Department of Computer Science
University of Texas at El Paso

500 W. University, El Paso, TX 79968, USA
email vladik@utep.edu

2Department of Mathematical Sciences
New Mexico State University

Las Cruces, New Mexico 88003, USA
email hunguyen@nmsu.edu

3Faculty of Economics, Chiang Mai University
Chiang Mai, Thailand, email songsakecon@gmail.com

Abstract

Fuzzy techniques have been originally designed to describe imprecise
(“fuzzy”) expert knowledge. Somewhat surprisingly, fuzzy techniques
have also been successfully used in situations without expert knowledge,
when all we have is data. In this paper, we explain this surprising phe-
nomenon by showing that the need for optimal processing of data (in-
cluding crisp data) naturally leads to fuzzy and neural data processing
techniques.

This result shows the potential of fuzzy data processing. To maxi-
mally utilize this potential, we need to provide an operational meaning
of the corresponding fuzzy degrees. We show that such a meaning can
be extracted from the above justification of fuzzy techniques. It turns
out that, in contrast to probabilistic uncertainty, the natural operational
meaning of fuzzy degrees is indirect – similarly to the operational meaning
of geometry and physics in General Relativity.

1

1 Formulation of the Problem: a Search for Ex-
planation of Fuzzy Techniques’ Success and a
Related Search for the Meaning of Fuzzy De-
grees

Need for processing imprecise (“fuzzy”) expert knowledge. In many
areas of human activity – medicine, cooking, arts, sports – there are some
individuals who are much better than others. In each subarea of medicine,
there are a few skilled doctors who diagnose and treat the corresponding diseases
better than others. There are few skilled chefs whose dishes taste much better,
drivers whose driving is better – is smoother and/or saves more fuel, etc.

It is not possible for the few best doctors to treat all the patients, for the few
best chefs to cook for all the restaurants, and for the best drivers to drive all the
buses. It is therefore desirable to incorporate the skill of the best experts into
an automated computer-based system that would help others. In other words,
we would like to have an expert system that helps medical doctors diagnose
and treat diseases, helps drivers drive cars, etc. A natural idea is to elicit the
corresponding knowledge from the drivers. The problem is that this knowledge
rarely comes in precise computer-understandable form. A skilled driver, when
asked about a specific road situation, does not say “and then I press the brakes
with the force of 1.0 Newtons for 0.6 seconds”, the driver usually says something
like “and I brake a little bit for a short period of time, to adjust my speed”. To
incorporate such expert knowledge into a computer-based system, we therefore
need to describe the corresponding imprecise (“fuzzy”) terms like “a little bit”
and “short” in precise computer-understandable terms.

Fuzzy techniques as a way of describing imprecise expert knowledge.
Sometimes, the expert statements are precise. For example, an expert driver
may say that if the car’s speed accidentally goes above the speed limit (e.g.,
100 km/h), the driver should brake. The condition of this rule is very clear
(“crisp”): it is satisfied for any velocity v > 100 and it is not satisfied for any
velocity v < 100. The corresponding condition v > 100 is either true or false,
which, in the computer, is usually represented as 1 or 0.

In contrast, words like “short” often have no precise meaning. The expert
may say that 0.1 sec is for sure short, while 3.0 sec is for sure not short, but
he may be hesitant about intermediate values like 1.0 sec. To describe such
hesitancy, Lotfi Zadeh proposed, in his pioneer paper [15], to characterize a
statement like “1.0 sec is short” by a value between 0 and 1 describing the
degree to which, to the expert, 1.0 sec is short. This idea formed the basis of
fuzzy logic.

The introduction of such degrees necessitates other changes. For example,
a condition for an action is sometimes a propositional combination of different
statements. For example, an expert may have a special rule describing what to
do if the nearby car is close and starts to brake hard. For precise statements,
it is easy to determine the truth value of the “and”-combination if we know

2

the truth values of both component statement. It is therefore desirable, in the
fuzzy case, to similarly estimate the degree to which the “and”-statement is
true, based on the degrees to which both original statements hold. For that, we
need to extend the “and”- (and “or”-) operations from the 2-valued set {0, 1}
of the classical logic to the whole interval [0, 1]. In [15], Zadeh proposed to use
the simplest such extensions min(a, b) and max(a, b) – which remain among the
most widely used fuzzy operations, as well as more complex functions, such as
a · b and a+ b− a · b.

As a result of applying these “and”- and “or”-operations to the original
expert rules, we get different possible conclusions and recommendations x, each
with its own degree of confidence µ(x). These recommendations can serve as
the desired advice and help for other medical doctors, drivers, etc. In some
practical situations, however, we need to go beyond that: for example, if we
use this scheme in an automatic controller, we need to transform such a fuzzy
conclusion µ(x) into a single value x. This operation is known as defuzzification

[5, 11]. The most widely used is centroid defuzzification x =

∫
x · µ(x) dx∫
µ(x) dx

. In

the discrete case, when we have finitely many values xi with degrees µ(xi), we

can use a discrete version of this defuzzification formula x =

∑
i

xi · µ(xi)∑
i

µ(xi)
.

Comment. It should be mentioned that centroid does not always work: e.g., in a
situation when a car encounters an obstacle on an empty road, we can go around
this obstacle either from the left, or from the right. When both situations are
equally possible, defuzzification of the corresponding function µ(x) of a turn
angle x will lead us, due to symmetry, to the value x = 0, that will lead us
heads-on into the obstacle :-(

Successes and challenges. Fuzzy techniques have led to many successful
applications, especially in intelligent control; see, e.g., [5, 11] and references
therein. However, there remain two main challenges.

