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Summary
     This report consists of a survey of the state of the art in uncertainty-based design together with

recommendations for a Base research activity in this area for the NASA Langley Research Center. In
particular, it focuses on the needs and opportunities for computational and experimental methods that
provide accurate, efficient solutions to nondeterministic multidisciplinary aerospace vehicle design
problems. We use the term uncertainty-based design to describe this type of design method. The two
major classes of uncertainty-based design problems are robust design problems and reliability-based
design problems. A robust design problem seeks a design that is relatively insensitive to small changes in
the uncertain quantities. A reliability-based design seeks a design that has a probability of failure that is
less than some acceptable (invariably small) value.

Traditional design procedures for aerospace vehicle structures are based on combinations of factors of
safety and knockdown factors. The aerodynamic design procedures used by the industry are exclusively
deterministic. There has been considerable work on “robust controls,” but this work has been limited to
using norm bounds on the uncertain variables. Reliability-based design methods have been used within
civil engineering for several decades and in aircraft engine design for about a decade. Applications to the
structural design of airframes are only now starting to emerge. Only academic studies of reliability-based
design methods within the aerodynamics and controls disciplines are known to the authors.

To use uncertainty-based design methods, the various uncertainties associated with the design problem
must be characterized and managed, and these characterizations must be exploited. In the context of
computational modeling and simulation, two complementary categorizations of uncertainties are useful.
One categorization distinguishes between parameter uncertainties and model form uncertainties.
Parameter uncertainties are those uncertainties associated either with the input data (boundary conditions
or initial conditions) to a computational process or with basic parameters that define a given
computational process, such as the coefficients of phenomenological models. Model form uncertainties
are uncertainties associated with model validity, i.e., whether the nominal mathematical model adequately
captures the physics of the problem. Systematic procedures for characterizing and managing uncertainties
in experimental activities include design of experiment methods and statistical process control techniques.
The former focuses more on characterizing the uncertainties and the latter more on managing them.

Parameter uncertainties are typically specified in terms of probability density functions, membership
functions, or interval bounds. Model form uncertainties are very difficult to characterize. Generic
techniques are available for assessing the effects of uncertainties on discipline and system performance
predictions, and some optimization methods can account for uncertainties. However, better and less
resource-intensive methods are needed for both uncertainty propagation and optimization under
uncertainty. Certainly, the deployment of existing and new techniques within the aerodynamic, controls,
structures, and systems analysis disciplines for applications to aerospace vehicles is critically needed.

The principal barriers to the adoption of uncertainty-based design methods for aerospace vehicles are
as follows:

 B1. Industry feels comfortable with traditional design methods.

 B2. Few demonstrations of the benefits of uncertainty-based design methods are available.

 B3. Current uncertainty-based design methods are more complex and much more
computationally expensive than deterministic methods.
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 B4. Characterization of structural imperfections and uncertainties necessary to facilitate accurate
analysis and design of the structure is time-consuming and is highly dependent on structural
configuration, material system, and manufacturing processes.

 B5. There is a dearth of statistical process control activity in aerodynamics.

 B6. Effective approaches for characterizing model form error are lacking.

 B7. There are no dependable approaches to uncertainty quantification for nonlinear problems.

 B8. Characterization of uncertainties for use in control is inadequate.

 B9. Methods for mapping probabilistic parameter uncertainties into norm-bounded uncertainties
do not exist.

B10. Existing probabilistic analysis tools are not well suited to handle the time and frequency
domain response quantities that are typically used in the analysis of closed-loop dynamical
systems.

B11. No methods are available for optimization under nonprobabilistic uncertainties.

B12. Current methods for optimization under uncertainty are too expensive for use with high-
fidelity analysis tools in many disciplines.

B13. Extending uncertainty analysis and optimization to applications involving multiple
disciplines compounds the complexity and cost.

B14. Researchers and analysts lack training in statistical methods and probabilistic assessment.

The principal benefits of uncertainty-based design are

P1. Confidence in analysis tools will increase.

P2. Design cycle time, cost, and risk will be reduced.

   P3. System performance will increase while ensuring that reliability requirements are met.

P4. Designs will be more robust.

P5. The methodology can assess systems at off-nominal conditions.

P6. Use of composite structures will increase.

The proposed role for NASA Langley Research Center in uncertainty-based design is:

Evaluate and improve methods for management of uncertainty with applications to
multidisciplinary aerospace vehicle design by developing and validating strategies, algorithms,
tools and data to

characterize and manage the uncertainties from the individual aerospace vehicle design
disciplines, especially aerodynamics, structures, and controls, based on the best available
experimental and computational results;

characterize the norm and distribution of the resulting uncertainties in system metrics;
and

account for uncertainties in the design of aerospace vehicles at the conceptual through the
detailed design stages.

Detailed lists of uncertainty-based design technology needs for the structures, aerodynamics, controls, and
systems analysis disciplines are found in section 4.
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1. Introduction
This white paper focuses on the needs and opportunities for computational and experimental methods

that provide accurate, efficient solutions to problems of multidisciplinary aerospace vehicle design in the
presence of uncertainties. These methods are a subset of what are sometimes referred to as
nondeterministic approaches. The essential distinction is between the formulations of the design problem
and the methods used for its solution. A nondeterministic problem formulation is one in which some
essential components—the problem statement (e.g., uncertainty of the outer mold line due to
manufacturing variability), experimental data (e.g., measurement uncertainty), or computational solutions
(e.g., discretization error)—are treated as nondeterministic. The uncertain aspects may be expressed in a
number of ways, for example by interval bounds or by probability density functions. Analysis methods
that employ stochastic approximations, such as Monte Carlo approximation of integrals, are only of
interest here to the extent that they are brought to bear on a genuinely nondeterministic problem
formulation. Likewise, random search techniques, such as genetic algorithms and simulated annealing, are
not intrinsically of interest in the present context. We use the term uncertainty-based design to describe
those design problems that have a nondeterministic formulation.

Impact of event
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No engineering
applications

Reliability-based
design and optimization
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not an issue

Everyday fluctuations Extreme events

Frequency of event

Figure 1. Uncertainty-based design domains (from Huyse 2001).

The two major classes of uncertainty-based design problems are robust design problems and
reliability-based design problems. A robust design problem is one in which a design is sought that is
relatively insensitive to small changes in the uncertain quantities. A reliability-based design problem is
one in which a design is sought that has a probability of failure that is less than some acceptable
(invariably small) value. The same abstract mathematical formulation can be used to describe both robust
design and reliability-based design. However, their domains of applicability are rather different.

Figure 1 illustrates these domains. The two major factors are the frequency of the event and the impact
of the event. No system is viable if everyday fluctuations can lead to catastrophe. Instead, one would like
the system to be designed such that the performance is insensitive, i.e., robust, to everyday fluctuations.
On the other hand, one would like to ensure that the events that lead to catastrophe are extremely unlikely.
This is the domain of reliability-based design. In both cases, the design risk is a combination of the
likelihood of an undesired event and the consequences of that event. An example of risk in the robust
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design context is the likelihood that the aircraft design will fail to meet the aerodynamic performance
targets and will consequently lose sales and perhaps even go bankrupt. An example of risk in the
reliability-based design context is the probability that a critical structural component will fail, which
could lead to the loss of the vehicle or spacecraft, payload, and passengers, and to potential lawsuits.

Random variable

Robustness

Reliability Reliability

Probability
density

Figure 2. Reliability versus robustness in terms of the probability density function.

As figure 2 illustrates, robust design is concerned with the event distribution near the mean of the
probability density function, whereas reliability-based design is concerned with the event distribution in
the tails of the probability density function. Obviously, it is much more difficult to accurately characterize
the tail of a distribution than the center of the distribution. An additional consideration in distinguishing
between robustness and reliability is that the mathematical techniques used for solving robust design
problems are considerably different from those used for solving reliability-based design problems. The
mathematical methods for robust design procedures are less well developed than those for reliability-
based design procedures, and this work is still largely confined to academic studies. Certainly, the
aerodynamic design procedures in use in industry are exclusively deterministic. (Recall that we are
excluding the use of random search methods to solve a deterministic problem.) There has been
considerable work on “robust controls,” but this work has been limited to using norm-bounded
descriptions of uncertain variables. Although the robust design principles of Taguchi (1987) are used in
aerospace engineering, these are not necessarily the best or even appropriate methods for many robust
design problems.

Traditional design procedures for aerospace vehicle structures are based on combinations of factors of
safety and knockdown factors, as illustrated in figure 3. Factors of safety are numbers greater than 1.0 that
are applied to the loads. Knockdown factors are numbers less than 1.0 that are applied to the strengths.
Both factors are intended to account for uncertainties. They have proven useful during nearly six decades
of design for conventional metal airframes.
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Figure 3. Factor of safety approach.

Traditional design procedures have several shortcomings. First, these procedures may be difficult to
apply to aerospace vehicles that have unconventional configurations and that use new material systems.
Second, measures of reliability and robustness are not provided in the design process. Consequently, it is
not possible to determine (with any precision) the relative importance of various design options on the
reliability and robustness of the aerospace vehicle. In addition, with no measure of reliability it is unlikely
that the level of reliability and performance will be consistent throughout the vehicle. That situation can
lead to excess weight with no corresponding improvement in overall reliability. Moreover, the factor of
safety approach is logically inconsistent. It attempts to scale conditions using a mean or “worst-case”
condition. In reality, a worst-case condition is rarely identifiable.

Figure 4. Reliability-based design approach.

In contrast to the traditional design procedure shown in figure 3, figure 4 illustrates how uncertainties
are handled in the reliability-based design approach. Here both the load and the strength are characterized
by probability density functions. These distributions are due to uncertainties in the loads applied to the
system (or subsystem) and to the strengths of different realizations of the system. The overlap region
(where the load exceeds the strength) indicates the probability of failure. Note that for design of systems
with small probabilities of failure, the tails of both the load and the strength distributions are the most
relevant. Reliability-based design methods have been used within civil engineering (Sundararajan 1995)
for decades1 and in aircraft engine design (Cruse 2001) for about a decade. Applications to the structural
design of airframes are only now starting to emerge. Only academic studies of reliability-based design
methods within the aerodynamics and controls disciplines are known to the authors.

                                                  
1 Civil engineering projects are generally designed using standard design codes. Many of these codes contain factors
that can be adjusted based on the likelihood of occurrence of high loads or critical events, such as an earthquake of a
specified magnitude. These factors provide the target reliability. The probabilistic aspects of these design codes may
be hidden from the designer.
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Newly emerging uncertainty-based design procedures will help to overcome the shortcomings of the
traditional design procedures. In particular, measures of reliability and robustness will be available during
the design process and for the final design. This information will allow the designer to produce a
consistent level of reliability and performance throughout the vehicles—with no unnecessary over-
designs in some areas. As a result, designers will be able to save weight while maintaining reliability. In
addition, with an uncertainty-based design procedure it will be possible to determine the sensitivity of the
reliability to design changes that can be linked to changes in cost. As a result, it will be possible to make
trade-offs between reliability and cost. For the same cost, airframes can be made safer than with
traditional design approaches—or, for the same reliability, the airframe can be made at a lower cost.

This white paper consists of a survey of the state of the art in uncertainty-based design together with
recommendations for a Base research activity in this area for the NASA Langley Research Center. In
particular, section 2 provides a generic overview of current uncertainty-based design methods. Section 3
focuses on uncertainty-based methods for aerospace vehicle design, describing the status of these methods
and the barriers to their adoption. Section 4 proposes some specific research objectives with both short-
term and long-term impact on industry and NASA design processes. Section 5 discusses the expected
results from uncertainty-based design research. Our discussion is limited to the disciplines of
aerodynamics, controls, structures, and systems analysis. Although other disciplines are excluded from
the discussion, the reader will note that the authors have a diverse background, not just in terms of their
disciplinary heritage but also in terms of their particular penchants towards experimentation, methods
development, or applied computation. This diversity, combined with the relatively recent interest of most
of the authors to this particular field of uncertainty-based design, has inevitably led to different emphases
in the different disciplinary sections of this report and perhaps to occasional inconsistencies in
terminology. The authors’ views on this challenging subject are a work in progress. They have chosen to
put their current thinking out for comment now rather than wait the several years necessary for a full
meeting of their minds.

2. Overview of Available Uncertainty-Based Design Methods
The use of uncertainty-based design methods requires that the various uncertainties associated with the

design problem be characterized and managed, and that the analysis and optimization methods
incorporate this characterization of the uncertain quantities. In section 2.1 we focus on the
characterization and management of uncertainties, and in section 2.2 we focus on the use of uncertainties
in design.

2.1. Characterizing and Managing Uncertainties

Characterization and management of uncertainties is required at the individual discipline level as well
as at the integrated, system level. These involve the computational and experimental uncertainties
produced by the discipline analysis methods themselves, and the relationship of the uncertainties affecting
the input with the uncertainties affecting the output of the methods.

