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We study the thermodynamics of the three-dimensional Hubbard model at half filling on approach to the Néel

transition by means of large-scale unbiased diagrammatic determinant Monte Carlo simulations. We obtain the

transition temperature in the strongly correlated regime, as well as the temperature dependence of the energy,

entropy, double occupancy, and nearest-neighbor spin correlation function. Our results improve the accuracy of

previous unbiased studies and present accurate benchmarks in the ongoing effort to realize the antiferromagnetic

state of matter with ultracold atoms in optical lattices.
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I. INTRODUCTION

The Hubbard model1 of interacting fermions in a solid

is a centerpiece of modern condensed matter physics. It is

conventionally defined by restricting the motion of electrons

in a crystalline solid to a single band and simplifying the

screened long-range Coulomb interactions between electrons

to an on-site repulsion:

Ĥ = −t
∑

〈xy〉σ

c†xσ cyσ + H.c. + U
∑

x

nx↑nx↓ − μ
∑

xσ

nxσ ,

(1)

where σ = ↑,↓, c
†
xσ creates a fermion on a site x, nxσ =

c
†
xσ cxσ , the summation in the first term runs over the nearest-

neighbor sites of the simple cubic lattice, t is the hopping

amplitude, and U > 0 is the on-site repulsion. Although

remarkably simple in appearance, the model has been used to

study a wealth of intriguing quantum many-body phenomena

that are due to electron correlations in solids, as in interaction-

driven insulators,2 quantum magnetism, and high-temperature

superconductivity.3 However, despite more than half a century

of intensive investigation, the physics of the model is still not

completely understood.

The most challenging yet the most interesting regime is

the intermediate regime with interaction comparable to half

the bandwidth, U ∼ zt , where z is the number of nearest

neighbors of a site. This regime offers no small parameter to

start a controllable analytic theory. Furthermore, exact analytic

solutions are accessible only either in one spatial dimension4 or

an infinite5 number of spatial dimensions. Substantial progress

has been possible with the development of efficient quantum

Monte Carlo (QMC) methods (for a recent review, see Ref. 6)

accompanied by advances in computer technology. Although

for generic bosonic systems virtually any equilibrium property

can nowadays be calculated by QMC with a controlled

high accuracy,7 systematic-error-free simulations of correlated

fermions have been limited to a handful of special cases due

to the negative sign problem.8 The sign problem manifests

itself as an exponential scaling of the simulation time with the

system volume and inverse temperature, making it practically

impossible to obtain any reliable information about the system

in the thermodynamic (TD) limit. Although in some cases

the sign problem can be completely eliminated by choosing a

system-specific representation, its general solution is almost

certainly not possible.8

A major step toward understanding strongly correlated

systems has been the experimental realization of the Hubbard

model with ultracold atomic gases loaded into optical lattices

(for recent reviews, see Refs. 9 and 10). These systems offer

substantial control over the Hamiltonian. As a result, these

experiments can serve as emulators of quantum many-body

systems, which allow the accurate study of a given model in

a range of parameters inaccessible by analytic and numeric

techniques.11 The recent experimental observation of Mott

physics12,13 in the Hubbard model is a major milestone along

these lines. The next crucial step would be a realization of

the antiferromagnetic (AFM) transition and the Néel state

in the Hubbard model, which requires a substantial effort

in reaching lower temperatures, controlling the equilibration

rates, developing new probing techniques, etc. In addition to

these inherent challenges, there is also a fundamental problem

related to thermometry in ultracold-atom systems since they

are insulated from the environment. Isolated systems such

as these are thus, by their nature, better characterized by

entropy, rather than temperature. Moreover, probes have to be

calibrated in the relevant regime and the results obtained with

the setup validated against available benchmarks. For these

purposes, reliable and accurate numerical results for fermionic

systems are indispensable because they ultimately allow a full

quantitative understanding, as was recently demonstrated by

the example of a bosonic optical-lattice emulator.7

This work provides reliable benchmarks for the realization

of the Néel state in optical lattices as well as for new theoretical

methods. We focus on the special case of the half-filled

(〈nxσ 〉 = 1/2, or equivalently μ = U/2) three-dimensional

(3D) Hubbard model (1) on a simple cubic lattice. The case

of half filling is special due to the SU(2) symmetry of the

Hamiltonian, which is ultimately broken by the Néel state,

making magnetism the leading instability. In the limit U/t ≪

1, the effects of the interaction can be studied perturbatively.

In the opposite limit, U/t ≫ 1, Eq. (1) reduces to the AFM

Heisenberg model with J ∼ t2/U . While there is no doubt that
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in the strongly correlated regime the ground state of the half-

filled model (1) is AFM, mapping out the finite-temperature

phase diagram and studying the thermodynamics of the system

is extremely challenging.14–18 To this end, we employ the

unbiased continuous-time determinantal diagrammatic Monte

Carlo (DDMC) technique,19 which produces numerically

exact (up to a known statistical error bar) results for a

finite-size system, and which is free from the fermionic sign

problem at half filling on bipartite lattices, allowing a reliable

extrapolation of results to the thermodynamic limit.

We use DDMC to determine several critical properties of the

Hubbard model with high control and accuracy and compare

with high-temperature series expansions20 (HTSEs) where

possible. We study the range of on-site interaction 4 � U/t �
8, where the critical temperature TN of the AFM transition is

expected to reach its maximum.14 Results in this regime are

vital to optical-lattice emulator efforts offering experiments

their best chance of observing the AFM phase. We obtain

the critical temperature TN and compute important thermody-

namic properties of the model—the energy and the entropy,

as well as two optical-lattice observables: double occupancy

and the nearest-neighbor spin-spin correlation function—in

the paramagnetic phase as a function of temperature down to

TN . A number of previous works using different unbiased

approaches studied TN [by determinant quantum Monte

Carlo14 (DQMC) and the dynamical cluster approximation15

(DCA)] and the thermodynamic properties in question (by

DDMC,16 a combination of DCA and DDMC,17 and DQMC

methods18) in this regime. Our work improves the accuracy of

the previous results at half filling and provides controlled and

accurate values of the critical temperature TN and the entropy

at the critical point SN (summarized in Table I). Accurate

knowledge of TN is particularly important for determining

the critical entropy SN since S(T ) is a steep function near

the transition, so that the error bar of SN is mainly due

to the uncertainty in TN . The values of SN are required for

an experimental realization of the AFM state. As was noted in

Ref. 17, close to the transition, the temperature dependence of

the nearest-neighbor spin-spin correlation function 〈Sz
xS

z
x+ei

〉

(ei is the unit vector in the direction i) is significantly more

pronounced than that of the double occupancy 〈nx↑nx↓〉 of a

lattice site making measurements of the nearest-neighbor spin-

spin correlations21,22 more suitable for accurate thermometry

in this regime. Our results for the spin-spin correlation function

can be used for calibration of such a thermometer.

