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What is negative about negative data? Scientists
understand negative data from our training in data
analysis and statistics, where we use a positive concept of
negative data. Negative data are data that do not enable us
to reject our null hypothesis. Such data are often difficult
to publish because it is not possible to prove the null
hypothesis. Every active research scientist has a large
drawer where these data languish. In the area of
environmental biosafety, however, some scientists have
begun to use “negative data” in a second, normative way.
This normative concept of negative data has socio-
political connotations, where “negative” data has come to
connote results that GMO proponents could use to
support, and GMO opponents could use to oppose the
development of GMOs. This politicization of GMO
biosafety research is worthy of study in its own right, but
EBR is prepared to accept any kind of “negative” or
“positive” data. 

HERE ARE DESCRIBED THE STATISTICAL 
STANDARDS THAT WILL BE ENFORCED 
IN FUTURE PUBLICATIONS IN EBR

There are three good reasons for these requirements. First
and foremost, this ensures a high level of scientific
quality for papers published in EBR. Second, because
genetic engineering is politically charged, critics and
proponents must have the opportunity to evaluate
independently the quality of the available research.
Finally, the scientific community needs to be able to
build on the published literature. A sound meta-analysis
of the accumulated results of many publications requires
knowledge of the sufficient statistics of each of those
experiments (e.g., Arnqvist and Wooster, 1995). For
example, 5 non-significant results could combine into a
statistically significant result via meta-analysis, or
significant results might melt into non-significance under

the weight of multiple studies. Such meta-analyses would
be valuable contributions to the scientific literature.

There are two types of error in any experiment. Type I
error occurs if the null hypothesis is erroneously rejected
when in actuality it is true. Typically the Type I error rate
is 0.05, i.e., a 1 in 20 chance that the null hypothesis is
mistakenly rejected. This kind of error is routinely
handled by conventional scientific practices. Type II
error occurs when the null hypothesis is not rejected
when in actuality it should have been rejected. Negative
data suffers from the possibility of Type II error. Type II
error is problematic, because as scientists we have been
trained to minimize Type I errors and not be as concerned
with Type II errors. Type II error is measured by
statistical power. An experiment with high power has a
low Type II error rate and an experiment with low power
has a high Type II error rate. 

In risk related problems, however, Type II errors can
be more serious than Type I errors (e.g., Hill and
Sendashonga, 2003). For example to answer the question,
what amount of GM-maize can be introduced without
harming a non-target species, a relevant null hypothesis
is that a certain quantity of Bt maize does not adversely
affect non-target species. If an experiment with low
statistical power were conducted, the probability of
rejecting the null hypothesis will be low, whether or not
the true effect had been biologically significant (Marvier,
2002). If Bt maize were introduced in quantity, this
kind of Type II error would result in adverse non-target
effects when none had been expected. Thus, for risk
related problems, Type II error must be considered
explicitly. 

RETROSPECTIVE POWER ANALYSIS

A common, but flawed approach to dealing with Type II
error is to require calculation of statistical power from the
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experimental data. This analysis is called retrospective
power analysis, and contrasts with prospective power
analysis, which uses power calculations to make
decisions about future experimental designs. The
problem with retrospective power analysis is that power
and Type II error are not independent of the Type I error
rate chosen by the investigator (Hoenig and Heisley,
2001). Indeed, in many cases Type II error rate is an
increasing function of the Type I error rate. In other
words, for any particular experiment, the choice of the
Type I error rate (usually 0.05) uniquely determines the
retrospective power of the experiment. What is desired is
a Type II error rate that is independent of the Type I error
rate. With retrospective power analysis, this is not
possible. Consequently, despite the fact that many
statistical packages routinely provide retrospective
power estimates, they will not be accepted in EBR. 