2.1.1. Computational Uncertainties

In the context of computational modeling and simulation, two complementary categorizations of
uncertainties are useful. One categorization distinguishes between parameter uncertainties and model



7

form uncertainties.2 Parameter uncertainties, sometimes referred to as parametric uncertainties or
parameter variability, are those uncertainties associated either with the input data (boundary conditions or
initial conditions) to a computational process or with basic parameters that define a given computational
process, such as the coefficients of phenomenological models. Model form uncertainties, sometimes
referred to as structural uncertainties, nonparametric uncertainties, or unmodeled dynamics, are associated
with model validity, i.e., whether the nominal mathematical model adequately captures the physics of the
problem.

Oberkampf et al. (1998) categorized uncertainties into three distinct classes. Variability refers to “the
inherent variation associated with the physical system or the environment under consideration.”
Uncertainty is “a potential deficiency in any phase or activity of the modeling process that is due to lack
of knowledge.” Error is “a recognizable deficiency in any phase or activity of modeling and simulation
that is not due to lack of knowledge;” an error may be either an acknowledged error or an
unacknowledged error. The value of this categorization is that the approaches to characterizing and
managing uncertainties are considerably different for the three classes. We are not going to emphasize
this distinction in this white paper, and the interested reader should consult Oberkampf et al. (1998) for
more information. In the material that follows, we shall typically use uncertainty in the more general
sense. Whenever we mean the more specialized definitions of this paragraph, we shall use italics for the
terms.

In the context of a computer code used for computational modeling and simulation, the parameter
uncertainties can be specified by means of interval bounds, membership functions, or probability density
functions, as illustrated in figure 5. Interval bounds should be used when only the crudest information is
known. They use only an upper and a lower bound for the parameter value; norm-bounded uncertainties
are a special case. Probability density functions are the most detailed description. Membership functions,
which are used in fuzzy logic approaches, provide an intermediate level of detail. The parameter
uncertainty characterization can be based on expert opinion, experimental data, analytical estimates, or
results from upstream computational processes. A more detailed discussion of the general mathematical
framework for characterization of uncertainties from an engineering perspective can be found in
Oberkampf, Helton, and Sentz (2001).

Uncertain variable

Interval bound

1.0

Uncertain variable

Possibility

Membership function

Uncertain variable

Probability
density

Probability density function

Area = 1.0

Figure 5. Uncertainty descriptions.

Strategies for characterization of model form uncertainty are far less well developed than those for
                                                  
2 The terms model uncertainty and modeling uncertainty are occasionally used in the literature to mean the
uncertainty in the model arising both from the model form and the model parameters. These terms should not be
confused with the term model form uncertainty as we are using it here.
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parameter uncertainties. Two general references of note are Beck (1987) and Draper (1995). A short
summary of the Bayesian approach to model form uncertainty, together with some additional references,
is given by Alvin et al. (2000). There do not appear to be any systematic applications of model form
uncertainty characterization strategies to airframe design applications.

Few systematic approaches are available for managing uncertainties in computational simulations.
Adaptive mesh refinement is the most well developed, but most techniques are based on heuristic rather
than rigorous approaches. Moreover, adaptive mesh refinement is limited to just one aspect of the
uncertainty in the output of a code (discretization error) and it does not address the uncertainty in the
model output due to uncertainty in the model input.

2.1.2. Experimental Uncertainties

The traditional approach to account for uncertainties in structural design is to introduce so-called
design or safety factors on the loads and statistically based material properties. Thus, in a classical
deterministic analysis, all the uncertainties are accounted for in a “lump-sum” fashion by multiplying the
maximum expected applied stress by a single safety factor, e.g., 1.5. The specification of safety factors is
generally based on empirical design guidelines established from years of structural testing and experience.
Statistically based material properties are determined from a series of coupon tests. Design verification is
achieved through testing by applying the worst-case loading condition to the structure and testing to
failure.

Uncertainties can be accounted for using probabilistic methods. Techniques for deriving probabilistic
information and for estimating parameter values from observed data are found in the methods of
statistical inference in which information obtained from sample data is used to make generalizations about
populations from which the samples were obtained. Traditional methods of estimation include point and
interval estimates. The common methods of point estimation are the method of maximum likelihood and
the method of moments. Interval estimation includes determining the interval that contains the parameter
value and a prescribed confidence level. However, when population parameters are estimated based on
finite samples, errors of estimation occur. Explicit consideration of these errors is accounted for in the
Bayesian approach to estimation. With this approach, subjective judgments based on intuition,
experience, or indirect information are incorporated with observed data to obtain a balanced estimation.
Validity of assumed uncertainty distributions is verified or disproved statistically by goodness-of-fit tests,
such as chi-squares or Kolmogorov-Smirnov methods.

For situations in which sample data necessary to quantify parameter uncertainties is limited or
nonexistent, fuzzy set (possibilistic) analysis can be used to account for uncertainties. Uncertainties are
introduced by specifying membership functions.

Systematic procedures for characterizing and managing3 uncertainties in experimental activities
include design of experiment methods (Taguchi 1987) and statistical process control techniques (Wheeler
and Chambers 1992). The former focuses more on characterizing the uncertainties and the latter more on
managing them.

2.1.3. Uncertainty Analysis

The objective of uncertainty analysis (or uncertainty propagation) is to characterize the uncertainties in

                                                  
3 Although in this context the word "control" is more conventional, we prefer the term "manage" to prevent
confusion with the "controls" discipline.
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the system output given some knowledge of the uncertainties associated with the system parameters
together with one or more computational models and, ideally, some experimental data. This subsection
will provide an overview various approaches to estimating the effects of parameter uncertainties;
approaches to model form uncertainties are far less developed. Several methods are available for
estimating the uncertainties in the performance predictions due to parameter uncertainties. They depend,
of course, on whether the parameter uncertainties are specified in terms of probability density functions,
membership functions, or interval bounds.

2.1.3.1. Probabilistic Analysis. The most well developed approaches to uncertainty analysis are based on
parameter uncertainties specified in terms of probability density functions (PDFs). Uncertainty-based
design methods using detailed PDFs are generally referred to as probabilistic methods. In this case, the
uncertainty computing engine produces the nominal value of the performance functions as well as their
PDFs. This process is typically completed by using some type of Monte Carlo or statistical sampling
method. The concept is straightforward; the process model is invoked repeatedly for deterministic
analyses performed for a set of input parameters generated according to their PDFs to produce a set of
output samples. The statistical properties of the output performance functions are then deduced from the
output samples. This approach is usually referred to as a simulation method or a sampling method. See
Melchers (1999) for a general overview. The simplest approach is the basic Monte Carlo method, in
which the sampling points are drawn strictly according to the PDFs of the input parameters. Construction
of accurate output PDFs can easily take thousands or even millions of simulations. Two of the more
popular alternatives to the basic Monte Carlo method are Importance Sampling and Latin Hypercube
Sampling (McKay, Beckman, and Conover 1979). The former enables accurate estimates of the tails of
the PDFs; it is most useful in reliability-based design problems. The latter provides samples that ensure
coverage of the full range of the input parameters with far fewer simulations than the basic Monte Carlo
method. However, the tails of the output PDFs are generally quite inaccurate; it is most useful in robust
design problems. Yet another refinement is Directional Sampling, which is useful for concentrating the
sampling on a subset of the parameters of particular interest. At least a half-dozen general-purpose
commercial software packages are available to serve as probabilistic uncertainty computing engines.

A different approach to probabilistic uncertainty analysis is by the solution of stochastic differential
equations. With this approach, the uncertainties may be associated with initial conditions, boundary
conditions, transport properties, and source terms. Wiener (1938) developed a method of representing the
associated randomness in the solution with an expansion in orthogonal polynomials in which the burden
of representing the random component is carried by the polynomials; the coefficients of the expansion are
smooth functions. Ghanem and Spanos (1991) and Ghanem (1999) refined Wiener’s method and applied
it to structural analysis problems. Xiu and Karniadakis (2001) have generalized the class of expansion
functions and applied it to fluid mechanics and fluid-structures problems; they have shown that the set of
Wiener-Askey polynomials contains an appropriate (and rapidly convergent) polynomial family for many
of the PDFs of physical interest. This approach is referred to as Polynomial Chaos. One obtains the PDFs
of every component of the solution at every space-time point. The cost is typically one to two orders of
magnitude greater than that of a deterministic solution for the differential equation, yet is still orders of
magnitude cheaper than required for an ensemble of solutions generated by a Monte Carlo method.

2.1.3.2. Fuzzy Logic. When the parameter uncertainties are characterized by membership functions, fuzzy
logic is the basis for assessing the uncertainties in system output. Fuzzy logic allows one to create models
based on inexact, incomplete, or unreliable knowledge or data, and, moreover, to infer approximate
behavior of the system from such models. Fuzzy logic provides a computational engine to process these
models (Harris, Moore, and Brown 1993). To date, fuzzy logic has found many applications in controls,
manufacturing, pattern recognition, and even finance (Holmes and Ray 2001; Ham, Qu, and Johnson
2000; Inoue and Nakaoka 1998; Isermann 1998; Dexter 1995; Hung 1995; Lim and Hiyama 1991; Lee
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1990; Box and Draper 1987). Fuzzy logic is an extension of multivalued logic. Its predicates can be both
crisp (not fuzzy), such as numbers, or true and false, and non-crisp (fuzzy), such as greater than, small,
etc. Uncertainty characterizations using membership functions are sometimes referred to as possibilistic,
which is often used to contrast this approach with the probabilistic approach.

The central concept of fuzzy logic is the membership function, which represents the degree of
membership of the fuzzy variable within the fuzzy set (Harris, Moore, and Brown 1993). The membership
function may be thought of as a possibility function in contrast to the probability density function in
probability theory. In fuzzy logic, input and output mappings are established through fuzzy algorithms
based on a collection of rules, in the form of conditional statements. The composition of an input
variable(s) with the fuzzy rules (relations) produces a fuzzy set for the output. To obtain a crisp output,
the fuzzy set has to be de-fuzzified to a single value; different techniques can be used to accomplish this
task.

Fuzzy logic is appealing for its simplicity of application and implementation. It may be useful in
applications wherein accurate physical models are not available, for preliminary design and analysis, or in
cases wherein crude or fuzzy inferences and actions are acceptable. However, in uncertainty-based design
and analysis, the use of fuzzy logic may be confined to the conceptual design and early preliminary
design stages; the level of accuracy required in most aerospace applications in late preliminary and
detailed design is far too stringent to allow for fuzzy logic.

2.1.3.3. Interval Analysis. Interval analysis was initially developed to account for errors in floating point
arithmetic. The chief distinguishing element of its framework is that variables are represented by two
scalars: a lower bound value and an upper bound value. These numbers reflect a measure of uncertainty in
the knowledge of the actual value of the variable. Interval arithmetic involves the rules developed to
perform mathematical operations with interval numbers. Interval analysis is ideally suited to deal with
parametric uncertainties in systems. In its simplest form, a combinatorial analysis is used to construct
interval distributions of the performance quantities. It has been applied in a variety of fields, including
structural analysis and dynamic analysis, to accommodate uncertainties in parameters (Piazzi and Visioli
2000; Jaulin and Walter 1997; Oppenheimer and Michel 1988; Ugur Koyluoglu and Elishakoff 1998;
Qiu, Chen, and Elishakoff 1995; Rao and Berke 1997). However, these applications involve mainly
simple problems of small order. Applications to medium-large size problems are lacking because by
nature, interval arithmetic produces potentially conservative results, i.e., the results are not practical. The
level of conservatism may be reduced if interval variables and arithmetic are used in closed-form
solutions of the problem output, as opposed to throughout the numerical solution. Unfortunately, closed-
form solutions are rarely available, except for the simplest of problems. Another minor problem with
interval analysis is that it is computationally more expensive than traditional mathematics since it deals
with intervals and not just scalars. However, with recent advancements in computing technology, this
higher computational expense is not an issue anymore. In fact, interval arithmetic is accommodated in the
latest SUN Microsystems Forte Fortran 95 Compiler. One other potential problem is that interval analysis
may not be amenable to accommodating correlated uncertainty distributions. This issue may lead to
additional conservatism in the predictions of bounds for the system output.

2.1.4. Sensitivity Analysis

Sensitivity analysis is related to, but different from, uncertainty analysis. The recent book edited by
Saltelli, Chan, and Scott (2000) provides thorough coverage of this vast subject. The overview chapter by
Campolongo et al. (2000) defines sensitivity analysis as “the study of how the variation in the output of a
model (numerical or otherwise) can be apportioned, qualitatively or quantitatively, to different sources of
variation, and of how the given model depends upon the information fed into it.” As used here, sensitivity
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analysis ascertains which parameters have the greatest influence on the system output. It is a deterministic
question. Its primary relation to uncertainty analysis is to enable the identification of which parameters
really matter—conducting an analysis of the impact of the uncertainty of a parameter that has an
insignificant effect upon the performance measures is futile. Given the high cost of most uncertainty
analysis methods, it usually pays to first conduct a sensitivity analysis to weed out consideration of
unimportant parameters. This process is often “step 0” in the construction of a response surface.