The first challenge is that while fuzzy techniques have been invented to
describe imprecise expert knowledge, they are also often successful in situations
when no expert knowledge is present, when all we have is pure data. The second
challenge is that while, e.g., subjective probabilities have a precise operational
meaning – and thus, can be extracted from an expert by appropriate elicitation
procedures – there is no clear operational meaning of fuzzy techniques. As
a result, different experts may describe the same behavior by using different
degrees – and, moreover, some experts cannot meaningfully provide such degrees
at all.

What we do in this paper. In this paper, we show that the need for optimal
data processing naturally leads to fuzzy (and neural) techniques – which explains
the first challenge, and that this explanation naturally leads to an operational
meaning of fuzzy degrees.

This paper is aimed both at specialists in fuzzy as well as at the general

3

audience, ranging from sceptics – who we hope to convince that the use of fuzzy
techniques makes perfect sense – to many practitioners who use fuzzy techniques
without a good understanding of why and how these techniques work – to such
practitioners, prior empirical success is a good reason to use them. Because
of this intended general audience, we will sometimes describe, in some detail,
things which are clear to a fuzzy specialist – but we would advise this specialist
not to skip these parts: the things may be familiar, but our explanations for
these things will usually be more foundational (and thus, different from the
semi-empirical semi-heuristic explanations provided in most other texts).

Comment. It should be mentioned that while all the results presented in this
paper are new, similar (preliminary) results appeared earlier in [9].

2 Need for Data Processing Naturally Leads to
Fuzzy and Neural Techniques: Main Results

Decision making as an ultimate goal of data processing. The ultimate
goal of data processing is to make an appropriate decision: how to treat a
patient, how to drive a car, etc. In making a decision, we want to select an
alternative which is the best for the decision maker.

Decision making means optimization. For each two alternatives, the deci-
sion maker, if needed, has to decide which one is better. Usually, there is some
scale enabling the decision maker to describe his/her preferences by a number.
For example, we can compare each alternative with monetary gains or losses,
and thus find the amount of money which is equivalent to each alternative. An-
other scale is when we select a very good situation A1 and a very bad situation
A0 and compare each alternative with lotteries L(p) in which we have A1 with
probability p and A0 with the remaining probability A0.

Whatever scale we use, we assign a number u(a) to each alternative a, so
that the better alternatives correspond to larger values of u(a). In these terms,
we need to select an alternative a which maximizes the value of the objective
function u(a).

Dynamic character of decision making. Situations change. As a result,
the objective function also changes with time: it has the form u(t, a). Thus,
the alternative which was the best at one moment is not the best at the next
moment: a patient may develop an allergy to a medicine, a road situation may
change, etc. So, we need to make decisions under such changing conditions. In
other words, at each moment of time t, we need to select an alternative a(t)
that maximizes u(t, a).

Smooth changes in objective function and resulting changes in the
optimal decision. In most cases, small changes in a lead to small changes in
u(a); similarly, a small change in time also, in general, leads to small changes
in u(t, a). In precise terms, we can formulate this as requiring that u(t, a) be a
smooth (differentiable) function of its variables.

4

In general, when time t changes, the solution to the corresponding optimiza-
tion problem u(t, a) → max also changes smoothly with time – we can even
describe how exactly it changes, by taking into account that the optimal solu-

tion satisfies the equation
∂u

∂t
(t, a(t)) = 0; by differentiating this equation with

time, we get an explicit formula for
da

dt
.

However, sometimes, there is an abrupt change in optimal strategy: e.g.,
when the function has several local maxima, and the global maximum changes
from one local maximum to another one.

A simple mathematical example is when we have a sum of two Gaussian
functions u(a) = C− · exp(−(a+a0)

2)+C+ · exp(−(a−a0)2) corresponding to a
large value a0. For this function, when C− < C+, the maximum is attained for
a = a0, otherwise it is attained for a = −a0. So, if the values C−(t) monotoni-
cally increases from 0 to 1, while the value C+(t) monotonically decreases from
1 to 0, the maximizing value a, the maximizing value x will, at some moment
of time, switch from a = −a0 to a = a0.

The fact that optimization leads to discontinuity is well known in optimal
control theory, where such a behavior is known as a “bang-bang” control; see,
e.g., [4, 7].

Conclusion about data processing. On the local-time level, the optimal
alternative is a smooth function of time and of other parameters describing the
situation. On the global-time scale, we need to also take into account need for
discrete transitions.

Comment. This conclusion is in good accordance with the fact that, e.g., when
we walk, on the local-time level, we rely on an automatic neural-based mecha-
nism for moving our legs, but on the global level, we use (discrete) reasoning to
decide which way to go.

Often, decisions needs to be made fast. In many practical situations, be
it a patient in crisis or a car near an unexpected obstacle, we need to make
decisions in real time. It is therefore desirable to come up with algorithms that
will process data as fast as possible. Let us describe, both for smooth and for
discreet transformations, how this requirement translates into computations.

Case of smooth data processing: enter neural networks. Let us start
with describing the fastest way to perform smooth data processing.

In general, to minimize the time of a task, be it the task of digging a canal
or the task of performing computations, we need to select fastest devices for
performing this task, and to use as many such devices working in parallel as
possible – so that each device will get the smallest portion of the overall task
and thus, finish as soon as possible. For computational tasks, this means that
we need to divide the computational task into simplest (hence fastest) subtasks
that will be implemented in parallel.

