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The metagenomics sequencing data provide valuable resources for investigating the

associations between the microbiome and host environmental/clinical factors and

the dynamic changes of microbial abundance over time. The distinct properties

of microbiome measurements include varied total sequence reads across samples,

over-dispersion and zero-inflation. Additionally, microbiome studies usually collect

samples longitudinally, which introduces time-dependent and correlation structures

among the samples and thus further complicates the analysis and interpretation of

microbiome count data. In this article, we propose negative binomial mixed models

(NBMMs) for longitudinal microbiome studies. The proposed NBMMs can efficiently

handle over-dispersion and varying total reads, and can account for the dynamic trend

and correlation among longitudinal samples. We develop an efficient and stable algorithm

to fit the NBMMs. We evaluate and demonstrate the NBMMs method via extensive

simulation studies and application to a longitudinal microbiome data. The results show

that the proposed method has desirable properties and outperform the previously used

methods in terms of flexible framework for modeling correlation structures and detecting

dynamic effects. We have developed an R package NBZIMM to implement the proposed

method, which is freely available from the public GitHub repository http://github.com//

nyiuab//NBZIMM and provides a useful tool for analyzing longitudinal microbiome data.

Keywords: count data, longitudinal study, microbiome, metagenomics, negative binomial mixed model

INTRODUCTION

The human microbiome plays an important role in human health and disease. The complex
microbiome is inherently dynamic and interacts with the host and the environmental factors over
time (Gerber, 2014a). These complex dynamics start from the birth with increasingly richness in
the communities of microbiota over time (Palmer et al., 2007; Koenig et al., 2011; Wu et al., 2011;
De Muinck et al., 2013; Gerber, 2014a). Recent studies have found that the human microbiome
in healthy adults can be altered by various host factors including genotype (Spor et al., 2011;
Blekhman et al., 2015; Goodrich et al., 2016a,b), lifestyle such as dietary habit (De Filippo et al.,
2010; Wu et al., 2011), physiological status such as aging (Biagi et al., 2010), pathophysiological
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status (Turnbaugh et al., 2009), and host environment
(Dominguez-Bello et al., 2010). The dynamic shifts in
compositional features of the microbiome can occur with
human diseases such as obesity (Turnbaugh et al., 2006), diabetes
(Samuel and Gordon, 2006), infections or inflammatory bowel
disease (Frank et al., 2007), and cancers (Holmes et al., 2011).
To decipher the relationship between the dynamic changes in
microbiome and human diseases, high-throughput sequencing
technologies, such as the 16S ribosome RNA (rRNA) gene
sequencing or shotgun metagenomics sequencing, have been
widely applied in longitudinal microbiome studies (Matsen et al.,
2010; Ghodsi et al., 2011; Gilbert et al., 2011; La Rosa et al., 2014).

The metagenomics sequencing data provide valuable
resources for investigating the dynamic changes of microbial
abundance over time and the associations between the
microbiome and host environmental/clinical factors. Multiple
recent microbiome studies have employed the longitudinal
study designs to address the crucial research question (La Rosa
et al., 2014; DiGiulio et al., 2015; Zhou et al., 2015; Ward et al.,
2016). Among them, La Rosa et al. (2014) utilized longitudinal
analysis of repeated measures data to demonstrate that the
dynamic shifts in dominating microbiota of the infant gut
from Bacilli at birth, giving way to Gammaproteobacteria, then
Clostridia at the end of the first month of life. In another recent
published study, Ward et al. (2016) used longitudinal study to
address the associations between the dynamic change of the early
intestinal microbiome in preterm infants and the occurrence of
Necrotizing enterocolitis (NEC) or NEC-associated deaths.

Despite our ability to generate large-scale metagenomics
sequencing longitudinal data, many challenges exist in the
development of robust and powerful statistical methods and
computational tools for properly analyzing and interpreting
longitudinal microbiome data. The metagenomics sequencing
data has some properties that require tailored analytic tools;
these include varied total sequence reads across samples, over-
dispersion and zero-inflation. One common way to account
for varying total reads is normalization, i.e., conversion of the
sequence counts to the relative abundance (or proportion) using
the total sum, mean, or median of representative OTUs across
all samples (Anders and Huber, 2010; Robinson and Oshlack,
2010; Knights et al., 2011; Wagner et al., 2011; Kostic et al., 2012;
Paulson et al., 2013). Several zero-inflated models were proposed
to correct for excess zero counts in microbiome measurements,
including zero-inflated Gaussian, lognormal, negative binomial,
and betamodels (Paulson et al., 2013; Peng et al., 2015; Sohn et al.,
2015; Xu et al., 2015). On the other hand, the negative binomial
regression, which is a standard statistical method for analyzing
over-dispersed count observations, has been recently applied to
microbiome data (White et al., 2009; Pookhao et al., 2015).

It is even more challenging to analyze longitudinal
microbiome count data. In addition to the special features
of microbiome data, longitudinal studies possesses two
fundamental time-dependent features: (a) time imposes an
inherent and irreversible ordering on samples, and (b) samples
exhibit statistical dependencies that are a function of time
(Gerber, 2014b). Ignoring these properties of longitudinal data
and applying statistical tools designed for analyzing static data

can result in erroneous conclusions (Gerber, 2014a). Most of
the previous studies resort to linear mixed models (LMMs)
to account for time-dependent correlations in longitudinal
microbiome study designs by treating transformed data as
normally distributed responses (Benson et al., 2010; Srinivas
et al., 2013; La Rosa et al., 2014; Leamy et al., 2014; Wang
et al., 2015). However, using LMMs directly without addressing
properties of microbiome data may result in lower power
or potential inaccurate results to detect the dynamic effects
of microbiota. Chen and Li (2016) developed zero-inflated
beta mixed models for analyzing transformed proportions in
microbiome longitudinal studies, but did not address time
trends and within-subject correlations. Thus, statistical models
to account for time series as well as properties of microbiome
count data are required for analyzing microbiome data (Spor
et al., 2011; Faust et al., 2015; Chen and Li, 2016).

