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Abstract

Background: Gene regulation networks are made of recurring regulatory patterns, called network motifs. One of
the most common network motifs is negative auto-regulation, in which a transcription factor represses its own
production. Negative auto-regulation has several potential functions: it can shorten the response time (time to
reach halfway to steady-state), stabilize expression against noise, and linearize the gene’s input-output response
curve. This latter function of negative auto-regulation, which increases the range of input signals over which
downstream genes respond, has been studied by theory and synthetic gene circuits. Here we ask whether
negative auto-regulation preserves this function also in the context of a natural system, where it is embedded
within many additional interactions. To address this, we studied the negative auto-regulation motif in the
arabinose utilization system of Escherichia coli, in which negative auto-regulation is part of a complex regulatory
network.

Results: We find that when negative auto-regulation is disrupted by placing the regulator araC under constitutive
expression, the input dynamic range of the arabinose system is reduced by 10-fold. The apparent Hill coefficient of
the induction curve changes from about n = 1 with negative auto-regulation, to about n = 2 when it is disrupted.
We present a mathematical model that describes how negative auto-regulation can increase input dynamic-range,
by coupling the transcription factor protein level to the input signal.

Conclusions: Here we demonstrate that the negative auto-regulation motif in the native arabinose system of
Escherichia coli increases the range of arabinose signals over which the system can respond. In this way, negative
auto-regulation may help to increase the input dynamic-range while maintaining the specificity of cooperative
regulatory systems. This function may contribute to explaining the common occurrence of negative auto-
regulation in biological systems.

Background

Transcription regulation networks are largely made up

of recurring regulatory patterns called network motifs

[1-4]. These network motifs have been demonstrated to

carry out specific information-processing functions (e.g.

[1,3,5]). One of the simplest and most abundant net-

work motifs is negative auto-regulation (NAR). In this

motif, a transcription factor (TF) negatively regulates

the promoter of its own gene or operon [1,3,6] (Figure

1a). Approximately 40% of the known transcription fac-

tors in Escherichia coli show negative auto-regulation

[7], as do many transcription factors in yeast and higher

organisms [3,8-11].

NAR has been suggested experimentally and theoreti-

cally to have several functions. The first is increased

homeostasis or buffering of the auto-regulated gene pro-

duct concentration against stochastic noise [12-14].

Because protein levels can vary from cell to cell by tens

of percents [15-17], such a noise buffering mechanism is

useful in cases where precision in TF levels is needed

[18]. Low frequency noise in TF production rates tends

to be buffered by NAR because negative feedback

reduces TF levels if they are too high, and increases

them if they are too low, making TF levels more uni-

form across cells.
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A second feature of NAR is its ability to speed the

response time of gene circuits [6,19,20]. Response time

is defined as the time it takes to reach half of the total

change in a dynamic process. Theoretical comparison

between NAR and a simply regulated promoter with no

NAR, with parameters in which both reach the same

steady-state level expression, shows that the response

time is shorter when the TF is negatively auto-regulated.

This speed up is achieved by the use of a strong promo-

ter allowing a rapid initial rise in TF levels, up to its

auto-repression threshold, followed by reduction in pro-

duction rate due to NAR [19]. This speedup feature was

observed in a synthetic NAR circuit [19] as well as in

the native SOS DNA repair system of E. coli [20].

Speedup offered by NAR may be advantageous in

dynamic environments where rapid responses improve

fitness.

Recently, it was shown by Nevozhay et al. that NAR

can also linearize dose responses [21]. In this study the

response of synthetic, TetR-based transcriptional circuits

with and without NAR was studied in S. cerevisiae as a

function of inducer (anhydrotetracycline, aTc) levels.

NAR was found to transform a sigmoid induction curve

into a more linear curve (see also [18]). This feature was

also suggested in theoretical studies [6,22-25]. This role

of NAR can be interpreted as an increase in the input

dynamic range - the range of input signals over which

the system can respond.