For over a decade, the DQMC study of the phase diagram

of the half-filled 3D Hubbard model by Staudt et al.14 has

been the main reference for TN in the correlated regime.

Representing the state of the art at that time, Ref. 14 provides

a comprehensive comparison of the DQMC data for the Néel

TABLE I. Néel temperatures and entropies. See text for discussion.

U/t TN/t SN

4 <0.17 <0.17

5 0.2175(44) 0.135(25)

6 0.300(5) 0.305(35)

8 0.3325(65) 0.33(3)

temperature with those of preceding QMC simulations and

approximate theories, e.g., dynamical mean-field theory.23 We

shall not reproduce this comparison here and refer the reader

to a review of results for TN predating Ref. 14.

The simulation method of Staudt et al. is based on a discrete

Hubbard-Stratonovich decoupling in the Hubbard interaction

term which requires discretizing the imaginary-time interval

0 < τ < β = 1/T into a finite number of steps of size �τ ,

thereby introducing a systematic error. Hence, in addition

to the standard extrapolation of the finite-size DQMC data

to the TD limit, one has to perform an extrapolation with

respect to �τ → 0. Such a double extrapolation is rather

laborious. In practice �τ is usually fixed at a value which

is large enough to allow efficient simulations, yet, according

to Ref. 14, such that “the results are not significantly affected

by the extrapolation �τ → 0.” In the absence of an explicit

extrapolation, the degree of control over systematic errors

can be questioned. This is where our approach is a major

improvement over that of Staudt et al. The DDMC technique

is formulated directly in continuous imaginary time. Therefore

finite-size corrections are the only systematic error we have to

eliminate in our approach. The cost of the absence of the

additional systematic error is the computation complexity of

the DDMC simulation, which scales as [βU ]3�3 versus the

linear-in-[β/�τ ]�3 scaling of the DQMC of Ref. 14, for

lattices with � = L3 sites. As a result, we are limited by the

values of interaction U � 8, whereas Staudt et al. were able

to study the model up to U = 12.

We have also been able to identify the transition itself

with a considerable improvement in accuracy over Ref. 14.

Long-range AFM order in the system causes divergence of the

magnetic structure factor

S(Q) =
1

L3

∑

xy

eiQ(x−y) 〈sz(x)sz(y)〉 , (2)

where sz(x) = (nx↑ − nx↓)/2, and Q = (π,π,π ) is the AFM

wave vector, so that S(Q)/L3 is related to the magnetization

m in the TD limit, limL→∞ S(Q)/L3 = m2. In Ref. 14, the

transition temperature is found as the point at which m starts

to noticeably deviate from zero, while the magnetization

is obtained from a finite-size extrapolation of S(Q) with

respect to L → ∞. Here the scaling power of the finite-size

corrections was used as a fitting parameter. An additional

(indirect) probe of the transition used by Staudt et al. is the

peak in the dependence of the specific heat on temperature. In

contrast, we use a much more accurate method to determine

the critical point. We find the critical point using a finite-size

scaling analysis of S(Q) in combination with the technique of

Binder crossings.24 This approach allows us to get a reliable

and accurate value of TN by making use of the known scaling

law of the magnetic structure factor at the critical point,

S(Q) ∝ 1/L−2+η, where η is the anomalous dimension of the

particular universality class, so that the quantity S(Q)L−2+η

becomes scale invariant at the critical temperature up to

nonuniversal corrections, which we also take into account.

Since the Néel transition is breaking the SU(2) symmetry of

the Hubbard Hamiltonian at half filling, the universality class

is that of the 3D Heisenberg model, which provides the critical

exponents for the finite-size-scaling analysis.
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In the context of previous calculations of the Néel tempera-

ture, it is worth noting the work by Kent et al.,15 where TN was

found from calculations using the DCA. Although this work

did not lead to any improvement of the precision claimed

by Staudt et al., it was shown that the DCA can be used to

determine the critical point with a controlled accuracy based

on significantly smaller clusters of only ∼50 lattice sites versus

up to ∼1000 sites in Ref. 14 and in this work. In addition,

good agreement with the values of TN of Ref. 14 suggested

that potential systematic error of the �τ → 0 extrapolation

in Ref. 14 is likely to be small. In the range of interaction

U/t � 6, our results for TN agree within the error bars with

those of Refs. 14 and 15, implicitly confirming this. At

smaller U , however, we find somewhat lower values of TN .

Moreover, at U/t = 4, being unable to reach significantly

low temperatures to accurately infer the critical point, we

can claim only an upper bound from our finite-size-scaling

analysis, TN/t < 0.17, which is already lower than the values

claimed in Refs. 14 and 15. The reason for the discrepancy

is likely to be the long-range character of correlations at

smaller coupling, which can be missed in simple finite-size

extrapolation schemes based on data for insufficiently large

systems.

The thermodynamics of the Hubbard model near the Néel

transition in connection with its experimental realization has

been the focus of a number of recent studies.16–18,25–30 The

DMFT results27,30 emphasize the role of double occupancy

in detecting the buildup of AFM correlations. However, its

dependence on temperature near the Néel transition is

relatively flat in the regime where TN is maximal, as observed

in unbiased (extrapolated to the TD limit) DCA calculations.17

Fuchs et al.17 obtained the energy and the entropy down to

TN in this regime as well as the equation of state away from

half filling, which allowed them to get an estimate of the

entropy at the transition in a realistic harmonically trapped

system. A study18 of the system using the same DQMC

method as in Ref. 14 arrived at an agreement with the results

and conclusions of Fuchs et al.

The DDMC simulation method used in this work is not

capable of capturing the thermodynamics of the Hubbard

model away from half filling due to the pronounced negative

sign problem. However, exactly at half filling, it has certain

advantages over DCA and DQMC. As discussed above, in

order to claim unbiased results in the TD limit within DQMC

one has to resort to a double extrapolation, �τ → 0,L → ∞.

DDMC is formulated directly in continuous time, allowing a

more reliable extrapolation to the TD limit. Modern efficient

solvers for the DCA also work in continuous time, but the

cluster sizes amenable to simulation in the regime of interest

are typically less than 100. However, in the DCA the clusters

are embedded in a self-consistently defined medium, which

greatly improves the convergence to the TD limit. In practice

the finite-size dependence for the accessible clusters is notably

larger than that in DDMC.17 Hence, at half filling and U/t ∼ 8,

where TN and SN are expected to reach their maxima, DDMC

currently allows one to obtain the most reliable benchmarks

for the thermodynamic quantities of interest.

The paper is organized as follows. In Sec. II, we discuss

the simulation method, outlining the general formulation of

the DDMC technique and its application to calculating the

specific observables in question. Section III is concerned with

determining the temperature of the Néel transition. Section IV

describes the thermodynamics near TN . Here we discuss the

extrapolation of the observables to the TD limit (Sec. IV A),

the determination of entropy (Sec. IV C), and thermometry

near TN (Sec. IV D). We summarize the results in Sec. V. The

Appendix contains tables of the obtained numerical data for the

entropy, energy, double occupancy, and spin-spin correlation

functions as functions of temperature.