PROSPECTIVE POWER ANALYSIS

One acceptable approach for using estimated power is
prospective power analysis. Here estimated power is used
to design future experiments. This can give a useful indi-
cation of whether further testing of the hypothesis is fea-
sible, i.e. without requiring analysis of an unreasonable
number of samples (for example, see Bourguet et al.,
2002). The power of a simple one-way fixed effects
ANOVA is readily calculated from the noncentrality
parameter and the noncentral F-distribution (there is a
short, readable account in Oehlert, 2000). A nice example
using power analysis in research planning is provided by
Steidl et al. (1997). Unfortunately, the opportunity to
design an experiment based on such power analysis is
uncommon, and although prospective power analysis is
acceptable, it will not be emphasized in EBR. 

CONFIDENCE INTERVALS REQUIRED 

Confidence intervals are an acceptable way to indicate
Type II error. Once confidence intervals are specified,
power calculations provide no additional statistical
insights from the experimental data (Hoenig and Heisey,
2001). For example, it is pointless to calculate power for
hypotheses outside the confidence interval, because the
interval already indicates that they are unlikely. Simi-
larly, it is pointless to calculate power for hypotheses
inside the confidence intervals, because the interval
already indicates that these are not refuted by the data. 

The crucial details are in the calculations of the mean
and the confidence interval. The appropriate measure-
ment scale must be specified, the sample units (number of

independent replicates) clarified, and the appropriate
mean and error variance calculated. 

Measurement scale

Transformation of the dependent variable is usually treated
as an arbitrary choice made to meet the assumptions of the
statistical model. For example, data are usually trans-
formed to near-normality prior to conducting an ANOVA.
For risk related problems, however, data transformations
also change the way risks are characterized (Box 1). In gen-
eral, environmental risks are differently perceived depend-
ing on circumstance and perspective. For resistance evo-
lution, risks might be measured as the number of years
gained or lost under different management policies (the
untransformed time scale). For some non-target effects,
risk might be measured as the proportional change in the
population size of the non-target species (a logarithmic
transformation), which estimates how many times larger
or smaller the effect may be. Thus, the choice of statistical
transformation of the original data is also a decision about
the characterization of risk – it is not merely a statistical
formality to ensure that the data meet the assumptions of
the analysis. Authors should carefully specify the scale of
measurement of the dependent variables.

Replication and pseudoreplication 

In many experimental designs replication occurs at
numerous levels. For example, in a laboratory experi-
ment individuals may be replicated within a trial, and tri-
als may be replicated across time. In a field experiment
(e.g., Box 1), samples may be replicated within plots, and
plots may be replicated in locations, and locations may be
replicated in space. Pseudoreplication occurs when the
investigator designates the wrong level (usually one with
more degrees of freedom) as the unit of experimental rep-
lication (Hurlbert, 1984; Ramirez et al., 2000). Authors
should clearly designate the unit of replication and the
number of replicate samples in the experiment; too often
this important detail is missing. 

Mean, variance and confidence interval

Box 2 provides an example of how to calculate appropriate
confidence intervals around estimated population means
and for specific statistical hypotheses. Because many of
the papers that will be published in EBR will involve a
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comparison of two treatment means (µ1 and µ2), trans-
genic and non-transgenic, one possible null hypothesis is
that the two treatments are not different. Specifically,
H0: |µ1 – µ2| = 0 for untransformed, absolute scales, and
H0: |ln(µ1) – ln(µ2)| = 0 for proportional risks (for cate-
gorical data the null hypothesis might be log odds = 0). If
the means are estimated by independent samples, the
author should show that the variances are equal (homo-
scedastic), before pooling them. The 95% CI will inform
a reader if the null hypothesis can be rejected at the stand-
ard α = 0.05. 

REPORT SUFFICIENT STATISTICS 

Sufficient statistics are essential to allow critical evalua-
tion of the interpretation of the data in the paper, for
reviewers, readers, and future researchers who would
conduct a meta-analysis of the published literature. Defi-
nitions of sufficient statistics can be tediously technical for
non-statisticians, and for those interested in this, most sta-
tistics textbooks provide such a definition. For those not
so inclined, the general guideline is that enough informa-

tion about the statistical analysis must be presented so that
the interested reader could reconstruct the entire analysis
(Box 3). For example, many authors report only P-values
from an analysis of variance – this is not enough to recon-
struct the complete ANOVA table. There are many ways
to report sufficient statistics – all of the F-values with
numerator and denominator degrees of freedom and all
error mean squares and degrees of freedom would be suf-
ficient. The complete ANOVA table (df, either SS or MS,
F and P) would also be acceptable. In addition, the relevant
means on the transformed scale should be reported. It is
possible that the ANOVA may be conducted on a meas-
urement scale different from the scale that would be appro-
priate for calculating confidence intervals. In this case, an
author might question if the ANOVA is truly needed. 

