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Abstract

The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of
their current applications, which range from the simple electric cigarette lighter to non-volatile
random access memories. Research on nanoscale ferroelectrics reveals that their behaviour
is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena
with potential for future devices. As ferroelectrics become thinner, maintaining a stable
polarization becomes increasingly challenging. On the other hand, intentionally destabilizing
this polarization can cause the effective electric permittivity of a ferroelectric to become
negative, enabling it to behave as a negative capacitance when integrated in a
heterostructure. Negative capacitance has been proposed as a way of overcoming
fundamental limitations on the power consumption of field-effect transistors. However,
experimental demonstrations of this phenomenon remain contentious. The prevalent
interpretations based on homogeneous polarization models are difficult to reconcile with the
expected strong tendency for domain formation, but the effect of [...]
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The stability of the spontaneous electrical polarisation characteristic of ferroelectrics is

fundamental to a multitude of their current applications, ranging from the simple

electrical cigarette lighter to non-volatile random access memories1. Yet, the

technological potential of these materials is far from being exhausted as research on

nanoscale ferroelectrics reveals their properties to be profoundly different from those in

bulk, giving rise to fascinating new phenomena with exciting prospects for future
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devices2-4. As ferroelectrics become thinner, maintaining a stable polarisation becomes

increasingly challenging. On the other hand, intentionally destabilising this polarisation

can cause the effective electrical permittivity of a ferroelectric to become negative5,

enabling it to behave as a negative capacitance when integrated in a heterostructure.

Negative capacitance has been garnering increasing attention following the realisation

that it could be exploited to overcome fundamental limitations on the power

consumption of field effect transistors6. Experimentally, however, demonstrations of

this phenomenon are still contentious7. The prevalent interpretations based on

homogeneous polarisation models are difficult to reconcile with the expected strong

tendency for domain formation 8,9, while the effect of domains on negative capacitance

has received surprisingly little attention 5,10-12. Here we report the observation of

negative capacitance in a model system of multidomain ferroelectric-dielectric

superlattices across a wide range of temperatures, in both the ferroelectric and

paraelectric phases. Using a phenomenological model we show that domain-wall motion

not only gives rise to negative permittivity but can also enhance, rather than limit, its

temperature range. Furthermore, our first-principles-based atomistic simulations

provide detailed microscopic insight on the origin of this phenomenon, identifying the

dominant contribution of near-interface layers and paving the way for its future

exploitation.

Negative capacitance (NC) has its origins in the imperfect screening of the spontaneous

polarisation5,10,13,14. Imperfect screening is intrinsic to any semiconductor-ferroelectric or

even metal-ferroelectric interfaces because of their finite effective screening lengths15,16.

Alternatively, it can be engineered in a controlled manner by deliberately inserting a

dielectric layer of relative permittivity ߳ௗ between the ferroelectric and the electrodes as

suggested by Salahuddin and Data6 and shown in Fig. 1a. The physical separation of the
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ferroelectric bound charge from the metallic screening charges creates a depolarizing field

inside the ferroelectric, destabilizing the polarisation and lowering the ferroelectric transition

temperature. The effect of the dielectric layer can be understood by considering the free

energy of the bilayer capacitor with the usual assumption of a uniform polarisation ܲ (see

Methods). Below the bulk transition temperature ܶ, the free energy of the ferroelectric layer

develops a double-well with minima at finite values of ܲ, but when combined with the

parabolic potential of the dielectric layer the total energy has a minimum at ܲ = 0 (Fig. 1b).

The reciprocal dielectric constant of the system as a whole ߳ିଵ, given by the curvature of the

total energy with respect to the polarisation, is positive, as required for thermodynamic

stability. However, as the non-polar state of the ferroelectric layer corresponds to a maximum

of its local energy, the local stiffness of the ferroelectric layer is negative, i.e., polarising the

ferroelectric layer has a negative energy cost.

With decreasing temperature, the ferroelectric double-well progressively deepens and would

dominate the total energy below ܶ = ܶ, favouring a transition to a homogeneous

ferroelectric state. The local dielectric stiffness of the ferroelectric layer would then increase

and eventually become positive as shown by the blue curve in Fig. 1c. This ‘homogeneous’

model has served as the basis for the interpretation of the experimental studies of NC to

date17-20. However, despite its attractive simplicity, it does not describe the true ground state

of the system as, in general, the depolarization field that leads to the NC effect will also tend

to favour instead a transition to an inhomogeneous, multidomain phase at ܶ > ܶ as

demonstrated by numerous experiments (e.g., ref. 8). This has profound consequences for the

dielectric response and NC, as we show next with the help of two phenomenological models.

First, we use a Ginzburg-Landau approach, as detailed in Methods, to obtain an analytic

description of the phase transition into an inhomogeneous state with a gradual (soft)

polarization profile, typical of ultrathin films21. This model allows us to obtain the lattice
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contribution to the dielectric response (i.e. the response of a static domain structure), which

is shown by the dashed curve in Fig. 1c. The appearance of the soft domain structure results

in qualitative changes in the shape of the ߳ିଵ(ܶ) curve, pushing its minimum below the

actual transition temperature. The overall effect of a static domain structure, however, is to

reduce the temperature range of NC, as previously thought11.

To investigate the contribution of domain wall motion, we choose instead to work in the

simpler Kittel approximation, which is valid for abrupt (thin) domain walls typical of thicker

films well below ܶ 5,12,22. The resulting dielectric response is shown by the solid red curve in

Fig. 1c (for details of the calculation, see Methods). Remarkably, domain wall motion

contributes negatively to the overall dielectric stiffness5,10,12: Macroscopically, domain wall

displacements create a net polarisation that leads to a depolarising field, which dominates the

total field in the ferroelectric, thus leading to NC. Microscopically, the domain wall

displacements redistribute the interfacial stray fields resulting in a negative net contribution

to the free energy and thus the local dielectric constant. Although the thin-wall Kittel model

does not capture the subtleties of the soft domain structure of ultrathin films, it clearly

highlights the importance of the domain wall contribution in extending the temperature

window of the NC effect.