Which are the simplest tasks? To perform each elementary computational
task, we can use different analog devices. Each such device transforms inputs

5

x1, . . . , xn into the corresponding output y = f(x1, . . . , xn); a natural way to
use such a device for computations is to generate signals proportional to given
inputs and use the resulting output. Generating such a signal takes time and
effort; so, to speed up computations – and to save energy needed for running
many such devices in parallel – it is desirable to use signals which are as weak as

possible. In other words, we use inputs of the type xi = x
(0)
i +∆xi, where x

(0)
i

are the original values, and the values ∆xi are small. When the signals are small,
any smooth function can be well approximated by its linear terms (first order
terms in its Taylor expansion). Thus, the simplest possible computational tasks
correspond to linear transformation. For electric signals, linear transformations
are straightforward: e.g., the sum corresponds to a simple merging of two or
more signals.

In general, the results of one computational unit serves as the input for
other computational units. In mathematical terms, this means that the overall
function computed by the corresponding parallel computational device is a com-
position of functions computed by individual units. The composition of linear
functions is always linear. Thus, to perform a generic (in particular, non-linear)
data processing, we need to supplement linear computational units with non-
linear ones. In general, the more inputs, the longer the computations. Thus, out
of all possible non-linear units, the fastest are the ones that compute functions
of a single variables. Thus, we conclude that the simplest computational devices
should use two types of computational units:

• linear (L) units, and

• non-linear (NL) units that perform a nonlinear transformation of one in-
put.

A parallel computational device should thus consist of several layers of devices
corresponding to different time of computations: layers of L units and layers
of NL units. The fewer layers, the faster the resulting computation. Also, the
fewer NL layers, the better – since L layers are the fastest. Thus, we are looking
for the fastest possible combination of layers that is a universal approximator,
i.e., that would allow us to approximate any given (continuous) function with
any given accuracy. As the following result shows, this leads to usual neural
networks.

Let us recall that a class of functions F is called a universal approximator
if for every ∆ > 0 and ε > 0 and for every continuous functions f(x1, . . . , xn),
there exists a function a ∈ F for which |f(x1, . . . , xn)− a(x1, . . . , xn| ≤ ε for all
tuples (x1, . . . , xn) for which |xi| ≤ ∆ for all i.

Proposition 1.

• A 2-layer network is not a universal approximator.

• Out of possible 3-layer networks with a single NL layer, only a L-NL-L
network is a universal approximator.

Comment. Functions computed by a L-NL-L network have the following form.

6

• The first L layer transforms the inputs x1, . . . , xn into several linear com-

binations ℓk =
n∑

i=1

wki · xi + wk0.

• Then, elements forming the NL layer transform these linear combinations
ℓk into values yk = sk(ℓk).

• Finally, the last L layer transforms the value yk into their linear combina-
tion y =

∑
k

Wk · yk +W0.

The resulting dependence

y =
∑
k

Wk · sk

(
n∑

i=1

wki · xi + wk0

)
+W0

is exactly what is computed by a 3-layer neural network; see, e.g., [1]. Thus,
smooth data processing naturally leads to neural networks.

Case of discrete (non-analog) data processing. For discrete data pro-
cessing, the fastest processing of two data values x1 and x2 is when we do not
perform any data processing at all, i.e., when we always return either x1 or x2.
A simple result shows that there are only two non-trivial functions with this
property.

Proposition 2. If f(x1, x2) is a continuous function whose is always equal to
either x1 or x2 and which is not always equal to x1 and not always equal to x2,
then either f(x1, x2) = min(x1, x2) or f(x1, x2) = max(x1, x2).

One might argue that the actual comparison also takes some computation
time. This is true, but, as the following result shows, this time is miniscule:

Proposition 3. For every n, deciding which of two n-bit numbers x1 and x2 is
smaller requires, on average, ≤ 2 bit operations.

So, in the discrete case, the fastest operations are min and max. Since both
functions simply select one of the inputs, any composition of these functions
will also only select one of the inputs. So, to represent functions whose values
differ from all the inputs, we need to supplement such operations with non-linear
functions. As as have mentioned earlier, the simplest non-linear functions are
functions of one variable. Thus, here we have layers of three types: Min, Max,
and NL (functions of one variable).

Proposition 4.

• 2-layer networks are not universal approximators.

• Out of possible 3-layer networks with a single NL layer, only NL-Min-Max
and NL-Max-Min networks are universal approximators.

7

Functions computed by NL-Min-Max networks have the form
f(x1, . . . , xn) = max(R1(x1, . . . , xn)), where Rk(x1, . . . , xn) =
min(fk1(x1), . . . , fkn(xn)). These functions are very common in fuzzy data
processing: they comes from Mamdani approach, where degrees Rk(x1, . . . , xn)
corresponding to different rules are combined by an “or”-operation (in this case,
max), and the membership functions fki(xi) corresponding to each rule are
combined by an “and”-operation (in this case, min). To be more precise, in gen-
eral, in the Mamdani’s approach, the rule base is applicable if one of the rules is
applied, and the applicability of an implication rule Ak1 & . . . &Ak,n−1 → Akn

is interpreted as the fact that its conditions are satisfied and its conclusion is
satisfied, i.e., as a conjunction Ak1 & . . . &¬Ak,n−1 &Akn.