PRECISION OF MEASUREMENTS 
ON REPLICATE SAMPLES

In field experiments it is not possible to measure all of the
organisms in a replicate plot, so the plot is subsampled to
estimate the plot mean. For example, a subsample of

Measurement scale. The untransformed measurement scale was used to assess the effect of the transgenic crop. If the data were yield
or pest pressure, the untransformed scale would be an appropriate scale because it would measure the yield increase or decrease (change
in pest pressure) associated with the transgenic treatment. 
Replication. A cursory examination of the data, might lead an analyst to conclude that there were 10 or 40 replicates. True replication,
however, was the plots, and there were 4 replicates of the treatments. The 10 samples in each plot were pseudoreplication. 

Table 1. Randomized complete block (RCB) design with 4 blocks and 2 treatments, transgenic and non-transgenic, for a total of
8 experimental plots. On each plot, the response variable was measured in 10 samples. Samples could be from plants, traps, soil
samples, etc. The response variable could be plant yield, plant height, herbivore biomass, natural enemy density, etc. Data were
normally distributed with means µ1 = 20 and µ2 = 30 for the two treatments and equal variances, σ2 = 25. Each plot mean, xij, was a
random draw from one of these normal distributions. Samples were normally distributed around the plot mean with a variance of 25;
standard errors of the plot means, seij, were calculated. 

Block, i 1 1 2 2 3 3 4 4

Treatment, j 1 2 1 2 1 2 1 2

Sample 1 7.2 25.4 23.1 15.1 22.0 29.3 21.5 20.6

Sample 2 15.9 28.5 32.7 16.0 27.2 27.0 19.2 34.2

Sample 3 8.3 24.2 34.5 23.7 15.2 24.2 24.9 19.6

Sample 4 20.4 36.3 28.9 19.2 15.4 16.6 14.0 27.7

Sample 5 6.9 28.8 20.6 22.7 18.3 22.5 12.4 19.2

Sample 6 17.8 31.7 39.5 22.2 15.5 25.4 17.1 31.8

Sample 7 6.5 30.1 19.2 23.6 15.9 24.3 23.9 34.1

Sample 8 7.5 22.7 33.2 16.2 20.4 27.5 20.3 29.6

Sample 9 9.2 24.5 16.7 23.0 16.5 28.2 19.5 22.8

Sample 10 8.0 26.4 27.1 30.3 25.6 23.8 26.7 22.0

Plot Mean, xij 10.8 27.9 27.6 21.2 19.2 24.9 20.0 26.2

seij 1.6 1.3 2.4 1.5 1.4 1.1 1.5 1.9

Box 1. Data, measurement scale and replication.
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Confidence intervals can be used to estimate the true population means, µ1 and µ2, or to test several different null hypotheses. Data are
from Box 1.

True population means. The true population means were estimated from the plot means , where n = 4. The 95%

confidence interval was calculated from the standard error of this estimate, 

, and was  where  was the value of the t distribution at α = 0.05 (for a 95%

confidence interval α = 1 – 0.95) and ν = n – 1 = 3 is the number of degrees of freedom (Tab. 2). 

Hypothesis tests. The standard null hypothesis is H0: |µ1 – µ2| = 0, i.e., the two populations have the same mean. An equivalence test is
based on the null hypothesis H0: |µ1 – µ2| > ∆, i.e., the difference between the means is greater than ∆. If society agrees that any
difference less than ∆ is biologically insignificant, rejecting the null hypothesis implies that the effect is biologically insignificant. 