To experimentally access the different temperature regimes of NC shown in Fig. 1c, we have

deposited several series of high-quality epitaxial superlattices consisting of ݊ ferroelectric

and ݊ௗ dielectric monolayers repeated ܰ times, and hereafter labelled ൫ ݊ ,݊ௗ൯ே. For each

superlattice series ݊ is fixed, while ݊ௗ is varied from 4 to 10 unit cells. SrTiO3 (STO)

crystals were used as substrates and epitaxial SrRuO3 (SRO) top and bottom electrodes were

deposited in-situ to enable dielectric impedance spectroscopy measurements. STO was also

chosen as the dielectric component, while PbTiO3 (PTO) and quasi-random Pb0.5Sr0.5TiO3
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(PST) alloys were used as the ferroelectric layers. The PST composition was chosen for its

low ܶ, enabling us to investigate the full range of temperatures up to and above ܶ without

complications arising from leakage.

Such superlattices constitute a model system for the observation of NC, as they are

mathematically equivalent to the bilayer systems investigated theoretically5,6,21 and present a

number of very convenient features – e.g., the small layer thicknesses minimize the number

of free carriers, ensuring appropriate electrostatic boundary conditions, while the highly

ordered stripe domains are well-suited for X-ray diffraction studies and theoretical modelling.

Crucially, by varying the dielectric layer thicknesses and the total number of bilayer

repetitions, the individual layer permittivities can be extracted from measurements of the total

capacitance of a series of samples as we show next.

The dielectric properties of three PST- STO superlattices with 14-uc-thick PST layers are

summarized in Fig. 2a-d. All superlattices exhibit a broad maximum in the dielectric response

which moves to lower temperature with increasing STO content (Fig. 2a). These maxima do

not coincide with the phase transition temperature ܶ and instead arise from the qualitatively

different temperature dependences of the STO and PST layer permittivities. Using XRD, we

obtain an estimate of ܶ from the temperature evolution of in-plane and out-of-plane lattice

parameters (ܽ and ܿ, respectively) as shown in Fig. 2b. Contrary to what is expected for a

transition to a homogeneous ferroelectric state, the observed ܶ is independent of the STO

layer thickness as ܶ is determined by the domain wall density, which in turn depends only

on the ferroelectric layer thickness. The regular domain structure with a periodicity of ~10–

12 nm can be observed using XRD as peaks in the diffuse scattering around the superlattice

Bragg reflections (Extended Data Fig. 1).
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To separate the individual layer dielectric constants ߳ௗ and ߳ we apply the standard series

capacitor expression, which for our superlattices can be written as
ఢ ≈ ఢ + ఢ (see Methods),

where ݊ = ݊ௗ + ݊ and ߳ is the overall dielectric constant of the superlattice, obtained

directly from the measured capacitance. The linear relationship between ݊/߳ and ݊ௗ is well

satisfied for 100 K d�ܶ < 570 K , as illustrated in Fig. 2c for a few selected temperatures.

The dielectric constant of the STO layers can be obtained from the slopes of the plots in Fig.

2c. The resulting ߳ௗ(ܶ) is presented in the inset of Fig. 2d and shows the typical decrease

with temperature observed in STO thin films and bulk crystals. The intercepts of the linear

plots in Fig. 2c give the reciprocal dielectric constant of the PST layers ߳ି ଵ, which is plotted

in Fig. 2d. At low temperature, deep in the ferroelectric regime, ߳ି ଵ is positive. Upon

heating, however, it slowly decreases entering the NC regime around room temperature. It

then reaches a minimum, and subsequently returns to positive values at high temperature in

the paraelectric phase. Note that the minimum in ߳ି ଵ is observed well below the phase

transition temperature ܶ (indicated with an arrow), contrary to what would be expected for a

structure with a homogeneous polarisation. For this series of samples, the temperature regime

ܶ < ܶ < ܶ cannot be resolved because ܶ is very close to ܶ (measured independently to

be around 500 K for PST thin films of the same composition). In order to access this

temperature regime, a set of (5,݊ௗ)N superlattices was fabricated with PST replaced by PTO,

which has a much higher ܶ (~1200 K) when grown coherently on SrTiO3
23. As shown in

Fig. 2e, the NC regime can be clearly observed in the paraelectric phase above 580 K in

these samples. Above ܶ, however, the dielectric stiffness increases much faster than

expected, turning positive far below ܶ. This is most likely due to the progressive increase in

the thermally activated conductivity of the ferroelectric layers, which destroys the



7

electrostatic boundary conditions required for NC and leads to Maxwell-Wagner relaxations

at high temperature (see Methods).

To gain further insight, we used first-principles-based effective models that permit treating

thermal effects. We used the potentials for PTO and STO introduced in ref. 24 as the starting

point to construct models for PTO/STO superlattices with an in-plane epitaxial constraint

corresponding to a STO-(001) substrate (see Methods). As compared with experiment, our

models feature relatively stiff STO layers and relatively low ferroelectric transition

temperatures; otherwise they capture the behaviour of PTO layers stacked with dielectric

layers in a qualitatively and semi-quantitatively correct way. For computational feasibility,

we focused on a representative (8,2) superlattice (10x10x10 elemental perovskite cells in the

periodically-repeated simulation box) that presents the behaviour summarized in Fig. 3. As

we cool down from high temperature, the c/a ratio of the PTO layers (Fig. 3a) marks an

elastic transition, at about 490 K, to a state characterized by strongly fluctuating ferroelectric

domains (380 K snapshot in Fig. 3d and Supplementary Video). This fluctuating phase could

be indicative of temperature-induced domain melting, analogous to vortex lattice melting in

high- ܶ superconductors25. As we further cool down, we observe a ferroelectric transition at

370 K associated with the freezing of the domains into stable stripes. This change can be

appreciated in Fig. 3b, where we plot different measures of the local dipole order inside the

PTO layer. As shown in the bottom panel of Fig. 3d, this low-temperature phase presents

stripes along the [110] direction, with a domain thickness of about 5 unit cells and sharp

walls. As shown in Fig. 3f and Extended Data Fig. 2, in the ground state the dipoles form

closure domains and almost do not penetrate inside the stiff STO layers. This corresponds to

the vanishing of spontaneous polarization at the surface of a polydomain ferroelectric noted

in ref. 26. Note that the domain walls present a significant Bloch character in the ground
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state; this is the result of a wall-confined polarization along [-110] that appears at about 120

K and is analogous to the one recently predicted for pure PTO27.

We investigated the layer-resolved dielectric response of the superlattices. In essence (more

details in Methods), we compute the local susceptibility of a region i, χ = ଵఢబ డ〈〉డாೣ , where ܲ
is the local polarization and 〈… 〉 represents a thermal average that can be readily obtained by

simulating our models under an applied electric field .௫௧ܧ As shown in Methods, the local

dielectric constant can be expressed as ߳ = ఢఢିχ, where ߳௧௧ is the dielectric constant of

the whole system. The results in Fig. 3c correspond to such a calculation for the PTO layers

of the (8,2) superlattice and confirm the presence of a NC region extending above and below

the ferroelectric transition temperature.

