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Abstract

Background: Negation occurs frequently in scientific literature, especially in biomedical literature. It has previously

been reported that around 13% of sentences found in biomedical research articles contain negation. Historically,

the main motivation for identifying negated events has been to ensure their exclusion from lists of extracted

interactions. However, recently, there has been a growing interest in negative results, which has resulted in

negation detection being identified as a key challenge in biomedical relation extraction. In this article, we focus on

the problem of identifying negated bio-events, given gold standard event annotations.

Results: We have conducted a detailed analysis of three open access bio-event corpora containing negation

information (i.e., GENIA Event, BioInfer and BioNLP’09 ST), and have identified the main types of negated bio-events.

We have analysed the key aspects of a machine learning solution to the problem of detecting negated events,

including selection of negation cues, feature engineering and the choice of learning algorithm. Combining the best

solutions for each aspect of the problem, we propose a novel framework for the identification of negated bio-

events. We have evaluated our system on each of the three open access corpora mentioned above. The

performance of the system significantly surpasses the best results previously reported on the BioNLP’09 ST corpus,

and achieves even better results on the GENIA Event and BioInfer corpora, both of which contain more varied and

complex events.

Conclusions: Recently, in the field of biomedical text mining, the development and enhancement of event-based

systems has received significant interest. The ability to identify negated events is a key performance element for

these systems. We have conducted the first detailed study on the analysis and identification of negated bio-events.

Our proposed framework can be integrated with state-of-the-art event extraction systems. The resulting systems

will be able to extract bio-events with attached polarities from textual documents, which can serve as the

foundation for more elaborate systems that are able to detect mutually contradicting bio-events.

Background
Introduction

Owing to the rapid advances in biomedical research,

scientific literature is being published at an ever-

increasing rate [1]. For example, the size of PubMed is

increasing at the rate of approximately two papers per

minute [2]. As a result, it is becoming increasingly difficult

for biologists to keep abreast of developments within bio-

medicine, and automated means are required to satisfy

their information needs. Consequently, text mining is

receiving increasing interest within the biomedical field

[3-5], as it enriches text via the addition of semantic meta-

data, and thus permits tasks such as analysing molecular

pathways [6] and performing semantic searches [7].

Event-based text mining

Event-based text mining approaches constitute a promis-

ing alternative to the traditional approaches, which are

mainly based on the bag-of-words principle [7-9]. Text-

ual events are template-like, structured representations

of pieces of knowledge contained within documents.

Text mining systems that are able to extract events auto-

matically can allow much more precise and focussed

retrieval and extraction of information than the trad-

itional keyword-based systems [8]. Event-based retrieval

allows the user to specify one or more constraints on

the events to be retrieved, without having to be con-

cerned about the precise wording used in the text. These

constraints could be in terms of the type of the event,

and/or the type(s) of its participants, and/or the precise

format of participants playing particular roles in the
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event. An example of such a system is MEDIE [7], a

semantic search engine for MEDLINE [10] abstracts.

Furthermore, the event representation of text allows a

document to be viewed as a collection of nested textual

events. We call this the event view of a document. When

used in conjunction with event and term ontologies, the

event view can facilitate the extraction of the implicit rela-

tions present in the text. Therefore, the events extracted

from a document can be used to facilitate more challen-

ging text mining tasks like recognition of textual infer-

ence, i.e., detection of entailment and contradiction in

textual sources [11].

Significance of detecting negated bio-events

Negation is considered a universal property of all human

languages [12]. However, the concept and manifestation of

negation in natural languages is far more subtle and com-

plex in force and scope than it is in formal logic [13-15].

Nonetheless, negation occurs frequently in scientific lite-

rature, especially in the domain of biomedicine. Vincze

et al. [16] report that around 13% of sentences found in

biomedical research articles contain some form of neg-

ation. Our analysis of three open access bio-event corpora

showed that more than 6% of bio-events are negated.

Historically, in the field of biomedical text mining, the

main motivation for the identification of negated events

has been to ensure their exclusion from an extracted list

of interactions. This was mainly because most biomed-

ical research has been focussed around the publication

and analysis of positive results [17]. However, over the

past decade, there has been a growing interest in nega-

tive results, for example:

� The Journal of Negative Results in Biomedicine [18]

has been launched, which, as the name suggests,

focusses specifically on negative results.

� The Negatome database [19] has been released,

which provides information about non-interacting

protein pairs.

� Efforts have been made to incorporate negation in

the popular biomedical ontologies [20].

Furthermore, negation detection has been identified as

the foremost challenge in biomedical relation extraction

[21]. More specifically, it has been argued that the recog-

nition of negated bio-events is of fundamental practical

significance for researchers in most biomedical disci-

plines [22].

In response to the importance of detecting negated

bio-events, we have carried out an in-depth analysis of

three open access bio-event corpora containing negation

information, and propose a new classification of negated

bio-events. We have subsequently used the information

resulting from our analysis to feed into the design of a

machine learning solution to the problem of detecting

negated bio-events. The resulting novel framework for

the identification of negated bio-events has been evalu-

ated on each of the three open access corpora men-

tioned above, achieving significantly better results than

the existing state-of-the-art systems.

The task of identifying negated bio-events

This section provides a brief overview of bio-events and

describes the problem of identifying negated bio-events.

Bio-events

In its most general form, a textual event is as an action,

relation, process or state expressed in the text [23]. More

specifically, a textual event is a structured semantic rep-

resentation of a certain piece of information contained

within the text. Textual events are usually anchored to

particular text fragments that are central to the descrip-

tion of the event. The most important of these text frag-

ments is the event-trigger, which is usually a verb or a

noun that indicates the occurrence of the event. Events

are often represented as a template-like structure with

slots that are filled by the event participants. These

event participants describe the different aspects of the

event, e.g., what causes the event, what is affected by it,

where it took place, etc. Based on its function, each par-

ticipant is usually assigned a role within the event. The

participants can correspond to entities, concepts or even

other events. If an event contains other events as its par-

ticipants, then it is called a complex event. This kind of

event representation allows the information contained

within a piece of text to be represented as a collection of

nested events.

A bio-event is a textual event specialised for the bio-

medical domain. Kim et al. [9] define a bio-event as a

dynamic bio-relation involving one or more participants.

These participants can be bio-entities or (other) bio-

events, and are usually each assigned a semantic role/slot

like theme and cause, etc. Each bio-event is typically

assigned a type/class from a chosen bio-event taxonomy/

ontology, e.g., the GENIA Event Ontology [9]. Similarly,

the bio-entities are normally also assigned types/classes

from a chosen taxonomy/ontology, e.g., the Gene Ontology

[24]. The template of a bio-event can also contain add-

itional slots, e.g., to denote temporal and spatial attributes.

As an example, consider the following sentence from

the GENIA Event corpus (PMID: 3035558): “The results

suggest that the narL gene product activates the nitrate

reductase operon”. According to the GENIA Event anno-

tation scheme, this sentence contains a single bio-event,

anchored to the verb activates. Figure 1 shows the struc-

tured representation of this bio-event.

The fact that the event is anchored to the word acti-

vates allows the event-type of positive_regulation to be
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assigned. The event has two slots, i.e., theme and cause,

whose labels help to characterise the contribution that

the slot filler makes towards the meaning of the event.

In this case, the slots are filled by the subject and object

of the verb activate, both of which correspond to differ-

ent types of bio-entities (i.e., operon and protein).

Figure 2 shows a simple hypothetical sentence with a

more complex event structure. The event E1 is anchored

to the word expression and has been assigned the event-

type of gene_expression. It has a single participant, the

arbitrary gene X, which acts as the theme of the event.

E1 also has a location attribute, which has the arbitrary

value of Z. The word activates has been identified as the

event-trigger for the complex event E2, which has been

classed as a positive_regulation event. It has two partici-

pants: the arbitrary protein Y and the event E1, which

act as the cause and the theme of the event, respectively.