Functions computed by NL-Max-Min networks have the form
f(x1, . . . , xn) = min(R1(x1, . . . , xn)), where Rk(x1, . . . , xn) =
max(fk1(x1), . . . , fkn(xn)). These functions correspond to the logical ap-
proach to fuzzy modeling and fuzzy control, where degrees Rk(x1, . . . , xn)
corresponding to different rules are combined by an “and”-operation (in this
case, min), and the membership functions fki(xi) corresponding to each rule
are combined by an “or”-operation (in this case, max). To be more precise, in
general, in the logical approach, the rule base is applicable if all the rules are
applicable, and the implication Ak1 & . . . &Ak,n−1 → Akn forming each rule
is interpreted as an equivalent disjunction ¬Ak1 ∨ . . . ∨ Ak,n−1 ∨ Akn. Thus,
discrete data processing naturally leads to fuzzy techniques.

Mamdani approach or logical approach? We have just shown that there
are two ways to approximate a general function by fuzzy data processing: as
an NL-Min-Max network corresponding to Mamdani approach, and as an NL-
Max-Min network corresponding to the logical approach. Which of these two
approaches is preferable?

From the pure computational viewpoint of approximation ability, both ap-
proaches work well. However, one of the important advantages of fuzzy ap-
proach in general is that the corresponding rules are interpretable. From this
viewpoint, as we will see, these two approaches differ. As we can see from the
proof of Proposition 4, when all the values f(x1, . . . , xn) of the approximated
function are in the interval [0, 1], then with an NL-Max-Min network, we get an

approximation in which all corresponding membership functions 1−f (ℓ)i (xi) are
normalized – i.e., the maximum of each of these functions is equal to 1. On the
other hand, the approximation that we provided for a Mamdani-type NL-Min-

Max network has a non-normalized function, with max
x1

(f
(ℓ)
1 (x1)) = f(x(ℓ)) < 1

for some ℓ. It turns out that this is not just a limitation of our proof, it is a
general limitation of Mamdani-type NL-Min-Max networks:

Proposition 5.

• Mamdani-type NL-Min-Max networks with normalized membership func-
tions are not universal approximators for continuous functions f(x) ∈
[0, 1].

8

• Logical-type NL-Max-Min networks with normalized membership functions
are universal approximators for continuous functions f(x) ∈ [0, 1].

What if we have limited parallelism. The above justifications apply when
we have unlimited parallelism. When the parallelization abilities are limited,
we may need more layers to perform data processing. Some example of such
multi-layer generalizations are actually efficiently used.

Example 1: a generalization of 3-layer neural data processing. Another
example is deep neural networks, where more than 3 layers are used; see, e.g., [2].

Example 2: a generalization of min-max fuzzy data processing. What
if, in Mamdani’s approach, we use general t-norms and t-conorms instead of
min and max?

A general t-norm can be approximated, with any given accuracy, by an
Archimedean t-norm which has the form f&(a, b) = ψ(ψ−1(a) + ψ−1(b)); see,
e.g., [10]. Similarly, a general t-conorm can be approximated by an Archimedean
t-conorm of the type f∨(a, b) = φ(φ−1(a) + φ−1(b)). The resulting Mamdani-
type function f(x1, . . . , xn) = f∨(R1(x1, . . . , xn), . . . , Rk(x1, . . . , xn), . . .),
where Rk(x1, . . . , xn) = f&(µk1(x1), . . . , µkn(xn)), can be computed by a net-
work of the type NL-L-NL-L-NL.

Example 3: a generalization of both neural and fuzzy data processing
techniques. What if we combine fast layers corresponding to continuous and
discrete data processing, i.e., linear, Min, and Max layers?

One possibility is to have Min-Max-L or Max-Min-L networks. They cor-
respond to a linear combination of different elements in the ordering x(1) <
. . . < x(n) of the original values x1, . . . , xn, a particular case of which is Yager’s
Ordered Weighted Average (OWA) combinations; see, e.g., [14].

These schemes are not universal approximators, since these functions are
linear on n subdomains.

Comment. It is worth mentioning that similar schemes L-Max-L and L-Min-L
are universal approximators. Indeed, each continuous function can be repre-
sented as the difference of two convex functions, and each convex function can
be represented as a maximum of linear functions; see, e.g., [13].

3 What Is the Meaning of Fuzzy Degrees?

What is the meaning of fuzzy degrees: formulation of the problem.
The above results show that fuzzy techniques can be, in principle, effectively
used in data processing. A natural question is: how can we use these techniques?
how can we elicit the corresponding fuzzy degrees? In other words, what is the
operational meaning of fuzzy techniques?

People can usually easily qualitatively compare their degree of confidence in
different statements, but what is needed is a quantitative description of these

9

degrees of certainty. Some people have no problem marking their degrees on a
numerical scale, but for others, this is a big problem, since to them, it is not
clear what exactly is the meaning of estimates like “8 on a scale from 0 to 10”.
We thus need to come up with an operational meaning of fuzzy techniques.

Analysis of the problem. Fuzzy degrees themselves are not directly observ-
able. What is observable is the result x of applying a defuzzification procedure
to the given membership degrees µ(x). Let us use this fact to explain how fuzzy
degrees can get an operational meaning.

Resulting meaning of fuzzy degrees: case when we fix a defuzzification
procedure. Let us start with the case when the defuzzification procedure
is fixed – e.g., as the centroid defuzzification. In this case, when the expert
expresses his or her degree of confidence by a certain word (or combination of
words) w from natural language, a reasonable way to elicit the corresponding
degree µ ∈ [0, 1] is to ask, to this expert, a question of the following type:

• assume that we have two possible values x0 and x1, the value x0 is defi-
nitely possible, while the value x1 is possible with degree w;

• what is then a reasonable control value x to select?