II. METHOD

We first rewrite the Hubbard Hamiltonian (1) in a form suit-

able for numerical simulations by mapping the repulsive model

(1) to an attractive model by a particle-hole transformation.31

We use the fact that the simple cubic lattice is bipartite and

can be split into two interpenetrating sublattices A and B, so

that the hopping term in (1) only connects sites belonging to

different sublattices. Then we introduce the hole operators for

the ↑ component:

a
†
x↑ =

{
cx↑, x ∈ A,

−cx↑, x ∈ B.
(3)

In this way, Eq. (1) becomes at half filling

Ĥ = −t
∑

〈xy〉σ

a†
xσ ayσ + H.c. − U

∑

x

mx↑mx↓

−μ′
∑

xσ

mxσ −
U

2
�, (4)

where ax↓ = cx↓, mxσ = a
†
xσ axσ is the number operator for the

attractive model, μ′ = −U/2 as appropriate for half filling,

and � = L3 is the total number of sites.

Since we consider only half filling, 〈mx↑〉 = 〈mx↓〉 = 1/2,

we follow Ref. 32 and shift the chemical potential according

to μ′ → μ′ + αU :

Ĥ = Ĥ0 + Ĥ1 +
(
α2 − 1

2

)
U� (5)

with

Ĥ0 = −t
∑

〈xy〉σ

a†
xσ ayσ + H.c. − (μ′ + αU )

∑

xσ

mxσ ,

(6)
Ĥ1 = −U

∑

x

(mx↑ − α)(mx↓ − α).

At half filling the choice α = 1/2 is optimal because it leads

to the minimal computational complexity of the simulations

(see below), and we use this value of α throughout.

A. Diagrammatic determinantal Monte Carlo method

The DDMC algorithm works with the weak-coupling

expansion series for the finite-temperature partition function

for the Hubbard model (6). The latter reads

Z = Z0

∞∑

p=0

Up
∑

x1,...,xp

∫

0<τ1<···<τp<β

p∏

j=1

D(x1τ1; . . . ; xpτp),

(7)
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where

D(x1τ1; . . . ; xpτp) =

〈
p∏

j=1

[m↑(xjτj ) − α][m↓(xjτj ) − α]

〉

0

.

(8)

Here β is the inverse temperature, Z0 = Tr T exp (−βH0)

is the unperturbed partition function, T denotes time or-

dering, and 〈(· · · )〉0 = Tr[T (· · · ) exp (−βH0)]/Z0 denotes

the thermodynamic average with respect to the unperturbed

Hamiltonian H0.

Equations (7) and (8) generate the standard Feynman

diagrams: There are (p!)2 diagrams of order p, which can

be represented graphically as a collection of p vertices

connected by single-particle propagators. Summing over all

the interconnections for a fixed vertex configuration

Sp = {(xjτj ),j = 1, . . . ,p}, (9)

Eq. (8) takes the form

D(Sp) = |det A(Sp)|2, (10)

where A(Sp) are p × p matrices with matrix elements given

by (i,j = 1, . . . ,p),

Aij (Sp) = G(0)(xi − xj ,τi − τj ) − αδij (11)

(since we consider only an unpolarized system, we omit the

spin index for the A’s and G(0)’s), and G(0) being the free-

particle Green’s functions,

G(0)(xi − xj ,τi − τj ) = −〈axi
(τi)a

†
xj

(τj )〉0. (12)

Since Ĥ0, Eq. (6), is diagonal in momentum space,

Ĥ0 =
∑

kσ

[εk − μ′ − αU ]a
†
kσakσ ,

(13)
εk = −2t

∑

i=1,2,3

cos(ki),

the free propagators are calculated by the Fourier transform,

G(0)(r,τ ) =
∑

k

G(0)(k,τ )e−ik·r,

G(0)(k,τ ) = −
e−(εk−μ′−αU )τ

[1 + e−β(εk−μ′−αU )]
, τ > 0, (14)

G(0)(k, − τ ) = −G(0)(k,β − τ ),

and tabulated before the start of the simulation.

The series (7) and (10) & (11) serves as a basis for a

DDMC simulation of the Hubbard model (6): We set up a

random walk in the space of the vertex configurations Sp,

Eq. (9), using the Metropolis algorithm33 with the weights

proportional to D(Sp), Eq. (10). Since the technique itself

is detailed elsewhere,19,32 here we only briefly discuss the

specific details of the present implementation. We only stress

at this point that since all the terms in the series (7) and (10) &

(11) are positive definite we completely avoid a sign problem.

The simplest updating strategy for DDMC simulations

consists of adding (p → p + 1) and removing (p → p − 1)

interaction vertices at random positions in x and τ to or from

a vertex configuration Sp. However, at half filling and with

α = 1/2 the series contains only even-order terms; hence

we employ rank-2 updates, where p → p ± 2. Using the

Woodbury-type formulas, both rank-1 and rank-2 updates can

be performed in O(p2) operations. We note that for α �= 1/2

both even and odd terms are present even at half filling. In this

sense the choice of α = 1/2 is optimal.

B. Observables

The general method for calculating observables in the

DDMC simulations uses the standard technique of Monte

Carlo estimators: For an observable O we define an estimator

Q(O)(Sp) such that the average of the latter over the vertex

configurations generated by the MC process, 〈Q(O)(Sp)〉MC,

converges to the thermal average 〈O〉, where

〈O〉 = Z−1 Tr[Oe−βH ]. (15)

Below we explicitly list estimators for useful observables:

(a) Filling fraction. The thermal average of the filling

fraction mσ for the spin projection σ is given by

〈mσ 〉 = 〈a†
xσ axσ 〉; (16)

hence the corresponding estimator is19

Q(nσ )(Sp) = α +
det B(Sp; xτ )

det A(Sp)
, (17)

where A(Sp) is a p × p matrix (11) and B(Sp; xτ ) is a

(p + 1) × (p + 1) matrix with an extra row and a column

corresponding to the extra creation and annihilation operators

in (16). Here x and τ are random positions in space and time,

respectively.

Notice that for a half-filled model and for α = 1/2, the MC

average of the second term in (17) must equal zero. We use

this fact to check if a simulation has equilibrated.

(b) Kinetic energy. Calculating the kinetic energy for the

model (6) requires evaluating the average of 〈a
†
xσ ayσ 〉, which

differs from Eq. (16) only in that the annihilation operator is

shifted in space with respect to the creation operator while in

Eq. (16) both operators reside on the same lattice site. The

estimator for the kinetic energy 〈H0〉 is then19

Q(H0)(Sp) = −2t
det B(Sp; x,y,τ )

det A(Sp)
2dL3, (18)

where the matrix B(Sp; x,y,τ ) differs from B(Sp; xτ ) by the

fact that the creation operator in (18) is shifted in space

with respect to the annihilation operator. The extra factor

of 2 accounts for the summation over σ = ↑,↓ and dL3 is

the number of bonds of a lattice with L3 sites and periodic

boundary conditions (PBCs).