Zhang et al. (2017) have recently developed negative binomial
mixed models (NBMMs) for analyzing clustered microbiome
data, but have not addressed longitudinal studies yet. We here
extend negative binomial mixed models (NBMMs) proposed
by Zhang et al. (2017) to analyze longitudinal microbiome
count data. The extended NBMMs can include various types
of fixed effects and random effects, and can incorporate
various correlation structures among observations within the
same subjects, thus fully addressing the special properties of
longitudinal microbiome count data. We develop an efficient and
stable IWLS (iterative weighted least squares) algorithm to fit the
extended NBMMs by taking advantage of the standard procedure
for fitting linear mixed models. Through extensive simulations,
we show that the NBMMs outperform the previously used
LMMs in terms of detecting dynamic effects in longitudinal
microbiome count data. We also apply our method to a
previously published microbiome data to detect significantly
dynamic effects of associated taxa. We have implemented the
proposed method in the R package NBZIMM, which is freely
available from the public GitHub repository http://github.com//
nyiuab//NBZIMM and provides a useful tool for longitudinal
microbiome studies.

METHODS

Negative Binomial Mixed Models (NBMMS)
for Longitudinal Microbiome Studies
Longitudinal studies collect multiple subjects and measure each
subject at multiple time points (i.e., samples). Assume that there
are n subjects, and subject i is measured at ni time points tij;
j = 1, ···, ni; i = 1, ···, n. For each sample, microbiome data
generated by the 16S rRNA gene sequencing or the shotgun
metagenomics sequencing consist of counts for numerous taxa
at certain taxonomic levels (OTU, species, genus, classes, etc.),
cijh, h = 1, ···, m, and total sequence read Tij (also referred
to as depths of coverage or library size). We also measure
some host clinical/environmental variables for each subject,
Xi. Table 1 summarizes the data structure for a longitudinal
microbiome study. The goal of longitudinal microbiome studies
is to detect associations between the microbiome counts and the
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TABLE 1 | Longitudinal microbiome data structure.

Subject

ID

Taxon 1 Taxon 2 ··· Taxon

m

Total

reads

Host

factors

Time

variables

Subject 1 c111 c112 ··· c11m T11 X1 t11

Subject 1 c121 c122 ··· c12m T12 X1 t12

Subject 1 c131 c132 ··· c13m T13 X1 t13

Subject 2 c211 c212 ··· c21m T21 X2 t21

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

Subject n cn11 cn12 ··· cn1m Tn1 Xn tn1

host variables, and characterize the time trends of microbiome
abundance within subjects and between subjects.

We separately analyze each microbiome taxon, as most
existing methods. For notational simplification, we denote
yij = cijh for any given taxon h. Since the microbiome count
outcome is over-dispersed, we use negative binomial models. We
extend negative binomial mixed models (NBMMs) proposed by
Zhang et al. (2017) to analyze longitudinal microbiome data by
including the time variable and its interaction with the host factor
of interest in themodel. In the next section, we will further extend
NBMMs to account for within-subject correlation structures.

In our NBMMs, the counts yij are assumed to follow the
negative binomial distribution:

yij ∼ NB(yij |µij, θ) =
Ŵ(yij + θ)

Ŵ(θ)yij!
·

(

θ

µij + θ

)θ

·

(

µij

µij + θ

)yij

(1)

where θ is the dispersion parameter that controls the amount of
over-dispersion, and µij are the means. The means µij are related
to the host variables via the logarithm link function:

log(µij) = log(Tij)+ Xijβ + Zijbi (2)

where log(Tij) is the offset that corrects for the variation of the
total sequence reads, Xij = (1,Xi, tij,X

s
i tij), X

s
i is the variable

of interest in Xi, for example, an indicator variable for the case
group and the control group, andZij = (1, tij); β = (β0, β1, β2,

β3)
T is the vector of fixed effects (i.e., population-level effects),

including an intercept β0, the effects β1 of the host variables
Xi, the overall time effect β2, and the interaction β3 betweenX

s
i

andtij; bi = (b0i, b1i)
T is the vector of random effects (i.e., subject-

level effects), including the random intercept b0i and the random
time effect b1i. For simplicity, the above model only considers the
linear function of tij. If sample size is large enough, however, we
can extend the model to use polynomial functions, for example,
(tij, tij

2), or B-spline functions, allowing us to detect arbitrary
temporal trends.

The random effects are used to model multiple sources of
variations and subject-specific effects, and thus avoid biased
inference on the fixed effects. The vector of the random effects
is usually assumed to follow a multivariate normal distribution
(Pinheiro and Bates, 2000; McCulloch and Searle, 2001):

bi ∼ N(0,9) (3)

where Ψ is the variance-covariance matrix. Ψ can be a general
positive-definite matrix that accounts for the correlation of the
random covariates. In some applications, however, we can restrict
Ψ to special forms of variance-covariance matrices that are
parameterized by fewer parameters. For example, wemay assume
that the random effects are independent, in which case Ψ is a
diagonal matrix.