Campolongo et al. (2000) list three general approaches to sensitivity analysis with numerical models.
Factor screening determines which parameters (or groups of parameters) have the greatest impact on the
model output variability. Various design of experiment techniques are typically employed. These consist
of evaluating model output at the extreme values of the ranges of the parameters. Local sensitivity
analysis utilizes first-order derivatives of model output quantities with respect to the parameters. Like
factor screening, local sensitivity analysis is a deterministic calculation, but it is usually performed for a
nominal set of parameter values. Some computational tools provide accurate and efficient sensitivity
derivatives, but in most cases costly (and sometimes inaccurate) finite-difference approximations are used
to compute the derivatives. Global sensitivity analysis typically uses statistical sampling methods, such as
Latin Hypercube Sampling, to determine the total uncertainty in the model output and to apportion that
uncertainty among the various parameters.

If efficient sensitivity derivatives for the model are available, then local sensitivity analysis is by far
the least costly in terms of computational time. At worst, its cost increases linearly with the number of
parameters. However, it is limited to the vicinity of the nominal parameter values. The cost of factor
screening methods that look at one factor at a time increases linearly with the number of parameter
values, whereas methods that look at the full set of mutual interactions have an exponentially increasing
cost. Statistical sampling approaches typically require thousands of evaluations of the computational
model, although their cost is in principle independent of the number of parameters. This approach is
prohibitively expensive for models with nontrivial computational times. The only feasible approach for
this important class of models is to generate an approximation to the model, and then to perform the
statistical sampling on the approximation. Constructing such an approximation, however, is only feasible
for a small number of parameters.

2.1.5. Approximations

Clearly, the methods described previously for uncertainty propagation and for sensitivity analysis are
impractical when the computational time required to evaluate the process model is large. This problem is
usually dealt with by using approximations. Several alternatives to sampling methods have been
developed for estimating the PDF of the performance function. The Advanced Mean Value method (Wu
and Wirsching 1989) exploits a first-order approximation to the performance function together with a Fast
Probability Integration technique. The first-order approximation requires the computation of the gradients
of the performance function with respect to all the random variables. The Fast Probability Integration then
performs an integration over this linear approximation. Field, Paez, and Red-Horse (1999) have improved
this method to yield more accurate moments of the PDF. Du and Chen (2000a) have developed a method
based on Most Probable Point techniques for efficiently constructing the PDF. It, too, utilizes the first-
order derivatives of the performance function. Both of these methods are usually implemented with finite-
difference approximations to the gradients of the performance functions. Their cost can be dramatically
lower if efficient methods for computing these derivatives are exploited.

More generally, one can build an approximation, typically a response surface model, for the exact
process model. The response surface is then used in lieu of the exact process model by the uncertainty
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computing engine. Response surface approximations are constructed by the following three steps:

• Experiment points are selected.

• Response surface model order is selected.

• Experiment points are fitted to the chosen model.

The selected experiment points determine where in the design space the exact process model will be
evaluated. Design of experiment techniques are typically employed; for an excellent treatment on the
selection of the experiment points see Box and Draper (1987). When selecting the response surface model
order, quite often either linear or quadratic surfaces are assumed. Once the model order has been
determined, the response surface is fit using least squares. In some cases the model order is not selected
beforehand; instead the response surface model is chosen such that the first two statistical moments of the
response surface match that of the exact process model, resulting in first-, second-, or even higher-order
surfaces.

2.2. Analysis and Optimization Incorporating Uncertainties

The previous subsection focused on methods for describing the uncertainties in the performance
measures of a discipline or system. This description may be in the form of probability density functions,
membership functions, or interval bounds. In this subsection, we discuss methods that use this
information in design, e.g., by computing failure probabilities, by design of control systems, or by
optimizing a system in the presence of uncertainties.

2.2.1. Impact of Uncertainty on Performance Measures

A type of performance measure that is pervasive in reliability-based design is a limit state function.
Limit state functions are generally nonlinear relationships (constraints in the optimization context) used to
define system failure conditions. Examples of the engineering quantities that may be embedded in limit
state functions are stress, dynamic stability, temperature, fracture, or buckling. Conventionally, the failure
domain is described by g(x) < 0, where g is the limit state function. Figure 6 is an example of a limit state
function for a problem with two design parameters.

Failure domain
Safe domain

g(x) < 0
g(x) > 0 

g(x) = 0

x
1

x 2

(Limit state function)

Figure 6. Limit state function.

To date, limit state functions have been used exclusively with probabilistic uncertainty analysis.
Mathematically, the failure probability PF is defined as
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where fX(x) is the joint probability density function of X and the integration is carried out over the entire
failure domain. For many engineering applications, solving equation (1) may entail a substantial
computational effort. Some of the difficulties in evaluating the right-hand side of equation (1) include:

• High dimensionality of the design space makes the integration very costly

• Mathematical and computational complexity of the domain boundaries given by g(x) = 0

• Lack of information regarding the joint probability density, fX(x)

Because of these complexities, exact solutions of failure probabilities for general systems with
arbitrary parameter uncertainty PDFs are not feasible; therefore, efficient numerical methods for
computing approximate failure probabilities are required. In fact, the development of efficient
approximate numerical techniques has been the subject of much research.

The goal of First-Order Reliability Methods (FORM) and Second-Order Reliability Methods (SORM)
is to compute failure probabilities efficiently by exploiting approximate forms of the limit state function.
FORM and SORM replace the limit state function in equation (1) with first-order and second-order
approximations, respectively. FORM and SORM reliability methods consist of four basic computational
steps:

1. Transform from physical space to standard normal space.

2. Determine the most probable point (MPP).

3. Approximate the limit state function at MPP.

4. Compute the failure probability using the approximated limit state function from step 3.

Step 1 is particularly important because of the properties of standard normal space. The most
important property of standard normal space in regards to computing failure probabilities is that
probability densities decay exponentially with the square of the distance from the origin. Therefore if one
approximates the limit state function in the vicinity of the MPP (the closest point to the origin), the
majority of the failure probability will be captured by an approximate limit state function because it is
most accurate in the region that contributes the most to the integration. The specifics for computing
failure probabilities for FORM and SORM differ slightly, but the primary difference between them is the
order of the approximated hypersurface. In FORM, the limit state function is approximated by a tangent
hyperplane at the MPP; in SORM, a quadratic hypersurface is used. This difference generally results in
SORM producing more accurate estimates of failure probabilities, but at the cost of greater computer time
due to the second-order gradient computations.

Rackwitz (2000) has written a detailed review of FORM and SORM methods. Thacker et al. (2001)
have provided a useful description of the weaknesses of current FORM and SORM algorithms. Thacker et
al. (2001) note that Importance Sampling Methods are often used to increase the accuracy of the limit
state function probabilities near the MPP. Choi and Youn (2001) have recently developed an alternative
approach to reliability analysis that inverts the objective and constraint functions in the optimization used
to identify the MPP.

2.2.2. Bounded Uncertainty Design and Analysis

The controls community has developed a special approach that they refer to as bounded uncertainty
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design and analysis. In this approach, system uncertainties can be either parametric or nonparametric.
Furthermore, the uncertainties can be real or complex time-independent functions, or linear/nonlinear
time-varying functions (Balas and Packard 1996; Doyle, Wall, and Stein 1982). No matter what form of
uncertainty one is dealing with, the uncertainty is assumed to be norm bounded, i.e., the maximum
excursions of uncertainties are assumed to be known a priori. Figure 7 is an example of how the bounded
uncertainty is added to a system. In this figure, P is the plant, d represents the exogenous inputs (typically
unknown disturbances or reference signals), yp are the sensor measurements, ∆∆∆∆ is the uncertainty block,
and W and Z are used to define the interconnection between the plant and the uncertainty block.

W Z
∆

P yp
d

Figure 7. Bounded uncertainty structure.

The main objective in the Bounded Uncertainty Design and Analysis approach is to obtain bounds on
the potential variations in system performance based on the bounds on the parametric and nonparametric
uncertainties. The type of analysis required in this approach can vary significantly from one application to
another. It can be simply a norm-based analysis in which the norm bounds at the uncertainty levels are
propagated through to the system performance, e.g., bounds on stress levels due to bounded uncertainty in
the material properties. Substantial work has been done for linear time-invariant dynamical systems in
this area (Balas and Packard 1996; Doyle, Wall, and Stein 1982; Moser 1993; Balas and Doyle 1994;
Gagnon, Pomerleau, and Desbiens 1999; Bendotti and Beck 1999; Nishimura and Kojima 1999; Pannu et
al. 1996; Cheng and De Moor 1994; Balas et al. 1998). Various techniques are available to incorporate
parametric and nonparametric uncertainties within the linear system. Both structured and unstructured
uncertainty models can be considered in this framework (Balas and Packard 1996). A structured
uncertainty model denotes a model in which uncertainty is directly associated with specific parameters in
the system, while in the unstructured uncertainty model, uncertainties are general, and hence are not
associated with any specific parameter in the model. Several methods are available for analysis of
dynamic stability and performance of these systems. An example is the Linear Matrix Inequality
framework, which uses convex programming (Scherer, Gahinet, and Chilali 1997; Apkarian and Adams
1998). The treatment of linear time-invariant systems with uncertainty can be extended to linear time-
varying systems as well as a certain class of nonlinear systems (e.g., linear parameter varying systems)
with the aid of the Linear Matrix Inequality framework (Scherer, Gahinet, and Chilali 1997; Apkarian and
Adams 1998). For general nonlinear systems, the treatment of bounded uncertainties is somewhat ad hoc,
as there are no formal methods for dealing with such systems. However, in some cases, Lyapunov
stability theory and norm-based propagation can be used to establish bounds on the performance of the
nonlinear system.
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2.2.3. Optimization Under Uncertainty

Several design optimization methods include uncertainty. For the purpose of this paper, the methods
can be divided into three groups: sampling methods, robust optimization, and optimization for reliability.
Sampling methods can be used to solve either robust optimization or reliability-based optimization
problems, but we find it useful to discuss these methods separately. The sampling methods perform all
experiments (whether mathematical simulations or physical tests) simultaneously and then optimize the
design based on the results of those experiments. Robust optimization methods use the numerical
optimization procedure to specify which simulations are needed and evaluate those simulations one at a
time. The optimization for reliability methods also use numerical optimization procedures but with the
goal of reliability rather than robustness.

2.2.3.1. Sampling Methods. Sampling methods are based on the assumption that the designer will choose
an optimum design by evaluating a performance or cost measure at a large number of points in design
space. Ideally, these points define a smooth hypersurface with a well-defined feasible region and a single
optimum point. If the cost measure (also called objective function) includes parametric uncertainty, then
many evaluations are required at each point in design space to accurately characterize the hypersurface.

Trouble arises when the value of the objective function is evaluated with a variety of different
computer simulations and experimental data. Each source of measured and computed data includes errors
(e.g., due to simplification in the mathematical models) and uncertainty (e.g., due to the difference
between the ensemble averages and the individual test results). For a good overview of available sampling
and response surface approximation techniques see Robinson (1998). For a discussion of the types of
variabilities, uncertainties, and errors found in simulation codes and for uncertainty estimation methods
see Alvin et al. (2000).

Conceptually, optimization that includes uncertainty can be achieved by fitting all available data with
some smooth surface and then using a mathematical optimization procedure to determine the best design.
All sampling approaches considered here use the following three steps: (1) sample the design space, (2)
approximate the objective function, and (3) estimate the optimum of the approximate surface. These steps
can be repeated one or more times on smaller and smaller neighborhoods surrounding the current
optimum point.

Several popular techniques differ in steps (1) and (2). For example, the design space can be sampled
using Taguchi arrays, Latin hypercubes, random points, or some subset of available data. Similarly, the
approximate surface can be constructed using neural nets, polynomials, or splines under tension. The
choice of method depends on knowledge of the design space (e.g., the objective function may vary
linearly with respect to some design variables) and on the amount of available data.