(c) Interaction energy. Since the series (7) is nothing but

an expansion in powers of Ĥ1, the corresponding estimator

is readily obtained by a standard trick of considering the

Hamiltonian H0 + λH1 and differentiating with respect to λ.

The result is19

Q(H1)(Sp) = −
p

β
. (19)

(d) AFM structure factor. Calculating the AFM structure

factor (2) in the particle-hole transformed model (6) re-

quires calculating two independent equal-time density-density
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correlation functions

g↓↓(x − y) = 〈mx↓ my↓〉, (20)

g↑↓(x − y) = 〈mx↑ my↓〉. (21)

The estimator for the equal-spin density correlation function

g↑↑ for x �= y is given by

Q(g↓↓)(Sp) = α2 +
det B2(Sp; x,y,τ )

det A(Sp)
, (22)

where B2(Sp; x,y,τ ) is a (p + 2) × (p + 2) matrix with two

extra rows and columns corresponding to the extra creation

and annihilation operators in Eq. (20). For x = y, g↑↑(x =

y) = 〈m2
x↑〉 which equals 1/2 for a half-filled model.

To build the estimator for Eq. (21) we proceed as in (19).

The resulting estimator for (21) is

Q(g↑↓)(Sp) = α2 +
p

βU�

det B(Sp; y,τ )

det A(Sp)
, (23)

where B(Sp; y,τ ) is a p × p matrix constructed by selecting

a random vertex (xτ ) from a configuration Sp and moving the

corresponding row of the matrix A(Sp) to (yτ ) while leaving

the corresponding column at (xτ ).

III. CRITICAL TEMPERATURE

In the paramagnetic phase, T > TN , S(Q) scales to zero

exponentially as L → ∞. In the AFM phase, on the other hand,

S(Q)/L3 → m2 as L → ∞, where m is the sublattice mag-

netization. Right at the critical temperature S(Q) ∝ 1/L−2+η,

where η is the anomalous dimension.

In order to locate the transition temperature we thus use the

standard finite-size-scaling (FSS) ansatz24

S(Q)L−2+η = f (L/ξ )(1 + cL−ω + · · · ), (24)

where ξ is the correlation length which diverges at the

transition as ξ ∝ |T − TN |−ν , f (x) is a real-valued function

which tends to a finite constant as x → 0, and the corrections

in parentheses arise from the leading irrelevant operators

(the ellipsis represents the higher-order corrections). Here

the exponent ω is universal, but the amplitude c is not. In

accordance with the 3D Heisenberg universality class, we take

η ≈ 0.037, ν ≈ 0.71, and ω ≈ 0.8.34

The basic idea of using Eq. (24) for the FSS is as follows:

if the corrections to scaling [the second term in parentheses

in Eq. (24)] were not present, S(Q)L−2+η would be scale

independent at the transition point, so that performing the

simulations at a series of system sizes L1 > L2 > · · · and

plotting S(Q)L−2+η versus temperature, one would observe

that all the curves intersect at the same point, T = TN . This

is what we indeed observe for (relatively) large values of

U/t at L � 6: For U � 6t our MC results are consistent with

c = 0 in Eq. (24) within statistical errors; see Fig. 1. The data

for the smallest systems of size L = 4 systematically deviate

from the scaling described by Eq. (24) for all values of U

considered here (see also below), and hence they are omitted

from the scaling analysis.

We find that the corrections to scaling become more

pronounced with decreasing U/t : For U = 5t we find a clear

evidence of the shift of the pairwise crossings towards lower

FIG. 1. (Color online) Finite-size scaling for TN at U = 8t by

Binder crossing analysis. Points are Monte Carlo results, lines are

linear fits. The uncertainty for the Néel temperature is estimated

conservatively by varying the Monte Carlo points within their

respective error bars.

temperatures; see Fig. 2. Since simulating larger system sizes

is not an option, we employ Eq. (24) including corrections

to scaling. The most straightforward way is to follow the

evolution of the pairwise crossings with the system size.

Indeed, expanding Eq. (24) around the crossing of S(Q)L−2+η

at system sizes L = L1 and L = L2 up to the terms linear in

T − TN we find (cf. Ref. 19)

TL1,L2
− TN = const × g(L1,L2), (25)

where

g(L1,L2) =
1

L
1/ν+ω

2

(L2/L1)ω − 1

1 − (L1/L2)1/ν
. (26)

We perform the linear fit of the series of crossings TL1,L2
versus

g(L1,L2). Then the intercept of the best-fit line yields the Néel

FIG. 2. (Color online) Finite-size scaling for TN at U = 5t

by Binder crossing analysis. Points with error bars are Monte

Carlo results, solid lines are linear fits. FSS procedures based

on Eqs. (25)–(27) result in the estimates TN/t = 0.2175(44) and

TN/t = 0.2211(26), respectively. See also Fig. 3.

205102-5



E. KOZIK, E. BUROVSKI, V. W. SCAROLA, AND M. TROYER PHYSICAL REVIEW B 87, 205102 (2013)

FIG. 3. (Color online) Scaling—according to Eqs. (25) and

(26)—of estimates of the critical temperature at U = 5t obtained

from Binder crossings between the lines for different system sizes in

Fig. 2. See text for discussion. The square corresponds to the crossing

point between lines for L = 4 and L = 10, which substantially

deviates from the linear scaling exhibited by all the crossings for

L > 4 (circles), demonstrating that the L = 4 system is too small

to be consistent with the critical scaling described by Eq. (24).

Correspondingly, all the other crossings with the L = 4 line are

omitted from the figure.

temperature. This procedure is illustrated in Fig. 3. It is clear

from Figs. 1–3 that L = 4 does not follow the scaling (25)

and (26). We attribute it to the effect of the higher-order terms

neglected in (24), and use only L > 4 in the fitting procedure

(25) and (26).

We note at this point that the methodology based on Binder

crossings has a built-in self-consistency check: If, in fact, the

criticality were not in the Heisenberg universality class, the

curves for the magnetic structure factor, rescaled via Eq. (24),

would have no reason to cross at a unique point, and thus the

whole procedure of (24)–(26) would break down.

An equivalent procedure has been suggested in Ref. 35.

Again, one expands Eq. (24) up to the linear order in T − TN ,

which leads to

S(Q)L−2+η = [a0 + a1(T − TN )L1/ν](1 + cL−ω), (27)

which is then used as a four-parameter ansatz for a single

nonlinear fit. A priori, fitting procedures based on (25) and

(27) are equivalent and indeed produce consistent results, as

illustrated in Fig. 2. We stress at this point that using (27)

requires judicious choice of the temperature range for fitting:

Including Monte Carlo points at too high temperatures and/or

too small system sizes tends to significantly skew the fit results.