Accounting for Within-Subject Correlations
and IWLS Algorithm for Fitting the NBMMS
The IWLS (Iterative Weighted Least Squares) algorithm
developed by Zhang et al. (2017) can be used to fit the above
NBMMs. The basic idea of the IWLS algorithm is to iteratively
approximate the negative binomial mixed model by a linear
mixed model. However, Zhang et al. (2017) restricts the within-
subject errors in the linear mixed model to be independent, and
thus ignores special within-subject correlation structures. For
longitudinal data, however, samples within the same subject are
usually correlated. Thus, we extend the model by relaxing the
assumption of independent within-subject errors to account for
special within-subject correlation structures:

zij = log(Tij)+ Xijβ + Zijbi + w
−1/2
ij eij, bi ∼ N(0,9),

ei = (ei1, · · · , eini )
′ ∼ N(0, σ 2Ri) (4)

where zij and wij are the pseudo-responses and the pseudo-

weights, respectively, that depend on log(Tij) + Xijβ̂ + Zijb̂i and

θ̂as described in Zhang et al. (2017), and Ri is a correlation
matrix, which describes dependence among observations,
Pinheiro and Bates (2000) describes several ways to specify the
correlation matrix Ri, all of which can be incorporated into our
NBMMs. For longitudinal studies, a common choice of Ri is
autoregressive of order 1, AR(1), or continuous-time AR(1).

We extend the IWLS algorithm developed by Zhang et al.
(2017) to fit the proposed NBMMS with correlation structures.
The algorithm alternatively updates the dispersion θ and the
parameters in the linear mixed model (4). Given the estimates of
β and b, we update the dispersion parameter θ by maximizing
the negative binomial likelihood using the standard Newton-
Raphson algorithm, and then calculate the pseudo-responses and
the pseudo-weights. We then fit the linear mixed model (4) using
the standard method as implemented in the core package nmle

in R. At convergence of the algorithm, we get the maximum
likelihood estimates of all the fixed effects βk and their confidence
intervals from the final linear mixed model. We then can test H0:
βk = 0 following the linear mixed model framework.

R Package for Implementing the Proposed
Method
We have created the function glmm.nb for setting up and fitting
the proposed NBMMs, which is part of the R packageNBZIMM.
The function glmm.nb works by repeated calls to the function
lme for fitting linear mixed models in the recommended package
nlme in R, and allows for any types of random effects and within-
subject correlation structures as described in the package nlme.
The outputs from the function glmm.nb can be summarized
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by functions in nlme. The package NBZIMM is freely available
from the public GitHub repository http://github.com//nyiuab//
NBZIMM.

RESULTS

Simulation Studies
Simulation Designs
We performed extensive simulations to evaluate the proposed
methods. We extended the simulation framework of Zhang et al.
(2017) to simulate longitudinal microbiome counts from negative
binomial distributions and incorporate time covariates, random
effects and within-subject correlation structures.

Our simulation studies employed a case-control longitudinal
study design with four different settings. All the four simulation
settings followed a two-level longitudinal study, where all
individuals (subjects) were from two groups (i.e., case or control)
and multiple samples were measured at several time points for
each individual. For all the settings, we simulated (n =) 50, 100
or 150 individuals, half of which were cases, and included three
fixed covariates: a binary case-control indicator variable xi, a
continuous time variable tij, and their interaction. We denote the
fixed effects of these three covariates by (β1, β2, β3). The time
points, random effects, and within-subject correlation structures
were set as follows:

1) Setting A: 5 time points for each individual, only random
intercept, and no within-subject correlation;

2) Setting B: 10 time points for each individual, only
random intercept, and the within-subject correlation
was autoregressive of order 1, AR(1);

3) Setting C: 5 time points for each individual, two random
effects (i.e., random intercept and time effect), and no within-
subject correlation;

4) Setting D: 4 or 5 different time points for individuals, only
random intercept, and no within-subject correlation;

To minimize possible bias and yield reasonable count values
that are similar to real microbiome data, we randomly generated
the parameters in the model from reasonable ranges at each
simulation replication (Zhang et al. 2017), which are described
as follows:

1) The values, log(Tij) + β0, control the means of simulated
counts when all the effects are zero, where β0 is the fixed
intercept. We set β0 = −7 and randomly sampled log(Tij)
from the range [7.1, 10.5]. In this case, log(Tij) + β0 were
in the range [0.1, 3.5], which yield counts similar to real
microbiome data;

2) The dispersion parameter θ were uniformly sampled from the
range [0.1, 5], which yield highly or moderate over-dispersed
counts;

3) To evaluate false positive rates, the fixed effects β1, β2 and
β3 were all set to be zero. To evaluate empirical powers, we
considered four scenarios: a) β1 and β2 were set to 0, and β3

was sampled from [0.2, 0.35]; b) β1 and β2 were set to 0, and
β3 was sampled from [0.35, 0.8]; c) β1, β2 and β3 were all

TABLE 2 | Parameter ranges in simulation studies.

Parameter Range

log(Tij ) + β0 Unif(0.1, 3.5)

Dispersion parameter θ Unif(0.1, 5)

Fixed effects β1, β2, β3

(false positive rate)

0, 0, 0

Fixed effects β1, β2, β3

(power of interaction)

0, 0, Unif(0.2, 0.35) or Unif(0.35, 0.8)

Fixed effects β1, β2, β3

(power of both β1 and β3)

All from Unif(0.2, 0.35) or Unif(0.35, 0.8)

Standard deviation τ Unif(0.5, 1)

Correlation ρ Unif(0.1, 0.5)

Standard deviation σ Unif(0.1, 0.5)

sampled from [0.2, 0.35]; d) β1, β2 and β3 were all sampled
from [0.35, 0.8];

4) The random effects b0i and b1i were generated from N(0, τ 2),
where τ was randomly drawn from the range [0.5, 1];

5) The correlation coefficient ρ for AR(1) correlation was
sampled from [0.1, 0.5], and the AR(1) correlation was
generated by the function arima.sim() from R package stats;

6) The standard deviation σ was sampled from [0.1, 0.5];

The ranges of all the parameters used in the simulation are
summarized in Table 2.