Such theoretical and synthetic-circuit studies are a

powerful approach because one can study the function

of circuits such as NAR without of interfering effects. In

natural systems, however, this motif is embedded inside

a large regulatory network with many other interactions.

These additional interactions might in principle modify

its function. Therefore, to fully test the function of a

motif requires, in addition to theory and synthetic cir-

cuits, experiments on the motif in its natural context,

wired into the full interaction networks of the cell.

Here, we study the function of the NAR motif in a

natural system. We chose one of the best-studied gene

regulation systems, the arabinose utilization system of E.

coli. This system has been characterized over the past

decades by Schleif and colleagues ([26-29] for reviews).

The arabinose-responsive TF, called AraC, is negatively

autoregulated (Figure 1b). We asked whether NAR

increases the input dynamic range in this system.

The arabinose system is composed of 9 genes

arranged in 5 operons: araC- the system-specific TF;

araE, araFGH, araJ- the arabinose transporters [30-32];

and araBAD- arabinose catabolic enzymes. Two oper-

ons, araC and araBAD, are divergent and share the

same regulatory region (Figure 1d). The system is regu-

lated by cAMP Receptor Protein (CRP) and AraC (Fig-

ure 1e), which are activated by cAMP and L-Arabinose

respectively [26-29]. AraC represses its own promoter,

creating a NAR motif. It both activates and represses

the arabinose utilization operon araBAD by means of a

DNA looping mechanism [33,34]. AraC undergoes a

conformational change when it binds L-Arabinose, lead-

ing to expression of the ara genes. The system includes

several interactions and feedback loops, in which meta-

bolic enzymes and transporters downstream of araC

affect the level of intracellular arabinose, the inducer

that activates AraC (Figure 1e). In a study of the input

functions of E. coli sugar systems, it was recently found

that promoters from the arabinose system respond to

their inducer with a wider input dynamic range com-

pared to other sugar systems (eg. the maltose system) in

which the TF is not negatively auto-regulated [35].

To test the role of NAR, we compared the wild type

ara system (Figure 1b) to a variant in which NAR is dis-

rupted by placing the regulator AraC under a constitu-

tive promoter (Figure 1c). We find, using high-temporal

resolution measurement of promoter activity, that dis-

rupting NAR in the arabinose system increases the

steepness of the sigmoidal response curve. It reduces

the input dynamic range by about an order of magni-

tude. Thus, NAR increases input dynamic range in the

context of the natural ara system. We also analyze this

mathematically, suggesting that the increase in input

dynamic range is due to the increase of AraC protein

level with increasing arabinose due to the NAR.

Results
The native input function of the araBAD promoter has a

broad input dynamic range

The input dynamic range is defined as the range of inputs

over which the output changes significantly. Operation-

ally, following Goldbeter and Koshland [36-38], we define

the input dynamic range as the ratio R of input levels at

which the system shows 90% and 10% of its maximal out-

put (Figure 2). For a Hill curve with coefficient n, the

input dynamic range is R = 811/n. Thus, Michaelis-Men-

ten like curves with n = 1 show R = 81, steeper sigmoidal

curves with n = 2 show R = 9, and very steep cooperative

curves with n = 4 show R = 3.

In order to determine the input dynamic range of E.

coli promoters we used a fluorescent reporter automated

assay [35,39], with strains from the comprehensive E.

coli transcription reporter library [40]. Each strain bears

a low-copy plasmid with a green fluorescent protein

gene under the control of a full length copy of the pro-

moter of interest. In this study we used reporters for the

araBAD and araC promoters in E. coli strain MG1655

(see Methods).