For example, if we use centroid defuzzification, then a reasonable choice for x

will be x =
x0 + µ · x1

1 + µ
. Thus, once we know the appropriate value x, we can

determine the corresponding degree µ as the value for which this equality is

true, i.e., as µ =
x− x0
x1 − x

.

Comment. In some cases, fuzzy degrees have a probabilistic meaning: e.g., if
we have several experts, we can estimate the degree to which a certain value
x is small, by taking the ratio of how many experts consider the value x to be
small. The above interpretation provides us with a non-probabilistic operational
meaning of fuzzy degrees – in perfect accordance with Zadeh’s idea (see, e.g.,
[16]) that fuzzy information cannot be always deescribed in probabilistic terms.

General case: we need different defuzzification procedures. The above
procedure works OK if an expert is unable to assign the degree him/herself.
But what is an expert is quite capable of assigning such degrees?

It is known that different experts sometimes assign different numerical values
to the same degree of certainty; some consistently assign lower values, some
higher values. This is similar to grading: even when instructors fully agree on
whose test results are better and whose are worse, some instructors consistently
assign higher numerical values to all the students.

In this case, two experts assign different degrees µ(x) < µ′(x), but their
expected value x should be the same. To come up with the same value x
corresponding to two different functions µ(x) ̸= µ′(x), we need, in general, to
use different defuzzification procedures. In other words, we need to adjust a
defuzzification procedure to an individual expert.

10

Let us give an example. Suppose that the opinions of expert A are well
described by centroid defuzzification: once we know his degrees of confidence

µ(x), we can estimate this expert’s recommended value as x =

∫
x · µ(x) dx∫
µ(x) dx

.

Suppose then that expert B routinely assigns larger values µ′(x) =
√
µ(x) to

describe the same degrees of confidence. In this case, to come up with the same
recommended value x, we need to first transform B’s degrees into A’s scale, i.e.,
compute the values µ(x) = (µ′(x))2, and then apply the centroid defuzzification.

This is equivalent to applying a new defuzzification x =

∫
x · (µ′(x))2 dx∫
(µ′(x))2 dx

to B’s

membership function µ′(x).
In general, if µ(x) = F (µ′(x)), for some monotonic function F (x), then,

instead of the centroid defuzzification, we should use a new procedure x =∫
x · F (µ′(x)) dx∫
F (µ′(x)) dx

.

Conclusion: fuzzy degrees themselves do not have exact meaning. Our
conclusion is that fuzzy degrees, by themselves, do not have any exact meaning,
they gain meaning only we combine them with a defuzzification procedure. In
other words, fuzzy degrees themselves do not have an operational meaning; what
has an operational meaning is a combination of fuzzy degrees and a defuzzifi-
cation procedure – and if we re-scale fuzzy degrees, we get the same observable
results if we corresponding change the defuzzification procedure.

Comment. In view of this year’s 100th anniversary of Einstein’s General Rela-
tivity, it is worth mentioning that in General Relativity, as the famous math-
ematician H. Poincaré noticed in the early 20 century [3, 8], there is a similar
phenomenon: we cannot directly observe geometry or physics, we can only ob-
serve geometry + physics, so that a change in geometry can be compensated by
the appropriate change in physical equations.

For example, we can stick with the curved-space geometry of General Rel-
ativity theory, and conclude that the free particles follow geodesics – shortest
lines in this curved space. Alternatively, we can assume that the space is Eu-
clidean, but there is an additional gravitational force that curves the trajectories
of all free-moving particles.

4 Auxiliary Result: What Are Reasonable De-
fuzzification Operations

Formulation of the problem. In the previous section, we showed that to
explain an operational meaning of fuzzy techniques, we must take into account
defuzzification operations. It is therefore reasonable to ask: what are reasonable
defuzzification operations?

Main idea. Our main idea is that a defuzzification operation, when applied
to values x1, . . . , xn, should return a single value x and it should also return a

11

“degree” µ explaining how must trust in this value x. These two values should
contain most original information about the values and their degrees – so that
when we get an additional value xn+1 with a new degree µn+1, we should get
the same result, whether we combine all n + 1 pairs (xi, µi), or whether we
combine the new pair (xn+1, µn+1) with the combined pair (x, µ).

Additional idea. In many cases, the values xi represent numerical values of
a physical quantity such as temperature, time, distance, etc. The numerical
value of a physical quantity depends on which starting point we use to measure
this quantity, and which measuring unit we use. For example, the Celsius and
Fahrenheit temperature scales differ both by starting points and by units. If we
change a starting point by x0, the numerical value changes from x to x′ = x+x0.
If we replace the original measuring unit by a new unit which is λ times smaller,
we get a new numerical value x′ = λ · x. If we change both the starting point
and the measuring unit, then the new numerical values can be obtained from
the previous ones by a linear transformation x′ = λ · x+ s0.

These different numerical values x and x′ correspond to the same actual value
of the physical quantity: same temperature, same speed, etc. It is therefore
reasonable to require that if we apply the defuzzification procedure to new
numerical values x′1, . . . , x

′
n, then we should get the same result as before, but

expressed in the new scale.