In all the four simulation settings, the procedure was repeated
10,000 times. At each replication, the parameters were sampled
from the ranges described above. There were two hypotheses of
interests to be tested, i.e., the group main effect β1 = 0 and the
group by time interaction β3 = 0. Both empirical power and
false positive rate for testing the hypotheses were calculated under
significance level at 0.05. The empirical power and false positive
rate were defined as the proportions of detecting non-zero and
zero effects over the simulation replications, respectively. We
compared the proposed NBMMs with the linear mixed model
with the arcsine square root transformation, arcsine

(√

yij/Tij

)

,
as the response, denoted by LMM arcsin.

Simulation Results
Figure 1 and Figure A.1 show the empirical power to detect the
group by time interaction under the four different simulation
settings, when the group main effect was set to zero. The power
was affected by the sample size. It can be clearly seen that the
proposed method performed consistently better than the LMM
arcsin method across almost all the scenarios. The second setting
was set to represent time-series structure in longitudinal data
with 10 measurements for each individual, and thus had the
largest power among all the four settings. It was shown that the
first setting had higher power than the third setting, on the other
hand, a similar performance in power compared with the fourth
setting.

It is of interest to detect both the group main effect and the
group by time interaction. Therefore, in another set of parameter
settings, we targeted to detect both the group main effect and
the group by time interaction. Figure 2 and Figure A.2 show the
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FIGURE 1 | Empirical power of interaction term and false positive rates of main effect in all four simulation settings.

empirical power to detect both the group main effect and the
group by time interaction under the four different simulation
settings. The results showed that the LMM arcsine method
resulted in a slightly higher power in detecting interaction term
than our proposed method across all the scenarios. However, it
showed an extreme low power close to alpha level in detecting the
group main effect across all the scenarios. It inferred that LMM
arcsine method is not an appropriate approach to be used when
the group main effect and the group by time interaction effect
are both nonzero. Figure 3 displays the false positive rates for
detecting both the group main effect and interaction effect. For
all the four simulation settings, the false positive rates were well
controlled under all the scenarios.

Application to Temporal and Spatial
Pregnant Data
We applied our method to a public microbiome data from
a longitudinal study to investigate the bacterial taxonomic
composition for pregnant and postpartum women by DiGiulio
et al. (2015). This case-control longitudinal study included 49
pregnant women, 15 of whom delivered preterm. The discovery
data was consisted with 40 of those women. Among those
40 women, they collected 3,767 specimens prospectively and
weekly during gestation and monthly after delivery from the
vagina, distal gut, saliva, and tooth/gum. The specimens were
analyzed for bacterial taxonomic composition. The final dataset
contained a total of 1271 taxa from 3432 specimens which were
identified for pregnant women delivered at term and preterm.

Detailed information about population and material is available
in DiGiulio et al. (2015). Clinical data included race, weeks/days
when the samples were obtained, way of delivery, and household
income level were acquired. The public processed OTU data
available from the study is from species level. The clinical data
for the validation dataset for the rest of 9 pregnant women is not
available.

We used the proposed NBMMs and the linear mixed models
(LMMs) with the arcsine square root transformations to detect
associations between delivery term and vaginal bacteria taxa
composition during pregnancy. The host factor in the analysis
was defined as two groups with patients who delivered at preterm
vs. term. The patients who delivered at marginal term were
excluded from the analysis. Only specimens collected in vaginal
during pregnancy were included in the analysis. Meanwhile,
according to the original paper, the samples could be divided to 5
Vaginal Community State Types. Only samples with community
state type 4 were analyzed in the original paper. To be consistent,
we followed the same criteria for sample filtering. The sample
size in the final analysis was 103. We included 58 taxa with zero
proportion greater than 0.25 for 103 samples in our analysis.
The real data and the R code for our analysis are available
from the GitHub page: https://abbyyan3.github.io//NBZIMM-
tutorial/NBZIMM_NBMMs_Longitudinal.html.

To compare the abilities of LMMs and NBMMs in detecting
the static and dynamic association between host factor and
vaginal bacterial taxa composition, we used the following four
different models:
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FIGURE 2 | Empirical power of both interaction term and main effect in all four simulation settings.

FIGURE 3 | False positive rates of both interaction term and main effect in all four simulation settings.
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TABLE 3 | Significant taxa rates detected in four models with LMMs and NBMMs.

Alpha Level 0.05

Model 1 Test of β1 LMMs 0.034483

NBMMs 0.068966

Model 2 Test of β1 LMMs 0.034483

NBMMs 0.12069

Model 3 Test of β1 LMMs 0.12069

NBMMs 0.224138

Test of β3 LMMs 0.137931

NBMMs 0.275862

Model 4 Test of β1 LMMs 0.137931

NBMMs 0.206897

Test of β3 LMMs 0.137931

NBMMs 0.293103

1) Model A: the host factor as fixed effect only, no host factor and
time interaction term, only random intercept;

2) Model B: the host factor as fixed effect only, no host factor
and time interaction term, two random effects (i.e., random
intercept and time effect);

3) Model C: the host factor, time, host factor and time interaction
term as fixed effects, only random intercept;

4) Model D: the host factor, time, host factor and time interaction
term as fixed effects, two random effects (i.e., random intercept
and time effect);

We summarized the number of significant taxa and calculated the
rate of significant taxa detected by LMMs and NBMM each using
Model A-D at alpha level at 0.05 (Table 3). In model A andmodel
B, the numbers of detected significant taxa were substantially
less than the numbers from model C and model D. It inferred
that failing to incorporate the host factor and time interaction
term as fixed effect in the model will largely affect our ability to
detect shifts in microbiome studies. Meanwhile, it showed that
our NBMMs is capable in detecting more significant taxa than
LMMs. Consistent differences have also been found at different
significance levels, like 0.01 and 0.001.