Response surface methods (RSM) and Taguchi parameter design methods are the most commonly
used procedures. Venter and Haftka (1999) explain that RSM reduces the computational burden and
simplifies the integration of optimization and analysis codes. Roy (1990) and Nair (1992) discuss the
Taguchi method and some of its known strengths and drawbacks. Unal, Stanley, and Joyner (1993)
provide a good tutorial on Taguchi methods written from an engineering perspective. The principal
limitations of both RSM and Taguchi parameter design methods are: neither constraints nor multiple
objective functions are accommodated; dimensionality restricts the application of these methods to
problems with a small number of parameters and design variables; and they are far less applicable to
uncertainty and error than to variability (as these terms are used by Oberkampf et al. 1998). Although
Taguchi methods are effective for many problems, work still needs to be done to develop alternative
approaches that overcome these limitations.
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2.2.3.2. Robust Optimization Methods. For our purposes, robust optimization methods seek to improve a
design by making it insensitive to small changes in the design values, and they exploit sequential
numerical optimization techniques. One method for achieving robustness is to minimize both the mean
and variance. Thus, the optimization problem is formulated as a multiobjective problem:
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where t are the design variables in the domain Ω, θ are the uncertain parameters that are described by one
or more PDFs, c is the mean of the objective function, σ2 is the variance of c due to the randomness of θ,
and wi are the user-defined weights. Depending on the choice of weights, this formulation will minimize
the objective, minimize the variance in the objective, or discover some compromise between these two
goals.

Robust optimization methods are effective if c(t,θ) is a good simulation of the performance or cost
goals and if the PDF of θ is well characterized. For example, structural analysis codes can accurately
predict the strains in metal truss structures given the loads. Moreover, the PDF of uncertain loading
parameters such as wind speed or wave height have been collected. Therefore, robust optimization for
sizing of civil engineering projects should result in safer and more cost-effective structures.
Unfortunately, few simulation codes automatically predict the variance of the mean given a known PDF
of the uncertain parameters. Tada, Matsumoto, and Yoshida (1988) provide a clear explanation of this
method and its application to simple structural sizing problems.

2.2.3.3. Optimization for Reliability. Optimization for reliability methods are based on the assumption
that the design space is divided into two regions: success and failure. The goal of the optimization is to
find the best design that is sufficiently far from the failure region so that the probability of failure is
acceptably small. Thus, the optimization problem is formulated as a constrained optimization problem:
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where r is the reliability requirement, g(t,θ) = 0 defines the boundary (or limit surface) between success
and failure, and P[g ≤ 0] is the probability of failure for the current values of the design vector t.

Optimization for reliability can be attempted using standard constrained nonlinear optimization
procedures. The major difficulty is the computational expense of calculating the probability of failure. A
secondary difficulty is that the constraint PF ≤ r can be a highly nonlinear function of t even if g(t,θ) is
linear in t.

The computational expense of optimization for reliability greatly hinders its acceptance. If an
evaluation of the constraint g(t,θ) is computationally expensive or if the reliability requirement r is small,
then Monte Carlo analysis can be prohibitively expensive since it requires thousands of evaluations of g at
randomly sampled values of θ. An alternate approach is to (1) use the optimization code to find the most
probable point of failure or MPP, (2) estimate the probability of failure using a linear approximation to
the limit surface centered at the MPP, and (3) use the optimization code to minimize the objective for the
required probability of failure. In this alternate approach, the optimization code is used twice, first to find
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the values of θ that define the MPP and then to find the values of t which reduce the objective without
compromising safety. See Langley (2000) and Grooteman (1999) for a good overview of these methods.

3. Current Status and Barriers

3.1. Structural Analysis

3.1.1. Current Status

Traditionally, the approach to designing aerospace structures with uncertainties is to use statistically
based material properties (e.g., yield strength) and to introduce design factors. The statistically based
material properties are characterized as A-basis and B-basis material property values (Anon. 1997). An A-
basis material property is one in which 99 percent of the material property distribution is above the basis
value with a 95 percent level of confidence. A B-basis material property is one in which 90 percent of the
material property distribution is above the basis value with a 95 percent level of confidence. Design
factors can be placed into two categories and include safety factors and design knockdown factors for
stability critical structures. Safety factors account for uncertainties in a “lump-sum” fashion by
multiplying the maximum expected applied stress by a single safety factor. The FAA air-worthiness
certification requires a design safety factor equal to 1.5 for man-rated aircraft structures; however, safety
factors as low as 1.02–1.03 have been used in the past for non-man-rated structures such as missiles. The
safety factor is intended to account for uncertainties such as uncertainty in aerodynamic load definition
and structural stress analysis, variations in material properties due to manufacturing defects and
imperfections, and variations in fabrication and inspection standards. The safety factor is generally
developed from empirically based design guidelines established from years of structural testing of
aluminum structures. For a historical review of the evolution of the 1.5 factor of safety in the United
States, see Muller and Schmid (1978).

The traditional approach to designing thin-walled buckling-resistant structures is to predict the
buckling load of the structure with a deterministic analysis and then to reduce the predicted load with an
empirical design knockdown factor, which is intended to account for the difference between the predicted
buckling load and the actual buckling load of the structure determined from tests. The differences
between analysis and test results are mainly due to uncertainties in the structural geometry (e.g.,
imperfections), loading conditions, material properties, and boundary conditions. Design guidelines for
stability critical isotropic structures can be found in several NASA documents including Weingarten,
Seide, and Peterson (1968) for buckling of thin-walled circular cylinders, Weingarten and Seide (1968)
for buckling of thin-walled truncated cones, and Weingarten and Seide (1969) for the buckling of thin-
walled doubly curved shells.

Many of the aforementioned design practices have been carried over to composite structures for lack
of better design methods. In addition, these design methods can potentially result in overly conservative
or unconservative designs of aerospace structures. Furthermore, these design guidelines do not include
any data or information related to uncertainty sensitivity.

3.1.1.1. Probabilistic Analysis and Design Methods. A probabilistic design methodology reported in
Anon. (1997) accounts for uncertainties in material properties; external or operational loads;
manufacturing processes and their effects on material strength; environmental effects on strength such as
moisture or radiation exposure; environmental history during operation; flaw and/or damage locations,
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severity, and probability of occurrence and effects on strength; and predictive accuracy of structural
models and analysis. The probabilistic approach uses the statistical characterization of parameter
uncertainties and attempts to provide a desired reliability in the design. In the probabilistic approach, the
uncertainties of the individual design parameters and loads are modeled by appropriate probability
densities. These probability densities are combined into cumulative density functions by using
transformation equations. In this case, the design parameters have an uncertainty that is quantified in
terms of risk. The credibility of this approach depends on two factors: the accuracy of the analytical
model used to predict the structural response, and the accuracy of the probabilistic techniques employed.
This probabilistic methodology has shown some success in the design of composite structures where the
parameter uncertainties are well-known. For example, the IPACS (Integrated Probabilistic Assessment of
Composite Structures) computer code was developed at NASA Glenn Research Center (Chamis and
Murthy 1991), and a probabilistic stability analysis for predicting the buckling loads of compression-
loaded composite cylinders was developed at Delft University of Technology (Arbocz, Starnes, and
Nemeth 2000).

3.1.1.2. Fuzzy Set or Possibilistic Analysis Methods. For situations in which sample data necessary to
quantify parameter uncertainties are limited or nonexistent, fuzzy set analysis can be used to account for
uncertainties. In these methods, uncertainties in input parameters (e.g., dimensions, Young’s modulus) are
defined by membership functions. An example of a membership function is shown in figure 8.

1.0

Uncertain quantity

Possibility

.20 .25 .30
0

Figure 8. Example of membership function.

The vertical scale is the possibility that an uncertain quantity takes on a given value, and the horizontal
scale shows values of the uncertain quantity. The possibility varies from zero (no possibility) to one
(maximum possibility). In this example, the most likely value of the uncertain quantity is 0.25. The
uncertain quantity is bounded by 0.20 and 0.30 at Possibility = 0.0. The objective is to use the
membership functions of the input parameters to determine the corresponding membership functions for
the response quantities (e.g., stress, buckling load). The membership functions for the response quantities
are then compared with the membership functions of the allowable responses to determine the possibility
of failure.

A subset of fuzzy set or possibilistic analysis is sometimes called interval analysis. In this approach,
upper and lower bounds are placed on the uncertain input parameters, and the resulting upper and lower
bounds are calculated for the response quantities. The objective is merely to bound the response rather
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than to indicate the likelihood of the response taking on a given value. This approach is equivalent to
working with membership functions at a possibility of zero.

Fuzzy set or possibilistic analysis methods have been proposed by Noor, Starnes, and Peters (2000)
and have been applied to structural problems such as the probabilistic strength predictions of bonded
joints by Stroud, Krishnamurthy, and Smith (2001). In addition, interval analysis has been used to predict
response bounds for compression-loaded composite shells with random imperfections, e.g., Hilburger and
Starnes (2000).

3.1.1.3. Example. The example illustrated in figure 9 (from Fadale and Sues 1999) illustrates how
quantitative design for reliability enables effective trade-offs between weight and reliability. An existing
lap joint connecting two integral airframe panels was redesigned for minimum weight and to meet
reliability requirements. Failure analyses (the limit state functions) involved fatigue and discrete source
damage. Reliability-based design methods yielded an improved design that saved 19 percent in weight
while providing the same reliability. In addition, this method provided sensitivity information that showed
how weight varies with reliability. In this case, small increases in weight produced large increases in
reliability. Weights are shown normalized with respect to the weight of the original joint.

Figure 9. Reliability versus weight trade-off (from Fadale and Sues 1999).

3.1.2.  Barriers

Most of the barriers to the use of uncertainty-based design methods in the structures discipline are
shared with the other design disciplines.

B1. Industry feels comfortable with traditional design methods.

There is always inertia associated with existing processes. Certainly, traditional design methods have
been very successful in the aerospace industry. Nevertheless, the traditional methods and processes are
characterized by costs, schedules, and performance limitations that are significant problems in the modern
business climate. A necessary condition for overcoming this barrier is ensuring that the transition by
industry to the new uncertainty-based methods and processes is relatively painless.

B2. Few demonstrations of the benefits of uncertainty-based design methods are available.
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The technology advocates of uncertainty-based design need to provide compelling demonstrations of
the benefits of uncertainty-based design methods and a compelling business case for changing to the new
processes. This case must demonstrate measurable benefits and must be couched in terms readily
understandable by both technology managers and practitioners. Given the head start of the structures
community on uncertainty-based design methods, this barrier is even greater for the other design
disciplines.

B3. Uncertainty-based design methods are more complex and considerably more expensive than
deterministic design methods.

Advances in computer hardware and software, especially in automation, are bound to help. However,
orders of magnitude improvements are needed to overcome this barrier. Fundamental breakthroughs are
needed in this area.

B4. Characterization of structural imperfections and uncertainties necessary to facilitate accurate analysis
and design of the structure is time-consuming and is highly dependent on structural configuration,
material system, and manufacturing processes.

To some extent this structures-specific barrier will naturally lessen with time as more and more such
characterizations are done. However, methods must be established for generalizing the specific results
that come out of tests of particular configurations, materials, and manufacturing processes.

3.2. Aerodynamic Testing and CFD

3.2.1. Current Status

For the purposes of discussing the risk associated with using the results obtained from experimental
and/or computational aerodynamic simulations, it is convenient to think of a simulation as a single pass
through a manufacturing process (Eisenhart 1969). The outputs of the “manufacturing” process are the
numbers generated either by the instruments in an experiment or by the computer codes in a computation.
It is the uncertainty (fuzziness) associated with those numbers that a simulation contributes to the overall
risk in the design of an aerospace vehicle. Hence, the objective of any aerodynamic simulation effort must
be to quantify the subprocess and overall process variation4 and contain it to acceptable levels in the
simulation results and thence into the final design.

Wheeler (1990) discusses the three stages involved in quantifying and containing variation in the
making of an industrial product. These stages are useful for discussing the risk associated with both types
of aerodynamic simulation: testing and CFD. The manufacturing stages, as presented by Wheeler,
together with the analogous aerodynamic simulation stages are given in table 1. Usually, the three
aerodynamic simulation stages are carried out simultaneously, at least in part (Rubbert 1998), but the
strategies (objectives) of each for managing and minimizing risk are different.

                                                  
4 We will use the term "variation" to designate the scatter in replicated results. If the scatter is not known and controlled, it is not
possible to consistently and credibly assess and correct the offset of the mean of the results from the true value.
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Table 1. Stages for Minimizing Risk Associated With Manufacturing and With Aerodynamic Simulation

Manufacturing Aerodynamic simulation

Stage Objective Stage Objective

Product design

Choose design parameters so that
the product will be insensitive to
variation in raw materials and
manufacturing process conditions

Airframe
design

Choose design parameters so that
the simulation results will be
insensitive to the simulation
process

Manufacturing
process design

Choose the manufacturing
process conditions so that the
product will be insensitive to
variation in those conditions

Simulation
process design

Design the simulation process to
be insensitive to variation in the
process parameters

Manufacturing
Control the manufacturing
process to obtain desired product
consistency

Simulating
Manage the level of variation so
that the process variation has
known and traceable bounds

This subsection addresses previous work and the current status of work in the three stages of
simulation as described in table 1. The various efforts can be divided into three types: general strategies,
ad hoc “example” evaluations, and systematic evaluations. It is beyond the scope of this section to report
and evaluate all of the work in these areas. However, we will list certain publications that illustrate what
we believe to be the state of the art.