Reporter strains were grown on glucose minimal med-

ium containing saturating amount of cAMP (30 mM, to

fully activate CRP) and increasing amounts of L-
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Figure 1 An overview of the regulatory network of the arabinose utilization system in E. coli. (a). NAR motif with transcription factor X
that regulates its own production, and also regulates the production of gene Z (Z often represents several different downstream promoters). (b)
The araBAD genes are regulated by AraC which is negatively auto-regulated. (c) NAR in this study was disrupted by decoupling araC from its
native regulation. (d) The araC\araBAD divergent promoter structure. Colorless boxes are genes and colored boxes are the transcription factors’

binding sites: red- repressor; green- activator; brown- dual regulator (based on Ecocyc [50,51], see text for details). (e) The arabinose system is a
complex regulatory network in which NAR is only one of many interaction arrows, in which transporters and enzymes modify the intracellular
arabinose levels, which in turn acts to repress and activate the pumps and enzymes genes (see text for details).
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Arabinose [35,41]. Promoter activity (PA) was defined as

the rate of GFP production per OD (optical density)

unit, PA = dGFP/dt/OD (see Methods). The input func-

tions were derived from the promoter activity averaged

over a window that spans 1-2 cell generations in expo-

nential phase (5-7 hours after initial 1:600 inoculation).

Over this time window, promoter activity was constant

to a good approximation (see Additional File 1 for fluor-

escence and growth curves, p. 2-3, Figure S1 and S2

respectively).

The promoter activity of the araBAD in the parental

strain (wild-type araC regulation, U424) as a function of

arabinose concentration is shown in Figure 3a. At low ara-

binose levels (below about 10 μM arabinose) the fluores-

cence of the reporter is indistinguishable from the cells

auto-fluorescence background. The input function reaches

10% of its maximal value at arabinose levels of about 0.1

mM, and 90% of its maximal value at about 10 mM. Fit-

ting a Hill curve to the input function results in an appar-

ent Hill coefficient of n = 1 ± 0.3 (s.e.), and halfway

induction point of K = 1.1 ± 0.4 mM (s.e.). The input

dynamic range is R = 100 ± 40 (s.e.). These results are

similar to measurements of the input function of the ara-

BAD reporter strain in wild-type MG1655 (U429) [35],

and are consistent with the expected value for a curve

with Hill coefficient equal to n = 1, in which R = 81.

The araC gene is induced by arabinose

We also tested the dependence of the araC promoter

activity on arabinose. Since AraC negatively regulates its

own promoter, arabinose is expected to affect araC

Figure 2 Gene input function and its input dynamic range. The
input function is defined as the normalized promoter activity at
different signal concentrations. The black horizontal dashed lines
mark the 10% and 90% promoter activity. The input dynamic range
is the ratio R of input concentrations required for 90% and 10% of
maximal output.

Figure 3 The input dynamic range of the araBAD operon is

reduced by disrupting the NAR that controls araC. Shown is
araBAD promoter activity as a function of arabinose concentration.
The error bars indicate the s.e. (a) Promoter activity (dGFP/dt/OD,
arbitrary units) in the parental strain (U424, with NAR). The blue
squares are the experimental results. The dashed blue line is a fitted
Hill function with Hill coefficient n = 1 ± 0.3 (s.e.), K = 1.1 ± 0.4 mM
(s.e.), and R = 100 ± 40 (s.e.), and also the best fit solution of the full
model described in Additional File 1. The black horizontal dashed
lines mark the 10% and 90% promoter activity. (b) Promoter activity
(dGFP/dt/OD, arbitrary units) in the mutant strain (U426, without
NAR). The red circles are the experimental results. The solid red line
is a fitted Hill function with Hill coefficient n = 1.9 ± 0.4 (s.e.), K = 42
± 6 mM (s.e.), and R = 10 ± 3 (s.e.), and also the best fit solution of
the full model described in Additional File 1. The black horizontal
dashed lines mark the 10% and 90% promoter activity. (c)
Normalized promoter activity of the two strains. The x axis is the L-
Arabinose concentration divided by K per strain. This best
demonstrates differences in the input dynamic range (R) between
the two strains. Blue squares and dashed blue line are of the
parental strain (U424, with NAR), while red circles and solid red line
are of the mutant strain (U426, without NAR). Symbols are the
measured results and the lines are fitted Hill functions.
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expression. Indeed, using an araC reporter strain (U428),

we find that arabinose increases the activity of the araC

promoter in a dose-dependent manner (Figure 4) [35].