Bio-event corpora for training and evaluation

Recently, significant effort has been put into the creation

of various bio-event corpora. Although each of these

corpora has been created with different aims and moti-

vations, they all contain bio-events of varying levels of

generality. Furthermore, while the general definition of

bio-events in all corpora complies with the description

above, the exact specification of a bio-event, the types of

participants and the semantic roles ascribed to them

vary from corpus to corpus. A brief description of some

of these corpora is as follows:

� GENIA Event: The GENIA Event corpus [9]

contains 1,000 MEDLINE abstracts in which 36,858

bio-events have been identified. Each event belongs

to one of the 36 event classes defined in the GENIA

Event Ontology. The event participants can be bio-

entities or other bio-events. Each bio-entity belongs

to one of the 46 classes defined in the GENIA Term

Ontology. Other than the participants, an event may

contain additional attributes including location, time

and experimental context.

� BioInfer: The BioInfer corpus [25] contains 1,100

sentences in which 2,662 bio-events have been

identified. Each event belongs to one of the 60 event

classes defined in the BioInfer Relationship

Ontology. It is important to note that a more general

definition of bio-event has been used in BioInfer, in

that static bio-relations [26] have also been marked as

bio-events.

� GREC: The Gene Regulation Event Corpus (GREC)

[27] contains 240 MEDLINE abstracts in which

3,067 bio-events have been identified. Each event has

a set of arguments, which can include both the event

participants and attributes like time, location and

manner, etc.

� GeneReg: The GeneReg [28] corpus contains 314

MEDLINE abstracts in which 1,770 bio-events have

been identified. Each event belongs to one of the 4

classes from the Gene Regulation Ontology.

� BioNLP’09 ST (Shared Task): The BioNLP’09 ST

Corpus [29] contains 950 MEDLINE abstracts. This

corpus contains two subsets: the Development subset,

comprising 150 abstracts and the Training subset,

comprising 800 abstracts. The corpus contains a total

of 11,480 bio-events, and each bio-event belongs to

one of 9 event classes, which form a subset of the

classes in the GENIA Event Ontology.

Negated bio-events

Vincze et al. [16] define negation in the context of bio-

medical literature as ‘the implication of the non-existence

of something’. Negation at the bio-event level is non-

existence of an event, i.e., a negated bio-event indicates

the non-existence of that event. The indication of non-

existence could be explicit (e.g., the presence of a negation

marker) or implicit (e.g., semantic inference).

Amongst the bio-event corpora introduced above, only

three contain annotations relating to event polarity, i.e.,

GENIA Event, BioInfer and BioNLP’09 ST. Negation cues

(i.e., words and phrases that explicitly indicate a negation)

have been explicitly annotated only in BioInfer. Table 1

shows statistics regarding the annotations present in each

of the three corpora. In terms of volume, the GENIA Event

corpus is the largest, with almost 37,000 events, while

BioInfer is the smallest, with fewer than 2,700 bio-events.

Regarding event-types, BioInfer is the richest, with 60

event-types, whilst BioNLP’09 ST is the simplest, with only

9 event-types. Interestingly, the distribution of negated bio-

TRIGGER: activates
TYPE: positive_regulation
THEME: nitrate reductase operon: operon
CAUSE: narL gene product: protein

Figure 1 Typical structured representation of the bio-event

contained in the above sentence.

Figure 2 A simple hypothetical sentence with complex event

structure.
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events in all three corpora is fairly uniform, ranging be-

tween 6.1% and 6.4%.

Identification of negated bio-events: task description and

analysis

Following previous work [29-33], we treat the task of

identifying negated bio-events as an independent task in

itself. That is, we assume that event annotation has

already been performed, and aim to create an automated

means of classifying the identified events according to

their polarity.

A related negation detection task, which has recently

received significant attention, is the detection of neg-

ation scopes [34]. This involves the identification of the

sequence of words within in a sentence that is affected

by a particular negation cue. Despite the apparent simi-

larities, identification of negated bio-events is essentially

different from negation scope detection. While scope an-

notation focusses on linguistic properties of the text, the

goal of bio-event annotation is to identify which kinds of

biological information appear in which parts of text.

Therefore, the identification of bio-events in text has

two distinguishing characteristics [9,25,27]:

1. Bio-event annotation is information-centred and

depends entirely on biologists’ conception of the

relationship between an event, its participants and

other events expressed in the text.

2. The event-trigger and participants of an event are

each mapped to a span of text. This usually causes

the description of an event to be spread over several

discontinuous spans in text, which could belong to

different clauses within a sentence.

In contrast to the above characteristics, the scopes of

negation cues are continuous and relatively less ambiguous

[16]. A few interesting consequences of this contrast are:

� A sentence containing a negation cue may not

contain any negated events at all.

� At the other extreme, negated events may be

present even when a negation cue is not present in

the sentence.

� The event-triggers and/or participants of several

events may fall under the scope of a negation cue.

However, it is highly unlikely that all of these events

will be negated.

Vincze et al. [35] conducted an in-depth comparison

of a linguistically annotated corpus of negation scopes

(BioScope) and a biologically annotated corpus of negated

bio-events (GENIA Event). They found that only half

(51%) of the bio-events with event-triggers inside the

scope of a negation cue were actually negated. Conversely,

16% of negated bio-events had event-triggers which were

outside the scope of the negation cues present in the

sentence containing the event. They concluded that neg-

ation scope detection is not sufficient for the identification

of negated bio-events, as the latter is a more complex task,

which requires a deeper and more complex analysis than

other negation detection tasks, like negated term detec-

tion and negation scope detection.

Related work

This section provides a brief overview of the previous

work done on types of negation, negation cues, detection

of negated terms and negation scopes, detection of

negated protein-protein interactions (PPIs) and identifi-

cation of negated bio-events.

Types of negation

One of the first attempts at classifying negation in

natural language was made by Aristotle. He concluded

that negations can be divided into four types, which he

named as correlation (e.g., double vs. half ), contrariety

(e.g., good vs. bad), privation (e.g., blind vs. sighted) and

contradiction (e.g., he sits vs. he does not sit) [14]. In

terms of more recent work, Tottie [13] presented a

taxonomy of clausal negations in English. She identified

6 top-level categories of clausal negation: denials, rejec-

tions, imperatives, questions, supports and repetitions.

Harabagiu et al. [36] identified two main classes of neg-

ation: directly licensed negations and indirectly licensed

negations. The directly licensed negations include: overt

negative markers (such as not), negative quantifiers

(like no) and strongly negative adverbs (like never). The

indirectly licensed negations include: verbs or phrasal

verbs (such as fail), prepositions (such as without), weak

quantifiers (such as few) and traditional negative polarity

items (such as a red cent). Huang and Lowe [37] pro-

posed a classification of negations found in medical

reports. Their classification was based on the syntactic

category of the negation signal and phrase patterns.

They identified 4 syntactic categories of negation signals:

adjective-like (such as no, absent and without), adverb

Table 1 Statistics of bio-event corpora containing polarity information

Corpus Event types Total events Negated events Negation percentage

GENIA Event 36 36,858 2,351 6.4%

BioInfer 60 2,662 163 6.1%

BioNLP’09 Shared Task 9 11,480 722 6.3%
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(such as not), verb (such as deny) and noun (such as ab-

sence). They also identified 9 phrase patterns corre-

sponding to the syntactic categories.

To our knowledge, the only previous study on the classi-

fication of negated bio-events was reported by Sanchez-

Graillet and Poesio [38], who analysed negated PPIs in 50

biomedical articles. They identified seven classes of neg-

ation for PPIs, based on lexical and syntactic patterns.

The different studies outlined above suggest that the best

way to classify negations appears to be domain-specific.

Although the work of Sanchez-Graillet and Poesio con-

cerns bio-events, their classification is specific to PPIs and

cannot be trivially extended to all types of bio-events.

Therefore, a more general framework is required, which

can be applied to classify all types negated bio-events.

Negation cues

A number of different studies have identified negation cues

that appear in medical and biomedical texts. Chapman

et al. [39] compiled a comprehensive list of 272 negation

cues specific to medical discharge summaries. They re-

ported that two negation cues (no and without) accounted

for a large proportion of negative statements. Their results

showed that the distribution of negation cues is Zipfian in

nature. Similar results were also reported by Mutalik et al.