Standard null hypothesis. The treatments were paired within blocks, so the difference between the paired means was calculated, di =
xi1 – xi2. The average of the di, , and its standard error, sed, was used to calculate  to test the standard null hypothesis,
H0: |µ1 – µ2| = 0 (Tab. 3). The probability that the null hypothesis was true is 0.32, which implied that the treatments were not statistically
significantly different. 

Equivalence tests. Equivalence tests also use  and sed. It is also necessary to specify a ∆ independent of the data. Smaller ∆ are
associated with more risk averse assessments, and would be one way to implement a precautionary approach to risk assessment. For
∆ = 25, any difference < 25 is considered insignificant, while for ∆ = 5, differences must be < 5 to be considered insignificant. If
treatment differences < 5 were considered insignificant by society, then H0: |µ1 – µ2| > 5 would be the appropriate equivalence test (first
row of Tab. 4). The probability that this null hypothesis was true is 0.899 (Tab. 4), which was not significant at the 0.05 level. The null
hypothesis cannot be rejected, and the treatment difference is likely to be greater than the socially insignificant level of 5. If ∆ were
25, which would mean that society was concerned only about differences greater than 25, the conclusion would be different. In this case,
the appropriate null hypothesis would be H0: |µ1 – µ2| > 25 (second to last row of Tab. 4), and the probability that the null hypothesis
was true is 0.027. This null hypothesis can be rejected, and the treatment difference is unlikely to be significant to society. Note that
the true difference in the treatments is 5, but the data only allow us to conclude that the true difference is unlikely to be greater than 25.

Note on rounding. Data and statistics are rounded prior to reporting in tables. In order not to propagate rounding errors, unrounded plot
means from Table 1 were used to complete the calculations in Tables 2–4. 

Table 2. Estimated population means and 95% confidence intervals.

t sej t0.05, 3 95% CI

1 19.4 3.4 3.18 8.5

2 25.0 1.4 3.18 20.5

Table 3. Test of the standard null hypothesis.

H0: |µ1 – µ2| = 0

| | 5.7

sed 4.8

t   1.18

P   0.32

Table 4. Equivalence tests for the null hypothesis H0: |µ1 – µ2| > ∆, for different values of ∆. For these tests, . P is
based on a two-tailed t-test with 3 degrees of freedom.

∆ t P
5 0.137 0.899
10 0.907 0.431
15 1.951 0.146
20 2.995 0.058
25 4.039 0.027
30 5.083 0.015
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Box 2. Using confidence intervals.
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plants, some number of traps, or some number of soil cores
could be used to estimate the plot mean. If few subsamples
are taken, the plot mean might be estimated poorly, and
this variation will make it more difficult to detect differ-
ences between treatment means. Conversely, if enough
subsamples are taken, the plot means can be well esti-
mated, and the reader will have greater confidence in the
results. Authors can report this precision as individual or
average standard errors on plot means (Box 4). 

DISCUSSION

EBR will require reporting of confidence intervals on
hypothesis tests, sufficient statistics and when appropri-
ate, estimates of precision of subsampling effort (Box 5).
With these requirements, other interested parties will be
able to make independent judgments about the signifi-
cance of any result reported in the journal. Interested
authors can extend these requirements in several direc-
tions. For example, equivalence testing is an excellent
method for evaluating null results formally (Hoenig and
Heisey, 2001; Box 3). If we can formulate the problem so
that we conclude that an effect is negligible if it is no
greater than some difference ∆, we can formulate a new
null hypothesis that the effect is large enough to be sig-

nificant, H0: |D| > ∆, where D is the estimated treatment
effect. This reverses the traditional burden of proof – one
must be fairly certain that a large difference does not
occur.

Controversy over the use of GMOs in the environ-
ment is likely to continue for some time into the future.
Part of the controversy is fueled by scientific confusion
and part by contending values. Requirements for system-
atic reporting of results will remove some of the scientific
controversy and enable the discussion of the normative
issues involved in risk assessment to rely on a sound sci-
entific analysis.
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