In the following we therefore quote the TN ’s obtained using

Eq. (25).

For U = 4t , we find the corrections to scaling to be larger

than those for U = 5t ; see Fig. 4. In fact, with the accessible

systems sizes we are able to put only an upper limit on the

Néel temperature, TN < 0.17t . From Fig. 4 it is clear that

L = 6 and possibly even L = 8 are simply too small and need

to be discarded from the finite-size-scaling analysis.

Our results for the dependence of the Néel temperature on

U are summarized in Table I and Fig. 5. It is instructive to

FIG. 4. (Color online) Finite-size scaling for TN at U = 4t by

Binder crossing analysis. In this case we are not able to reliably

extract the Néel temperature and can provide only an upper limit,

TN < 0.17t . Notice that the crossing of L = 6 and L = 8 is clearly

outside the range of applicability of either (25) or (27).

compare our estimates to the previous unbiased calculations

from the literature. While for U/t = 6 and 8 our estimates

agree with and are more accurate than previous estimates from

QMC (Ref. 14) and DCA,15 for smaller values of U/t our

estimates are systematically lower. The discrepancy can be

traced back to the FSS procedure which includes corrections

to scaling, Eq. (24): If we were to discard the corrections

and identified the Binder crossings of L = 6 and L = 8 with

the Néel temperature, such estimates would have agreed with

Refs. 14 and 15. We therefore conclude that the estimates of TN

presented here are more accurate than results reported to date.

IV. THERMODYNAMICS

A. Extrapolation to the thermodynamic limit

The dependence of local observables on the size L of the

system with PBCs is complicated36 by oscillations between

the results for even and odd values of L/2. The issue is

illustrated in Fig. 6, where the energy per particle of the

half-filled noninteracting system (U = 0,μ = 0) with PBCs

FIG. 5. (Color online) Comparison of estimates for TN by

different unbiased approaches. Also shown is the strong-coupling

limiting behavior, TN = 3.83t2/U . See text for discussion.
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FIG. 6. (Color online) Dependence of the energy per particle of

noninteracting fermions at half filling [described by Eq. (1) with

U = 0,μ = 0] on the inverse of the linear system size L.

is plotted versus L−1 up to a large system size (L = 52) for

different temperatures. The TD-limit value is approached from

above by the data for even L/2 and from below by those

with L/2 odd. These are the well-known “shell” oscillations37

caused by whether or not the spectrum of the finite system

has states ν with energy Eν within a range much less than T

from the Fermi level, |Eν − μ| ≪ T . In the example of Fig. 6,

the states are classified by the momenta k = (k1,k2,k3), ki =

2πni/L with integers ni taking the values ni = −L/2, . . . ,

−1,0,1, . . . ,L/2 − 1. When {ni} = L/4, which is possible

only if L/2 is even, the state k = (π/2,π/2,π/2) is exactly

at the Fermi level; its occupation is 1/2 (“open shell”), but it

gives no contribution to the average energy. Hence, if L is not

large enough so that the spacing between the levels is larger

than T , the average energy per particle of the system with a

closed shell (L/2 odd) is systematically lower than that of the

system with an open shell (L/2 even) due to the difference of

the number of states below the Fermi level, L3/2 and L3/2 − 1,

respectively. However, for any given temperature T there is a

system size L∗ = L∗(T ) such that for L > L∗ the number of

states with energies |Eν − μ| < T becomes large, removing

the distinction between even and odd L/2. In the free-particle

case of Fig. 6, the convergence to the TD limit at L > L∗ is

extremely fast (exponential) with L∗(T = 0.5) ∼ 10, L∗(T =

0.3) ∼ 16, and L∗(T = 0.1) ∼ 40.

At the finite values of U studied here, the paramagnetic

phase should be described by a Fermi liquid in the limit of

T ≪ EF . In this regime, the total energy is a functional of the

occupation numbers of noninteracting quasiparticles. There-

fore, the system-size dependence of the energy is expected to

be proportional to that of the noninteracting system, at least

for large enough systems.38 This implies a TD-limit extrapola-

tion in the form E(L) = E(∞) + C[E0(L) − E0(∞)] + g(L)

suggested in Ref. 38, where C is a constant, E0(L) is the

energy of the corresponding noninteracting system of size L,

and g(L) is an unknown in our case function. One can expect

that |g(L)| ≪ |C[E0(L) − E0(∞)]| for sufficiently large L.

Given that our simulations are limited to system sizes of up

to L ∼ 10, the validity of this condition is not guaranteed a

priori. An example of such an extrapolation with g(L) = 0

FIG. 7. (Color online) Example of the dependence of energy on

the inverse of the linear system size L obtained with the periodic

boundary conditions (PBCs, circles) and using the twist-averaged

boundary conditions (TABCs, triangles) for U = 8, T = 0.3875

and U = 4, T = 0.2. The solid line is an extrapolation using

the formula E(L) = E′(∞) + C[E0(L) − E0(∞)] (see text). For

U = 8, T = 0.3875 the parameters are E′(∞) = −0.5965, C =

0.6, while for U = 4, T = 0.2, E′(∞) = −1.135, C = 0.95. The

claimed thermodynamic-limit results—E(∞) = −0.5960(16) for

U = 8, T = 0.3875 (using the PBC data) and E(∞) = −1.1390(9)

for U = 4, T = 0.2 (using the TABC data)—are shown by the

horizontal bands. More generally, we use PBC data at U � 6 and

TABC data at U � 5 to obtain the thermodynamic-limit values, as

explained in Sec. IV A.

for two typical sets of parameters—U = 8, T = 0.3875 and

U = 4, T = 0.2—is shown in Fig. 7. The figure suggests

that the additional corrections given by g(L) should be small

for L � 6 at large U , whereas they are appreciable for most

of the accessible system sizes at smaller U . We claim the

TD-limit value E(L → ∞) and its error bar �E(L → ∞)

conservatively as the span between the values at the two largest

accessible system sizes including their statistical error bars

(depicted by the horizontal band in the upper panel of Fig. 7):

E[L → ∞] ≈ {min(E[Lmax] − �E[Lmax],

E[Lmax − 2] − �E[Lmax − 2])

+ max(E[Lmax] + �E[Lmax],

E[Lmax − 2] + �E[Lmax − 2])}/2, (28)
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and

�E[L → ∞] ≈ |E[Lmax] − E[Lmax − 2]|/2

+�E[Lmax] + �E[Lmax − 2], (29)

and similarly for other local observables.

As a consistency check for our TD-limit results (at U � 6)

as well as to improve convergence to the TD limit (at

U � 5), we employ two other simulation setups, which

exhibit different system-size dependences, which we detail

below.