[15], who, despite identifying over 60 negation cues, found

that only a small set of cues account for the majority of

negation instances. In their corpus of 40 medical docu-

ments, only four negation cues accounted for almost 93%

of all negation instances. These cues are no (49%), denies/

denied (21%), not (13%) and without (10%). A further study

by Tolentino et al. [40] analysed negated biomedical con-

cepts occurring in a corpus of 41 medical documents. They

found that only 5 negation cues (no, neither/nor, ruled out,

denies and without) accounted for 89% of all negated

concepts found in the corpus.

Elkin et al. [41] created an ontology of terms that start

negations (e.g., no, denies and ruled out) and another set

which stop the propagation of the assignment of negation

(e.g., other than). Kilicoglu and Bergler [30] created a list

of 9 negation cues from the BioNLP’09 ST corpus.

Morante [42] compiled a list of negation cues observed in

the BioScope [16] corpus, identifying 8 ambiguous and 21

unambiguous negation cues. She also provided a descrip-

tion for the scope of each cue based on its syntactic con-

text. Sarafraz and Nenadic [33] used the previous studies

on negation to derive a primary list of 14 negation cues.

They further compiled a secondary list of 18 additional

negation cues that were semi-automatically extracted from

the BioNLP’09 ST corpus. Interestingly, their list contains

the word inhibit, which is treated as an indicator of negati-

ve_regulation (i.e., a positive event indicating down-regula-

tion) rather than a marker of negation in the BioNLP’09

ST, GENIA Event and BioInfer corpora.

In terms of automated approaches, Morante and

Daelemans [43] proposed a machine learning system for

the identification of negation cues. Their system

achieved an F-score of over 99% for both clinical notes

and biomedical abstracts. However, their system treated

17 strings as unambiguous negation markers, i.e., every

occurrence of these strings was treated as a negation

cue. These unambiguous cues accounted for 95% of all

instances of negations. Agarwal and Yu [44] developed a

system for the automatic identification of negation cues

using Conditional Random Fields (CRF). Their system

achieved an F-score of 98% for clinical notes and 97%

for biomedical abstracts.

The numbers of negation cues identified in the above

studies vary considerably. It appears that the optimal

negation cue list varies, both according to the domain of

the text and the exact context/task in which they are

identified.

Detection of negated terms, negated sentences and

negation scopes

The bulk of work on negation detection in the bio-

medical domain has been focussed on the detection of

negated terms in medical reports. This work includes

both rule-based and machine learning approaches. The

key rule-based solutions include those presented by

Chapman et al. [39], Mutalik et al. [15], Elkin et al. [41],

Huang and Lowe [37] and Boytcheva et al. [45]. The key

machine learning approaches include the systems pre-

sented by Averbuch et al. [46], Goldin and Chapman

[47], Goryachev et al. [48], Rokach et al. [49] and Councill

et al. [50].

Wilbur et al. [51] created a corpus of 6,945 text frag-

ments (sentences and clauses) in which each fragment is

annotated along five dimensions, one of which is polar-

ity. Their corpus contained 6,498 (94%) positive and 447

(6%) negative fragments. Shatkay et al. [52] used this

corpus to develop an automated system for identifying

negated text fragments. Their system achieved a preci-

sion of 96% and a recall of 93%.

Vincze et al. [16] developed BioScope, an open access

corpus of biomedical text containing token level annota-

tions for negation cues and their respective scopes. The

BioScope corpus comprises three sub-corpora: (1)

clinical reports containing 6,383 sentences, (2) biomed-

ical articles containing 2,670 sentences and (3) biomed-

ical abstracts containing 11,871 sentences. Morante and

Daelemans [43] presented a machine learning approach

to detecting the scope of negation cues and tested their

system on the BioScope corpus. Their system deter-

mined the full scope of negation cues with an accuracy

of 66% for abstracts, 41% for papers and 71% for clini-

cal notes.
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Detection of negated PPIs

Sanchez-Graillet and Poesio [38] developed a set of

heuristics for extracting negated PPIs from biomedical

articles. They implemented their system using a Func-

tional Dependency Grammar (FDG) parser. Their prelim-

inary results ranged from 54% to 63% F-score, depending

on the method of protein name recognition. The system

achieved 77% F-score when used with gold standard

protein annotations.

Detection of negated bio-events

Identification of negated bio-events was an optional sub-

task in the BioNLP’09 Shared Task Challenge [29]. Six

teams participated in this task and reported the first

results on the identification of negated bio-events. The

rule-based system of Kilicoglu and Bergler [30] was

ranked in first position, with 14% recall, 51% precision

and 23% F-score. Van Landeghem et al. [32] achieved

the second best results of 11% recall, 45% precision and

17% F-score. They also used a customised rule-based

system. MacKinlay et al. [31] used a machine-learning

approach with complex deep parse features. Their sys-

tem achieved the third best results with 5% recall, 34%

precision and 9% F-score. It is important to note that

these systems did not operate on gold standard event

annotations. Instead, they performed event extraction as

a preliminary step to the identification of negated events.

The approximated F-scores for these systems if gold

standard event annotations were provided are 38%, 26%

and 28%, respectively. These values have been calculated

using a linear extrapolation function and the maximum

(100%) recall value for event extraction.

Sarafraz and Nenadic [33] proposed a machine learning

approach for the identification of negated bio-events. They

implemented an SVM classifier with a linear kernel using

features engineered from a sentence parse tree with lexical

cues. They trained their classifier on the BioNLP’09 train-

ing dataset and tested it on the BioNLP’09 development

dataset. They achieved 38% precision, 76% recall and

51% F-score. In a further experiment, they split the data

into smaller sets containing different event-types, and

trained and tested the classifier separately for each smaller

dataset. This way, they achieved a micro average of 49%

precision, 88% recall and 63% F-score.

Methods
Types of negated bio-events

We conducted an in-depth analysis of the types of negation

observed in the three open access bio-event corpora con-

taining negation annotation. We analysed a total of 1,000

randomly selected negated bio-events, of which 600 were

from the GENIA Event corpus (over 25% of all negated

events in the corpus), 300 were from the BioNLP’09

Shared Task corpus (over 40% of all negated bio-events in

the corpus) and 100 were from the BioInfer corpus (over

60% of all the negated bio-events in the corpus). Our ana-

lysis revealed five main types of negated bio-events:

Inherently negative bio-events

These are bio-events in which the event-trigger is itself a

negation cue, like independent, immobilization, unaffected,

dysregulation, etc. As an example, consider the sentence

shown in Figure 3. The event E1 is triggered by the word

infection and represents the initiation of viral infection of

HIV-1. The event E2 is triggered by the word dysregulation

and expresses the non-existence of the regulation of

Cytokine caused by E1; therefore it has been annotated as a

negated event.

Negated event-trigger

In this category, an explicit negation cue modifies the

event-trigger. For example, consider the sentence shown

in Figure 4. The event E1 indicates the positive regula-

tion of NF-KappaB by IL-1beta, where the events E2

and E3 indicate the regulation of E1 by the GTPases

(protein molecules) Rac1 and Cdc42, respectively. Both

E2 and E3 are negated, as they are both triggered by the

word required, which is being modified by the explicit

negation cue not. Interestingly, the scope of the negation

cue (not), according to the BioScope annotation guide-

lines, also includes the trigger for event E1 (which is not

negated).

Negated participant

This category corresponds to bio-events in which at least

one participant (theme or cause) is modified by an explicit

negation cue. As an example, consider the sentence shown

in Figure 5. Both events, E1 and E2, are triggered by the

phrase synergistically induced; however, they have oppos-

ite polarities. Event E1 expresses the positive_regulation of

IRF-1 by IL-2 and IL-12, while E2 expresses the non-

Figure 3 Inherently negative bio-event example (Source: GENIA

Event Corpus; PMID: 9427533).
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existence of positive_regulation of IRF-1 by IFN-alpha and

IL-12. The explicit negation cue not modifies the two

causes of E2, i.e., IFN-alpha and IL-12. Again, it is import-

ant to note that the scope of this cue (not) includes neither

the trigger for event E2 nor any of its participants.