Figure 4 shows the significant features of species level in
the model with the host factor and the host factor and time
interaction term both at the 5% significance threshold and their
minus log transformed p-values for NBMMs and LMMs. It
showed that NBMMs could discover more species than LMMs
in detecting both static association (with host factor term) and
dynamic association (with host factor and time interaction
term). To compare our analysis results with the published results
in DiGiulio et al. (2015), we found that the original paper made
two extreme assumptions to the longitudinal study as completely
independent or averaged over samples for each subject. The
top identified taxa overlapped between our NBMMs with the
original paper included Gardnerella_137183, Lactobacillus
jensenii_31171, Staphylococcus aureus_4446058, Lactobacillus
crispatus_4447432, Prevotella_760967, Dialister_1105876.
In summary, our NBMMs method is not only a statistical

valid method without making extreme assumptions and data
transformation, but also detected more significant taxa and
yielded much smaller p-values than the LMMs, showing that the
proposed method could be more powerful than the conventional
LMMs.

DISCUSSION

The main research interest in longitudinal microbiome study is
to detect the associations between host clinical/environmental
factors and the dynamic shifts in microbiome composition while
accounting for sources of heterogeneity and dependence in
microbiome measurements. To study the dynamic composition
of microbiome, many studies collect samples with temporal
structures (Hill et al., 2010; Morrow et al., 2013; Srinivas
et al., 2013; La Rosa et al., 2014; Leamy et al., 2014;
Faust et al., 2015; Wang et al., 2015; Zhou et al., 2015).
These longitudinal studies enable us to study the inherent
dynamic properties in microbiome data which have provided
extraordinary opportunities to elucidate the true roles of the
microbiome in health and disease states and to develop new
diagnostics and therapeutic targets (Knights et al., 2011; Segata
et al., 2011; Virgin and Todd, 2011; Collison et al., 2012).
Accurately identifying and understanding these associations is
critical to further predict the probabilities of disease with the
identified taxa or biomarkers. However, the traditional methods
of using LMMs to model longitudinal data fail to address
the count data features in microbiome data. Our simulation
studies revealed the impact of the specific features on the
microbiome data, showing that ignoring those features can
substantially reduce the power for detecting the effects of host
clinical/environmental factors with dynamic effects, thus leading
to biased and false inferences. We extended our previously
proposed negative binomial mixed model (NBMMs) specifically
to directly analyze longitudinal microbiome count data without
data transformation.

The previously proposed NBMMs (Zhang et al., 2017) have
demonstrated its superior ability in family structured clustered
microbiome count data. The proposed NBMMs directly model
microbiome counts generated by the 16S rRNA gene sequencing
or the shotgun sequencing with an efficient IWLS algorithm
(Schall, 1991; Breslow and Clayton, 1993; McCulloch and
Searle, 2001; Venables and Ripley, 2002). It not only addresses
statistical challenges of over-dispersion and varied total reads in
microbiome count data, but also accounts for correlation among
the observations. Our simulations and real data analysis also
show that our algorithm is stable and efficient (Zhang et al., 2017).
Meanwhile, the IWLS algorithm is an extension of a commonly
used procedure for fitting GLMs and GLMMs which allows us to
model non-constant variances or special correlation structures.
Therefore, by extending the NBMMs to analyze longitudinal
microbiome count data, we illustrated the capability of our
proposed NBMMs to handle complex longitudinal study design,
such as to include time in the random slope model or to account
for the auto-regressive residual correlation in time-series data.
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FIGURE 4 | The analyses of NBMMs and LMM: minus log transformed p-values for the significant differentially abundant taxa at the 5% significance threshold

between term and preterm groups for species level; the left panel shows the minus log transformed p-values for association of group main effect, and the right panel

shows the minus log transformed p-values for association for group by time interaction.

Our simulations indicate that our proposed approach is flexible
to handle complex structured longitudinal data, allowing for
incorporating any types of random effects and within-subject
correlation structures (Pinheiro and Bates, 2000; McCulloch
and Searle, 2001). In the simulations, our proposed approach
outperformed LMMs consistently.

We also applied our method to a previously published
data set. The purpose of the real data is to detect host factors
that associated with dynamic compositional features of
the microbiome (Leamy et al., 2014). Notably, by applying
our NBMMs to the temporal and spatial dataset from
DiGiulio et al. (2015), the goal of our analysis was to
detect taxa that are significantly associated with dynamic
change in compositional microbiome between termed and
preterm pregnancy. Our proposed method detected the
same species Gardnerella_137183, Lactobacillus jensenii_31171,
Staphylococcus aureus_4446058, Lactobacillus crispatus_4447432,
Prevotella_760967, Dialister_1105876, as in the original paper.
In the original paper, they made two extreme assumptions to
the longitudinal study as completely independent or averaged
over samples for each subject. Our NBMMs, on the other
hand, does not make any extreme assumption and is more
statistically valid. Nevertheless, we still identified overlapped
species as in the original paper, showing NBMMs picked out the
significant species under extremes as well. Our NBMMs method
detected more significant taxa and yielded much smaller p-values
than the LMMs, showing that the proposed method could be
more powerful than the conventional LMMs. Furthermore,
comparing the species identified in the real data using LMMs
and NBMMs, we found that the species identified by NBMMs
only are mostly overlapped with the original paper. It inferred
that the transformation of count data could potentially lead
to misleading information and interpretation. One potential

limitation of our NBMMs is that it is not designed to explicitly
handle zero-inflation and we recommend it as future work.
Even though, our NBMMs has shown it outperformed LMMs in
longitudinal microbiome study in terms of power and accurate
interpretation. It is also directly applicable to be used as an
analytic tool in longitudinal RNA-seq study.