1. Twist-averaged boundary conditions

Averaging over twisted boundary conditions was found in

Refs. 37 and 39 to produce exact results for the noninteracting

system in the grand canonical ensemble and to substan-

tially suppress the system-size dependence for interacting

systems. In this approach one introduces a finite phase

that particles acquire when they wrap around the periodic

boundaries,

|r1 + Lei,r2, . . .〉 = ei�i |r1,r2, . . .〉, i = 1,2,3, (30)

where ei is the unit vector in the direction i and −π < �i � π ;

Eq. (30) with �i = 0 corresponds to the standard PBCs. Then

an observable A(L) is obtained by means of the integration

A(L) =
1

(2π )3

∫ Q

−Q

A�(L)d�, (31)

where A�(L) is a result of the simulation with a fixed value of

� = {�i} and system size L. Thereby, the possible momentum

values are forced to span the whole Brillouin zone. The

noninteracting propagators G(0) satisfying the condition (30)

are obtained by substituting k → k + �/L in Eq. (14). In

practice, we perform numerical integration on a mesh of 64 �

points, estimating the systematic error of integration to be

smaller than the statistical error of A(L) coming from sampling

each A�(L) by Monte Carlo.

The results of the calculation of energy with the

twist-averaged boundary conditions (TABCs) are compared to

those for the PBCs in Fig. 7. For U � 5 we find the TABCs to

substantially reduce the finite-size corrections, as exemplified

by the lower panel of Fig. 7 showing the typical comparison

data for U = 4. Correspondingly, at U � 5 we base our L →

∞ extrapolation on the TABC data and use Eqs. (28) and (29)

with E[L] and �E[L] being the finite-size value and its error

bar obtained with TABCs to claim the TD-limit extrapolated

results (exemplified by the horizontal band in the lower panel

of Fig. 7). For larger values of U/t , averaging over the twists

still reduces the finite-size corrections somewhat, but the net

improvement of TABCs over PBCs is smaller (for a typical

example see the upper panel of Fig. 7—notice that the U = 8

data for L = 8 and L = 10 appear to be converged within

their error bars to a value consistent with the PBC extrapolated

value).

Overall, we find that for U/t � 6 the use of TABCs does

not lead to a significant improvement of the convergence to

the TD limit, and we thus use PBC data and Eqs. (28) and (29)

in this range of interactions. We follow the same protocol to

obtain other observables.

2. L → ∞ free propagators

In the second approach, we replace the free-particle prop-

agators G(0) = G
(0)
L in the diagrammatic expansion, Eq. (11),

by those corresponding to the limit L → ∞, G
(0)
L → G

(0)
∞ ,

thereby completely eliminating the oscillations coming from

the discreteness of the spectrum at the expense of giving up

the PBCs. The only source of systematic error in this case

is the finiteness of the volume—still given by L3—confining

the distribution of the interaction vertices in Eq. (9). In this

case, the finite-size corrections are substantially larger than

those of simulations with PBCs. However, the scaling of these

corrections is linear in 1/L for all the local observables in

question, which allows us to perform a systematic TD-limit

FIG. 8. (Color online) Example of the dependence of energy on

the inverse of the linear system size L obtained with the periodic

boundary conditions (PBCs, circles) for U = 8, T = 0.3875 and with

the twist-averaged boundary conditions (TABCs, triangles) for U =

4, T = 0.2, compared to the result of a simulation based on free-

particle propagators of an infinite system (G
(0)
L → G(0)

∞ , squares).

The error bars are smaller than the symbols. The dashed line is a

linear fit yielding E′′(∞) = −0.5962(9) [E′′(∞) = −1.1368(32)],

in perfect agreement with the claimed conservative estimate E(∞) =

−0.5960(16) [E(∞) = −1.1390(9)] for U = 8, T = 0.3875 (U =

4, T = 0.2) shown by the horizontal band. The data point for the

smallest system size L = 4 at U = 4, T = 0.2 obtained with G
(0)
L →

G(0)
∞ deviates from the linear scaling followed by larger systems and

therefore is excluded from the fit.
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extrapolation. As an example, such an extrapolation for energy

in comparison with the data for PBCs (at U = 8) and TABCs

(at U = 4) is shown in Fig. 8. The TD-limit value obtained

thereby is in perfect agreement with the result of simulations

with the PBCs and TABCs. This constitutes an independent

verification of the accuracy of the claimed results.

B. Energy

Here we present simulation results for the total energy

per particle extrapolated to the TD limit for a range of the

interaction U in the correlated regime near the Néel transition.

The temperature dependence of the energy per particle for

U = 8,6,5,4 is plotted in Fig. 9 along with the results of the

HTSE (Ref. 20) for orders 2,4,6,8,10. As seen from the plot,

the HTSE starts diverging well above the transition point.

C. Entropy

The entropy per particle S(T ) at a given temperature T is

obtained from the thermodynamic relation T dS = dE at fixed

volume by the integral

S(T ) = S(T∗) +
E(T )

T
−

E(T∗)

T∗

−

∫ T∗

T

E(T ′)

T ′2
dT ′, (32)

where T∗ is some temperature at which the entropy is known.

We choose T∗ to be the lowest temperature at which the HTSE

for the energy obviously converges to the TD-limit value E(T∗)

from the simulation. From Fig. 9, we find T∗ = 1.8,2.4,2.6,2.6

at U = 8,6,5,4, respectively. Then the accurate value of S(T∗)

in Eq. (32) is given by the HTSE, while the integral is done

over the simulation data after taking the TD limit. Since the

dependence E(T ) is slow, we represent it by a piecewise linear

function and take the integral analytically. The systematic error

of integration is included in the error bars for S(T ), but is

negligible compared to the error propagated from the values

of E(T ).

The resulting curves of S(T ) for U = 8,6,5,4 are shown in

Fig. 10. From these data and our calculation of TN discussed in

Sec. III, we find the values of the critical entropy SN = S(TN )

in the range of U and summarize the results in Table I. The

error bars of SN are dominated by the relatively small error

of TN due to the large slope of SN (T ) near the transition.

In Fig. 11, we plot lines of constant entropy in the (T ,U )

plane. The latter demonstrate that an adiabatic increase of

the coupling U can lead to either a rise (at S � 0.35 and

S � 0.7) or a fall (at 0.35 � S � 0.7) of temperature, although

the net effect of the Pomeranchuk cooling near SN is rather

small.

FIG. 9. (Color online) Energy (extrapolated to the TD limit) versus temperature at U = 8,6,5,4. The lines represent the results of the

high-temperature series expansion series of orders 2,4,6,8,10 labeled correspondingly.
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FIG. 10. (Color online) Entropy (extrapolated to the TD limit) versus temperature at U = 8,6,5,4. In each panel, the vertical line shows

the position of the critical temperature TN with its width given by the error bar, while the horizontal dashed lines represent the corresponding

bounds of the critical entropy SN listed in Table I. The rest of the lines represent the results of the high-temperature expansion series of orders

2,4,6,8,10 labeled correspondingly.