Negated attribute

There are bio-events in which an explicit negation cue

modifies an event attribute, such as location. An ex-

ample of this type of negation is shown in Figure 6. The

events E1, E2, E3, E4, E5 and E6 are all triggered by the

word coexpressed. However, E1 and E4 represent the

expression of the genes 5-LOX and FLAP (respectively)

in lymphoid cells, while E2, E3, E5 and E6 represent the

expression of these genes in monocytic and epithelial

cells respectively. The explicit negation cue not modifies

the phrase in monocytic or epithelial cells. This phrase

contains the location for E2, E3, E5 and E6, making

these events negated.

Despite its relatively low frequency, this is an import-

ant type of negated bio-event. In a recent article on biol-

ogists’ perspective of negation, Krallinger [22] identified

events with negated locations as of particular interest to

biomedical practitioners.

Comparison and contrast

This category corresponds to bio-events where the neg-

ation is signalled via contrast or comparison, normally

with another bio-event. Sentences containing such ne-

gated events often lack an explicit negation marker. How-

ever, the BioInfer corpus is unique in the sense that

it annotates even contrast and comparison markers as

negation cues. Figure 7 shows an example of this type of

negation. The event E1 is triggered by the word activate,

and it expresses the positive_regulation of p38 MAPk by

MKK3 in LPS-treated neutrophils. The events E2 and E3

are similar to E1 except that they are caused by MKK4

and MKK6, respectively. Both E2 and E3 have been anno-

tated as negated; this is despite the fact that the sentence

lacks an explicit negation cue.

Distribution

Our analysis revealed that the instances of each of the

five main types of negated bio-events are present in the

three corpora with varying frequencies. Table 2 shows

Figure 4 Bio-event example with negated event-trigger (Source: GENIA Event Corpus; PMID: 10022882).

Figure 5 Bio-event example with negated participant (Source: GENIA Event Corpus; PMID: 10358173).
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the distributions in the three different corpora and the

macro and micro averages for each type.

The frequency of inherently negative bio-events ranges

between 9% and 13%, with a micro average of 12%. This is

the second most prevalent type in GENIA Event and the

third most prevalent in BioInfer and BioNLP’09 ST. The

frequency of negated trigger events ranges between 61%

and 67% in the three corpora, with a micro average of 63%.

This is the predominant type in all three corpora. The

frequency of the negated participants type ranges between

10% and 17%, with a micro average of 11%. This is the

second most prevalent type in BioNLP’09 ST and BioInfer

and the third most prevalent type in GENIA. On average,

6% of negated events are of the negated attribute type;

however, the frequency within the different corpora ranges

between 2% and 7%. We note that the BioInfer corpus does

not mark temporal or spatial attributes of bio-events.

Instead, it incorporates specialized event-types for captur-

ing this type of information. Finally, the comparisons and

contrasts type accounts for 8% of negated bio-events.

Figure 6 Bio-event example with negated attribute (Source: BioNLP ST Corpus; PMID: 10022882).

Figure 7 Bio-event example with comparison and contrast (Source: GENIA Event Corpus; PMID: 10079106).
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Discussion

Previous work on the identification of negated events

has primarily been focussed on negated trigger events,

i.e., the cases where a negation cue modifies the event-

trigger. However, our analysis shows that a significant

proportion (37%) of negated events belongs to the other

types. Therefore, a system for effectively identifying

negated bio-events should have the ability to recognise

all types of negated events.

The most direct method of facilitating the recognition

of a particular negated event-type by the system is to en-

gineer features corresponding to that type, e.g., features

based on constituency or dependency relations between

the negation cue and the event constituents (triggers,

participants and attributes). Since the manifestations of

the comparison and contrast type usually lack an explicit

negation cue, a different approach is required for this

type. One possibility would be to identify the compari-

son/contrast markers and patterns and engineer features

based on them. Feature engineering is discussed in detail

in the “Feature Design” section below.

Analysis of negation cues

Although the context and syntactic structure of a sen-

tence play important roles in determining the negation

status of a bio-event contained within the sentence, the

presence of a negation cue is the most important factor

to be considered.

Ambiguity of negation cues

Negation cues can be ambiguous [42,53], i.e., in some

contexts they may not trigger negations. Wilson et al.

[54] pointed out the difference between the lexical and

contextual polarities of a word. The lexical polarity is

the prior or fixed polarity ascribed to a word, based on

its meaning and general usage in the language. The con-

textual polarity of a word is more dynamic, and depends

on the context of the text fragment containing the word.

The contextual polarity can be different from the lexical

polarity, and this difference is the key source of ambiguity

in determining whether a word or phrase constitutes a

negation cue. For example, consider the words lack and

loss. Both of these words have a negative lexical polarity,

as they convey the “state of not having something”. That is

why they have been identified as negation cues in the

BioScope corpus. Morante [42] also identified both of

these words as unambiguous negation cues. However,

from a biological perspective, these words have a positive

polarity when used in the context of a negative_regulation

event. Hence, a positive contextual polarity can be

ascribed to these words in certain instances. Similarly, the

words absent and absence may also be used to convey

negative regulation rather than negation.

Figure 8 shows a case of conflicting lexical and con-

textual polarities. In the sentence shown, the event E1 is

anchored to the word loss, and it expresses the negati-

ve_regulation of the protein molecule STAT1 in cells

from patients treated with fludrabine in vivo. Note that

the polarity of E1 is positive.

Based on our analysis of negated bio-events, we con-

clude that the ambiguity status of a negation cue is not

universal. Rather, it is determined by the:

� nature of text under consideration

� annotation perspective (e.g., linguistic or biological)

� context of the surrounding text and the lexical

polarity of the cue

Indicators of low manner of interaction

Sometimes, the text containing a bio-event also contains

a word or phrase that provides an indication of the rate,

level, strength or intensity of the interaction. In [55], we

refer to this indication as the manner of the event, and

three types of manner are distinguished: high, neutral

and low. The words indicating a low manner include

Table 2 Corpus-wise class distribution of negated bio-events

Type GENIA Event BioInfer BioNLP’09 ST Macro average Micro average

Inherently Negative 13% 11% 9% 11% 12%

Negated Trigger 61% 62% 67% 63% 63%

Negated Participant 10% 17% 12% 14% 11%

Negated Attribute 7% 2% 6% 4% 6%

Comparison and Contrast 9% 8% 6% 8% 8%

Figure 8 An instance of the word loss with positive contextual

(biological) polarity; Source = PMID: 10202937.
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adjectives and adverbs like weak, weakly, slight, slightly,

slow, small, little, low, etc.

Indicators of low manner have historically been treated

as negation cues. In the field of sentiment analysis, such

indicators have been considered as a special class of

negative polarity indicators. Wiegand et al. [53] refer to

this class of cues as diminishers, while Wilson et al. [54]

have labelled them as negative polarity shifters. Similarly,

indicators of low manner have been treated as negation

cues in the field of biomedical text mining. Examples

can be found in the three corpora of negated bio-events

(i.e., GENIA Event, BioInfer and BioNLP’09 ST), as well

as in the BioScope corpus. Figure 9 shows an example

sentence where the low manner indicator little has been

interpreted as a negation cue for the event E3.

In [55], we proposed an alternative approach to event

interpretation. We argued that polarity and manner

should be treated as orthogonal dimensions of event

interpretation, i.e., the value of manner should not influ-

ence the value of polarity and vice-versa. According to

this approach, the event E3 in Figure 9 would have a low

manner but a positive polarity.

Deactivators of negation cues

The ability of some words to act as negation cues is

affected by the syntactic constructions in which they are

used. This means that a word that normally acts as a

negation cue can cease to act in that capacity if it is

preceded and/or followed by certain other words. We

refer to these syntactic patterns as negation deactivation

patterns. Here, we focus only on the two most common

negation cues i.e., no and not.

� Deactivators of not: The word not is the most

frequent negation cue in the BioScope corpus and

accounts for over 41% of the total negation

instances in the corpus. However, in almost 8% of

cases, it does not indicate a negation, i.e., it ceases

to act as a negation cue. In our analysis, we

focussed on a simple deactivation pattern: not <

deactivatorOfNot>. The pattern indicates an

occurrence of the word not immediately followed by

one of its deactivators. We only considered the

following five deactivators: clear, evident, known,

necessarily and only.