So where does the computed NC come from? The local susceptibilities χ are always positive

in our calculations, confirming the expectation that an applied external field induces

polarisation changes that are parallel to it. By contrast, the local dielectric constant ߳
measures a response to a local field incorporating depolarising fields that make its behaviour

richer and its physical interpretation more challenging5. In particular, its value will be

negative if χ > ߳௧௧. Hence, the NC regions are those significantly more responsive than the

system as a whole.

Our formalism allows us to map out the local response within the PTO layers and thus

determine which regions are responsible for the NC behaviour. Figure 3e shows ߳ି ଵ resolved

along the superlattice-stacking direction and as a function of temperature. At high

temperatures the material behaves like a normal dielectric. Then, negative contributions to߳ି ଵ appear at about 550 K, well before any ordering occurs in the system; in that regime, the

negative contribution is confined to the vicinity of the PTO/STO interface, and the response

of the whole PTO layer continues to be positive. As temperature is further reduced, the NC
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region extends to the whole PTO layer. Eventually, at low temperature, the inner part of the

PTO layer recovers a conventional dielectric behaviour that dominates the total response,

even if our simulations reveal that a negative contribution from the interfaces still persists.

We can further map the susceptibility within the planes perpendicular to the stacking

direction to thus quantify the contributions of domains and domain walls. Figure 3f shows

representative results at 320 K. Predictably, we find that the susceptibility at the domain walls

is much larger than at the domains. In other words, the field-induced polarization of the walls,

which results in the growth/shrinkage of the domains, dominates the response. Further, the

large response of the walls is much enhanced in the vicinity of the interfaces with the STO

layers. Hence, our simulations suggest that, below ~370 K, the domain wall region near the

interfaces dominates the NC of the PTO layers.

There are important differences between our simulated and experimental superlattices, which

complicates a detailed comparison (more in Methods). Nevertheless, our basic result, i.e. that

the PTO layers present a negative dielectric constant in a temperature region extending above

and below ܶ, is confirmed by our simulations. Further, we also ran simulations of various

(8,m) superlattices to mimic our experimental approach to compute the response of the PTO

layer; the results shown in Extended Data Fig. 3 are similar to those of Fig. 3c, thus

validating our strategy to measure�߳.

Finally, as mentioned at the outset, the depolarisation effects in ferroelectric-dielectric

superlattices are completely analogous to those at interfaces between a ferroelectric and a

metal or a semiconductor. We have found that PTO-SRO superlattices, for example, exhibit

very similar domain structures as PTO-STO. These are induced by the imperfect screening at

the SRO-PTO interfaces, which produces a depolarizing field equivalent to that induced by a

7 u.c.-thick STO layer28,29. It is therefore reasonable to expect the same order of magnitude

NC effect in a transistor-like structure composed of a PTO gate dielectric and an ultrathin
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conducting SRO channel, where applying a gate voltage ܸ will lead to an enhancement of

the surface potential ߶௦ at the PTO-SRO interface. With a PTO-SRO interface capacitance of

~0.6 F/m2 14 and a ferroelectric capacitance ܥ equivalent to that of one of our PTO layers,

one can obtain voltage amplification factors
డథೞడ = ା as large as ~2 at temperatures where

1/߳ is most negative. For the more practical interface with a conventional semiconductor,

the expected amplification is more modest (e.g.,
డథೞడ ~1.03 for ~0.1ܥ F/m2 11) but is still

enhanced over conventional gate dielectrics where the corresponding value is below unity.

Such enhancements are especially encouraging in the light of tremendous recent progress in

the integration of ferroelectric oxides directly on conventional semiconductors30.
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Main Figures

Figure 1 | Phenomenological description of negative capacitance. a, Sketch of the

ferroelectric-dielectric bilayer capacitor with and without domains. Green, blue and grey

layers correspond to the dielectric, ferroelectric and metallic components respectively. b,The

total (purple) and local free energies of the ferroelectric (blue) and dielectric (green) layers. c,

Temperature dependence of the local dielectric stiffness of the ferroelectric layer calculated

from phenomenological models with: uniform homogeneous polarization (blue), and

inhomogeneous polarization with static, soft domain walls (red, dashed) and mobile, abrupt

domain walls (red, solid).

ba

c

P

P
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Figure 2 | Temperature dependence of the dielectric permittivities of PST-STO and

PTO-STO superlattices. a, Total dielectric constant of (14,݊ௗ) PST-STO superlattices. b,

Sample tetragonalities used to determine ܶ. c, Linear fits to the series capacitor expression

for a selection of temperatures. d, Reciprocal dielectric constant of the PST layers in (14,݊ௗ)
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superlattices calculated from the series capacitor model. Arrow with associated error bars

indicates ܶ. Inset shows the dielectric constant of the STO layers. Estimated uncertainties

are shown as grey error bars. e, Reciprocal dielectric constant of the PTO layers in (5,݊ௗ)

superlattices.
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Figure 3 | Results of Monte Carlo simulations of a first-principles-based model for the

(8,2) superlattice. Temperature dependence of the PTO layer a, c/a ratio; b, local

polarisation; and c, reciprocal dielectric constant. b, Supercell average of the local

polarisation absolute value (i), as well as the polarisation at a particular cell within a domain

considering its absolute (ii) and bare (iii) values. The arrows mark the elastic transition and

onset of fluctuating polar order around 490 K in a and the ferroelectric freezing transition

around 370 K as determined from the inflection points in b. The high-temperature tails of P(i)

and P(ii) reveal the presence of incipient polar order. d, Snapshots of the local polarisation

(out-of-plane component ) within the middle of the PTO layer at 380 K and 240 K. e,

Temperature dependence of the local dielectric response ͳȀ߳ resolved along the stacking

direction. f, Local susceptibility map in the (-110) plane at 320 K.
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Methods

Landau theory for monodomain bilayers and superlattices

To derive the expected temperature dependence of the dielectric function of a ferroelectric-

dielectric bilayer or superlattice undergoing a phase transition to a homogenous

(monodomain) state, we consider the free energy of the bilayer capacitor under short-circuit

boundary conditions (or equivalently, one period of a superlattice) of the form

ܨ = ݈ ቆߙ
2

ܲଶ + ߚ
4

ܲସ + ߳
2

ଶቇܧ + ݈ௗ ߳߳ௗ
2

.ௗଶܧ (1)