D. Thermometry

As was shown in Ref. 17 by means of DCA calculations,

the nearest-neighbor spin-spin correlation function defined

as 〈Sz
xS

z
x+ei

〉, which is accessible in present-day ultracold-

FIG. 11. (Color online) Lines of constant entropy in the T vs U

plane.

atom experiments, can serve as a sensitive thermometer at

temperatures near TN . In contrast, another routinely mea-

sured correlator, the double occupancy 〈nx↑nx↓〉 of a lattice

site, is nearly flat in this temperature range, making it

a rather poor candidate for thermometry. This is hardly

surprising since the latter is concerned with correlations

in the charge channel, whereas the relevant physics at

these temperatures is that of developing short-range spin

correlations.

In Fig. 12, we present our results for 〈Sz
xS

z
x+ei

〉 and 〈nx↑nx↓〉

extrapolated to the TD limit at U = 8,6,5,4. The obtained

values agree within the errors with the TD-limit extrapolated

data from the DCA simulations, Ref. 17, but our error

bars are notably smaller. Our data can be directly used for

thermometry calibration and detection of the Néel transition.

Note that in the range of temperatures TN < T < 2TN (the

position of TN is depicted by a vertical line with the width

corresponding to the error bar) the spin-spin correlations

between nearest-neighbor sites rise by a factor of 2, with a

substantial increase of the slope close to TN . In the same

temperature range the double occupancy varies by less than

10%.
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FIG. 12. (Color online) Double occupancy 〈nx↑nx↓〉 (squares) and the nearest-neighbor spin correlation function |〈Sz
xS

z
x+ei

〉| (circles) versus

T at U = 8,6,5,4 extrapolated to the TD limit. In each panel, the vertical line shows the position of the critical temperature for a given value

of U listed in Table I with its width corresponding to the error bar.

V. CONCLUSIONS

We presented unbiased results for the 3D Hubbard model

at half filling near the Néel transition in the strongly correlated

regime of 4 � U � 8, where TN reaches its maximum. We

focused on the properties of the model near the transition,

accurately determining TN and studying the energy, entropy,

double occupancy 〈nx↑nx↓〉, and the nearest-neighbor spin-

spin correlator 〈Sz
xS

z
x+ei

〉 as functions of temperature and

interaction. Accurate quantitative understanding of the model

in this regime is of growing importance in view of the

ongoing experimental effort to emulate the Hubbard model

with ultracold atoms in optical lattices, which could ultimately

allow to study regions of the phase diagram inaccessible by

unbiased theoretical methods. In particular, this could lead

to answers of fundamental questions regarding the nature

of superfluidity at finite doping and its connection to high-

temperature superconductors.11 The realization of the Néel

state would be a necessary step on the way to accessing

the region of the phase diagram where quantum fluctuations

play an important role. Our simulations provide accurate and

controlled estimates of the entropy at the critical point. These

entropies, summarized in Table I, have to be achieved in the

middle of the trapped cold-atom system to realize the AFM

state. For independent in situ thermometry in this regime,

one can employ measurements of the nearest-neighbor spin

correlations, which as expected have pronounced temperature

dependence near TN , and which can nowadays be addressed

either by the use of superlattices21 or by lattice modulation.22 In

agreement with Ref. 17, we did not find the double occupancy

to display notable temperature dependence in the regime of

interest. More generally, our results for thermodynamics at

half filling quantitatively agree with the extrapolated DCA

data of Refs. 17 and 18 with the combined error bars, although

the energy and entropy in the DCA (Ref. 17) appear to be

systematically above our values as well as those of DQMC

on approach to the critical point. As a result and due to the

improved estimate of TN , our value of SN at U = 8 [0.33(3)] is

below that claimed in Ref. 17 [0.42(2)], suggesting agreement

at the level of two combined standard deviations.

The need for a more precise knowledge of TN comes from

the steep temperature dependence of the entropy close to the

transition. Our results for TN improve on the earlier studies

of Staudt et al.,14 although remaining in perfect agreement

with the latter within the error bars everywhere but at U = 4,

where we were able to find only the upper bound for TN ,

205102-11



E. KOZIK, E. BUROVSKI, V. W. SCAROLA, AND M. TROYER PHYSICAL REVIEW B 87, 205102 (2013)

which is somewhat lower than the result of Ref. 14. The

results of our simulations can be used as benchmarks for tuning

approximate methods as well as in developing new unbiased

techniques.
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Modèles Statistiques, where a part of this work was done.

V.S. acknowledges support from the AFOSR (Grant No.

FA9550-11-1-0313) and DARPA-YFA (Grant No. N66001-

11-1-4122).

APPENDIX

In Tables II–V we list the numerical data for the entropy,

energy, double occupancy, and nearest-neighbor spin-spin cor-

relator as functions of temperature obtained after extrapolating

to the thermodynamic limit.

TABLE II. U = 8: Energy, entropy, double occupancy, and

nearest-neighbor spin-spin correlator as functions of temperature

extrapolated to the TD limit using PBC data.

T/t E/t S 〈nx↑nx↓〉 〈Sz
xS

z
x+ei

〉

1.8182 −0.1434(24)

1.7 −0.1855(15) 0.9408(16)

1.5385 −0.2397(26) 0.9073(22)

1.45 −0.2705(28) 0.8867(23)

1.4 −0.2870(31) 0.8751(26)

1.3333 −0.3081(17) 0.8596(19)

1.25 −0.3314(38) 0.8416(33)

1.1765 −0.3515(45) 0.8250(41)

1.1 −0.3802(14) 0.7998(19) 0.0765(1) −0.0146(4)

1.05 −0.3894(35) 0.7913(36)

1.0 −0.4048(28) 0.7762(31)

0.95 −0.4198(22) 0.7608(27) 0.0746(3) −0.0164(5)

0.9 −0.4314(30) 0.7483(36)

0.85 −0.4492(44) 0.7279(54) 0.0732(3) −0.0193(11)

0.8 −0.4607(20) 0.7140(30) 0.0727(3) −0.0200(3)

0.75 −0.4758(19) 0.6945(29) 0.0725(2) −0.0218(4)

0.65 −0.5038(31) 0.6544(51) 0.0716(4) −0.0250(10)

0.6 −0.5157(21) 0.6354(42) 0.0717(1) −0.0271(2)

0.55 −0.5323(11) 0.6065(26) 0.0718(3) −0.0292(4)

0.5 −0.5446(46) 0.5830(93) 0.0719(4) −0.0311(9)

0.45 −0.5647(29) 0.5407(76) 0.0714(5) −0.0347(10)

0.3875 −0.5960(16) 0.4657(57) 0.0716(2) −0.0410(4)

0.375 −0.5967(76) 0.464(20) 0.0714(7) −0.0424(9)

0.35 −0.6240(19) 0.3887(73) 0.0719(4) −0.0469(7)

0.335 −0.6414(19) 0.3379(59) 0.0714(2) −0.0518(6)

0.328 −0.6504(19) 0.3106(60) 0.0715(2) −0.0537(3)

0.325 −0.665(11) 0.266(36) 0.0710(7) −0.0528(14)

0.31 −0.6664(74) 0.261(24)

TABLE III. U = 6: Energy, entropy, double occupancy, and

nearest-neighbor spin-spin correlator as functions of temperature

extrapolated to the TD limit using PBC data.