In our analysis of the GENIA Event corpus, we

discovered a total of 261 events which belonged to

the sentences containing the above pattern.

Amongst these, 258 events (99%) were positive and

only 3 events (1%) were negated, suggesting that this

is an effective pattern for identifying the deactivated

instances of the word not.

� Deactivators of no: The word no is the second most

frequent negation cue in the BioScope corpus and

accounts for almost 30% of the total negation

instances in the corpus. However, in over 6% of

cases, it does not indicate a negation. Morante [42]

has identified several constructions which contain the

word no, but do not trigger a negation. These

constructions include: no sign of, no evidence of, no

proof and no guarantee that.

Figure 9 An instance of the low manner indicator little being treated as a negation cue; Source = PMID: 20562282.
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Our analysis of the GENIA Event corpus revealed that

in some cases, these constructions do trigger negated

events. For example, consider the sentence in

Figure 10, where the construction no evidence triggers

the negation of event E2. Based on our analysis, we

conclude that the deactivation patterns identified for

linguistic (scope) annotation may not hold for

biological (event) annotation.

Relationship between the negation cues and event-types

We investigated the relationship between negation cues

and different types of bio-events. Our analysis revealed

two classes of negation cues with respect to event-types.

These are:

� Type-independent Negation Cues: This class includes

typical negation markers like no, not and fail etc. Some

inherently negative event-triggers which can be applied

to various types of events are also included in this

category. For example, event-triggers like unaffected

and independent can be used for various types of

events including positive_regulation,

negative_regulation and correlation events.

� Type-dependent Negation Cues: This class includes

cues like immobilize, decoupling and dysregulation,

which act as negation cues for specific event-types:

immobilize and decoupling are used only for

localization events, while dysregulation is used only

for regulation events.

Corpus / domain idiosyncrasies

Certain cues which are unambiguous and/or frequent in

one corpus can be ambiguous and/or scarce in another.

For example, words like protected and abolish are treated

as negation cues in BioInfer. However, they are mostly

interpreted as indicators of negative_regulation, rather than

negation, in the GENIA Event and BioNLP’09 ST corpora.

On the other hand, the verb fail is frequent and mostly

unambiguous as a negation cue in the GENIA Event and

BioNLP’09 ST corpora. However, in the BioInfer corpus,

it does not appear as a negation cue even once.

Compilation of cue lists

Having identified negation cues as an important factor

in the identification of negated bio-events, we conclude

that it is important to:

� determine the impact of the choice of cue lists on

the overall task performance

� identify an optimum cue list for the task

Based on the above analysis, we decided: (1) not to

create separate lists for ambiguous and unambiguous

cues, (2) to treat low manner indicators as negation cues.

We then compiled four separate lists of negation cues

for comparison. Table 3 depicts the elements in each list.

A brief description of each list is as follows:

� c40: We formulated a list of 40 cue words by

combining the previously published lists and cues

discovered during our own initial analysis of negated

bio-events.

� cBioInfer: We extracted negation cues from the

BioInfer corpus. This was a straightforward task,

because the cues had already been annotated. We

discarded the cues which occurred only once in the

corpus and labelled the remaining list as cBioInfer.

� cBioScope: This is the list of 28 negation cues,

compiled by Morante [42] from the BioScope corpus.

� cCore: We analysed 1,000 randomly selected negated

bio-events from the three corpora containing negated

Figure 10 An instance of negation triggered by the construction no evidence; Source = PMID: 10221643.
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bio-events. We recorded all the negation cues

observed in these bio-events, and selected the 20

most frequent cues to form this list.

Feature design

Feature engineering and selection is a vital part of any

machine learning system. Various types of features have

previously been used for different negation detection

tasks. However, most previous work has concentrated on

event-triggers, whilst the other semantic aspects of the

event (like location and participants) have been ignored.

Based on our analysis of negated bio-events, we engi-

neered various syntactic, semantic, lexical, lexico-syntactic

and lexico-semantic features. We used the Enju parser

[56] for extracting the part of speech (POS) tags, phrase

structure trees and the dependency relations. A brief

explanation of each feature set is as follows:

� Syntactic Features: These include the POS tags of

the event-trigger, event-themes, event-causes and the

negation cues found in the sentence.

� Semantic Features: These features are constructed

from the semantic information available for the bio-

event. They include the semantic type of the bio-event

(e.g., gene_expression, localization, positive_regulation

etc.), the semantic type of each participant (e.g., lipid,

DNA molecule and protein complex etc.) and the role

of each participant (e.g., theme and cause, etc.). We

have also used a complexity feature, which indicates

whether a bio-event is complex, i.e., whether it has one

or more participants which are bio-events themselves.

� Lexical Features: These include: whether there is a

negation cue present in the sentence, the cue itself,

whether a negation deactivator is present and its

relative position with respect to the negation cue.

� Lexico-Semantic Features: These features are

constructed using a combination of the “textual” bio-

event information and the sentence containing the

bio-event. The textual bio-event information includes

the text fragment indicating the occurrence of the bio-

event (i.e., the event-trigger), the text fragments

identifying the event participants and the text

fragments indicating any event attributes, like

location, etc. These features also include the surface

distances between the negation cue and the event-

trigger and event-location, whether the negation cue

is part of the event-trigger and whether the negation

cue precedes or follows the event-trigger.

� Dependency (Lexico-Syntactic) Features: These

features are constructed using the textual bio-event

information and the dependency relations found in

the sentence. They include: whether direct and/or

indirect dependency relations exist between the

negation cue and the event-trigger and/or event-

location, the types of these dependency relations and

the length of the dependency chains.

� Constituency (Lexico-Syntactic) Features: These

include command and scope features. The concept of

a command relation was first introduced by

Langacker [57] as a means of identifying the nodes

affected by a given element in the constituency parse

tree of a sentence. He defined an S-command relation

as follows: ‘a node X commands a node Y if neither

X nor Y dominates the other and the S (sentence)

node most immediately dominating X also dominates

Y’. We used several command features including the

existence of S-, VP- and NP-command relations

between the negation cue and the event-trigger and/or

event-location. The scope features were engineered

using the information pertaining to whether the event-

trigger, event-participants or event-location fall under

the syntactic scope of the negation cue.

Machine learning algorithms

The choice of machine learning algorithm can signifi-

cantly influence the performance of a classification

task. This has been demonstrated for various natural

language processing tasks including text categorisation

[58], word sense disambiguation [59] and the detec-

tion of negated terms [48]. In order to measure the

impact of the choice of learning algorithm on the

task of identifying negated bio-events, we decided to

compare the performance of the most commonly used

Table 3 Negation cue lists

Name Size Elements

c40 40 absence, absent, barely, cannot, deficiency, deficient, except, exception, fail, failure, impair, inability, inactive, independent,
independently, insensitive, instead, insufficient, lack (noun), lack (verb), limited, little, loss, lose, lost, low, negative, neither, never, no,
none, nor, not, prevent, resistance, resistant, unable, unaffected, unchanged, without

cBioScope 28 absence, absent, cannot, could not, either, except, exclude, fail, failure, favor over, impossible, instead of, lack (noun), lack (verb),
loss, miss, negative, neither, never, no, no longer, none, not, rather than, rule out, unable, with the exception of, without

cBioInfer 25 abolished, absence, cannot, defective, deficient, despite, differ, different, differential, distinct, failure, independent, independently,
lack, negligible, neither, no, nor, not, protected, separately, simultaneously, unable, unlike, without

cCore 20 absence, fail, inability, independent, independently, insensitive, insufficient, lack (noun), lack (verb), little, neither, no, nor, not,
resistant, unable, unaffected, unchanged, without
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learning algorithms. We chose the following six algo-

rithms, and used their WEKA [60] library implemen-

tations to carry out our experiments:

� Decision Trees: Decision Tree algorithms learn

rules that are expressed as “conjunctions of

constraints on the attribute values of instances. Each

path from the tree root to a leaf corresponds to a

conjunction of attribute tests and the tree itself to a

disjunction of these conjunctions” [61]. Various

decision tree algorithms have been proposed over

the years. However, we concentrated on C4.5 [62],

which is an enhanced version of ID3 [63]. The C4.5

algorithm constructs the decision tree by choosing

the attribute with the highest value of normalised

information gain at each node and creates new

branches corresponding to the different values of

this attribute. Once the initial tree has been created,

the algorithm tries to identify and remove the least

useful branches. Decision trees have been used

extensively for various problems in bioinformatics

[64]. They have also been used to detect negations

in medical texts [47]. Our implementation of C4.5

used the following optimisation settings: (1) apply

sub-tree replacement, (2) apply sub-tree raising, (3)

require a minimum of 2 instances per leaf, (4) set a

confidence threshold for pruning of 0.25.