AUTHOR CONTRIBUTIONS

NY design the study, develop the method and the software,
and participate in writing the paper; XZ simulation
study, real analysis, and draft the manuscript; Y-FP
design the study, real data analysis, and participate in
writing the paper; LZ design the study, and participate
in writing the paper; BG design the simulation and real
data analysis; AP participate in revising the manuscript;
WZ real data analysis, and participate in revising the
manuscript.

ACKNOWLEDGMENTS

This work was supported in part by research grants from USA
National Institutes of Health (R03-DE024198, R03-DE025646),
National Natural Science Foundation of China (31771417),
National Natural Science Foundation of China (81673448), and
Natural Science Foundation of Jiangsu Province China (BK
20161218).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2018.01683/full#supplementary-material

Frontiers in Microbiology | www.frontiersin.org 8 July 2018 | Volume 9 | Article 1683

https://www.frontiersin.org/articles/10.3389/fmicb.2018.01683/full#supplementary-material
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zhang et al. NBMMs for Longitudinal Microbiome

REFERENCES

Anders, S., and Huber, W. (2010). Differential expression analysis for sequence

count data. Genome Biol. 11:R106. doi: 10.1186/gb-2010-11-10-r106

Benson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J., Kim, J., et al. (2010).

Individuality in gut microbiota composition is a complex polygenic trait shaped

bymultiple environmental and host genetic factors. Proc. Natl. Acad. Sci. U.S.A.

107, 18933–18938. doi: 10.1073/pnas.1007028107

Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E.,

et al. (2010). Through ageing, and beyond: gut microbiota and

inflammatory status in seniors and centenarians. PLoS ONE 5:e10667.

doi: 10.1371/annotation/df45912f-d15c-44ab-8312-e7ec0607604d

Blekhman, R., Goodrich, J. K., Huang, K., Sun, Q., Bukowski, R., Bell, J. T., et al.

(2015). Host genetic variation impacts microbiome composition across human

body sites. Genome Biol. 16:191. doi: 10.1186/s13059-015-0759-1

Breslow, N. E., and Clayton, D. C. (1993). Approximate inference in generalized

linear mixed models. J. Am. Stat. Assoc. 88, 9–25.

Chen, E. Z., and Li, H. (2016). A two-part mixed-effects model for analyzing

longitudinal microbiome compositional data. Bioinformatics 32, 2611–2617.

doi: 10.1093/bioinformatics/btw308

Collison, M., Hirt, R. P., Wipat, A., Nakjang, S., Sanseau, P., and Brown, J. R.

(2012). Data mining the human gut microbiota for therapeutic targets. Brief

Bioinformatics 13, 751–768. doi: 10.1093/bib/bbs002

De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S.,

et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative

study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A.

107, 14691–14696. doi: 10.1073/pnas.1005963107

De Muinck, E. J., Lagesen, K., Afset, J. E., Didelot, X., Ronningen, K. S.,

Rudi, K., et al. (2013). Comparisons of infant Escherichia coli isolates link

genomic profiles with adaptation to the ecological niche. BMC Genomics 14:81.

doi: 10.1186/1471-2164-14-81

DiGiulio, D. B., Callahan, B. J., Mcmurdie, P. J., Costello, E. K., Lyell, D. J.,

Robaczewska, A., et al. (2015). Temporal and spatial variation of the human

microbiota during pregnancy. Proc. Natl. Acad. Sci. U.S.A. 112, 11060–11065.

doi: 10.1073/pnas.1502875112

Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo,

G., Fierer, N., et al. (2010). Delivery mode shapes the acquisition and

structure of the initial microbiota across multiple body habitats in newborns.

Proc. Natl. Acad. Sci. U.S.A. 107, 11971–11975. doi: 10.1073/pnas.1002

601107

Faust, K., Lahti, L., Gonze, D., De Vos, W. M., and Raes, J. (2015). Metagenomics

meets time series analysis: unraveling microbial community dynamics. Curr.

Opin. Microbiol. 25, 56–66. doi: 10.1016/j.mib.2015.04.004

Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N.,

and Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial

community imbalances in human inflammatory bowel diseases. Proc. Natl.

Acad. Sci. U.S.A. 104, 13780–13785. doi: 10.1073/pnas.0706625104

Gerber, G. K. (2014a). The dynamic microbiome. FEBS Lett. 588, 4131–4139.

doi: 10.1016/j.febslet.2014.02.037

Gerber, G. K. (2014b). “Longitudinal Microbiome Data Analysis,” inMetagenomics

for Microbiology, eds J. Izardm (Cambridge, MA: Academic Press).

Ghodsi, M., Liu, B., and Pop, M. (2011). DNACLUST: accurate and efficient

clustering of phylogenetic marker genes. BMC Bioinformatics 12:271.

doi: 10.1186/1471-2105-12-271

Gilbert, J. A., Meyer, F., and Bailey, M. J. (2011). The future of

microbial metagenomics (or is ignorance bliss?). ISME J. 5, 777–779.

doi: 10.1038/ismej.2010.178

Goodrich, J. K., Davenport, E. R., Beaumont, M., Jackson, M. A., Knight, R., Ober,

C., et al. (2016a). Genetic determinants of the gut microbiome in UK twins. Cell

Host Microbe 19, 731–743. doi: 10.1016/j.chom.2016.04.017

Goodrich, J. K., Davenport, E. R., Waters, J. L., Clark, A. G., and Ley, R. E. (2016b).

Cross-species comparisons of host genetic associations with the microbiome.