The first term represents the energy density, per unit area, of a ferroelectric material with a

second-order phase transition at a temperature ܶ as determined by the coefficient of the ܲଶ
term, ߙ = (ܶ − ܶ)/߳ܥ . The second term describes the energy penalty for polarizing the

dielectric layer with dielectric constant ߳ௗ. Here ܧ and ௗܧ are the electric fields, appearing in

the ferroelectric and dielectric layers respectively when the spontaneous polarisation ܲ
develops. Taking into account the electrostatic boundary conditions at the ferroelectric-

dielectric interface ߳ௗ߳ܧௗ = ߳ܧ + ܲ and the short-circuit condition for the whole system,݈ௗܧௗ + ݈ܧ = 0, the functional (1) can be rewritten in terms of ܲ only with a renormalized

overall ܲଶ coefficient and the corresponding lowering of the transition temperature. The

transition to a homogeneous ferroelectric state is thus predicted to occur at

ܶ = ܶ − ܥ ቆ1 + ݈݈ௗ ߳ௗቇିଵ

In particular, when ߳ௗ ≫ 1 and�݈ௗ is comparable to ݈, (1) reduces to

ܨ ≈ ݈ ቆߙ
2

ܲଶ + ߚ
4

ܲସቇ + ݈ௗ ൬ 1

2߳߳ௗ ܲଶ�൰
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which describes the energy of a homogeneously polarized bilayer with equal polarizations in

both layers17,23. ܶ then simplifies to

ܶ ≈ ܶ − ݈ௗ݈߳ௗ .ܥ
The overall electric susceptibility of such a system is given by

ఞ = ߳ డమிడమ = ఞ + ఞ,

where ݈ = ൫݈ + ݈ௗ൯, and ߯ௗ ≈ ߳ௗ and ߯ = ൫ߙ + ܲଶ൯ିଵ߳ିߚ3 ଵ are the electric

susceptibilities of the dielectric and ferroelectric layers respectively. It has the familiar form

of the series capacitance formula
ଵ = ଵ + ଵ. Note that for high permittivity materials,

such as those considered in this work, ߯ = ߳ to a very good approximation. The temperature

dependence of the contribution to the reciprocal dielectric constant from the ferroelectric

layer is shown in Fig 1c (blue curve). While the total permittivity exhibits the typical

divergence (߳ିଵ = 0) at ܶ and is always positive, as required for thermodynamic stability,

the dielectric stiffness of the ferroelectric component decreases linearly with temperature

upon cooling and acquires negative values below ܶ. At ܶ, the spontaneous polarisation

appears and the ܲଶߚ3 term eventually restores ߳ି ଵ to positive values at lower temperatures.

To obtain the blue curve in Fig. 1c, we have modelled a 30-nm-thick PbTiO3 film in series

with a 10-nm-thick SrTiO3 layer using the following parameters: ܶ = 1244 K (strain-

renormalized), ܥ = 4.1 × 10ହ K and ߳ௗ = 300, giving ܶ = 788 K.

Landau-Kittel model of domain-wall contribution to permittivity

For an isolated ferroelectric slab of thickness ݈ in zero applied field, the up- and down-

oriented 180⁰ domains are of equal width, ,ݓ given by the Landau-Kittel square-root

dependence31,32. For high-߳ ferroelectrics
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ݓ ≈ ቆ�߳߳ୄ∥ ቇଵସ ටߞ ⋅ ߣ ⋅ ߦ2 ⋅ ݈
where ߳∥ and ߳ୄare the ‘bulk’ lattice dielectric constants parallel and perpendicular to the

polarization, ߦ is the coherence length, ߣ = 1 + ߳ௗ/(߳∥�߳ୄ)ଵ/ଶ and ߞ ≈ 3.53 5,12,26,33,34. This

equation also holds for ferroelectric films with dead layers and ferroelectric-dielectric

superlattices, provided the dielectric layers are thick enough compared to the domain width to

allow the interfacial stray fields to decay sufficiently. Upon application of a field, the

ferroelectric layer develops a net polarization due to (i) the dielectric response of the lattice,

described by ߳∥, and (ii) the motion of domain walls. To calculate the domain-wall

contribution, one must find the field-induced changes to the stray depolarizing fields, as has

been done in refs 5,12,22. The resulting effective dielectric constant of the ferroelectric can be

expressed as12

߳ = ߳∥ − ߨ
4 ln 2

ඨ߳߳ୄ∥ ݈ݓ ∥߳ߣ�
where the first term is the lattice response, while the second term is the negative contribution

from domain-wall motion. Within the limits of validity of the Landau-Kittel theory ݈/ݓ is

large and therefore the second term is dominant. We stress again that this term originates

from the field-induced changes in the inhomogeneous electric field distribution at the

interface between the ferroelectric and the dielectric (or ‘dead’) layers, consistent with the

findings of our atomistic calculations.

The temperature dependence of ݓ and ߳, can be estimated35 using the standard critical

Ginzburg-Landau expansions near ܶ
(ܶ)ߦ = ߦ

(1− ܶ/ ܶ)ଵ/ଶ ; ߳∥(ܶ) = 1

2

∥ߢ
1− ܶ/ ܶ (3)
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where ∥ߢ is related to the Curie constant ܥ via ∥ߢ = /ܥ ܶ and ߦ is the atomic-scale

coherence length at ܶ = 0. Assuming that ߳ୄis temperature independent, the domain width ݓ
is almost temperature independent21,26 whereas the approximate temperature dependence of߳ is sketched in Fig. 1c. The solid red curve was calculated for a 30-nm-thick film with the

following parameters (corresponding roughly to those of strained PbTiO3): ܶ = 1244 K,ܥ = 4.1 × 10ହ K, ߳ୄ = 120 and ߦ2 = 1 nm.