� Random Forest: The Random Forest [65] algorithm

develops an ensemble (i.e., a forest) of decision trees

from randomly sampled subspaces of the input

features. Once the forest has been created, new

objects are classified using a two-step process: (1) An

individual classification is obtained from each tree in

the forest, (2) The final classification of the object is

determined by majority votes among the classes

obtained from individual trees. Despite being

successfully used for various text mining and

bioinformatics tasks [66,67], the Random Forest

algorithm has not been previously used for detecting

negation scopes, negated concepts or negated events.

Our implementation of Random Forest used the

following optimisation settings: (1) set the number of

trees in the forest to 10, (2) set the number of

features used to build individual trees to log(N + 1),

where N is the total number of features, (3) set no

restrictions on the depth of individual trees.

� Logistic Regression: Logistic Regression classifiers

try to predict the class probability of an object by

fitting the training data to a logistic function [61].

Logistic Regression classifiers have previously been

used to identify negated bio-events [31].

� Naïve Bayes: Naïve Bayes is one of the simplest

probabilistic classification algorithms. It uses the

Bayes probability model for predicting the class

probabilities of inputs. The word naïve indicates that

the algorithm assumes class conditional

independence, i.e., it assumes that the effect of a

variable value on a given class is independent of the

values of other variables [61]. Despite its simplicity,

the Naïve Bayes algorithm achieves good results for

many complex classification problems [68]. It has

also been used to detect negations in medical texts

[47,48]. Our implementation of Naïve Bayes used a

default precision of 0.1 for numeric attributes for

cases of zero training instances.

� SVM: Support Vector Machines (SVMs) [69]

perform classification by constructing an N-

dimensional hyperplane that optimally separates the

data into two categories. They use a kernel function

to transform the data into a higher dimensional space,

which paves the way for optimal separation. Many

previous studies in negation detection have used

SVMs [33,43,48]. Our implementation of SVM

replaced all missing values, and converted the

nominal attributes to binary attributes. It also

normalised all attributes by default. We used: (1) a

polynomial kernel, (2) the default value of the

complexity constant.

� Instance-Based Algorithms: Instance-Based (also

known as Memory-Based) learning algorithms do not

derive generalisations or abstractions from the

complete training data. Rather, they keep all training

data in memory, and generate classification

predictions using only the most similar training

instances. IB1 [70] is an instance-based learning

algorithm. It uses normalised Euclidean distance to

find the training instance closest to a given test

instance, and predicts the same class as this training

instance. IB1 is similar to the nearest neighbour

algorithm, except that it normalises its attributes’

ranges, processes instances incrementally, and has a

simple policy for tolerating missing values. Instance-

based learning algorithms have previously been used

for detecting negation cues and their scopes [43].

Results
We ran a series of experiments to obtain the best results

for each dataset and to systematically evaluate the im-

pact of using different cue lists and learning algorithms.

This section describes the results of our experiments.

All results are based on 10-fold cross validation. We

have used the standard metrics of precision, recall and

F-score for reporting and comparing results. Precision is

the number of true positives divided by the sum of true

positives and false positives; recall is the number of true

positives divided by the sum of true positives and false

negatives; and F-score is the first harmonic mean of pre-

cision and recall.
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Best results for each dataset

On the GENIA Event dataset, the best results were

achieved by the Random Forest classifier using the c40

cue list. The classifier achieved 83% precision and 67%

recall, which equates to an F-score of 74%. The same

classifier achieved the best results on the BioNLP’09 ST

dataset, achieving approximately 78% precision, 64% re-

call and 70% F-score. The best results on the BioInfer

dataset were also achieved by a Random Forest classifier.

However, the cBioInfer cue list was used to engineer the

features. This classifier achieved 86% precision, 85%

recall and 85% F-score. Table 4 shows the best results

achieved for each dataset.

Cue list comparison

In order to compare the performance of the four cue lists,

we ran a series of experiments using each cue list (in turn)

to engineer the features. In all cases, the Random Forest

algorithm was used, as it had consistently produced the

best results for all datasets. Table 5 shows the perform-

ance of the classifiers trained using the four cue lists for

each of the datasets. The key results are as follows:

� The use of the c40 cue list resulted in high

performance on all three datasets. This list resulted

in better performance than other cue lists on

GENIA Event and BioNLP’09 ST, achieving the

highest precision and recall on both datasets.

However, on BioInfer it resulted in lower

performance than when the cBioInfer and cCore

lists were used.

� The use of the cCore cue list resulted in consistent

performance, achieving the second best results

(F-score) for all three datasets. The results were very

close to the top performing cue list for GENIA

Event and BioNLP’09 ST, with margins of 0.5% and

1.8%, respectively. However, on BioInfer, the F-score

was 7% less than when the cBioInfer list was used.

� Using the cBioInfer cue list caused a significant

performance drop on GENIA Event and BioNLP’09

ST (by almost 5% and 8%, respectively), compared

to when c40 and cCore were used. However, as

expected, it resulted in the best performance on

BioInfer by a fair margin (over 7%).

� The classifiers trained using the cBioScope cue list

achieved the lowest results for all three datasets by

significant margins (ranging between 6% and 8%).

Figure 11 shows the micro-averaged results for each

cue list. It shows that overall (in terms of F-score), c40

performed the best, followed by cCore (−0.7%), cBioInfer

(−4.8%) and cBioScope (−5.7%), respectively.

The difference between the best and the worst per-

formance caused by the choice of cue list was 5% for

GENIA Event, 7% for BioInfer and 8% for BioNLP’09

ST. This provides sufficient evidence in favour of the

hypothesis that the choice of the negation cues used for

engineering the feature set has a significant impact on

the performance of a system designed for the identifica-

tion of the negated bio-events.

Algorithm comparison

In order to compare the performance of the chosen

learning algorithms for the task of identifying negated

bio-events, we ran a series of experiments on each data-

set. In each experiment, we constructed a classifier using

the chosen algorithm. The features were engineered

from the cCore cue list. We chose the cCore cue list

because it had performed consistently on all three data-

sets. Table 6 shows the results for each dataset. The key

findings are as follows:

� C4.5 performed consistently (in terms of F-score) on

all three datasets. It outperformed the other

algorithms on BioNLP’09 ST, scored second on

GENIA Event and fourth on BioInfer.

� Random Forest outperformed the other algorithms

on GENIA Event and BioInfer, and scored second

on the BioNLP’09 ST by a narrow margin of 0.8%.

� Logistic Regression achieved the third best results

on both GENIA Event and BioInfer. It scored fourth

on BioNLP’09 ST.

� Naïve Bayes achieved the highest recall for all

datasets. However, its precision was noticeably low

(ranging between 32% and 42%), which led to the

lowest F-scores for all datasets.

� SVM scored fifth for all three datasets. Although it

performed much better than Naïve Bayes, it was

significantly behind Random Forest and C4.5.

� IB1 produced the second best results for BioInfer

and the fourth best results for both GENIA Event

and BioNLP’09 ST.

Figure 12 shows the micro-averaged results for each

algorithm. It shows that overall (in terms of F-score),

Random Forest performed the best, followed by C4.5

(−1.5%), Logistic Regression (−4.3%), IB1 (−5.6%), SVM

(−8.9%) and Naïve Bayes (−25.7%).