Science 352, 532–535. doi: 10.1126/science.aad9379

Hill, D. A., Hoffmann, C., Abt, M. C., Du, Y., Kobuley, D., Kirn, T. J.,

et al. (2010). Metagenomic analyses reveal antibiotic-induced temporal

and spatial changes in intestinal microbiota with associated alterations in

immune cell homeostasis. Mucosal Immunol. 3, 148–158. doi: 10.1038/mi.20

09.132

Holmes, E., Li, J. V., Athanasiou, T., Ashrafian, H., and Nicholson, J.

K. (2011). Understanding the role of gut microbiome-host metabolic

signal disruption in health and disease. Trends Microbiol. 19, 349–359.

doi: 10.1016/j.tim.2011.05.006

Knights, D., Parfrey, L. W., Zaneveld, J., Lozupone, C., and Knight, R. (2011).

Human-associated microbial signatures: examining their predictive value. Cell

Host Microbe 10, 292–296. doi: 10.1016/j.chom.2011.09.003

Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight,

R., et al. (2011). Succession of microbial consortia in the developing infant

gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 108, (Suppl. 1), 4578–4585.

doi: 10.1073/pnas.1000081107

Kostic, A. D., Gevers, D., Pedamallu, C. S., Michaud, M., Duke, F., Earl, A.

M., et al. (2012). Genomic analysis identifies association of Fusobacterium

with colorectal carcinoma. Genome Res. 22, 292–298. doi: 10.1101/gr.12657

3.111

La Rosa, P. S., Warner, B. B., Zhou, Y., Weinstock, G. M., Sodergren, E., Hall-

Moore, C. M., et al. (2014). Patterned progression of bacterial populations

in the premature infant gut. Proc. Natl. Acad. Sci. U.S.A. 111, 12522–12527.

doi: 10.1073/pnas.1409497111

Leamy, L. J., Kelly, S. A., Nietfeldt, J., Legge, R. M., Ma, F., Hua, K., et al. (2014).

Host genetics and diet, but not immunoglobulin A expression, converge to

shape compositional features of the gut microbiome in an advanced intercross

population of mice. Genome Biol. 15:552. doi: 10.1186/s13059-014-0552-6

Matsen, F. A., Kodner, R. B., and Armbrust, E. V. (2010). Pplacer: linear

time maximum-likelihood and Bayesian phylogenetic placement of

sequences onto a fixed reference tree. BMC Bioinformatics 11:538.

doi: 10.1186/1471-2105-11-538

McCulloch, C. E., and Searle, S. R. (2001). Generalized, Linear, and Mixed Models.

Hoboken, NJ: John Wiley & Sons, Inc.

Morrow, A. L., Lagomarcino, A. J., Schibler, K. R., Taft, D. H., Yu, Z.,

Wang, B., et al. (2013). Early microbial and metabolomic signatures predict

later onset of necrotizing enterocolitis in preterm infants. Microbiome 1:13.

doi: 10.1186/2049-2618-1-13

Palmer, C., Bik, E. M., Digiulio, D. B., Relman, D. A., and Brown, P. O. (2007).

Development of the human infant intestinal microbiota. PLoS Biol. 5:e177.

doi: 10.1371/journal.pbio.0050177

Paulson, J. N., Stine, O. C., Bravo, H. C., and Pop, M. (2013). Differential

abundance analysis for microbial marker-gene surveys. Nat. Methods 10,

1200–1202. doi: 10.1038/nmeth.2658

Peng, X., Li, G., and Liu, Z. (2015). Zero-inflated beta regression for differential

abundance analysis with metagenomics data. J. Comput. Biol. 23, 102–110

doi: 10.1089/cmb.2015.0157

Pinheiro, J. C., and Bates, D. C. (2000).Mixed-Effects Models in S and S-PLUS. New

York, NY: Springer Verlag.

Pookhao, N., Sohn, M. B., Li, Q., Jenkins, I., Du, R., Jiang, H., et al. (2015).

A two-stage statistical procedure for feature selection and comparison

in functional analysis of metagenomes. Bioinformatics 31, 158–165.

doi: 10.1093/bioinformatics/btu635

Robinson, M. D., and Oshlack, A. (2010). A scaling normalization method

for differential expression analysis of RNA-seq data. Genome Biol. 11:R25.

doi: 10.1186/gb-2010-11-3-r25

Samuel, B. S., and Gordon, J. I. (2006). A humanized gnotobiotic mouse

model of host-archaeal-bacterial mutualism. Proc. Natl. Acad. Sci. U.S.A. 103,

10011–10016. doi: 10.1073/pnas.0602187103

Schall, R. (1991). Estimation in generalized linear models with random effects.

Biometrika 78, 719–727. doi: 10.1093/biomet/78.4.719

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S.,

et al. (2011). Metagenomic biomarker discovery and explanation. Genome Biol.

12:R60. doi: 10.1186/gb-2011-12-6-r60

Sohn, M. B., Du, R., and An, L. (2015). A robust approach for identifying

differentially abundant features in metagenomic samples. Bioinformatics 31,

2269–2275. doi: 10.1093/bioinformatics/btv165

Spor, A., Koren, O., and Ley, R. (2011). Unravelling the effects of the environment

and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290.

doi: 10.1038/nrmicro2540

Srinivas, G., Moller, S., Wang, J., Kunzel, S., Zillikens, D., Baines, J. F., et al. (2013).