T/t E/t S 〈nx↑nx↓〉 〈Sz
xS

z
x+ei

〉

2.4 −0.0661(1) 0.13908(2) −0.00487(3)

2.2 −0.1346(1) 1.0847(1) 0.13452(3) −0.00558(3)

2.0 −0.2057(2) 1.0508(1) 0.12990(4) −0.00639(6)

1.8 −0.2787(2) 1.0124(1) 0.12533(4) −0.00746(5)

1.6 −0.3533(2) 0.9685(1) 0.12093(4) −0.00880(6)

1.4 −0.4275(3) 0.9189(2) 0.11705(4) −0.01041(8)

1.2 −0.5003(4) 0.8628(3) 0.11380(5) −0.01221(13)

1.0 −0.5717(6) 0.7977(6) 0.11170(7) −0.01489(19)

0.8 −0.6406(6) 0.7208(8) 0.11108(7) −0.01833(30)

0.6 −0.7054(15) 0.6276(26) 0.11298(25) −0.02205(40)

0.5 −0.7423(15) 0.5604(35) 0.11403(29) −0.02580(51)

0.4 −0.7759(10) 0.4854(32) 0.11620(10) −0.02885(17)

0.35 −0.7962(16) 0.4312(48) 0.11685(25) −0.03149(26)

0.325 −0.8091(17) 0.3929(54) 0.11662(40) −0.03378(49)

0.3077 −0.8251(20) 0.3423(66) 0.11521(50) −0.03691(87)

0.3030 −0.8288(20) 0.3303(67) 0.11510(40) −0.03800(60)

0.2963 −0.8414(50) 0.288(17) 0.1134(10) −0.04046(34)

TABLE IV. U = 5: Energy, entropy, double occupancy, and

nearest-neighbor spin-spin correlator as functions of temperature

extrapolated to the TD limit using TABC data.

T/t E/t S 〈nx↑nx↓〉 〈Sz
xS

z
x+ei

〉

2.6 −0.0987(6)

2.5 −0.1305(4) 1.1483(3)

2.4 −0.1623(5) 1.1354(3)

2.3 −0.1957(5) 1.1212(3)

2.2 −0.2297(7) 1.1060(4)

2.1 −0.2647(10) 1.0898(5)

2.0 −0.3011(6) 1.0720(3)

1.9 −0.3371(13) 1.0535(7)

1.8 −0.3749(15) 1.0331(8)

1.7 −0.4132(16) 1.0112(9)

1.6 −0.4517(17) 0.9879(11)

1.5 −0.4897(17) 0.9633(12)

1.4 −0.5301(9) 0.9354(7)

1.3 −0.5687(22) 0.9069(16)

1.25 −0.5889(22) 0.8910(18)

1.2 −0.6096(14) 0.8741(12) 0.1343(1) −0.0115(7)

1.1 −0.6478(32) 0.8409(29) 0.1336(3) −0.0121(12)

1.0 −0.6886(4) 0.8020(12) 0.1328(1) −0.0140(1)

0.9 −0.7250(36) 0.7637(40) 0.1330(5) −0.0147(10)

0.8 −0.7637(22) 0.7181(33) 0.1334(4) −0.0161(6)

0.7 −0.7996(41) 0.6701(61) 0.1348(6) −0.0169(15)

0.6 −0.8394(15) 0.6087(45) 0.1360(3) −0.0195(6)

0.5 −0.8726(11) 0.5482(30) 0.1389(3) −0.0203(7)

0.4 −0.9110(31) 0.4626(80) 0.1411(8) −0.0231(12)

0.35 −0.9296(17) 0.4128(81) 0.1421(4) −0.0253(1)

0.33 −0.9379(45) 0.389(14) 0.1423(12) −0.0258(16)

0.3125 −0.9404(50) 0.381(17) 0.1423(6) −0.0266(5)

0.28 −0.9535(30) 0.336(13) 0.1438(8) −0.0262(14)

0.26 −0.9665(21) 0.2884(94) 0.1423(4) −0.0296(6)

0.25 −0.9771(19) 0.2468(78) 0.1407(10) −0.0315(3)

0.235 −0.9900(18) 0.1936(77) 0.1381(10) −0.0361(7)

0.22 −1.0016(16) 0.1424(76) 0.1362(11) −0.0390(7)

0.21 −1.0079(10) 0.1133(53)
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TABLE V. U = 4: Energy, entropy, double occupancy, and nearest-neighbor spin-spin correlator as functions of

temperature extrapolated to the TD limit using TABC data.

T/t E/t S 〈nx↑nx↓〉 〈Sz
xS

z
x+ei

〉

2.6 −0.2218(2)

2.4 −0.2837(3) 1.1534(1)

2.3 −0.3164(5) 1.1395(2)

2.2 −0.3504(3) 1.1244(1)

2.1 −0.3854(6) 1.1081(2)

2.0 −0.4213(3) 1.0906(2)

1.9 −0.4583(4) 1.0716(2)

1.8 −0.4967(4) 1.0508(2)

1.7 −0.5363(6) 1.0282(4)

1.6 −0.5759(4) 1.0042(3)

1.5 −0.6174(7) 0.9774(5)

1.4 −0.6594(5) 0.9484(4)

1.3 −0.7021(8) 0.9168(6)

1.2 −0.7445(4) 0.8829(4)

1.1 −0.7875(12) 0.8455(11) 0.1553(2) −0.0121(6)

1.0 −0.8296(17) 0.8053(17) 0.1554(2) −0.0127(8)

0.9 −0.8727(20) 0.7599(24) 0.1557(5) −0.0138(7)

0.8 −0.9152(15) 0.7098(21) 0.1562(3) −0.0149(5)

0.7 −0.9568(29) 0.6543(42) 0.1574(6) −0.0157(11)

0.6 −0.9967(23) 0.5927(46) 0.1597(7) −0.0164(11)

0.5 −1.0390(20) 0.5155(49) 0.1613(7) −0.0193(8)

0.4 −1.0725(44) 0.441(12) 0.1654(13) −0.0186(18)

0.3 −1.1101(19) 0.333(15) 0.1665(5) −0.0218(7)

0.27 0.1671(9) −0.0226(7)

0.25 −1.1243(25) 0.281(12) 0.1680(7) −0.0221(8)

0.2 −1.1390(9) 0.215(11) 0.1678(4) −0.0237(8)

0.1818 −1.1462(8) 0.1775(56) 0.1657(5) −0.0265(5)

0.16 −1.1515(31) 0.147(20) 0.1639(30) −0.0278(34)
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