Disruption of negative auto-regulation of araC reduces

the input dynamic range of araBAD

To study the role of the negative auto-regulation of

araC on the input dynamic range of its downstream

genes, we decoupled araC expression from its negative

auto-regulation (Figure. 1c). For this purpose we deleted

the araC open reading frame from the chromosome of

the wild-type strain MG1655 and re-introduced araC on

a plasmid (pZE11) which provides constitutive expres-

sion (strain U426, see Methods). The plasmid has a tetR

controlled promoter, repressed by a chromosomal tetR

gene. Without induction, this plasmid produces levels of

AraC that are comparable to the induced wild-type

AraC level, as assessed from the maximal promoter

activity of the araBAD reporter. It should be noted that

the parental strain in this study (U424) also contains

chromosomal tetR as well as an emptly pZE11 vector, in

order to preserve genotypic identity between the two

strains.

We find that in the absence of NAR, the arabinose-

dependent input function of araBAD is significantly

steeper than the parental input function (Figure 3b,c),

with an apparent Hill coefficient of n = 1.9 ± 0.4 (s.e.),

and halfway induction point of K = 42 ± 0.6 mM (s.e.).

The measured input dynamic range spans between 14

mM - 135 mM, and thus has R = 10 ± 3 (s.e.), in com-

parison to R = 100 ± 40 (s.e.) in the parental strain.

Thus, decoupling araC from its negative auto-regulation

reduces the input dynamic-range of its downstream

genes by about an order of magnitude.

A model of NAR and increased input dynamic range

What is the main effect at play that allows negative

auto-regulation to increase input dynamic range? To

understand this, we analyzed a mathematical model of

the NAR motif. We sought to make the model as sim-

ple as possible, in order to be able to understand it

intuitively, and at the same time not too simple so as

not to lose the essence of the problem. A more compre-

hensive model, based on mass-action kinetics, which

includes a dual transcription factor that acts as both a

repressor and an activator, is given in Additional File 1

(p. 5-7).

Consider a transcription factor whose concentration is

X, that binds its inducer s with a dissociation constant

Ks. The amount of X bound to s, which is the active

form of the transcription factor X*, is described by

Michaelis-Menten binding:

X∗ = X
s

Ks + s
(1)

The active transcription factor X* binds the promoter

of a downstream gene Z with Michaelis-Menten-like

kinetics, so that the steady-state level of the Z gene pro-

duct is:

Z =
βz

α

X∗

K2
z + X∗

(2)

Where Kz is the dissociation constant of X* from the

promoter of Z, bZ is the maximal production rate of Z,

and a is its degradation/dilution rate [1].

Without negative auto-regulation, the concentration of

X is independent of the inducer levels. We denote this

constant level X0. Using Eq. (1) in Eq. (2) with X = X0

results in a sigmoidal regulation function with an input

dynamic range of R = 9.

ZnoNAR =
βz

α

(

X0s

Ks + s

)2

K2
z +

(

X0s

Ks + s

)2
(3)

It is at this point that negative auto-regulation has an

important effect: instead of a constitutive level of X,

negative auto-regulation allows the signal s to modify

the concentration of X, an effect termed direct coupling

[42]. With negative auto-regulation of the type found in

the ara system, the promoter that encodes X is

repressed by free X, (denoted Xf) a repression which is

relieved when X is bound to the signal.

Figure 4 The promoter activity of araC increases with

arabinose. Shown is araC promoter activity as a function of
arabinose concentration, in the wild-type strain (with NAR, green
circles). The dashed green line is a fitted Hill functions with n = 1 ±
0.6, K = 0.6 ± 0.4M (s.e.). The solid purple line is the best fit of the
full model described in Additional File 1.
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To analyze this, consider the rate of production of X

that is repressed by Xf [19], balanced by degradation/

dilution of the protein at rate a, so that:

dX

dt
= β

Kx

Kx + Xf
− αX (4)

Where Kx is the dissociation constant of X from its

own promoter, and the free X (Xf) is given by the

unbound fraction, Xf = X-X*:

Xf = X
Ks

Ks + s
(5)

Substituting Eq. (5) into Eq. (4) and assuming strong

binding of the regulator to its own promoter Kx<<Xf,

one finds that at steady-state the level of X increases as

the square root of the input signal s:

X = A
√

1 + s/Ks (6)

Where A2 = Kxbx/a. In other words, the transcription

factor (X) levels increases with the signal (s) levels (see

the relationship between AraC and L-Arabinose in Fig-

ure 4).