Airframe Design. A usual design strategy is to choose airframe designs for which one has sufficient
experience to be able to assess risk. In this capacity, CFD has made some inroads to the design process
for over a decade (cf. Rubbert and Goldhammer 1989). Many issues still abound regarding the role of
CFD in design (Rubbert 1990, 1994, 1998; Raj and Singer 1991, Raj 1998; Cosner 1994, 1995), not the
least of which is the rigorous establishment of confidence in computational results.

Beyond the usual design strategy of choosing airframe designs for which one has sufficient experience
to be able to assess risk, the pioneering work in this area seems to be optimization based on statistical
modeling of the design criteria (Huyse 2001). Such modeling produces “softer” but more robust optima.
There does not appear to be any work in CFD that attempts to produce aerodynamic designs that are
inherently robust in the face of input uncertainties and discretization and modeling errors. Also, neither
general strategies nor systematic evaluations for airframe design have been developed.

Simulation Process Design. General strategies have been developed for assessing and managing risk
in both computational and experimental simulations. Examples of general strategies for computations are
Cosner (2000), Mehta (1998), Oberkampf et al. (1998), Rizzi and Vos (1998), and Roache (1998). These
strategies typically require (1) assessment and management of numerical error due to discretization of the
governing differential equations and (2) a hierarchy of validation phases, primarily statistical comparisons
with experimental results. These requirements are not unlike the conceptual distinction between CFD
code “calibration” and “validation” from Waggoner et al. (1994) as part of an international effort to
delineate a proper process for code validation and to provide a comprehensive series of test cases
(AGARD 1994):

CFD Code Calibration: The comparison of CFD code results with experimental data for realistic
geometries that are similar to the ones of design interest, made in order to provide a measure of



22

the code’s ability to predict specific parameters that are of importance to the design objectives
without necessarily verifying that all the features of the flow are correctly modeled.

CFD Code Validation: Detailed surface- and flow-field comparisons with experimental data to
verify the code’s ability to model accurately the critical physics of the flow. Validation can occur
only when the accuracy and limitations of the experimental data are known and thoroughly
understood and when the accuracy and limitations of the code’s numerical algorithms, grid
density effects, and physical basis are equally known and understood over a range of specified
parameters.

With this distinction, many prior cases of purported code validation should be considered a collection
of specific code calibrations. Furthermore, this distinction makes clear that computational validation can
only occur in conjunction with rigorous experimental uncertainty management. Results from this
distinction have been published by Bussoletti (1994).

Promising efforts are underway by several research groups to reduce, manage, and assess the
numerical error using adjoint equations (Giles and Pierce 1999; Habashi et al. 1998; Patera and Rönquist
2001; Roberts, Sidilkover, and Thomas 2000; Venditti and Darmofal 2000). Such ideas seem to have
come of age and the use of such methods appears to be spreading. However, systematic evaluations of the
methods, especially regarding the scatter due to variation in code and observer, appear to be lacking.
Validation efforts at this stage appear to consist mostly of example problems. The most complete effort of
this type may be the work of Aeschliman and Oberkampf (1998). Others have attempted to assess
variation across several codes using several experimental data sets (Barber et al. 1998; Elsholz 1997;
Georgiadis, Yoder, and DeBonis 1999).

Examples of general strategies for designing experimental simulations for managed risk are
Aeschliman and Oberkampf (1998), Anon. (1995), and Mayo (1996). Overall, such strategies consist of
one or more of the following three elements: (1) creation of a hierarchy of validation experiments, (2)
evaluation of the effects of instrument errors using error propagation analysis, and (3) replications during
the experiment to allow for statistical characterization of the data scatter for that test. Although it is clear
that any competent research facility would follow these strategies, it is not at all clear how well the
strategies can be counted on to fully characterize the “fuzziness” of the experimental results. The reason
for this seems to be a general lack of systematic evaluation of the strategies themselves.

Simulating. Approaches are in place for both experimental and computational aerodynamic
simulation for estimating a portion of the uncertainty in the results of any given simulation effort. The
methods described in the previous paragraph for design of an experimental simulation process are used
widely in the industry for estimating the uncertainty of experimental results (Belter 1996; Cahill 1996;
Meyn 1998; Kammeyer and Rueger 2000), although their general effectiveness is not well understood,
primarily because systematic evaluations across facilities are essentially unavailable. The need for
managing and evaluating numerical error in individual computational simulations is well-known and is
required by archival publications. As described previously, methods have been developed for estimating
such errors. However, systematic evaluation of such schemes is lacking.

The only effort known to us that attempts to evaluate experimental simulation process as a process is
that of Hemsch et al. (2000). The effort uses the methods of statistical quality control, check standard
(surrogate) testing, and replicates during customer testing to evaluate and control the process for all tests
conducted in a facility. The method is being used at Langley Research Center in eight wind tunnels and
one nozzle test facility. We are not aware of any similar efforts associated with computational results.
Moreover, the strategies have not yet been developed for evaluating and controlling processes from
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multiple facilities to produce consistent data.

Probably the leading work for addressing computational uncertainty as a process is being conducted
by Oberkampf and his associates (Oberkampf and Blottner 1998; Oberkampf 1998; Oberkampf et al.
1998; Oberkampf and Trucano 2000). Significant contributions can also be found in the work of Roache
(1990, 1998). These works could be heavily leveraged toward the current interest in uncertainty-based
design.

3.2.2. Barriers

The main theme that seems to arise out of the previous discussion in this section is a lack of
systematic, quantitative, and credible (traceable) evaluations of the available methods for minimizing,
managing, and estimating the errors associated with the results of both experimental and computational
simulation. Aerodynamics shares with structures the barriers of industry comfort with traditional design
methods (B1), few demonstrations of benefits of uncertainty-based design (B2), and increased complexity
and greatly increased cost for uncertainty-based design methods compared with deterministic design
methods (B3). Indeed, the cost increase is even more of a barrier in aerodynamics because the nonlinear
aspects of computational aerodynamics make the computation of gradients much more of a challenge than
for computational structures.

3.2.2.1. Statistical Process Control. Additional barriers include the dearth of statistical process control
activity, the lack of any current approach for characterizing the model form uncertainties associated with
transition and turbulence, and the lack of a viable approach for characterizing uncertainties in sensitive
nonlinear problems.

B5. There is a dearth of statistical process control activity in aerodynamics.

This barrier afflicts most disciplines. In the case of aerodynamics, two principal causes, or “sub-
barriers,” are involved:

a. Present and projected CFD code calibration, verification, and validation activities are expensive and
insufficiently general to be applicable for predictive accuracy assessment.

b. Calibration and validation exercises need to include code developers (or analysts) and experimentalists,
but these groups are not motivated to work together.

High-fidelity CFD computations (Reynolds-averaged Navier-Stokes) are notoriously expensive—
runtime can last upwards of a day, even on a 32-processor cluster, for a full aircraft computation. This
expense precludes, for example, the practical use of even the most sophisticated sampling methods for
assessing the effects of variability. Part of B5(a) is a reinforcement of B4. The additional aspect is that the
calibration, verification, and validation approaches currently in use by the CFD community need to be
reconciled with the general verification and validation framework that has emerged in the past few years.

The second aspect of this barrier, B5(b), involves cultural and financial forces acting in concert, and
certainly results in a dearth of statistical process control activity. Consider the following institutional
groups:

Airframe Designers. These workers typically have little or no time to do any systematic work other
than design. Their efforts are aimed at optimizing a design as fast as possible using both experimental and
computational simulation. Unfortunately, their support groups involved in research, development, and
testing have little funding with which to carry out evaluations that cross their institutional boundaries.
Furthermore, any such systematic evaluations carried out are likely to be proprietary.
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Simulation Process Designers. These workers typically have little funding to do any systematic
work. Their day-to-day pressures are likely to be problem solving and extension of simulation capabilities
rather than systematic evaluation. Notable exceptions are the adjoint equation work for estimating and
managing numerical errors and the statistical quality control work for estimating and controlling data
scatter in wind tunnels. Both types of simulations suffer from a lack of definitive systematic hierarchical
experiments with which to evaluate modeling errors.

Simulation Users. Users of both types of simulations are under severe pressure to produce “good
quality” results as quickly as possible for as little money as possible. Users very seldom have the time or
funding to carry out systematic evaluations. They are typically quite willing, however, to carry out small
efforts to help with such evaluations if they are organized and funded by others. A common language will
need to be agreed to among the practitioners so that calibration, validation, verification, certification,
uncertainty, and so forth have consistently defined meanings and contexts.

Systems Approach. A systems approach could be a useful context to develop computational and
experimental aerodynamic methodologies for risk based design. Here the focus is drawn from top-level
system requirements, such as the successful insertion of the space shuttle into orbit (fig. 10). One could
just as well focus on other missions. Examples would include (but not be limited to) planetary entry, such
as the Mars Lander, or aircraft performance, such as commercial transport cruise and high lift
aerodynamics.

Figure 10. Systems approach to computational aerodynamics for uncertainty-based design.

All of these examples share a number of features from a design process perspective. Perhaps foremost
is the need for simulating or modeling flow environments that cannot be fully reproduced by conventional
experimentation. This approach leads to the use of computational tools of varying fidelity, experimental
processes of varying approximation, and so forth. A necessary consequence is the amalgamation of
differing fidelity technologies for the extrapolation to system-level conditions for performance
predictions.

Easterling (2001) has proposed a process to quantify the uncertainty of computational predictions, and
a summary figure from his report is presented in figure 11. The details of this work are quite extensive
and beyond the scope of this white paper, but his approach could be influential in uncertainty-based
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design activities. One key result here is the Quantified Prediction Uncertainty—a product of computation,
experiment, and analysis—that is used to assess system performance requirements.

Uncertainty quantification activities exist both among and within the elements of Easterling’s model.
Note that he distinguishes the system environment from the testable environment, explicitly recognizing
the extrapolative nature of many computational physics or ground-based testing environments (think of
Reynolds Number vis-à-vis aircraft performance).
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Figure 11. Quantifying the uncertainty of computational predictions (from Easterling 2001).

To view computation in the context of an overall design process, drawing on the work of Rubbert
(1994) is useful. Figure 12 is taken from Rubbert as a characterization of the general design activity: rapid
progress early in the design phase, asymptotic advancement late in the design activity, and an ever-
reducing variation throughout the process. The range of usefulness for a particular CFD code is then
shown in the context of this design process (fig. 13). Because of the inherent upstream limitations, such as
setup time, and downstream limitations, such as accuracy, a hierarchy of methods is used through the
design process: lower order faster methods early in the process and higher order slower methods late in
the design process. This general reasoning would apply to other simulation technologies as well.

Several things can be done to more rigorously manage this risk, and some examples are shown in
figure 14 and figure 15. Activities ranging from adaptive gridding to implementing expert systems could
significantly improve the risk management for the utilization of any particular code. A rigorous means to
link codes of varying fidelity could also significantly impact the risk associated with a design process.
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Figure 12. Variation associated with design process (from Rubbert 1994).

Figure 13. Range of usefulness of code within design process (from Rubbert 1994).
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Figure 14. Within-code enhancements for design process.
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Figure 15. Cross-code interaction to enhance the design process.

3.2.2.2. Aerodynamics Model Form Uncertainty

B6. Effective approaches for characterizing model form error are lacking.

Undoubtedly the greatest challenge in characterizing the uncertainty associated with CFD
computations is the characterization of the model form uncertainty. The aerodynamics models used in
design include simple algebraic equations, linear aerodynamics (vortex-lattice and panel) methods, Euler
methods, laminar Navier-Stokes methods, and Reynolds-averaged Navier-Stokes (RANS) methods. Most
aerodynamics effects of design interest involve turbulent flow. Turbulence modeling has challenged
aerodynamicists for decades. CFD calculations that resolve all spatial and temporal scales require
O(Re9/4) storage and O(Re11/4) operations (see, for example, Rogallo and Moin 1984), where Re is the
Reynolds number. Since such computations for flows of aerodynamic design interest are well beyond
foreseeable computer resources, phenomenological turbulence models are a necessity. For preliminary
and detailed design, aerodynamic codes utilize various 0-equation, 1-equation, 2-equation, algebraic
Reynolds stress (second-order) closure, and full second-order Reynolds stress models.
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The parametric uncertainties associated with the coefficients of a given turbulence or transition model
can be (but almost never are) characterized with standard (but expensive) sensitivity analysis methods.
The dearth of plausible strategies for characterizing the model form uncertainty associated with the
structure of the turbulence model employed in RANS computations, as well as the simplifications
associated with using laminar, Euler, linear, and algebraic aerodynamics models, inhibits many in the
CFD community to tackle the more manageable aspects of computational uncertainty in CFD. The only
work we have been able to find on this subject is by Coleman and Stern (1997).