Definition. By a reasonable defuzzification, we mean a mapping that maps
each finite collection of pairs (xi, µi) with different values xi into a single pair
(x, µ) so that the following two properties are satisfied:

• for every sequence (x1, µ1), . . . , (xn, µn), (xn+1, µn+1), the result of com-
bining these n+1 pairs coincides with the result of combining the two pairs
(x((x1, µ1), . . . , (xn, µn)), µ((x1, µ1), . . . , (xn, µn))) and (xn+1, µn+1);

• for every sequence (x1, µ1), . . . , (xn, µn), and for every real numbers λ ̸= 0
and x0, the value x obtained by combining these pairs and the value x′

obtained by combining pairs (λ ·xi+x0, µi) are related by the formula x′ =
λ · x+ x0.

Proposition 6. Every reasonable defuzzification has the form x =

n∑
i=1

φ(µi) · xi
n∑

i=1

φ(µi)

for some function φ(x). Vice versa, every operation of this type is a reasonable
defuzzification – when combined with an appropriate function

µ((x1, µ1), . . . , (xn, µn)).

Discussion. Thus, in effect, the only reasonable defuzzification is a centroid
defuzzification – after an appropriate re-scaling of fuzzy values, from the original
values µi to re-scaled values φ(µi).

12

Acknowledgments

This work was supported in part by the Faculty of Economics, Chiang Mai
University, and by the National Science Foundation grants HRD-0734825 and
HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721.

References

[1] C. M. Bishop, Pattern Recognition and Machine Learning, Springer Verlag,
New York, 2013.

[2] L. Deng and D. Yu, Deep Learning: Methods and Applications, Now Publ.,
Boston, Massachusetts, 2014.

[3] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on
Physics, Addison-Wesley, Boston, Massachusetts, 2005.

[4] D. E. Kirk, Optimal Control Theory: An Introduction, Dover, New York,
2004.

[5] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applica-
tions, Prentice Hall, Upper Saddle River, New Jersey, 1995.

[6] V. Kreinovich, M. C. Mouzouris, and H. T. Nguyen, “Fuzzy rule based mod-
eling as a universal approximation tool”, In: H. T. Nguyen and M. Sugeno
(eds.), Fuzzy Systems, 1998, p. 135–195.

[7] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control, Wiley, Hobo-
ken, New Jersey, 2012.

[8] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Free-
man, San Francisco, California, 1973.

[9] H. T. Nguyen, V. Kreinovich, F. Modave, and M. Ceberio, “Fuzzy with-
out fuzzy: why fuzzy-related aggregation techniques are often better even
in situations without true fuzziness”, In: A. E. Hassanien et al. (eds.),
Foundations of Computational Intelligence, Vol. 2, Springer Verlag, 2009,
pp. 27–51.

[10] H. T. Nguyen, V. Kreinovich, and P. Wojciechowski, “Strict archimedean
t-norms and t-conorms as universal approximators”, International Journal
of Approximate Reasoning, 1998, Vol. 18, No. 3-4, pp. 239–249.

[11] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Chapman
and Hall/CRC, Boca Raton, Florida, 2006.

[12] I. Perfilieva and V. Kreinovich, “A new universal approximation result for
fuzzy systems which reflects CNF-DNF duality”, International Journal of
Intelligent Systems, 2002, Vol. 12, pp. 1121–1130.

13

[13] R. T. Rockafeller, Convex Analysis, Princeton University Press, Princeton,
New Jersey, 1997.

[14] R. R. Yager and J. Kacprzyk (eds.), The Ordered Weighted Averaging
Operators: Theory and Applications, Springer Verlag, Berlin, Heidelberg,
New York, 2012.

[15] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–
353.

[16] L. A. Zadeh, “The information principle”, Abstracts of the International
IEEE Conference on Systems, Man, and Cybernetics IEEE SMC’2014, San
Diego, Florida, October 5–8, 2014.

A Proofs

Proof of Proposition 1. Composition of two linear functions is linear, com-
position of two functions of one variable is also a function of one variable. Thus,
we can always collapse two neighboring L layers or two neighboring NL layers
into one. Hence, it is sufficient to only consider configurations in which L and
NL layers interchange.

For 2 layers, this means L-NL or NL-L. In the first case, we only have

functions of the type f(x1, . . . , xn) = s

(∑
i

wi · xi + w0

)
. For these functions,

the level sets {x : f(x) = c} are unions of subspaces of dimension n− 1. Thus,
they cannot approximate, e.g., multiplication f(x1, x2) = x1 · x2 for which the
level sets are hyperbolas.

In the second case, we only have functions of the type

f(x1, x2) =
n∑

i=1

wi · si(xi) + w0.

For such functions, for all possible pairs (x1, x2) and (x′1, x
′
2), we have f(x1, x2)+

f(x′1, x
′
2) = f(x1, x

′
2) + f(x′1, x2). Clearly, the multiplication function for which

1 = f(0, 0) + f(1, 1) ̸= f(0, 1) + f(1, 0) = 0, cannot be approximated by such
functions.

For 3 layers with one NL layer, the only option is L-NL-L, and it is known
– from the theory of neural networks – that such networks are indeed universal
approximators; see, e.g., [1].

Proof of Proposition 2. On the half-plane {(x1, x2) : x1 < x2}, every two
points are connected by a continuous line interval which is strictly within this
half-plane. Since the function f(x1, x2) is continuous, it cannot switch from
being equal to x1 at one point to being x2 at another point, since then at
the connecting interval, we will have a discontinuity. Thus, either for all these
points, we have f(x1, x2) = x1, or for all of them, we have f(x1, x2) = x2. Due
to continuity, the same holds in the limit case x1 = x2.