Ginzburg-Landau theory of polydomain bilayers and superlattices

The critical temperature of transition to the inhomogeneous striped domain state can be

calculated within Ginzburg-Landau theory26,33,

ܶ = (1 − (߬ߨ ܶ,

where ߬ = /ܥ) ܶ߳ୄ)భమ ⋅ ./݈ߦ2 For 30nm-thick PTO film, we obtain ܶ ≃ 1030 K. A similar

expression (up to a numerical factor) can be obtained on the qualitative level by noting that at

ܶ the domain widthݓ� becomes comparable with the domain wall thickness .(ܶ)ߦ2
Close to ܶ, the Landau-Kittel thin-wall approximation breaks down as the domain profile

becomes soft (we represent this region by the dotted line in Fig. 1c). The theory for mobile

domain walls in this regime is challenging, but the lattice part of the response of the

polydomain structure can be calculated analytically. This would correspond to a situation

where domain wall motion is impeded, for instance by pinning of the domain walls. Using

Ginzburg-Landau theory, this contribution can be expressed as35

߳(ܶ) = 2߳∥(ܶ)
3〈ܲଶ〉/ ܲଶ − 1

which is a generalization of (3). Here ܲ = ܲ ቀ1 − ்்బቁଵ/ଶ
is the normalized temperature-

dependent polarisation of the bulk short-circuited sample, and 〈ܲଶ〉 = 〈ܲଶ(ݕ,ݔ)〉 is the space
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average of the temperature-dependent polarisation profile of the domain state with critical

temperature ܶ. The factor 〈ܲଶ〉 can be calculated over a wide temperature interval that

includes both soft and abrupt (thin) domain profiles using the universal expression forܲ(ݕ,ݔ) in terms of elliptic sn-functions, as given in Eqn. (7) of ref. 21. After space-averaging

we obtain

߳,ீିଵ (ܶ) = ܶܥ ൬ ܶܶ − 1൰ ቈ1 − ܨ3 ቆ1 − ܶܶቇ ,������ܶ < ܶ
where (ݔ)ܨ = ଵమ ൯(ݔ)൫݉ܭൣ − ൯൧ଶ(ݔ)൫݉ܧ

tanh(0.35߬ݔ); (݉)ܭ and (݉)ܧ are the complete

elliptic integrals of the first and second kind respectively with (ݔ)݉ ≈ tanh ݔ0.27߬ and

߬ = /ܥ) ܶ߳ୄ)భమ ⋅ ./݈ߦ2 Note that (0)ܨ = 0 and the above expression matches the relative

permittivity of the paraelectric state ߳(ܶ) = ܶ)/ܥ − ܶ) at ܶ = ܶ. The temperature

dependence of ߳,ீିଵ is shown by the dashed red line in Fig. 1c.

Sample preparation

Superlattices were deposited on monocrystalline (100)-SrTiO3 (STO) substrates using off-

axis radiofrequency magnetron sputtering. PTO and STO were deposited at a substrate

temperature of 520⁰C in an O2/Ar mixture of ratio 5/7 and total pressure of 180 mTorr. For

SRO layers, acting as top and bottom electrodes, the corresponding parameters were 635 ⁰C,

1/20 and 100 mTorr. PST layers were deposited by sequential sputtering of sub-monolayer

amounts of STO and PTO. The PST-STO superlattices were asymmetrically terminated with

bottom SRO-PST and top STO-SRO interfaces. By contrast, the PTO-STO superlattices were

symmetrically terminated with both metal-insulator interfaces being between STO and SRO;

the thickness of interfacial STO layers was chosen to be half of those in the superlattice

interior to maintain a constant overall composition. For each series of superlattices, the

thickness of the ferroelectric layers was fixed (14 unit cells (u.c.) for PST and 5 u.c. for PTO)
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while the STO layer thickness was varied from 4 u.c. to 10 u.c. The number of repetitions ܰ
was chosen to maintain the total superlattice thickness as close as possible to 100 nm for

PTO-STO superlattices and 200 nm for PST-STO superlattices. To extract the interface

capacitance contribution, a series of (5,8)N PTO-STO superlattices with ܰ = 10, 19 and 30

was used.

The top SRO layers were patterned using UV photolithography and etched using an Ar ion

beam to form a series of 240 x 240 μm2 capacitors. Structural characterization was performed

using a PANalytical X’Pert PRO diffractometer equipped with a triple axis detector and an

Anton Paar domed heating stage. Dielectric impedance spectroscopy in the 100 Hz to 2 MHz

frequency range was performed using an Agilent E4980A Precision LCR meter in a tube

furnace with a custom made sample holder under continuous O2 flow at atmospheric

pressure.

Structural analysis

Specular ߠ2-ߠ scans were used to determine the superlattice periodicity (Extended Data Fig.

1a), whereas rocking curves were used to confirm the presence of domains and determine

their periodicity (Extended Data Figs 1b and 1c). Temperature evolution of the lattice

parameters was obtained from ߠ2-ߠ scans and used to determine the phase transition

temperatures, taken to be the crossing point of linear fits to the high and low temperature

data (see Fig 2b).

Calculation of the individual layer permittivities

The total measured capacitance of the sample ௧௧ܥ has contributions from the superlattice ௌܥ
and the two metal-dielectric interfaces ܥ

௧௧ܥ1 = ௌܥ1 + ܥ2 = ܥ1 + ௗܥ1 + ܥ2
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where ܥ and ௗܥ are the total (series) capacitance of all the ferroelectric (PTO) and dielectric

(STO) layers respectively. For an ൫ ݊ ,݊ௗ൯ே superlattice

݀߳
=

݀ௗ߳ௗ + ݀߳ + ሚܰ൫ܥ2 ݊ + ݊ௗ൯�ܿҧ߳ =
ܰ݊ௗܿௗ߳ௗ +

ܰ ݊ ܿ߳ +
ሚܥ2

where ప෩ܥ = ,ܣ/߳ܥ ݀ are the relevant thicknesses and ܿ are the lattice constants. Since

ܿ ≈ ܿௗ ≈ ܿҧ = (݊ௗܿௗ + ݊ ܿ)/(݊ௗ + ݊)݊ௗ + ݊߳ ≡ ݊߳ ≈ ݊ௗ߳ௗ + ݊߳ + 2ܰܿҧܥ�ሚ
For a series of superlattices with a fixed period (i.e. fixed ݊ and ݊ௗ) but varying ܰ the

interfacial contribution 1/(ܿҧܥሚ ) can be obtained from the slope of a plot of ݊ ߳⁄ vs 1 ܰ⁄ .

Once the temperature dependence of the interfacial capacitance is known, the individual layer

permittivities of the STO and PTO layers can be obtained using a series of samples with fixed

݊ and varying ݊ௗ from a the slope and intercept of the plot of ݊/߳ − (ሚܥ̅� ܿܰ)/2 vs ݊ௗ.

This analysis relies on the assumption that the layer permittivities do not change as the

individual layer thicknesses are varied within each superlattice series. It is therefore crucial

that the ferroelectric layer thickness is held fixed as it determines the periodicitiy of the

ferroelectric domain structure and thus the ferroelectric transition temperature and the

domain-wall contribution to the measured dielectric constant. All superlattices within a series

must also be in the same regime of electrostatic coupling, which places a lower limit on the

STO layer thickness at around 3-4 unit cells36.