For some aerodynamics design applications, the challenge of predicting the onset of laminar-turbulent
transition and the associated modeling of the transitional region is also considerable. Here, too,
characterization of model form uncertainty is a significant barrier. The same can be said of the models
used in Large-Eddy Simulation and Detached-Eddy Simulation.

3.2.2.3. Sensitive Nonlinearities

B7. There are no dependable approaches to uncertainty quantification for nonlinear problems.

Aerodynamics is replete with situations in which small changes in parameters lead to drastic changes
in the flow and therefore to drastic changes in the performance measures. Phenomena such as the
transonic drag rise, flow separation and reattachment, shock-boundary-layer interactions, vortex bursting,
limit-cycle oscillation, and boundary-layer transition suddenly change the whole character of the flow.
Uncertainty characterizations performed for one flow regime do not extrapolate well to another regime.
Presently, no strategy can be used with confidence for characterizing uncertainties for sensitive nonlinear
problems. This lack of confidence on the uncertainty bounds often leads to restricting the design space to
linear regimes for which designers have sufficient experience to trust their judgment on the uncertainties.
This restriction can lead to lost opportunities for higher performing vehicles. Although it is encouraging
that work on uncertainty quantification for strongly nonlinear problems is expanding, much remains to be
done.

3.3. Control Systems

3.3.1. Current Status

Stability and performance robustness have long been considered significant issues in control system
design and analysis. Researchers like Bode (1945), Nyquist (1932), and Evans (1948) were instrumental
in developing some of the fundamental concepts for the analysis and design of feedback control systems.
For the most part, their work focused on frequency domain graphical methods for single-input/single-
output (SISO) systems. As a result of their efforts, quantifiable metrics for characterizing stability
robustness were developed. Even today, stability robustness for SISO systems is typically characterized in
terms of gain and phase margins. With the help of computers and powerful numerical software, the SISO
concepts for analyzing robustness have been generalized to include multi-input/multi-output (MIMO)
systems using loop-gain singular value analysis (Safonov 1977). Unfortunately, singular value analysis in
its general form can, in many cases, result in very conservative designs that may not necessarily reflect
the true nature of the parameter/model uncertainties. Although there has been much development since
the introduction of singular values, e.g., structured singular-value (µ) (Doyle 1982, 1983) and µ-analysis
(Weingarten and Seide 1969), the developments rely on frequency domain bounded uncertainty
representations that may not adequately model the true nature of the uncertainty. In an attempt to
overcome this limitation, researchers are now investigating methods for analyzing the stability of
feedback systems with parameter uncertainties defined in terms of probability density functions. This
approach is generally referred to as “probability of stability” (Stengel 1980; Lim and Junkins 1987;
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Stengel 1991).

One of the first papers to employ probabilistic descriptions of parametric uncertainties for the analysis
of stability robustness was Stengel (1980) with a follow-up by Stengel (1991). In these papers, the author
employs the Monte Carlo simulation method to assess the effect of probabilistic parametric uncertainties
on system stability. For linear time-invariant systems, stability may be evaluated by computing the
eigenvalues of the system. Eigenvalues with negative real parts are stable; those with positive real parts
are unstable. Since the value of the real part of the system eigenvalues has only two possible outcomes,
i.e., positive (unstable) or negative (stable), the probability of instability, P[instability], may be defined
mathematically as

                                              P f dinstability[ ] = − ( )
−∞∫1
0

Σ σ σ                                              (5)

where σ is vector of the real parts of the system eigenvalues and fΣ is their joint probability density
function. Note that fΣ is almost never known analytically, but may be evaluated implicitly using Monte
Carlo techniques. As an example, consider the characteristic equation for a typical second-order system
under feedback control:

s2 22+ +ζω ω  (6)

Assume that the closed-loop system damping ς and natural frequency ω are uncertain parameters with
normal distributions. Specifically, let ς have a mean of 0.707 with a standard deviation of 0.5 and ω have
a mean of 1.0 with a standard deviation of 0.2. A Monte Carlo simulation has been performed to assess
the probability of instability. The results are presented in figure 16. In this figure, regions of highest
eigenvalue density are shown in red and yellow and regions of lowest density in dark blue. Regions of
zero eigenvalue density are shown in white.
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Figure 16. Probability of instability.

Using the data presented previously one can easily compute the probability of instability. In this
example P[instability] = 7.82 percent. Lim and Junkins (1987) introduce a technique for approximating
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the probability of stability using linear perturbations of system eigenvalues and techniques from
probability theory. This method belongs to the class of response surface methods because of the
assumptions used for the system eigenvalue models. Specifically, the assumption is that the eigenvalues
inside the failure domain may be represented by a first-order Taylor series expansion about some nominal
point. This method may prove extremely valuable for a system in which parameter uncertainties have
small variances and eigenvalues with near-linear behavior. For systems that do not satisfy these
requirements, more research is needed to quantify the impact of the underlying assumptions.

Spencer (1994) and Spencer et al. (1992) explore the use of first-order and second-order reliability
methods (FORM/SORM) for computing probabilistic stability/performance measures for structural
control systems. This body of work addresses several interesting aspects of probability for controlled
systems. Similar to the work of Stengel (1980) it addresses probability of stability using eigenvalue
considerations, but extends the scope to include system RMS output response values and control system
RMS input values, which are particularly useful metrics used in many control applications. In terms of its
approach to the pure stability problem, i.e., eigenvalue considerations, it casts the problem as a classical
reliability problem for a series of components with limit state functions made up of the individual
eigenvalues. In series systems, if one of the components fails, the entire system fails. The analogy to
stability is that if any one of the system eigenvalues has a positive real part then the entire system is
unstable. An example of a family of three eigenvalue limit state functions with two uncertain parameters
is given in figure 17.

Unstable domain Stable domain

x1

x2

Re (λ2) = 0

Re (λ3) = 0

Re (λ1) = 0

Figure 17. Eigenvalue limit state function.

The examples presented by Spencer (1994) and Spencer et al. (1992) provide an informative view of
reliability methods applied to the area of active structural control. The types of uncertainties addressed in
these examples included stiffness, damping, inertia, actuator effectiveness, and time delay. Although
these examples are limited to low-order structural systems with corresponding low-order compensators,
the basic theoretical structure of FORM/SORM should be capable of handling higher order controlled
systems.

3.3.1.1. Bounded Uncertainty Design and Analysis. A typical control design with bounded uncertainty
structure is presented by Balas et al. (1998). In this application, linear control designs for the F-14 aircraft
lateral-directional axis during powered approach to a carrier landing are presented. The controllers are
designed using the structured singular value (µ) framework (Balas and Packard 1996; Moser 1993; Balas
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and Doyle 1994; Gagnon, Pomerleau, and Desbiens 1999). The performance objective is to design robust
controllers such that the true airplane (nominal model plus uncertainty) responds effectively to pilot
command in the form of lateral stick and rudder pedal inputs. A block diagram, representing the various
interconnections between the nominal model, the controller K, and the uncertainty ∆G is presented in
figure 18. The nominal model, designated as F14nom, has four states, lateral velocity v, yaw rate r, roll rate
p, and bank angle φ. This model is assumed to be linear and time-invariant for a trim condition of 10.5
degrees angle of attack and an air speed of 137 kn. For the purpose of control design, the aircraft is
modeled as having three control inputs, differential stabilizer deflection δdtab, rudder deflection δrud, and
differential spoiler deflection δdsp. Three measured outputs are used in the feedback loop: roll rate, yaw
rate, and lateral acceleration yac. The dashed box in the figure represents the true airplane model, which
includes the nominal model, actuator models, and Win and ∆G, which parameterize the uncertainty in the
model. The model uncertainty ∆G assumed here is called input multiplicative plant uncertainty. The
uncertainty is modeled as three individual, complex, full-block multiplicative uncertainties at the input of
the aircraft model. These uncertainties accommodate errors in differential stabilizer, differential spoiler,
and rudder moment coefficients. The reasoning behind using three individual blocks to represent the
uncertainty is based on an assumption that isolated errors in differential stabilizer, differential spoiler, and
rudder moment do not couple into each other. Two linear µ controllers were successfully designed,
implemented, and tested in pilot-in-the-loop simulations at the crewed flight simulator at the U.S. Naval
Air Warfare Center in Patuxent River, Maryland. The test pilots both concluded that the µ controllers
achieved all performance objectives, with a Cooper-Harper rating of 2 and 3, respectively.
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3.3.1.2. Fuzzy Control. Ham, Qu, and Johnson (2000) describe a robust fuzzy control development for
robot manipulators that guarantees both global stability and performance. In the approach taken here, a
robust suboptimal control is designed first and fuzzified for each rule to guarantee stability in each fuzzy
set. Then, individual fuzzy controls are blended to form the overall fuzzy controller. The procedure for
designing a robust fuzzy controller is given as follows:

• Subsets Fi are chosen according to their proximity to hyper-balls of the auxiliary state (z = z(x)),
reflecting the designer’s choice for stability regions and performance. Membership functions
Mi(x) are chosen to make the sets Fi fuzzy. These functions are required to have their degree of
membership between zero and one.

• Individual fuzzy controls are selected according to the fuzzy rule.

o If x ∈ Fi, then control is given by u =ui(x), where ui(x) is a fuzzy control which depends
on the bounds on the nonlinear part of the state matrix and the auxiliary state vector.

• The overall fuzzy control uf is obtained by blending the individual control laws according to the
standard fuzzifying rule.

This design procedure provides robustness, global asymptotic stability, and performance. It should be
noted however that the robustness characteristic of this control approach is obtained from the Lyapunov
stability theory, together with a norm-bounded approach to handle nonlinearities and uncertainties, and
not as a specific implementation of the fuzzy set theory. The fuzzy control scheme was applied to control
of a two degree-of-freedom robot manipulator. The bounds in the eigenvalues of the inertia matrix were
chosen as 0.5 and 9, respectively. The nonlinearities in the state matrix are bounded from above by a
quadratic function of the state vector norm. The desired trajectories for both joint angles are given by
1− cos(t). Three subsets of the state space Fi, i = 1, 2, 3 are defined: the states at or close to the origin;
states either on, inside, or close to the hyper-ball defined by |z| = 0.005; and the states on the outside and
not close to the hyper-ball. Figure 19 illustrates the triangular membership function used in this example;
the simulation results for the robust fuzzy control are shown in figure 20. The tracking error time histories
for each of the joint angles are shown, indicating that the fuzzy controller provides good tracking
performance. It even provides slightly better performance than a pure nonlinear robust controller does.
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3.3.2. Barriers

The controls discipline is afflicted by barriers B1–B3, B6 and B7. In the controls context B6 would be
phrased in terms of unmodeled dynamics. In a sense the controls counterpart of B7 presents an even
greater challenge because the low-dimensional aircraft models used in controls represent a much more
drastic simplification of the detailed physics than the models of concern in aerodynamics.

The following are some barriers that are specific to applying probabilistic methods to the design and
analysis of closed-loop dynamical systems:

B8. Characterization of uncertainties for use in control is inadequate.

Control design obviously requires the characterization of parameter and model form uncertainties from
a broad range of disciplines. Clearly, the uncertainty characterization activities in such disciplines as
structures and aerodynamics need to take into account the requirements flowing from the controls
community.

B9. Methods for mapping probabilistic parameter uncertainties into norm-bounded uncertainties do not
exist.

Conventional robust control approaches rely on norm-bounded descriptions for uncertainties in both
analysis and design. An enormous amount of work has been done in this area and it is highly desirable to
leverage this work by finding ways to incorporate probabilistic uncertainties into the robust control design
and analysis processes. This barrier implies that insertion of probabilistic information into controls
analysis and design processes requires a substantial overhaul of these processes.

B10. Existing probabilistic analysis tools are not well suited to handle the time and frequency domain
response quantities that are typically used in the analysis of closed-loop dynamical systems.

Existing FORM and SORM methods are geared towards steady problems. Clearly, similarly effective
methods are needed for unsteady problems with the high modal densities (zeros and poles) that are
common in the control of dynamical systems.
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3.4. Optimization

3.4.1. Current Status

Multidisciplinary Design Optimization (MDO) is increasingly important to the aerospace community.
For example, Giesing and Barthelemy (1998) summarize presentations at the 7th AIAA Multidisciplinary
Analysis and Optimization Symposium addressing the uses of MDO in industry. The industry
representatives provided many examples of successful MDO applications but also produced a list of new
methods that the industry requires. One of those emerging areas was robust design or optimization
methods that produce solutions insensitive to variability in input parameters.