14

Similarly, either for all points (x1, x2) for which x1 ≥ x2, we have f(x1, x2) =
x1 or for all of them, we have f(x1, x2) = x2. We cannot have f(x1, x2) = x1 for
both cases, so if f(x1, x2) = x1 when x1 ≤ x2, then we should have f(x1, x2) =
x2 when x1 ≤ x2. In this case, we have f(x1, x2) = min(x1, x2). In the second
case, we have f(x1, x2) = max(x1, x2). The proposition is proven.

Proof of Proposition 3. With probability 1/2, the first bits of the numbers
x1 and x2 are different, i.e., one of these bits is 0 and another one is 1. In this
case, after a single but comparison, we know which number is smaller: the one
that starts with 0.

In the remaining cases, in half of these cases, the second bits are different,
and so we get a solution after 2 bit operations. The probability of this situation
is 2−2. In general, for every k, we need k bit comparisons with probability

2−k. Thus, the average computation time is equal to
n∑

k=1

2−k · k. This value is

bounded from above by the corresponding infinite sum s
def
=

∞∑
k=1

2−k · k.

One can easily check that

2−1 · s =
∞∑
k=1

2−(k+1) · k =
∞∑
k=1

2−(k+1) · (k + 1)−
∞∑
k=1

2−(k+1).

The first term in this sum is s − 2−1 · 1 = s − 2−1, the second is a geometric
progression whose sum is 2−1. Thus, 2−1 · s = s− 2−1 − 2−1, hence s = 2. The
proposition is proven.

Proof of Proposition 4. Similarly to the proof of Proposition 1, we can
collapse similar neighboring layers into one. Thus, it is sufficient to consider
networks in which neighboring layers are different.

For 2 layers, this means Min-NL, Max-NL, NL-Min, and NL-Max (we already
know that Min-Max and Max-Min are not universal approximators). A Min-
NL function f(x1, x2) = s(min(x1, x2)) depends only on x1 when x1 < x2 and
thus, cannot approximate x1 ·x2. Similarly, Max-NL functions are not universal
approximators.

An NL-Min function has the form f(x1, x2) = min(s1(x1), s2(x2)). For
such functions, min(f(x1, x2), f(x

′
1, x

′
2)) = min(f(x1, x

′
2), f(x

′
1, x2)). Thus, e.g.,

the function f(x1, x2) = 1 − x1 · x2 for which 0 = min(f(0, 0), f(1, 1)) ̸=
min(f(0, 1), f(1, 0)) = 1 cannot be thus approximated. Similarly, NL-Max net-
works are not universal approximators.

A Max-Min-NL or a Min-Max-NL function has the form s(xi) for one of the
values xi, i.e., its domain can be divided into n domains on each of which it is
equal to a function of one of the inputs – this cannot approximate multiplication.
A Max-NL-Max or Min-NL-Max function locally has the form max

i
(si(xi)), and

we have already shown that such functions are not universal approximators.
Similarly, Max-NL-Min and Min-NL-Min functions are not universal approxi-
mators.

15

For functions NL-Max-Min and NL-Min-Max, universal approximation prop-
erty is known; see, e.g., [5, 6, 11, 12]. Since our formulation is slightly different
from the usual one, let us provide the proof explicitly; this proof is very similar
to the usual proofs.

Let us start with NL-Min-Max networks. Let f(x1, . . . , xn) be a continu-
ous function, and let ∆ > 0 and ε > 0 be real numbers. Since the function
f(x1, . . . , xn) is continuous on a compact cube [−∆,∆] × . . . × [−∆,∆], it is
uniformly continuous, and thus, there exists a real number δ > 0 for which if
|xi − x′i| ≤ δ for all i, then |f(x1, . . . , xn) − f(x′1, . . . , x

′
n)| ≤ ε. On each in-

terval [−∆,∆], let us select a grid of values with a step δ/2, i.e., the values
xi = −∆, xi = −∆ + δ/2, xi = −∆ + δ, . . .We then take all possible tu-

ples x(ℓ) = (x
(ℓ
1 , . . . , x

ℓ)
n) formed by these values. Let us then show that the

NL-Min-Max function

a(x1, . . . , xn) = max
ℓ

min
i=1,...,n

f
(ℓ)
i (xi)

is the desired ε-approximation to the original function f(x1, . . . , xn), where

f
(ℓ)
1 (x1) = f(x(ℓ)) · µ0(x1 − x

(ℓ
1), f

(ℓ)
i (xi) = µ0(xi − x

(ℓ
i) for all i ≥ 2, and by

µ0(x), we denoted a piece-wise linear function which is equal to 0 when |x| ≥ δ,
to 1 when |x| ≤ δ/2, and which is linear on the intervals [−δ,−δ/2] and [δ/2, δ].

Indeed, the only tuple ℓ for which min
i
µ0(xi − x

(ℓ)
i) > 0, we have µ0(xi −

x
(ℓ)
i) > 0 for all i. Thus, by definition of the function µ0(x), we have |xi−x(ℓ)i | ≤
δ for all i. By the choice of δ, this implies that |f(x) − f(x(ℓ))| ≤ ε and thus,
f(x(ℓ)) ≤ f(x) + ε. The product of functions µ0(x) is always smaller than or

equal to 1, thus, all the terms f(x(ℓ)) ·min
i
µ0(xi − x

(ℓ)
i) do not exceed f(x) + ε.