To quantify the interface contribution ܥ for the PTO-based superlattices, a series of

symmetrically terminated samples with a fixed period (5,8)N but varying number of
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repetitions ܰ was fabricated. The interface capacitance was extracted from the intercept of

the plot of ݊/߳ vs 1/ܰ as discussed above and is shown as a function of temperature in

Extended Data Fig. 4. At room temperature, , is around 1000 fF/μm2ܥ which is in excellent

agreement with previous experimental work37 and compares quite well with the DFT

prediction of 615 fF/μm2 (at 0 K) for the same interface38. The weak dependence of ܥ on

temperature is also consistent with previous reports37. Quantifying the interfacial contribution

independently in this way allows us to extract more reliably the temperature range of the NC

regime. As illustrated in Extended Data Fig. 4, the interfacial contribution does not change

the qualitative behaviour of the extracted PTO dielectric constant and makes only a small

(within error bars) difference to the extracted PTO stiffness. It is thus reasonable to neglect

this correction, as was done in Fig. 2.

Impedance analysis

The observation of NC relies on the electrostatic interactions between the ferroelectric and

dielectric layers, which in turn require both materials to be sufficiently insulating to avoid the

screening of the spontaneous polarization. To identify the origin of dielectric losses and

quantify the conductivity of our samples we have measured complex impedance spectra over

a wide range of frequencies from 100 Hz to 2 MHz and performed equivalent circuit

modelling. We present the complex impedance ܼ(߱) = ܼᇱ + ܼ݅′′ data in the complex

capacitance representation (߱)ܥ = ᇱܥ + ᇱᇱܥ݅ ≡ 1/ܼ݅߱(߱) as is common for capacitive

systems.

Each PTO and STO layer in the superlattice, as well as the two metal-dielectric interfaces,

can be considered as a parallel R-C element, with a capacitance ܥ and a resistance ܴ due to

the finite conductivity of the layer. The superlattice is then modeled by connecting these R-C

elements in series as shown in the inset of Extended Data Fig. 5. An additional series
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resistance Rs (typically a few hundred Ω) accounts for the contact resistances and other

sources of resistance in the external circuit.

At low temperature, the conductivities of the PTO and STO layers are negligible and the

whole system behaves as a single capacitance ܥ = (∑ ିܥ ଵ) ିଵ
. The measured ′ܥ is frequency

independent except for the high-frequency roll off due to the parasitic series resistance ܴ௦. As

shown in Extended Data Fig. 5 for a (5,8)30 PTO-STO superlattice, even at 500 K, the data

can be well modelled by a single capacitor in series with ܴ௦; the parallel resistance is too high

to be determined from the fit (i.e. well above 10଼ Ω). At higher temperatures, the superlattice

conductivity increases resulting in an increase of the dielectric loss ′′ܥ at low frequencies.

The 600 K data are modelled with one parallel R-C element in series with ܴ௦. Despite the

high temperature and large electrode area mߤ�240) × ,(mߤ�240 total sample resistance is still

2 MΩ. At 700 K, however, the total sample resistance drops to 8.8 kΩ. In addition, some

layers become significantly more conducting than others, giving rise to Maxwell-Wagner

relaxations39 which can be observed as steps and plateaus in .(߱)′ܥ The behaviour can be

qualitatively captured by dividing the system into two blocks with different resistances, each

modelled as a parallel R-C element. To reproduce the more gradual frequency dispersion,

however, more R-C elements are needed (in this case three were sufficient). At these

temperatures, the samples are too conducting to maintain the electrostatic conditions

necessary for NC. The sample resistances for all data shown in Fig. 2 were higher than 1 MΩ.

Atomistic simulations of PbTiO3/SrTiO3 superlattices

To construct the first-principles models for the PTO/STO superlattices, we took advantage of

the potentials for the bulk compounds recently introduced by some of us,24 which give a

qualitatively correct description of the lattice-dynamical properties and structural phase

transitions of both materials. Then, we treated the interface between PTO and STO in an
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approximate way, relying on the following observations: (1) The inter-atomic force constants

in perovskite oxides like PTO and STO have been shown to depend strongly on the identity

of the involved chemical species and weakly on the chemical environment40. (Thus, for

example, the interactions between Ti and O are very similar in both PTO and STO.) (2)

Except in the limit of very short-period superlattices, the main effects of the stacking are

purely electrostatic and largely independent of the details of the interactions at the interfaces.

(3) The main purely-interfacial effects leading, e.g., to the occurrence of new orders (as those

discussed in ref. 41) are related to the symmetry breaking, which permits new couplings

forbidden by symmetry in the bulk case. Such qualitative symmetry-breaking effects are

trivially captured by our potentials, even if the actual values of the interactions are

approximate. (Similar approaches to treat ferroelectric superlattices and junctions can be

found in the literature, ref. 42 being a representative case.)

As a result of these approximations, we were able to construct our superlattice potentials by

using the models for bulk PTO and STO to describe the interactions within the layers,

assuming a simple numerical average for the interactions of the ion pairs touching or crossing

the interface. Thus, for example, Ti—O interactions in a TiO2 interface plane are computed

as the average of the analogous Ti—O interactions in PTO and STO. New interactions, such

as those involving Pb and Sr neighbours across the interface, are chosen so that the acoustic

sum rules are respected; in practice, their values are close to an average between the

analogous Sr—Sr and Pb—Pb pairs. Finally, the long-range dipole-dipole interactions are

governed by a bare electronic dielectric constant ε∞ that is taken as a weighted average of the

first-principles results for bulk PTO (8.5ε0) and STO (6.2ε0), with weights reflecting the

composition of the superlattice.

The parameters of our models for bulk PTO and STO were computed from first principles as

described in ref. 24. To model our PTO/STO superlattices, we adjusted our models in the
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following ways: (1) We softened the model for bulk STO so that it has a dielectric

permittivity ε33 of about 300ε0 at room temperature. We checked a posteriori that the STO

layers in the superlattices are not as soft, which is probably a consequence of the modified

electrostatic interactions (ε∞) assumed, as described above. (2) We imposed an epitaxial

constraint corresponding to having a STO (001)-oriented substrate, i.e., we assume in-plane

lattice constants a = b = 3.901 Å, forming an angle γ = 90º. (3) We tweaked the model for 

PTO so that it gives an out-of-plane polarization of 1.0 C/m2 at 0 K when subject to the

epitaxial constraint just described. Care was needed as the model of ref. 24 for bulk PTO

becomes unstable when the epitaxial constraint is used in combination with the change in ε∞.

