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Introduction

Data envelopment analysis (DEA) as first introduced by

Farrell1 and later developed by Charnes et al2 is an efficiency

assessment tool that implicitly assumes non-negativity of all

inputs and outputs. This assumption is not, however, always

satisfied as was the case in our application to bank branches,

which led to the development of alternative models aiming at

assessing efficiency in the presence of negative data.

Bank branches have been facing major challenges over the

last years relating mainly to the development of alternative

distribution channels competing with bank branches. The

main implication of this was a change in the role played by

bank branches that went from a transaction- to a sales-based

role (see eg Drake and Howeroft3). This changing role of

bank branches has been mainly acknowledged in the

marketing literature (see eg Howcroft and Beckett,4 How-

croft,5 and Howland6), but only recently it has been

recognized in the efficiency measurement literature. For

example, Cook et al7 and Cook and Hababou8 divide the

activities of bank branches into two sets: sales and service,

and propose models to assess efficiency in each case. We too

distinguish between sales and service in this paper, but we

follow a different approach to measuring operational

efficiency. Increases in sales and customers are seen as the

main objectives of our bank branches. Growth in these

variables (ie positive outputs) is obviously better than decline

(negative outputs), but a negative output is not bad in itself.

In fact, a bank branch may consciously choose to focus

more on one of the outputs (say customer base growth) at

the expense of focusing less on the other (say sales (credit

advances) growth). These two strategies are equally valid

although they may mean neglecting one output in favour of

another. The neglected output may thus suffer a decrease,

and growth will be negative.

Traditionally, negative data are handled in efficiency

applications through some data transformation (eg adding

an arbitrary large number to all values of a given variable) so

that all negative data are turned into positive data (see eg

Pastor9 and Lovell10). Such transformation of the data may

have implications for the solution, classification, or ordering

of the DEA results.11 There are, however, some models

whose solution is invariant to data transformations, which

are usually referred to as translation invariant. In the

presence of negative data, the most often used model is the

variable returns to scale (VRS) additive model of Charnes

et al,12 which is translation invariant as demonstrated by Ali

and Seiford.13 The additive model is not, however, in its

original form, units invariant (independent of scale of

measurement of the variables). Owing to this limitation,

Lovell and Pastor14 put forward a unit-invariant version of

the additive model that uses a weighted sum of slacks where

the weights are the inverse of the standard deviations of the

corresponding input and output variables (see also Pastor15

and Thrall16). The main advantage of the additive model is

that it can be applied to negative data directly without any

need to transform them subjectively. However, the additive

model has some drawbacks, namely the fact that it yields in

respect of an inefficient unit the ‘furthest’ targets on the

production frontier, while at the same time it does not yield

an efficiency measure that can be readily interpreted. Thus,
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the model does not yield very practical guidance as to how a

unit might improve its performance nor does it make it

possible to readily rank units on performance. The VRS

model of Banker et al17 (also known as BCC model) is able

to provide an efficiency score in the presence of negative

data, but this cannot be achieved without transforming the

data. In addition, the BCC model has restricted translation

invariance (it is translation invariant on inputs if it is output

oriented, and translation invariant on outputs if it is input

oriented,14,15 meaning that the efficiency scores may depend

on the way data are translated.

Thus, there is no DEA model to date that can be used

with negative data directly without any need to transform

them, while at the same time it yields an efficiency score that

can be readily used to compare units. In this paper, we

propose DEA models that provide efficiency scores, similar

in meaning to radial efficiencies traditionally used in DEA,

while at the same time negative data can be used without the

need to transform them subjectively. This is an important

advantage over existing approaches to deal with negative

data.

Our approach is inspired by the well-known directional

distance model of Chambers et al,18,19 and it provides

efficiency scores that can be directly used to rank and

compare production units when some inputs and/or outputs

are negative. Targets resulting from our procedure, and from

a variant of this procedure, are also analysed in this paper

and it is shown that our models, in general, provide closer

targets than existing models in the literature. Closer targets

represent a useful practical feature because they would prove

easier for the unit to attain and have been explored for the

case when all data are positive in a number of papers (eg

Coelli,20 Frei and Harker,21 Cherchye and Van Puyen-

broeck,22 Portela et al23 among others).

The paper is structured as follows. Some issues arising in

the context of negative data will be explored in the next

section. Then, we present a directional distance procedure

for dealing with negative data in DEA, and after that issues

relating with the closeness of the targets obtained from our

approach and also other well-known models in the literature

are addressed. In the penultimate section, our procedure is

applied to measure the operational efficiency of a set of

Portuguese bank branches, and finally the paper concludes.

Negative data: implications in DEA

Negative data may arise in DEA due to the use of input–

output variables that relate to changes in their values like

changes in clients or accounts from one period to the other,9

or due to the use of variables like profit that may take both

positive and negative values.24 Negative inputs or outputs

may also arise artificially as a way to deal with undesirable

inputs or outputs.11

We can readily demonstrate that an assumption of CRS is

not possible in technologies where negative data can exist. A

CRS technology assumes that any activity can be ‘radially

expanded or contracted to form other feasible activities’

(Färe et al,25 p 50). Take a set of only two units, A and B,

represented by activity vectors (x, y1, y2), where x is input

and y1 and y2 outputs. Assuming that output 1 is negative,

consider that A and B equal (1,�1, 1) and (1,�2, 3),
respectively. Unit A has higher productivity in y1 and B

has higher productivity in y2, and therefore both units are

CRS efficient (see Chen and Ali26). However, the additive

CRS model shows only unit B efficient. In fact, it is possible

to contract unit B (say by 50%) radially and find a feasible

point (under the CRS assumption) dominating unit A (eg

0.5B¼ (0.5,�1, 1.5) dominates A). The productivity ratios,

however, remain unchanged and as such this result is clearly

wrong. The assumption behind CRS DEA models that any

proportion of an efficient unit is also efficient is therefore

only valid for non-negative data.