Genome-wide mapping of gene-microbiota interactions in susceptibility to

autoimmune skin blistering. Nat. Commun. 4:2462. doi: 10.1038/ncomms3462

Frontiers in Microbiology | www.frontiersin.org 9 July 2018 | Volume 9 | Article 1683

https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1073/pnas.1007028107
https://doi.org/10.1371/annotation/df45912f-d15c-44ab-8312-e7ec0607604d
https://doi.org/10.1186/s13059-015-0759-1
https://doi.org/10.1093/bioinformatics/btw308
https://doi.org/10.1093/bib/bbs002
https://doi.org/10.1073/pnas.1005963107
https://doi.org/10.1186/1471-2164-14-81
https://doi.org/10.1073/pnas.1502875112
https://doi.org/10.1073/pnas.1002601107
https://doi.org/10.1016/j.mib.2015.04.004
https://doi.org/10.1073/pnas.0706625104
https://doi.org/10.1016/j.febslet.2014.02.037
https://doi.org/10.1186/1471-2105-12-271
https://doi.org/10.1038/ismej.2010.178
https://doi.org/10.1016/j.chom.2016.04.017
https://doi.org/10.1126/science.aad9379
https://doi.org/10.1038/mi.2009.132
https://doi.org/10.1016/j.tim.2011.05.006
https://doi.org/10.1016/j.chom.2011.09.003
https://doi.org/10.1073/pnas.1000081107
https://doi.org/10.1101/gr.126573.111
https://doi.org/10.1073/pnas.1409497111
https://doi.org/10.1186/s13059-014-0552-6
https://doi.org/10.1186/1471-2105-11-538
https://doi.org/10.1186/2049-2618-1-13
https://doi.org/10.1371/journal.pbio.0050177
https://doi.org/10.1038/nmeth.2658
https://doi.org/10.1089/cmb.2015.0157
https://doi.org/10.1093/bioinformatics/btu635
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1073/pnas.0602187103
https://doi.org/10.1093/biomet/78.4.719
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1093/bioinformatics/btv165
https://doi.org/10.1038/nrmicro2540
https://doi.org/10.1038/ncomms3462
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zhang et al. NBMMs for Longitudinal Microbiome

Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R.

E., et al. (2009). A core gut microbiome in obese and lean twins. Nature 457,

480–484. doi: 10.1038/nature07540

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., and

Gordon, J. I. (2006). An obesity-associated gut microbiome with increased

capacity for energy harvest. Nature 444, 1027–1031. doi: 10.1038/nature05414

Venables, W. N., and Ripley, B. D. (2002). Modern Applied Statistics with S. New

York, NY: Springer Verlag.

Virgin, H. W., and Todd, J. A. (2011). Metagenomics and personalized medicine.

Cell 147, 44–56. doi: 10.1016/j.cell.2011.09.009

Wagner, B. D., Robertson, C. E., and Harris, J. K. (2011). Application of two-

part statistics for comparison of sequence variant counts. PLoS ONE 6:e20296.

doi: 10.1371/journal.pone.0020296

Wang, J., Kalyan, S., Steck, N., Turner, L. M., Harr, B., Kunzel, S., et al.

(2015). Analysis of intestinal microbiota in hybrid house mice reveals

evolutionary divergence in a vertebrate hologenome. Nat. Commun. 6:6440.

doi: 10.1038/ncomms7440

Ward, D. V., Scholz, M., Zolfo, M., Taft, D. H., Schibler, K. R., Tett,

A., et al. (2016). Metagenomic sequencing with strain-level resolution

implicates uropathogenic E. coli in necrotizing enterocolitis and mortality

in preterm infants. Cell Rep. 14, 2912–2924. doi: 10.1016/j.celrep.2016.

03.015

White, J. R., Nagarajan, N., and Pop, M. (2009). Statistical methods for

detecting differentially abundant features in clinical metagenomic samples.

PLoS Comput. Biol. 5:e1000352. doi: 10.1371/journal.pcbi.1000352

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A.,

et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes.

Science 334, 105–108. doi: 10.1126/science.1208344

Xu, L., Paterson, A. D., Turpin,W., and Xu,W. (2015). Assessment and selection of

competing models for zero-inflated microbiome data. PLoS ONE 10:e0129606.

doi: 10.1371/journal.pone.0129606

Zhang, X., Mallick, H., Tang, Z., Zhang, L., Cui, X., Benson, A. K., et al. (2017).

Negative binomial mixed models for analyzing microbiome count data. BMC

Bioinformatics 18:4. doi: 10.1186/s12859-016-1441-7

Zhou, Y., Shan, G., Sodergren, E., Weinstock, G., Walker, W. A., and Gregory, K.

E. (2015). Longitudinal analysis of the premature infant intestinal microbiome

prior to necrotizing enterocolitis: a case-control study. PLoS ONE 10:e0118632.

doi: 10.1371/journal.pone.0118632

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Zhang, Pei, Zhang, Guo, Pendegraft, Zhuang and Yi. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Microbiology | www.frontiersin.org 10 July 2018 | Volume 9 | Article 1683

https://doi.org/10.1038/nature07540
https://doi.org/10.1038/nature05414
https://doi.org/10.1016/j.cell.2011.09.009
https://doi.org/10.1371/journal.pone.0020296
https://doi.org/10.1038/ncomms7440
https://doi.org/10.1016/j.celrep.2016.03.015
https://doi.org/10.1371/journal.pcbi.1000352
https://doi.org/10.1126/science.1208344
https://doi.org/10.1371/journal.pone.0129606
https://doi.org/10.1186/s12859-016-1441-7
https://doi.org/10.1371/journal.pone.0118632
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

	Negative Binomial Mixed Models for Analyzing Longitudinal Microbiome Data
	Introduction
	Methods
	Negative Binomial Mixed Models (NBMMS) for Longitudinal Microbiome Studies
	Accounting for Within-Subject Correlations and IWLS Algorithm for Fitting the NBMMS
	R Package for Implementing the Proposed Method

	Results
	Simulation Studies
	Simulation Designs
	Simulation Results

	Application to Temporal and Spatial Pregnant Data

	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