Nevertheless, it was possible to obtain a stable model with the correct ground state

polarisation by adjusting the expansive hydrostatic pressure introduced in ref. 24 as an

empirical correction: instead of the –13.9 GPa used in ref. 24, for the present work we used –

11.2 GPa. Note also that, when we use this model to simulate a film of PTO under the STO

epitaxial constraint, we get a ferroelectric transition temperature of 460 K, which is slightly

below the temperature at which the fluctuating domains appear in the (8,2) superlattice (490

K). As in the case of STO, the difference between bulk material and superlattice is probably

caused by the different value of ε∞: we use a slightly larger value for the pure film, which

results in a weaker ferroelectric instability.

These approximations and adjustments allow us to construct models for superlattices of

arbitrary ( ݊ ,݊ௗ) stacking. For the simulations we used periodically-repeated supercells that

contain 10x10 elemental perovskite units in-plane, while out-of-plane they expand one full

superlattice period. Thus, for example, for the (8,2) superlattice we used a simulation box that

contains 10x10x(8+2)x5 = 5000 atoms. We solved the models by running Monte Carlo

simulations comprising between 10000 and 40000 thermalization sweeps (longer

thermalization is needed in the vicinity of phase transitions) followed by 50000 sweeps to
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compute thermal averages. The dielectric susceptibility was calculated by applying a small

out-of-plane electric field to the simulation box. We found that, in this highly reactive

system, this approach converged much faster than the usual fluctuation formulas43.

The low-temperature ground state of our (8,2) superlattice is sketched in Extended Data Fig.

2, where the stripe domain structure can be nicely appreciated. Note that this result closely

resembles the one obtained directly from first principles calculations, in the limit of 0 K, in

ref. 44; this agreement further confirms the accuracy of our model potential.

Calculation of local dielectric constants

In the following we summarize the derivation of formulas that relate the local response of

each layer with the global one of the superlattice. Here we are exclusively concerned with the

response along the superlattice stacking direction. We use a “0” superscript to refer to the

situation in which no external electric field is applied, and i to label the layers in the

superlattice. In absence of free charges, the condition on the continuity of the displacement

vector implies

ܦ = ܦ = ܲ + ߳ܧ
for all layers. Note that ܧ is the total electric field acting on layer ݅. In general, this total

field can be split into local and external contributions, so that ܧ = ,ܧ + ௫௧ܧ . Naturally,

when no external field is applied, we simply have ܧ = ,ܧ .

Additionally, if we have ܯ layers in the repeated unit of the superlattice, the periodicity of

the potential implies that

 ݈ܧெ
ୀଵ = 0,
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where ݈ is the thickness of layer ݅. Hence, in absence of applied field, there is no net potential

drop across the supercell. Then, we immediately get that

ܦ = ଵିܮ  ݈ܦ =ெ
ୀଵ ଵିܮ  ݈ ܲ =ெ

ୀଵ ܲ,
Where ܮ = ∑ ݈ெୀଵ is one superlattice period and ܲ is the polarisation of the superlattice with

no field applied. As a result, the electric field at layer ݅ can be written as:

ܧ = ,ܧ = (ܲ − ܲ)/߳.
Now we consider an external electric field .௫௧ܧ It is trivial to verify that the field-induced

variations in polarisation, electric field and displacement satisfy:

Δܦ = Δܦ = Δ ܲ + ߳൫Δܧ, + ௫௧൯ܧ = Δܲ + ߳߳ܧ௫௧,
 ݈ Δܧ, = 0

ெ
ୀଵ

and

Δܧ, = (Δܲ − Δ ܲ)/߳.
Then, the dielectric constant of layer ݅ can be computed as:

߳ = ΔܦϵΔܧ = (Δܲ + ߳ܧ௫௧)Δܲ − Δ ܲ + ߳ܧ௫௧ = (߯ + 1)߯ − ߯ + 1 = ߳௧௧߳௧௧ − ߯ ,
where we have introduced the layer susceptibility

߯ = 1߳ Δ ܲܧ௫௧.
As a result, we have managed to write all the relevant quantities in terms of the local

susceptibilities ߯, which is very convenient at both conceptual and practical levels.

Conceptually, ߯ is a quantity we expect to be positive in all cases, as an applied electric field
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will create dipoles parallel to it. This basic local response of the material is physically and

intuitively clear, as it is free from the subtleties (associated to the long-range electrostatic

effects encapsulated in the local – depolarizing – fields) that affect the dielectric constant.

Practically, ߯ is very easy to compute from a Monte Carlo simulation, may it be by explicitly

applying an electric field and calculating the change in local polarisation or by directly

inspecting the fluctuations of the local polarisations in absence of applied field. The latter

approach can be viewed as a generalisation of the method described e.g. in ref. 43; similar

fluctuation formulas for ferroelectric nanostructures were introduced in refs 13,45.

The layers labeled by ݅ will typically correspond to actual PTO and STO layers, but we could

also further sub-divide our superlattice. For example, the above formulas formally allow us to

consider contributions from the interfaces, or from different regions within a layer. This kind

of subdivision was used in our paper to prepare Fig. 3e, where maps of the dielectric constant

as a function of position along the superlattice stacking direction are reported.

The dielectric susceptibility ߯ of a layer ݅ can be viewed as a direct average of the

susceptibilities ߯(ݕ,ݔ)coming from different regions of the layer ݕݔ plane. Hence, we can

use a representation as that of Fig. 3f in our manuscript to determine which part of a given

layer (domain walls vs. domains) contributes the most to ߯. Note that one could feel tempted

to interpret the layer dielectric constant ߳ as coming from a collection of parallel capacitors,

which would formally allow us to map ߳(ݔ, .(ݕ Such a construction, however, implicitly

assumes an equal potential drop across the individual capacitors within layer i, which seems

in conflict with the inhomogeneous in-plane structure of our PTO layers.

For the calculation of local polarizations, we evaluated the local dipole and cell volume from

the atomic positions and Born effective charges. We computed dipoles centred on the A

(Pb/Sr) and B (Ti) sites of the perovskite structure, by considering the weighted contributions

of the surrounding atoms. Thus, for example, the dipole centred on a specific Ti cation was
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computed by adding up contributions from the Ti itself, the 6 neighbouring oxygens (each

such contribution was divided by 2, as each oxygen has 2 first-neighbour Ti cations) and the

8 neighbouring A (Pb/Sr) cations (each such contribution was divided by 8, as each A-cation

has 8 first-neighbour Ti’s).