The difference between the best and the worst

performing algorithms was 28% for GENIA Event, 22%

for BioInfer and 20% for BioNLP’09 ST. Even if we

Table 4 Best results for each dataset

Dataset Precision Recall F-Score Algorithm Cue list

GENIA Event 83.1% 67.1% 74.2% Random Forest c40

BioInfer 86.1% 84.5% 85.3% Random Forest cBioInfer

BioNLP’09 ST 77.6% 63.9% 70.1% Random Forest c40
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exclude Naïve Bayes, which performed significantly

worse than the rest of the algorithms, the difference

was still 10% for GENIA Event, 5% for BioInfer and

8% for BioNLP’09 ST. This provides sufficient evidence

in favour of the hypothesis that in addition to the

choice of negation cue list, the choice of learning algo-

rithm also has a significant impact on the performance

of a (machine learning) system for identifying negated

bio-events.

Discussion
Comparison with previous results

As mentioned earlier, the identification of negated

bio-events is a new area of research and only a few

results have been reported previously. The best results

on the identification of negated bio-events were re-

ported by Sarafraz and Nenadic [33]. They used the

Training subset of the BioNLP’09 ST dataset for

training their system and the Development subset for

testing. They achieved 38% precision, 76% recall and

51% F-score. In comparison, our system achieved an

F-score of above 70% with 10-fold cross validation on

the entire BioNLP’09 ST dataset. In order to obtain a

more direct comparison, we conducted further

experiments with the same experimental settings as

those used by Sarafraz and Nenadic. That is, we

trained our Random Forest classifier on the Training

subset of the BioNLP’09 ST data and tested it on the De-

velopment subset. In this setting, our system achieved an

F-score of just under 70%, which is significantly higher

than the results of Sarafraz and Nenadic.

Our system achieved even better results on the GENIA

Event (74% F-score) and BioInfer (85% F-score) datasets.

This is particularly encouraging, as these corpora con-

tain more complex and varied bio-events than the

BioNLP’09 ST corpus.

Selection of negation cues

Various lists of negation cues have previously been

proposed for different negation detection tasks. With

respect to the task of identifying negated bio-events, the

main questions about the nature, role and processing of

negation cues are as follows:

� Does a “universal” list of negation cues exist? Our

analysis of negated bio-events confirmed that

negation cues are ambiguous. Whether a word acts as

a negation cue for a bio-event depends on the lexical

as well as the contextual polarity of the word. While

Table 5 Comparison of results using different cue lists

Cue List GENIA event BioInfer BioNLP’09 ST

P R F P R F P R F

c40 83.1% 67.1% 74.2% 84.4% 70.8% 77.0% 77.6% 63.9% 70.1%

cCore 82.6% 66.7% 73.8% 87.0% 70.8% 78.1% 76.3% 61.6% 68.2%

cBioInfer 81.4% 60.4% 69.3% 86.1% 84.5% 85.3% 75.3% 53.2% 62.3%

cBioScope 80.7% 59.9% 68.8% 89.3% 67.7% 77.0% 75.4% 52.9% 62.2%

Figure 11 Cue list comparison: Micro-averaged results for the three datasets.
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the lexical polarity of a word remains fixed, its

contextual polarity depends on a number of factors,

including the nature/domain of the text, the

annotation perspective, the context and the syntactic

structure of the sentence. Therefore, it is hard to

compile a universal list of negation cues. However,

the potential utility of domain specific lists has been

reinforced by our experiments. The c40 and cCore

cue lists showed consistently high performance across

the three bio-event corpora.

� What is the impact of the choice of a negation cue

list on the overall system performance? We

designed experiments to measure the impact of the

choice of a negation cue list on the overall system

performance. We found that a significant variation

(ranging between 5% and 8%, depending on the

corpus) in the system performance was caused by the

cue list used.

� Should negation cues be annotated in gold

standard corpora? BioInfer is the only corpus of

bio-events containing annotation of negation cues.

We compiled a list of negation cues identified in the

corpus, and labelled it cBioInfer. The use of the cue

list did not result in high performance when applied

to the other two datasets (i.e., GENIA Event and

BioNLP’09 ST). However, its use on the BioInfer

dataset resulted in better performance than when

other cue lists were used, by a significant margin

of 7%. These results provide strong evidence that

both event and corpus characteristics, as well

domain, can determine the most appropriate set of

negation cues to use in a classifier. Thus, although

some sets of domain specific cue lists (e.g., c40

and cCore) can provide consistent performance

across different corpora, explicit annotation of

negation cues in different gold standard corpora

will allow further sets of cue lists to be produced.

These lists will be tuned not only to the domain,

but also to different types of event specifications.

These findings favour the wider argument that we

made in Nawaz et al. [55] for the annotation of

lexical cues indicating different aspects of the

correct interpretation of an event.

Feature engineering and selection

In comparison to previous work, our feature engineering

approach has the following unique aspects:

� use of a combination of syntactic, lexical, semantic,

lexico-semantic and lexico-syntactic features

Table 6 Comparison of results using different learning algorithms

Algorithm GENIA event BioInfer BioNLP'09 ST

P R F P R F P R F

C4.5 84.4% 62.4% 71.8% 82.1% 68.3% 74.6% 82.2% 56.5% 67.0%

Random Forest 82.6% 66.7% 73.8% 87.0% 70.8% 78.1% 76.3% 58.4% 66.2%

Logistic Regression 82.8% 58.7% 68.7% 79.3% 71.4% 75.1% 80.5% 53.1% 64.0%

Naïve Bayes 31.6% 83.0% 45.8% 42.2% 83.9% 56.2% 32.9% 82.3% 47.0%

SVM 79.3% 53.7% 64.0% 79.0% 67.7% 72.9% 78.6% 46.7% 58.6%

IB1 66.1% 66.7% 66.4% 85.8% 71.4% 77.9% 70.8% 59.5% 64.7%

Figure 12 Algorithm comparison: Micro-averaged results for the three datasets.
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� incorporation of all available textual fragments

associated with the bio-event (including the trigger,

participants and attributes of the event)

� incorporation of event hierarchy information

(i.e., complexity status)

� incorporation of negation deactivators

� incorporation of constituency as well as dependency

relations/scopes.

We conducted additional experiments to evaluate the

relative performance and contribution of the different

types of features and their combinations. We were par-

ticularly interested in the comparison of the dependency

and the constituency features, as both have previously

been used for the task of identifying negated bio-events.

Kilicoglu and Bergler [30] used a rule-based approach

based on dependency relations between the negation

cues and the event-triggers, whilst MacKinlay et al. [31]

used features derived from the dependency parse of the

sentence containing the bio-event. However, Sarafraz

and Nenadic [33] used command features to achieve bet-

ter performance.

The evaluation of the individual feature sets showed

that dependency and lexical features achieved results

more than twice as high as command features. Similarly,

the combination of lexical and dependency features

achieved significantly better results than the combin-

ation of the lexical and command features. Based on

these results, we conclude that, in terms of individual

contribution, dependency features outperform constitu-

ency features by a significant margin. This is consistent

with the previously reported comparisons between de-

pendency and constituency features for the tasks of

opinion mining [71,72] and PPI extraction [73]. How-

ever, it is important to emphasise that our conclusions

are based on specific representations of constituency fea-

tures that we have used in our experiments. It would be

interesting to explore and compare other representations

of constituency features for this task.

We also observed that the features based on the POS

tags of negation cues, event-triggers, event-themes and

event-causes did not improve the performance. Similarly,

the features based on the semantic types of event-

themes and event-causes did not influence the perform-

ance either. This suggests that the polarity status of a

bio-event is influenced neither by the semantic types of

its participants nor by the POS tags of text fragments

associated with the event.

Algorithm selection

We designed a series of experiments to evaluate and

compare the performance of six learning algorithms with

respect to the task of identifying negated bio-events. All of

these algorithms, with the exception of Random Forest,

had previously been used for different negation detection

tasks with varying degrees of success. Our results showed

that, on average, the Random Forest algorithm performs

the best, while the Naïve Bayes algorithm achieves the

lowest results by a huge (26%) margin.

Our results are consistent with Caruana and Niculescu-

Mizil [74], who conducted a wide-ranging study, compar-

ing the performance of ten supervised learning methods.