Using this expression for X instead of X0 in Eq. (2),

results in an input-function that is less steep, because of

the square-root dependence of X on s:

ZNAR =
βz

α

s

K ′ + s
(7)

Where K ′ =
K2

z αKs

βxKx

. This function has an input

dynamic range of R = 81, which is 9 fold wider than

that of Eq. (3). Thus, NAR increases the input dynamic

range.

Note that the assumption Kx<<Xf is not crucial for the

increased input dynamic range, and was used only for

the sake of simplicity. In Additional File 1 we present a

full mass-action model, without these assumptions, and

show that the present considerations apply as well.

We further investigated the effect of NAR on input

functions with different cooperativity in the binding of

the TF to the promoter, as described by Hill equations.

In the present system, the araBAD input function with-

out NAR has an apparent Hill coefficient of about 2,

suggesting that the AraC regulator is cooperative with n

= 2. In Figure 5 we describe the results of the model

with regulators with degrees of apparent cooperativity of

the regulator ranging between n = 1 and n = 5. It is

seen that NAR increases the input dynamics range in all

cases. For example, at n = 2, the input dynamic range

without NAR is R = 9, but can reach up to R ~ 1000

with NAR (the values observed above for the ara system

are about R = 10 without NAR and R = 100 with NAR).

Furthermore, the model explains how the change in

regulator levels caused by NAR can cause a shift in the

halfway induction point K of downstream genes (relative

to no NAR). The direction and size of the shift depends

on the mode of regulation. For repressors, K generally

increases with regulator levels, whereas activators show

the converse dependence. Since AraC both activates and

represses araBAD, the detailed model in Additional File

1 explains the observed increase in K shown in Figure 3

(Additional File 1, p.8-9, Figure S3).

To summarize the conclusions of this analysis, nega-

tive auto-regulation causes regulator levels to increase

with inducer level. This enhances the input dynamic

range by extending the range of inputs that can affect

the downstream genes.

Discussion

This study supports a role for negative auto-regulation

in increasing the input dynamic range of downstream

genes. Previous studies suggested this role theoretically

[6,22-24] and demonstrated it using synthetic circuits

[18,21]. Here we tested NAR in the context of a natural

system, the arabinose system of E. coli, in which NAR is

embedded within multiple feedback loops and regulatory

interactions. Disruption of the NAR in the arabinose

system reduced the input dynamic range by an order of

magnitude.

What is the intuitive explanation for the enhancement

of the input dynamic range provided by negative auto-

Figure 5 NAR model suggests increased input dynamic range

for regulators with varying degrees of cooperativity.
Cooperativty of the regulator is described by a Hill coefficient for
the binding of TF to its downstream promoter. Dashed blue line is
the maximal possible input dynamic range that can be reached by
a system with a negatively auto-regulated TF, as found by scanning
the entire range of model parameters. Solid red line is the input
dynamic range that the system displays without negative auto-
regulation, given by R = 81(1/n). The blue square and red dot are the
experimentally measured input dynamic ranges of araBAD with and
without NAR, respectively.
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regulation? Negative auto-regulation in the arabinose

system allows the transcription factor concentration to

be modulated by its own input signal. As the concentra-

tion of input signal increases, the concentration of tran-

scription factor also increases. This extends the

response range of downstream promoters, which would

otherwise reach maximal activity when the transcription

factor becomes saturated with input signal.

A related but distinct feature was studied by M. Sava-

geau [6,42], in which proper coupling of inducer levels

and transcription factor levels can increase the output

(as opposed to input) dynamic range of genes: the ratio

of their maximal to minimal expression level.