Relation between atomistic simulations and experiment

As already mentioned, our model potentials for PTO/STO superlattices are not expected to

render quantitatively accurate results. The difficulties to reproduce the behaviour of the bulk

compounds in a quantitative way are discussed at some length in refs 24 and 46, where

evidence is given of the great challenge these materials pose to first-principles methods. The

model deficiencies are best captured by the error in the obtained transition temperatures: the

model for PTO used in this work gives a value of 440 K when solved in bulk-like conditions,

far below the experimental result of 760 K. Similarly, we do not expect our models to capture

accurately the dielectric response of the STO layers in the superlattice, which we have

checked tend to be stiffer than the experimental ones. Fortunately, beyond these quantitative

inaccuracies, the qualitative behaviour of individual PTO and STO obtained from our

simulations, as well as that of the PTO/STO superlattice, seem perfectly in line with

experimental observations and physical soundness.

As regards the results for the PTO/STO system, it is interesting to note that our atomistic

simulations predict a phase transition occurring in two steps: At a relatively high temperature

(490 K) the ܿ/ܽ ratio of the PTO layers clearly reflects the onset of local instantaneous

ferroelectric order; then, at a lower temperature (~370 K), the static multi-domain

ferroelectric state freezes in. Thus, according to these simulations, the interval between 370 K

and 490 K is characterised by strongly fluctuating ferroelectric domains. Admittedly, this

result is likely to be affected by finite-size effects in our simulations; yet, given the very large

separation of the two transition temperatures, and the easy and frequent domain
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rearrangements observed in our Monte Carlo simulations, we tend to believe it should be

taken seriously. Experimentally, preliminary measurements on the (5,4)28 PTO-STO

superlattice (Extended Data Fig. 6) indicate that the kink in the measured temperature

dependence of the ܿ/ܽ ratio (usually assumed to mark the ferroelectric transition) occurs at a

slightly (~50 K) higher temperature than the appearance of domain satellites in the diffuse

scattering. A similar temperature difference was noted in a superlattice of a different

composition in Fig. 3 of ref. 47. Further investigation is needed, however, to clarify the

polarisation structure in this temperature range.

We also ran simulations of various (8,݊ௗ) superlattices, and computed the corresponding total

dielectric constants as a function of temperature, to mimic our experimental approach to

estimate the response of the PTO layer. Extended Data Fig. 3 shows the results for ߳
obtained in this way: reassuringly, we find a temperature interval where the PTO layers

present a negative dielectric constant, which validates our experimental strategy for

estimating ߳.

If we compare the results in Extended Data Fig.3 and Fig. 3c of our manuscript, we note that

the temperature interval in which the negative capacitance is observed is essentially the same,

but the quantitative values for ߳ clearly differ. Nevertheless, given the approximations

involved in each of the two methods to compute ߳ – e.g., heuristic division into PTO and

STO layers, implicit assumption that PTO layers in (8,݊ௗ) superlattices of varying STO

content behave equivalently, etc. – these quantitative discrepancies do not seem very

significant and we have not investigated them further.

Finally, returning to our phenomenological predictions in Fig. 1c, it would appear that the

Landau-Ginzburg result for the static domain structure bears a closer qualitative resemblance

to the experimental data and the atomistic simulation results than the Kittel model, despite the
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fact that it is the latter which correctly captures the important contribution of domain wall

motion. It is important to note, however, that in the Kittel model above we have not included

the possibility of domain wall pinning (by defects or otherwise), which would reduce the

domain wall contribution and could lead to an upturn of ߳ at low temperatures. Quantifying

the relative contributions to NC from domain wall motion and the static domain response,

both experimentally and through atomistic simulations, would be a worthwhile challenge for

future studies.

Supplementary Information is linked to the online version of the paper at

www.nature.com/nature.
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Extended Data

Extended Data Figure 1 | XRD characterisation of the superlattices. a, Intensity profiles

around the (002) substrate reflection for PST-STO superlattices. The broad peaks aroundʹߠ ൌ 45.5⁰ correspond to the top and bottom SRO electrodes. Finite size oscillations due to

the 200 nm superlattice thickness are visible. a and b, XRD domain satellites for a, PST-STO

and b, PTO-STO superlattices. Insets: domain periodicities obtained from fitting the Qx line

profiles using a sum of two Gaussian and one Lorentzian functions for the domain satellites

and central Bragg peak respectively.
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Extended Data Figure 2 | Local polarization distribution at low temperature. Arrows

indicate the dipole component within the (-110) plane; we plot arrows for both Pb/Sr-centred

and Ti-centred dipoles. The colouring indicates the polarisation component along [-110],

revealing a low-temperature polar order at the domain walls.

Extended Data Figure 3 | Comparison with experiment. Reciprocal dielectric constant of

the PTO layers calculated from the computed total dielectric constants of (8,݊ௗ) superlattices

using the same analysis as for the experimental data.
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Extended Data Figure 4 | Interface capacitance contributions. a, SRO-STO interface

contribution to the dielectric response. b, Dielectric stiffness of the PTO layers with and

without correcting for the interface capacitance.

Extended Data Figure 5 | Dielectric impedance spectroscopy of PTO-STO superlattices.

Real (full circles) and imaginary (open circles) parts of the complex capacitance functionܥ ൌ ᇱܥ  ԢԢܥ݅ for a (5,8)30 PTO-STO superlattice. For temperatures below ~650 K, the data

can be well fitted with a single parallel R-C element in series with Rs, as shown by solid

curves for the 500 K and 600 K data. At higher temperatures, Maxwell-Wagner relaxations
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appear as the conductivities of some layers increase faster with temperature than others. At

700 K , the response can be qualitatively captured by a model with two parallel R-C elements

in series with each other (dashed red curve), while for a quantitative fit three R-C elements

are required (solid red curve).

Extended Data Figure 6 | Temperature evolution of the tetragonality and domain

satellites. Intensity of the XRD domain satellite (red) and the film tetragonality (blue) for a

(5,4)28 PTO-STO superlattice. The satellite intensity was obtained by integrating the

measured intensity of the domain satellites and subtracting the minimum integrated intensity

in the paraelectric phase.

Supplementary Video | High temperature fluctuations of the domain structure. Local

dipoles (z component) at the mid plane of the PbTiO3 layer in our (8,2) simulated

superlattice. The video is constructed from snapshots of a Monte Carlo simulation at 400 K.
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