They measured the performance of each method on 11

different binary classification problems, and found that

Random Forest outperformed the other algorithms. Our

results are also consistent with Goryachev et al. [48], who

compared the performance of SVM and Naïve Bayes for

the task of detecting negations in medical texts. They

found that SVM outperformed Naïve Bayes by a significant

margin (8%). On the other hand, Goldin and Chapman

[47] compared the performance of Naive Bayes and deci-

sion trees for the task of identifying negated terms in med-

ical texts. They found that Naïve Bayes outperforms

decision trees by a small (1%) margin. Similarly, for the

task of identifying negation scopes in biomedical research

literature, Morante and Daelemans [43] obtained analo-

gous results for Instance-Based learning and SVM. In

contrast to these results, we found that Naïve Bayes per-

forms significantly worse than decision trees, and that

Instance-Based learning outperforms SVM. This contrast

shows that different learning algorithms do not perform

consistently for different negation detection tasks. This

leads us to the following conclusions:

� Despite the apparent similarities, the task of

identifying negated bio-events is inherently different

from the other negation detection tasks like negated

term detection and negation scope detection.

� Since the Random Forest algorithm clearly

outperforms the other learning algorithms for the

task of identifying negated bio-events, its feasibility

for other negation detection tasks should be

investigated.

Effect of corpus size

We used all three open access corpora of negated bio-

events in our experiments. Table 1 shows the statistics

for these corpora. The GENIA Event corpus is the

largest and contains bio-events of 36 different semantic

types. The BioNLP’09 ST corpus contains only 9 types of

bio-events, and it is over three times smaller than the

GENIA Event corpus. The best results (10-fold cross

validation) achieved on the BioNLP’09 ST corpus were

4% less than the best results achieved on the GENIA

Event corpus. The BioInfer corpus is the smallest in size

(almost 14 times smaller than GENIA Event) and the

most complex, with 60 different event types. Despite
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these factors, consistently better results were achieved

on BioInfer, irrespective of the cue list used. This sug-

gests that there is not necessarily a close correlation

between the size of the corpus used for training and

the overall performance of the system. We further

tested this hypothesis by conducting an additional ex-

periment on the GENIA Event corpus. Instead of per-

forming 10-fold cross validation, we trained the

classifier using only half the instances and tested on

the other half. We repeated this experiment ten times

with randomly selected training and testing datasets,

and the average F-score was only slightly (0.5%) less

than the F-score achieved by the 10-fold cross valid-

ation. Although it goes without saying that very small

corpora would not be effective for training, our

results suggest that it is not necessarily the case that

the larger the corpus used for training, the better the

results will be. Rather, the specific features of the

annotated events appear to have more of an impact

on the performance. In general, it seems that the

level of detail of the information annotated for each

event, in particular the text fragments associated with

the event, is more important than the corpus size.

The relatively poor performance achieved on the

BioNLP’09 ST corpus could also be explained by the

fact that both GENIA Event and BioInfer contain

more information about the location of the events

than BioNLP’09 ST.

Correlation between event-type and polarity

Our analysis of negated bio-events revealed that certain

words act as negation cues only in the context of specific

types of events (see section 5.1.4). Apart from this, we

did not find any evidence of “linguistic correlation”

between the semantic type of an event and its polarity.

However, we did find some “statistical correlation”

between event-type and polarity. For example, in the

BioNLP’09 ST corpus, 9% of regulation events are

negated, whereas only 5% of binding events are negated.

Based on this observation, we engineered two semantic

features: one based on the event-type and the other on

its complexity status (i.e., whether the event is simple or

complex). Both of these features scored low gain ratios

on all three datasets. However, the addition of these

features improved the overall performance by 0.5% to

1%, depending on the dataset.

In order to further investigate the correlation between

event-type and polarity, we designed two experiments:

� Three-Way Splitting: This experiment was similar to

the one reported by Sarafraz and Nenadic [33]. The

bio-events in the BioNLP’09 ST dataset were split

into three classes. The localization, transcription,

protein_catabolism, gene_expression and

phosphorylation events were grouped together as

Class-1. The binding events were grouped as Class-

2, and the regulation events (regulation,

positive_regulation and negative_regulation) were

grouped together as Class-3. The Random Forest

classifier was trained and tested for each class,

separately. The micro averages for precision, recall

and F-score were used to measure the overall

performance. In comparison to the results achieved

without data splitting, the three-way splitting model

showed a considerable (21%) improvement in

precision. However, the recall dropped significantly

(15%), causing an F-score decrease of almost 2%.

This is in contrast to Sarafraz and Nenadic, who

achieved an increase in both recall and precision. In

terms of individual classes, Class-3 and Class-1

achieved results which were slightly higher and

slightly lower than the single-class model,

respectively. However, Class-2 scored significantly

(29%) worse. We experimented with various

algorithms and cue-lists, but we were not able to

improve the performance for class-2 by more than 2%.

� Two-Way Splitting: In this experiment, we split the

bio-events according to their complexity status, i.e.,

simple or complex. We performed the two-way

splitting on the BioNLP’09 ST data, then trained

and tested our Random Forest classifier separately

for each class. The results were even worse than

the three-way splitting model, and an overall

(micro-averaged) performance loss of 5% was

observed. In order to test the concept further, we

repeated the two-way splitting experiment with the

GENIA Event corpus. Again, we observed a

significant (4%) decrease in performance. In terms

of individual classes, the complex class performed

better than the simple class. We further

experimented with various algorithms and cue-lists,

but we were not able to improve the performance

on the simple class by more than 1%. We also

observed that over 10% of complex events are

negated, whereas only 4% of simple events are

negated. Therefore, a complex event is 2.5 times

more likely to be negated than a simple event.

These experiments show that there is some correl-

ation between the event-type and polarity. However,

designing individual classifiers for different types of

events does not improve the overall system perform-

ance. The classification performance improves for cer-

tain classes of bio-events (e.g., complex event and

regulation events), and deteriorates for certain other

classes (e.g., binding and simple events). This variation

in performance is mainly due to an uneven distribu-

tion of negated bio-events across these classes.
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Conclusion
We have conducted a detailed analysis of the problem of

identifying negated bio-events, given gold standard event

annotations. We examined the types of negation in three

open access corpora of negated bio-events (i.e., GENIA

Event, BioInfer and BioNLP’09 ST), and identified five

main types of negated bio-events, based on the lexico-

semantic mechanisms affecting the polarity of an event.

Our analysis showed that a significant proportion (37%)

of negated bio-events cannot be detected by considering

the event-trigger alone. It also revealed that identifica-

tion of negated bio-events is a complex task that

requires a deeper level of analysis than that required for

tasks such as negated term detection and negation scope

detection. Following our analysis of negated event types,

we identified the three key aspects of a machine learning

based solution to the problem of negated bio-event de-

tection. These are: the compilation of a negation cue list,

the design and selection of suitable features and the

choice of machine learning algorithm. In order to ana-

lyse these aspects, we conducted a series of experiments

on the three bio-event corpora. The results confirmed

that each one of the three aspects can have a significant

impact on the overall system performance. Our analysis

showed that the ability of a word/phrase to act as a neg-

ation cue depends not only on the context and domain

of text, but also on the annotation/information perspec-

tive (e.g., linguistic vs. biological perspective). Therefore,

there is a need for domain specific lists of negation cues.

We compiled two such lists (c40 and cCore), both of

which performed consistently in all experiments. We

also discovered that, for the task of identifying negated

bio-events, the Random Forest algorithm consistently

outperforms five other learning algorithms. Combining

the best cue lists, feature sets and learning algorithms,

we created a novel framework for the identification of

negated bio-events. We evaluated our system on the

three open access corpora of negated bio-events men-

tioned above. Our results on the BioNLP’09 ST corpus

were significantly higher than the previously reported

best results. We achieved even better results on the

GENIA Event and BioInfer corpora, both of which con-

tain more varied and complex events.

As mentioned earlier, our system assumes that event

annotation has already been performed. As future work,

we plan to integrate our system with the EventMine

system [75]. The resulting system will be able to extract

bio-events of the specified polarity from plain text docu-

ments, and will serve as the foundation for a more elab-

orate system for detecting textual contradictions. We

also intend to use our system for enriching other bio-

event corpora (like GREC) with polarity information.

Although we have focussed on the identification of

negated bio-events, our approach can be modified

straightforwardly for events in other textual domains.

We also plan to explore this further.
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