The need for robust design methods appears in many contexts. During the preliminary design process,
the exact value of input parameters is not known. It may be possible to make an educated guess or provide
bounds for these unknown parameters but they are not deterministic quantities. Faced with uncertain
parameters, traditional optimization techniques tend to “over-optimize”. Like the curve labeled “Sharp” in
figure 21, solutions produced by these techniques perform well at the design point but have poor off-
design characteristics. As noted by Young, Anderson, and Yurkovich (1998), the aerospace industry
favors designs that have room to grow. Like the curve labeled “Robust” in figure 21, designs required by
the industry must be adaptable to new missions or new business climates without a marked decrease in
performance and is often willing to sacrifice a sharp optimum for this flexibility.

Figure 21. Illustration of robust optimum.

The present research seeks optimization methods that are robust in the sense that they produce
solutions insensitive to small changes in the input parameters. As an additional requirement, the methods
must be able to find successful designs using a moderate number of high-fidelity disciplinary analyses.
This second requirement acknowledges the fact that disciplinary analyses (e.g. CFD) can be
computationally expensive and an optimization method that requires thousands of function evaluations
has limited usefulness in the current design environment.

An equally important research area is optimization for reliability, which is not a new idea. Some of the
earliest examples of structural optimization include reliability constraints. Today, the open issues in
reliability-based structural optimization involve testing and validating the optimization procedures and
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demonstrating the benefits of reliability-based methods over conventional methods. Other interesting
areas for study involve a comparison of possibilistic methods with probabilistic methods. Chen et al.
(1999) conclude that possibilistic methods are preferred when there is insufficient data to build accurate
probabilistic models of the uncertainties.

3.4.1.1. Sampling-Based Methods. Response surface methods and other sampling-based methods are
widely admired and often used but are seldom systematically applied. For example, Taguchi parameter
design methods are popular because they prescribe both experimental test matrices and the objective
function and they provide detailed instructions about how to determine the best design. The popularity of
Taguchi methods has encouraged several researchers to use them as the basis for optimization with
uncertainty. For example, Lee et al. (1996) describe their use for solving unconstrained engineering
problems, and Unal, Stanley, and Joyner (1993) used Taguchi methods as a tool for conceptual design of
propulsion systems. Like Taguchi methods, Latin hypercubes and other random sampling methods have
been used for optimization with uncertainty. For example, DeLaurentis and Mavris (2000) demonstrate
robust design on a high-speed civil transport and Booker et al. (1998) apply pattern search methods to
optimize rotor blades. These methods all prescribe data points for evaluation and approximate responses
from simulations.

These methods also share a common weakness by ignoring bias errors in simulation or experimental
results. Booker et al. (1998) emphasize that sampling-based optimization methods are useful if the
simulation produces anomalous results for some combinations of input. Torczon and Trosset (1998)
explain that pattern search optimization methods rarely converge to local minima that are caused by
truncation, rounding or other numerical errors in simulation codes. Thus, these authors recommend their
methods for optimization with uncertainty. However, none of the authors acknowledge that bias errors in
the predicted responses can invalidate the optimization results. For example, the Taguchi method ignores
the possibility that variations in data collected by different facilities or by the same facility in different
circumstances may not be due solely to random noise. Similarly, data sampling methods ignore the
possibility that simulations include bias errors due to a different fidelity of analysis or different grid
generation techniques. Applying sampling to a single source of data avoids some of the bias error issues
but can produce useless optimization results as the optimization procedure exploits weaknesses in the
approximate model. On the other hand, applying optimization to data from a mixture of experimental and
mathematical simulation sources requires an ad hoc procedure. Romero (1999) discusses the bias error
problem and suggests a global-local approach that works well on some demonstration problems. Patera
(1997) discusses errors in experimental and simulated data and devises a method to estimate the resulting
error in the optimization results.

The most promising work in this area is coordinated by Sandia National Laboratories ASCI
Verification and Validation program (Alvin et al. 2000). The first step is to identify sources of variability,
uncertainty, and error in simulations. The next step is to develop both approximation and sampling
methods that properly account for this uncertainty. Once uncertainty is characterized, then currently
available optimization procedures can be applied. Romero et al. (1995) demonstrate the power and
potential of these methods by using optimization to identify worst-case thermal loading conditions. They
conclude that a warehouse fire might compromise the fail-safe mechanisms on military stores unless the
proposed design of the firing system is modified to account for uncertainty. A similar technique could be
effective in aerospace design, for example, by identifying worst-case aeroelastic loads or by discovering
wind tunnel test matrices that exaggerate the difference between turbulence models.

3.4.1.2. Robust Optimization Methods. Robust optimization methods similar to equation (2) have been
proposed for many years but have seldom been evaluated for practical applications. Yoon, Jung, and
Hyun (1999) propose robust optimization as a way to specify machine tolerances for simple structural
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sizing problems. And Teng, Free, and Parkinson (1992) demonstrate the value of these methods for
simplified active and passive vibration control systems. Similarly, Darlington et al. (1999) consider batch
chemical reactors and use robust optimization to design the thermal control system. Du and Chen (2000a,
2000b) extend these ideas to MDO problems. They argue that most MDO procedures assume that each
disciplinary analysis predicts with equal certainty and that very different solutions will result if these
problems are posed using robust optimization.

Robust optimization methods have two major weaknesses: the difficulty in choosing weights and the
lack of confidence in the estimate of variance. Messac and Sundararaj (2000) address the difficulty in
choosing weights. They explain that multiobjective formulations that depend on a weighted sum of
objective functions are designed to find a compromise that reduces each objective. However, this
weighted sum method often fails because no set of weights allows the optimization procedure to find the
best compromise. Moreover, even if a good choice of weights does exist, the user has no way to know
those weights. Messac and Sundararaj (2000) demonstrate an alternative approach called Physical
Programming. Frangopol and Iizuka (1992) suggest another approach called ε-constraint method and
show how this method can be used in structural designs with many failure modes.

Even if a superior multiobjective formulation is discovered, the lack of confidence in σ2 will remain a
weakness of these methods. Current methods such as Monte Carlo analysis are computationally expensive
and often require human intervention in order to operate reliably. Some researchers seek better ways to
predict σ2. For example, Taylor (2000) suggests using automatic differentiation techniques to predict first
and second derivatives of c with respect to θ. Taylor compares the resulting estimates of variance using
this new method and using Monte Carlo analysis. Similarly, Archetti, Gaivoronski, and Stella (1997)
consider efficient gradient estimation procedures and their impact on robust optimization.

Several researchers are exploring new avenues in robust optimization. For example, Huyse and Lewis
(2001) suggest a formulation
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∈
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θ θ θ ∂θ                                                  (7)

where fθ(θ) is the PDF that describes the uncertain parameters θ. Chosen design variables should
minimize the expected value of the objective function. As an example, the shape of an airfoil profile and
the angle of attack needed to provide required lift are optimized for free stream Mach numbers ranging
from 0.7 to 0.8. The Mach number range can be a uniform distribution if all Mach numbers are equally
important or it can be a Beta distribution centered on the design cruise Mach number. This new
formulation is exciting because it avoids the over-design phenomena seen in single point designs, yet it
requires no more function evaluations than the multipoint designs currently used by the airframe industry.

3.4.1.3. Optimization for Reliability. Optimization for reliability is the most studied and used of the
methods for optimization with uncertainty. Civil engineering and aerospace structural analysts are highly
motivated to produce designs with a small probability of failure. Simulations that predict structural
response as well as reliability are becoming commercially available. Moreover, new materials such as
composite polymers and metal matrices require new design tools that take advantage of their special
properties without compromising safety (Abumeri, Kuguoglu, and Chamis 2000).

Gas turbine design and other aerospace propulsion systems design have benefited the most from
current research. Abumeri and Chamis (2000) provide an overview of an extensive capability for
optimization of engine structures. Grandhi and Wang (1999) show the benefit of designing turbine blades
for reduced weight and increased reliability. Kowal and Mahadevan (1998) demonstrate the surprising
conclusion that extremely tight tolerances in manufacturing turbine blades can be counterproductive; they
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use manufacturing tolerances as design variables and conclude that a certain amount of irregularity
actually improves the reliability of turbines.

In addition to optimization tools, the aerospace community has also provided validation cases, which
increase the credibility of these methods. For example, Boeing engineers report cost savings due to
reliability studies related to the redesign of the Shuttle docking bay for use in Shuttle-Mir rendezvous
(Torng and Yang 1994; Torng, Funk, and Stephenson 1999).

3.4.2. Barriers

The one glaring feature of the survey of methods for optimization under uncertainty is that all existing
methods are designed for probabilistic descriptions of uncertainty. Few researchers work on optimization
under uncertainties characterized by other descriptions, such as by intervals or by membership functions.
Yet Chen (1999) suggests that probabilistic methods are only effective if sufficient data exists to build
accurate probabilistic models. Hence,

B11. No methods are available for optimization under nonprobabilistic uncertainties.

This barrier is especially formidable because plausible probabilistic descriptions are never likely to be
available for most effects due to uncertainties and errors.

Even within the realm of probabilistic characterizations of uncertainty, barrier B3 is even more
formidable for optimization under uncertainty than for the individual disciplinary uncertainty analyses. It
is worth paraphrasing it here with special emphasis on the optimization technology challenge:

B12. Current methods for optimization under probabilistic uncertainty are too expensive for use with
high-fidelity analysis tools in many disciplines.

Clearly, a breakthrough in algorithms for optimization under uncertainty would have wide ranging
impact because it would ameliorate the barrier of computational expense for uncertainty analysis in many
disciplines.

B13. Extending uncertainty analysis and optimization to applications involving multiple disciplines
compounds the complexity and cost.

Most (perhaps all) current approaches to multidisciplinary uncertainty analysis and optimization treat
the entire multidisciplinary analysis as a unit—no attempts have been made to apply decomposition
techniques to improve the efficiency. In the realm of deterministic problems, MDO methods have been
developed that decompose the full multidisciplinary problem into more manageable components, usually
along disciplinary lines. These decomposition approaches have produced more computationally efficient
schemes than one gets by simply slapping a generic optimizer on top of a fully integrated
multidisciplinary analysis code. (No comprehensive survey of these approaches exists. See Alexandrov
2001 for a review of multilevel decomposition approaches and Alexandrov and Lewis 2000 for some
work on distributed optimization.) Hopefully similarly creative approaches to problem decomposition can
mitigate this barrier, both for uncertainty analysis and for optimization under uncertainty.

3.5. Summary of Barriers

The preceding sections have mentioned a number of barriers to the adoption of uncertainty-based
design methods for aerospace vehicles. In summary:
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 B1. Industry feels comfortable with traditional design methods.

 B2. Few demonstrations of the benefits of uncertainty-based design methods are available.

 B3. Current uncertainty-based design methods are more complex and much more
computationally   expensive than deterministic methods.

 B4. Characterization of structural imperfections and uncertainties necessary to facilitate accurate
analysis and design of the structure is time consuming and is highly dependent on structural
configuration, material system, and manufacturing processes.

 B5. There is a dearth of statistical process control activity in aerodynamics.

  B6. Effective approaches for characterizing model form error are lacking.

  B7. There are no dependable approaches to uncertainty quantification for nonlinear problems.

  B8. Characterization of uncertainties for use in control is inadequate.

  B9. Methods for mapping probabilistic parameter uncertainties into norm-bounded uncertainties
do not exist.

B10. Existing probabilistic analysis tools are not well suited to handle the time and frequency
domain response quantities that are typically used in the analysis of closed-loop dynamical
systems.

B11. No methods are available for optimization under nonprobabilistic uncertainties.

B12. Current methods for optimization under uncertainty are too expensive for use with high-
fidelity analysis tools in many disciplines.

B13. Extending uncertainty analysis and optimization to applications involving multiple
disciplines compounds the complexity and cost.

B14. Researchers and analysts lack training in statistical methods and probabilistic assessment.

This last barrier has not been mentioned previously. We list it here because it is a very real, pervasive
barrier that must be tackled. The developers of uncertainty-based design methods must substantially
increase their knowledge of these subjects. Moreover, the intended end users of uncertainty-based design
methods—the analysts—must become more acquainted with this area.

4. Potential Benefits of Uncertainty-Based Design

Previous sections have mentioned a number of potential benefits of uncertainty-based design, most of
which apply to all the disciplines as well as to the multidisciplinary system (though not necessarily to the
same degree).

P1. Confidence in analysis tools will increase.

Uncertainty-based design methods are arguably the enabling technology for turning the use of analysis
tools from an art into a science. To accomplish this transformation, a comprehensive strategy for
assessing uncertainty must be developed. The focus today within most computational disciplines is on
quantifying and managing discretization and convergence error and on calibrating codes against
experimental data. This narrow view must be greatly expanded in order to provide the complete picture of
uncertainty that is essential for inspiring confidence in analysts and project managers. As one disciplinary
example, CFD is a critical design tool which will have increased use if variations can be quantified and
contained, together with quantifying and containing the variation of experimental results used for code
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and solution (conceptual/preliminary design) validation.