Therefore, the value a(x) which is the largest of these values also does not exceed
f(x) + ε: a(x) ≤ f(x) + ε.

On the other hand, because of our choice of the points x(ℓ), for each point x,
there is a point x(ℓ) for which all coordinates are (δ/2)-close to the coordinated

of the original point x. In this case, each of the functions µ0(xi − x
(ℓ)
i) is equal

to 1, their product is equal to 1, and thus, the corresponding term

f(x(ℓ)) ·min
i
µ0(xi − x

(ℓ)
i)

is equal to f(x(ℓ) and is, hence, greater than or equal to f(x)−ε. The maximum
a(x) is larger than or equal than each of the maximized terms, so a(x) ≥ f(x)−ε.
With a(x) ≤ f(x) + ε, this means that |a(x)− f(x)| ≤ ε.

The possibility to approximate a function f(x) by a NL-Max-Min expressions
comes from the fact that g(x) = 1 − f(x) can be approximated by a NL-Min-

Max function a(x), a function of the type a(x) = max
ℓ

min
i
f
(ℓ)
i (xi). Since the

functions a(x) and 1 − f(x) are ε-close, we can conclude that the functions

f(x) and b(x)
def
= 1−a(x) are also ε-close. One can see that the function b(x) =

1−a(x) can be described in NL-Max-Min terms as b(x) = min
ℓ

max
i

(1−f (ℓ)i (xi)).

The proposition is proven.

16

Proof of Proposition 5. In Proposition 4, we have, in effect, already proved
that NL-Max-Min networks with normalized membership functions are universal
approximators for continuous functions f(x) with values from the interval [0, 1].
So, to prove Proposition 5, it is sufficient to prove that NL-Min-Max networks

with normalized functions f
(ℓ)
i (xi) are not universal approximators for functions

f(x) ∈ [0, 1].
Indeed, let us show that, for example, a function f(x) = 0.5 cannot be thus

approximated. Infeed, any such approximation has the form a(x1, . . . , xn) =

max
ℓ

min
i
f
(ℓ)
i (xi) for some functions f

(ℓ)
i which are normalized. Normalization

means that for each such function, there is a value x
(ℓ)
i for which f

(ℓ)
i (x

(ℓ)
i) = 1.

For the tuple x(ℓ)
def
= (x

(ℓ)
1 , . . . , x

(ℓ)
n), we thus have min

i
f
(ℓ)
i (x

(ℓ)
i) = 1, thence

a(x), which is the largest of such values, is also equal to 1 – and therefore, cannot
approximate a function f(x) whose value everywhere is 0.5. The proposition is
proven.

Proof of Proposition 6. Let us first consider the case when we combine
two pairs (x1, µ1) and (x2, µ2). By an appropriate linear transformation, we
can transform 0 to x1 and 1 to x2: namely, this transformation has the form
x′ = λ · x + x0, where x0 = x1, and λ = x2 − x1. Thus, due to the second
property of a reasonable defuzzification, the result (x, µ) of combining the two
original pairs is equal to (λ · x0 + s0, µ), where x0 = x((0, µ1), (1, µ2)). Hence,

x = (x2 − x1) · x((0, µ1), (1, µ2)) + x1 =

x1 · (1− x((0, µ1), (1, µ2))) + x2 · x((0, µ1), (1, µ2)).

In other words, the result of combining the two pairs (x1, µ1) and (x2, µ2) is a
linear combination of values x1 and x2, with coefficients depending only on the
degrees µi.

Due to the first property from the definition of a reasonable defuzzification,
the result of combining n pairs can be obtained by first combining the first two,
then by adding the third pair, etc. Thus, we can conclude that this combination
result is a linear combination of the values xi, where the weights depend only
on the degrees µ1, . . . , µn:

x =
n∑

i=1

wi(µ1, . . . , µn) · xi.

The need to have scale-invariance (i.e., invariance with respect to re-scaling

x→ x′ = λ · x) leads to
n∑

i=1

wi = 1.

When we combine the first pair, we get a linear combination

w1(µ1, µ2) · x1 + w2(µ1, µ2) · x2.

On all following steps, we use this whole combination to combine with other
values x3, etc. Thus, the ratio of the coefficients at w1 and w2 remains the

17

same. Thus, this ratio depends only on µ1 and µ2:

w1(µ1, µ2, . . . , µn)

w2(µ1, µ2, . . . , µn)
= r(µ1, µ2),

where r(µ1, µ2)
def
=

w1(µ1, µ2)

w2(µ1, µ2)
. In general,

w1

w2
=
w1

w3
:
w2

w3
. Thus, r(µ1, µ2) =

r(µ1, µ3)

r(µ2, µ3)
. This is true for all possible values µ3, in particular, for µ3 = 1.

Hence, r(µ1, µ2) =
φ(µ1)

φ(µ2)
, where we denoted φ(z)

def
= r(z, 1). From r(µ1, µ2) =

w1

w2
=
φ(µ1)

φ(µ2)
, we conclude that

w1

φ(µ1)
=

w2

φ(µ2)
. This is true for any two pairs.

Thus, the ratio c
def
=

wi

φ(µi)
does not depend on i, and wi = c · φ(µi). From the

condition that
n∑

i=1

wi = 1, we can find c =
1

n∑
i=1

φ(µi)
. The proposition is proven.

18

	Need for Data Processing Naturally Leads to Fuzzy Logic (and Neural Networks): Fuzzy Beyond Experts and Beyond Probabilities
	Recommended Citation

	tmp.1424295935.pdf.36whr