Use of NAR to increase input dynamic range might be

especially useful for regulators that bind the promoter

cooperatively. Such cooperative binding is thought to

increase specificity [43]. However, a well-known feature

of cooperative binding (high Hill coefficient) is a narrow

input dynamic range [43]. NAR is a simple way to pro-

vide wide input dynamic range, while maintaining coop-

erativity at the level of regulator binding. The

combination of cooperativity and negative auto-regula-

tion might thus provide a response across several dec-

ades of input strength and at the same time remains

specific.

Conclusions

The present study adds to our understanding of the func-

tions of negative auto-regulation network motif, showing

that it can increase the input dynamic range of the

response, even when embedded in a relatively compli-

cated native gene circuit. Integration of negative auto-

regulation within a system with high cooperativity (high

specificity and steep activation curve), enables the system

to respond to a wide range of input signal (making the

activation curve wide) while maintaining the system’s

specificity to the signal. This function can be experimen-

tally tested in the numerous additional gene systems

which bear this network motif across organisms. Because

the negative auto-regulation motif is not limited to tran-

scription networks this feature might also apply to other

biological systems including protein-level interactions.

Methods

Plasmids (see Table 1)

GFP reporter plasmids (pUA66 based [40], sc101 ori,

kanR, with gfpmut2 [44]) for the araC (coordinates

69973-> 70469) and araBAD (coordinates 70469->

69973) promoters are from the fluorescent reporter

library given in detail in [40]. In short: the intergenic

region between araBAD and araC (Figure 1d), with

more than 100 bps of both flanking regions, was incor-

porated twice into the GFP reporter plasmid: once in

the plus strand orientation (araC promoter) and once in

the minus strand orientation (araBAD promoter).

araC was decoupled from its native regulation by

cloning it into the pZE11 plasmid (colE1 ori, ampR,

PLtetO-1 [45]) using the KpnI and HindIII restriction

enzymes. The araC gene (the entire coding region) was

PCR amplified from MG1655 genomic DNA with the

following start and end coordinates: 70387-71299 (posi-

tive strand), by using the following primers: 5’ ggcggtac-

catggctgaagcgcaaaatgatcc for the 5’ end and 5’

ggcaagcttccgtcaagccgtcaattgtctg for the 3’ end. The PCR

product and the pZE11 plasmid were digested with

KpnI and HindIII, and then were ligated, yielding

pZE11-araC. A self-ligated pZE11 was generated as well

to serve as a control plasmid.

Table 1 Plasmids and strains used in this study

Plasmids Description Source

pUA66 sc101 ori, promoterless version of the GFP reporter plasmid, (kanR). [40]

ParaBAD reporter GFP reporter plasmid for the araBAD promoter (ParaBAD in pUA66), (kanR). [40]

ParaC reporter GFP reporter plasmid for the araC promoter, (ParaC in pUA66), (kanR). [40]

pZE11 Control plasmid: colE1 ori, PLtetO-1 promoter, (ampR) [45]. This study

pZE11-araC araC controlled by the tet promoter on pZE11, (ampR). This study

Strains

U423 MG1655z1: MG1655 (F- lambda- ilvG- rfb-50 rph-1) with chromosomal tetR, (specR). This study

U424 U423 +pZE11 +ParaBAD reporter plasmid (specR, ampR, kanR). This study

U425 U423 with ∆araC chromosomal deletion (specR). This study

U426 U425 +pZE11-araC +ParaBAD reporter plasmid (specR, ampR, kanR). This study

U427 U423 +pZE11 +pUA66 (specR, ampR, kanR). This study

U428 MG1655 (F- lambda- ilvG- rfb-50 rph-1) + ParaC reporter plasmid (kanR). [40]

U429 MG1655 (F- lambda- ilvG- rfb-50 rph-1) + ParaBAD reporter plasmid (kanR). [40]

U66 MG1655 (F- lambda- ilvG- rfb-50 rph-1) + pUA66 (kanR). [40]
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Strains (see Table 1)

In order to achieve maximal genotypic identity between

the wild-type (with NAR) and the mutant (without

NAR) strains, a modified wild-type strain was con-

structed. tetR gene (z1, specR) from DH5aZ1 was P1

transduced into the wild-type MG1655 chromosome

(K12 strain MG1655: F- lambda- ilvG- rfb-50 rph-1),

yielding strain U423 (MG1655z1). The pZE11 plasmid

and the araBAD reporter plasmid were transformed

into U423, yielding strain U424.