P2. Design cycle time, cost, and risk will be reduced.

One key to reducing the design cycle time is to avoid computational overkill. Knowing the uncertainty
associated with codes of various fidelities would permit identification of the fastest codes that met the
uncertainty requirements of the project. In other words, uncertainty-based design methods would enable
quantifiable trade-offs between computational uncertainty and computational expense. Moreover, upfront
knowledge of where the uncertainties in the design tools are greatest can lead to more efficient use of
risk-reduction experiments.

P3. System performance will increase while ensuring that reliability requirements are met.

Aerospace vehicles are as safe as they are today in large part because of the conservative approach to
their design. Uncertainty-based design methods provide a means to increase system performance while
ensuring that the reliability or safety requirements are still met. Certainly other fields of engineering have
demonstrated that structural weight can be reduced without sacrificing safety requirements. Also, greater
performance can potentially be obtained from MIMO control systems by replacing the norm-bounded
approach to uncertainties (structured singular values) in control system design and analysis with genuine
probabilistic methods.

P4. Designs will be more robust.

Uncertainty-based optimization methods can identify good designs that minimize the impact of
uncertainties arising from the system operating conditions, manufacturing variabilities, and the design
tools themselves.

P5. The methodology can assess systems at off-nominal conditions.

Uncertainty-based design methods provide a systematic means to address and analyze systems or
subsystems that may operate in abnormal, unusual, or damaged conditions. Such approaches can be used
to address the degraded performance or failure of such systems.

P6. The use of composite structures will increase.

This benefit is the one discipline-specific benefit that we call out in this list. The payoff for application
of probabilistic design is greater for composite structures than for metallic structures because of the
greater variability of the materials used in composites.

5. Proposed LaRC Uncertainty-Based Design Research
The proposed role for NASA Langley Research Center in uncertainty-based design is:

Evaluate and improve methods for management of uncertainty with applications to
multidisciplinary aerospace vehicle design by developing and validating strategies, algorithms,
tools and data to

characterize and manage the uncertainties from the individual aerospace vehicle design
disciplines, especially  aerodynamics, structures, and controls, based on the best available
experimental and computational results;

characterize the norm and distribution of the resulting uncertainties in system metrics;
and
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account for uncertainties in the design of aerospace vehicles at the conceptual through the
detailed design stages.

The key phrases for the NASA LaRC role are “multidisciplinary,” “aerospace vehicle design
disciplines,” “experimental and computational,” “system metrics,” and “at the conceptual through the
detailed design stages.” Certainly some aspects of uncertainty management require sophisticated
information technology; the role of LaRC is to exploit mature information technologies as applied to the
airframe design disciplines but not necessarily to perform fundamental research on new information
technologies.

Obviously, research is much needed in these broad areas. The essential needs are presented in tables in
the next three subsections. Our assessment of the current Technology Readiness Level (TRL) is given in
the third column of each table. The definitions of the TRLs can be found in appendix A. The items
selected for emphasis in a LaRC uncertainty-based design program are chosen for their potential to
overcome the various barrier issues described in section 3 and because their TRLs must be raised before
they become candidates for application to focused programs.

5.1. Characterizing and Managing Disciplinary Uncertainties

Uncertainty characterization begins at the individual discipline level. Uncertainty management can
only be effected at the discipline level, although it can be directed (or budgeted) at the system level. The
general needs for the structures, aerodynamic and controls disciplines are to given in tables 2, 3, and 4.

Table 2. Characterizing and Managing Structural Uncertainties

Goal Description Current
TRL

S1 Develop fundamental experimental testing methods to characterize
structural responses with an emphasis on managing uncertainties

2

S2 Develop and validate fundamental algorithmic enhancements to high-
fidelity structural analysis codes and to implement these codes in an
uncertainty-based design framework

3

S3 Develop and validate modeling error estimation capabilities in structural
analysis codes

2

S4 Characterize the structural response of aircraft for use in reliability-based
structural design, including aerodynamic and nonaerodynamic loads

2

S5 Characterize the structural parameter uncertainties of aircraft for use in
robust structures and control design

2
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Table 3. Characterizing and Managing Aerodynamics Uncertainties

Goal Description Current
TRL

A1 Refine and extend the use of statistical process control and modern design
of experiments strategies in experimental aerodynamics for data from
individual facilities

4

A2 Develop new statistical process control strategies for data from multiple
facilities

3

A3 Develop statistical process control strategies for computational
aerodynamics

3

A4 Develop efficient global sensitivity analysis algorithms and second-order
local sensitivity analysis algorithms to characterize parameter
uncertainties from nonlinear aerodynamics tools

3

A5 Develop and validate strategies to characterize the model form
uncertainties associated with transition and turbulence, vortical flows,
separation from smooth surfaces, jets, wakes, reattaching flows, re-
laminarizing flows, shock-boundary-layer interaction, unsteadiness, etc.

2

A6 Develop strategies to characterize the aerodynamic loads on aircraft for
use in structural reliability-based design

2

A7 Develop strategies to characterize the aerodynamic uncertainties on
aircraft for use in robust control design

2

Table 4. Characterizing Controls Uncertainties
Goal Description Current

TRL

C1 Characterize the uncertainties in sensors and actuators, e.g., sensor and
actuator noise drift, and bias

2

C2 Characterize uncertainties in the control design models obtained by using
system identification techniques

2
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5.2. Characterizing Uncertainties in System Metrics

The general needs in multidisciplinary analysis are presented in table 5.

Table 5. Characterizing System Uncertainties

Goal Description Current
TRL

V1 Characterize the uncertainties in the controls performance measures 2

V2 Develop strategies to obtain efficient uncertainty propagation
characterizations using disciplinary codes equipped with efficient
sensitivity derivatives

3

V3 Develop strategies to produce system uncertainty characterizations based
on a combination of computational and experimental uncertainty
characterizations

2

5.3. Accounting for Uncertainties in Airframe Design

The general needs for airframe design are presented in table 6.

Table 6. Accounting for Uncertainty in Airframe Design

Goal Description Current
TRL

M1 Partner with industry and the FAA in the application and validation of
probabilistic reliability-based design methods for composite airframe
structures

2

M2 Develop viable uncertainty-based design methods that span the design
cycle from conceptual through detailed design

2

M3 Develop and validate robust aerodynamic design methods for
aerodynamic performance optimization

3

M4 Develop and validate reliability-based aerodynamic design methods for
control effectiveness

1

M5 Develop and validate probabilistic-based algorithms and tools for robust
control design and analysis of aerospace systems

2

M6 Develop and validate probabilistic-based algorithms and tools for
reliability-based optimization and robust optimization

2

M7 Develop strategies to characterize confidence in optimal solutions 2

M8 Educate the engineering community at LaRC on nondeterministic
problem formulations of their engineering problems, the potential benefits
of nondeterministic approaches, and the exciting research opportunities in
this field

NA
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5.4. Approach

The approach to meet the listed needs will depend on the maturity of uncertainty-based design
technology in the various disciplines. Early studies may be exploratory, pathfinding studies that explain
procedures and indicate possible benefits of RBD. These early studies may not involve complex
mathematical models. Later studies will involve realistic mathematical models and high-fidelity analyses
for single disciplines—then multiple disciplines. These later studies will include strategies for
incorporating high-performance computing.

6. Conclusions

6.1. Expected Results

The expected concrete results from a 5-year uncertainty-based design research activity are shown in
table 7. In addition to providing a short goal statement with the expected output and outcome, we also
furnish our estimate of the Research and Development Degree of Difficulty (R&D3) using the scale
developed by Mankins (1998):

•  R&D3 – Level I: A very low degree of difficulty is anticipated in achieving R&D objectives for this
technology. Probability of success in normal R&D effort—99 percent

•  R&D3 – Level II: A moderate degree of difficulty should be anticipated in achieving R&D
objectives for this technology. Probability of success in normal R&D effort—90 percent

•  R&D3 – Level III: A high degree of difficulty anticipated in achieving R&D objectives for this
technology. Probability of success in normal R&D effort—80 percent

•  R&D3 – Level IV: A very high degree of difficulty anticipated in achieving R&D objectives for this
technology. Probability of success in normal R&D effort—50 percent

•  R&D3 – Level V: The degree of difficulty anticipated in achieving R&D objectives for this
technology is so high that a fundamental breakthrough is required. Probability of success in normal
R&D effort—20 percent

An expected intangible outcome of the concrete results of this activity will be the conversion of dozens of
other LaRC engineers to nondeterministic approaches to airframe design.

We also expect substantial interim benefits such as

1. New, inexpensive strategies for quantifying and controlling computational and experimental
uncertainties in the disciplines.

2. New, less-expensive strategies for verifying and validating computational codes and solutions.

3. Significant insight into the process of Measuring Predictive Capability.

a. What is it?

b. How do we carry it out in the face of severe nonlinearities and inference domains
separated by different physics?
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6.2. Opportunities for LaRC

LaRC has a window of opportunity to be in the vanguard of uncertainty-based methods for
multidisciplinary airframe design. Momentum is gathering in the engineering community for this
technological leap. LaRC has tremendous advantages in this nascent field, and can facilitate the adoption
of uncertainty-based methods by industry and NASA programs.

Table 7. Expected Results from Uncertainty-Based Design Research

Goal Output Outcome
R&D3

Level

Affordable
probabilistic
analyses

Augment high-fidelity structures
and aerodynamics tools with
efficient probabilistic output

Codes provide estimates of mean and
standard deviation and/or probability
of failure

II

Possibilistic
uncertainty
quantification

Develop fundamental possibilistic
strategies and algorithms for
multidisciplinary uncertainty
quantification

Reduces system risk by enabling
uncertainty quantification and design
for uncertainty strategies at the
conceptual design stage

IV

Aerodynamics
uncertainty
quantification

Develop efficient uncertainty
quantification and control
strategies and algorithms for
aerodynamics performance, loads,
and stability and control
predictions

Increases design confidence and
aircraft safety by measuring and
controlling uncertainty in
aerodynamics performance predictions
and by enabling reliability-based
structural design, stochastic control
design, and reliability-based
aerodynamic controllability analysis

III

Robust
aerodynamic
optimization

Develop 3-D, aerodynamic shape
optimization algorithms that
provide designs which are robust
with respect to uncertainties in
geometry, operating conditions,
and CFD code accuracy

Controls and reduces risk by providing
designs with aerodynamic performance
that is insensitive to intrinsically
uncertain quantities

III

Reliability-based
structural design

Extend CSM and experimentally
verify to predict probability of
failure for composite structures

Airframe components designed with
consistent levels of reliability

IV

Probabilistic
controls analysis
and design

Develop MIMO designs that use
probabilistic input data

Safer and less conservative active
control of aircraft

III

Multidisciplinary
uncertainty-based
design

Demonstrate multidisciplinary
uncertainty-based airframe design
incorporating the aerodynamics,
structures and controls disciplines

Increases design confidence, controls
and reduces design risk, and increases
aircraft safety by enabling
interdisciplinary design trade-offs that
explicitly account for uncertainty, risk,
and safety

V
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Appendix A.

Technology Readiness Levels

The Technology Readiness Levels (TRLs) are defined as follows:

TRL 9: Actual system “mission proven” through successful mission operations. Thoroughly
debugged software readily repeatable. Fully integrated with operational hardware/software systems. All
documentation completed. Successful operational experience. Sustaining software engineering support in
place. Actual system fully demonstrated.

TRL 8: Actual system completed and “mission qualified” through test and demonstration
in an operational environment. Thoroughly debugged software. Fully integrated with operational
hardware and software systems. Most user documentation, training documentation, and maintenance
documentation completed. All functionality tested in simulated and operational scenarios. Verification
and validation completed.

TRL 7: System prototype demonstration in high-fidelity environment (parallel or shadow
mode operation). Most functionality available for demonstration and test. Well integrated with
operational hardware/software systems. Most software bugs removed. Limited documentation available.

TRL 6: System/subsystem prototype demonstration in a relevant end-to-end environment.
Prototype implementations on full-scale realistic problems. Partially integrated with existing
hardware/software systems. Limited documentation available. Engineering feasibility fully demonstrated.

TRL 5: Module and/or subsystem validation in relevant environment. Prototype
implementations conform to target environment/interfaces. Experiments with realistic problems.
Simulated interfaces to existing systems.

TRL 4: Module and/or subsystem validation in laboratory environment. Stand-alone
prototype implementations. Experiments with full-scale problems or data sets.

TRL 3: Analytical and experimental critical function and/or characteristic proof-of-
concept. Limited functionality implementations. Experiments with small representative data sets.
Scientific feasibility fully demonstrated.

TRL 2: Technology concept and/or application formulated. Basic principles coded. Experiments
with synthetic data. Mostly applied research.

TRL 1: Basic principles observed and reported. Basic properties of algorithms, representations,
and concepts. Mathematical formulations. Mix of basic and applied research.