An isogenic ∆araC strain was obtained by deleting

araC from the MG1655z1 chromosome (coordinates

70391-> 71244) using the phage l Red recombination

system [46,47], yielding strain U425 (MGz1∆araC). Pri-

mers 5’ ggacaattggtttcttctctgaatggtgggagtatgaaaagtatggtg-

taggctggagctgcttc 3’ (for the 5 prime end) and 5’

gccgtcaattgtctgattcgttaccaattatgacaacttgacggctaccatatgaa-

tatcctccttag 3’ (for the 3 prime end) were used to amplify

the kanamycin resistance gene from the pKD4 plasmid

with extensions homologous to the 5’ and 3’ ends of the

araC gene, to allow recombination. Kanamycin resistance

was removed from the deleted strain using FLP recombi-

nase, as described [47]. U425 did not grow on L-Arabi-

nose as a sole carbon source. The araC deletion and the

integrity of the araC\araBAD divergent chromosomal

promoter were verified using PCR and sequencing of the

scar region. araBAD reporter and pZE11-araC plasmids

were transformed into U425, yielding strain U426. Trans-

formation of pZE11-araC into the U425 strain restored

its ability to grow on L-Arabinose as a sole carbon

source. This strain produced AraC levels, similar to that

of the wild-type strain (assessed from the promoter activ-

ity of the araBAD reporter at maximal induction, which

was about 70% of that of the wild-type strain).

MG1655z1 with empty-pZE11 and pUA66 promoter-

less reporter plasmid (strain U427) was used for fluores-

cence background subtraction for U424 & U426.

Strain U66 [35,40] was used for fluorescence back-

ground subtraction for U428.

Growth conditions and measurements

Strains were grown over-night in M9 minimal medium

containing 0.4% glucose 0.05% casamino acids, 50 μg/ml

kanamycin and 100 μg/ml ampicillin (dictated by the

plasmids in each strain) at 37°C. No aTc was used to

induce pZE11-araC, since its basal expression level was

found to be close to the wild type AraC level. Using a

robotic liquid handler (Freedom Evo, Tecan), flat bot-

tom 96-well plates (Nunc) were prepared with 150 μl of

M9 minimal medium containing 0.2% glucose 0.05%

casamino acids, 30 mM cAMP, 50 μg/ml ampicillin and

25 μg/ml. L-Arabinose, in increasing concentrations was

added. The wells were inoculated with the reporter

strain at a 1:600 dilution from the overnight culture.

Wells were then covered with 100 μl of mineral oil

(Sigma) to prevent evaporation (a step which we pre-

viously found not to significantly affect aeration or

growth [48,49], and transferred into an automated incu-

bator. Cells were grown in an incubator with shaking (6

hz) at 30°C for about 20 hr. Every 8 minutes the plate

was transferred by the robotic arm into a multi-well

fluorimeter (Infinite F200, Tecan) that read OD (600

nm) and GFP fluorescence (535 nm).

Data analysis

Promoter activity for each well was calculated from the

OD and GFP measurements after subtracting the OD

and GFP backgrounds. GFP background was obtained

for each well from the promoterless control strains

U427 (for strains U424 and U426) and U66 (for strain

U428) (Additional File 1, Figure S1). Promoter activity

was calculated by computing the rate of accumulation

of GFP per unit time divided by the OD (dGFP/dt/OD)

as described [49].

Additional material

Additional file 1: Supplementary on-line material. Detailed model of

the arabinose system and examples for raw data figures.
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