In the presence of negative data VRS technologies need to

be assumed. However, the use of radial measures of

efficiency traditionally used in VRS DEA models is

problematic. To illustrate the point consider the example

in Figure 1, where two outputs are represented (output 2 is

positive and output 1 may be negative) and all units have the

same input. Assessing the efficiency of unit U3 using, for

example, the radial output-oriented BCC model17 without

transforming the data, implies an expansion of both outputs

by a multiple greater than 1. This, however, implies a

movement of the inefficient unit U3 to the frontier in the

direction shown by the arrow in Figure 1. This movement is

not desired since the negative output is being expanded

making it oven worse. Clearly, positive radial expansion

factors applied to negative data lead in the opposite direction

to the one we would wish to follow to improve performance.

The addition of a constant to the negative output (output 1

in Figure 1) would move the frontier to the positive quadrant

and the right direction would be followed by U3 towards the

frontier. The output efficiency score would, however, depend

on the value of the constant added to the negative output

Figure 1 Example with one negative output.



vector, and the resulting radial efficiency score would be

hard to interpret in the light of the negative data it, in fact,

represents.

Note that the treatment of negative data is in a way

similar to the treatment of undesirable inputs and/or

outputs, since both negative data and undesirable outputs

need to be constrained to move in a direction that is contrary

to the direction used in traditional DEA models. Several

approaches exist to deal with undesirable outputs as can be

seen in the recent review of Allen27 and Dyckhoff and

Allen.28 One of these approaches is based on the directional

distance function, and was first proposed by Chung et al.29

In this paper, we use a related approach, also based on the

directional distance model, to deal with negative data.

A directional distance function approach to coping with

negative data in DEA

Consider a set of units J¼ {1,y, n}, with input levels xij,

i¼ 1,y,m and output levels yrj, r¼ 1,y, s, and unit oAJ
which is to be assessed. The generic directional distance

model as proposed by Chambers et al18,19 is in (1) for the

case of VRS and with input and output vectors in Rmþ s.

max bo
Xn
j¼1

ljyrjXyro þ bogyr ;

�����
(

r ¼ 1; . . . ; s;

Xn
j¼1

ljxijpxio � bogxi ; i ¼ 1; . . . ;m;

Xn
j¼1

lj ¼ 1; lj ; bo; gxi ; gyrX0

)
ð1Þ

Model (1) is defined in the most general non-oriented case as

it looks simultaneously for input contraction and output

expansion. Oriented models can be derived from (1) by

setting respectively gyr or gxi equal to 0. When data are

strictly positive a usual choice for the directional vectors

gxi ; gyr
� �

are the observed input and output levels. When

some data are negative, the use of observed input and output

levels would violate the last constraint of model (1), which is

intended to ensure that inputs and outputs do not worsen

from their observed levels in the solution the model yields.

We modify the model in (1) to ensure that it yields

improving solutions even when some of the data are

negative. Specifically, and for a given data set, consider an

ideal point defined as I¼ (maxJ yj, r¼ 1,y, s, minJxj,

i¼ 1,y,m). We can now define the vectors Rro and Rio in

(2), to which we refer as the range of possible improvement of

unit o.

Rro ¼max
J

fyrjg � yro; r ¼ 1; . . . ; s

and Rio ¼ xio �min
J

fxijg; i ¼ 1; . . . ;m
ð2Þ

Although there is no evidence that any unit can actually exist

at the ideal point I the range of possible improvement in (2)

can be seen as a surrogate for the maximum improvement

that unit o could, in principle, achieve on each input and

output. Such an improvement can never be negative, and

therefore the range vectors in (2) satisfy the non-negativity

restrictions on the direction vectors used in (1). Under VRS

units that have the maximum value on some output or the

minimum value on some input are always 100% efficient.26

Thus, the range of possible improvement we use is

determined by the efficient units’ input/output levels, which

is already a characteristic inherent in the classical DEA

model (eg Thanassoulis,30 Chapter 3).

Note that this contrasts with other notions of ‘range’ used

in the literature such as by Cooper et al,31 where range of a

variable is defined as its maximum observed minus its

minimum observed value. In such a range, worst perfor-

mance as given by maximum inputs and minimum outputs

affects the results of the model. This is because worst

performance is included in the definition of the range and

efficiency results depending on the range defined. Another

notion of ‘range’ related with that defined in (2) has been

introduced by Bogetoft and Hougaard32 and also used by

Asmild et al.33 Bogetoft and Hougaard32 introduce a

‘potential improvements approach’ using the input-oriented

directional distance function, where the directional input

vector is the difference between the observed input and an

ideal reference input. This ideal input vector, however, is

specific to each production unit reflecting the ‘largest

possible reduction in each input with all other inputs kept

fixed’ (Bogetoft and Hougaard,32 p 235). To the authors’

knowledge, the use of the range direction as specified in (2)

has never been used before in the literature.

Range directional model

Based on the notion of the range of possible improvement

in (2), we define the range directional model (RDM) as

shown in (3).

max bo
Xn
j¼1

ljyrjXyro þ boRro; r ¼ 1; . . . ; s;

�����
(

Xn
j¼1

ljxijpxio � boRio; i ¼ 1; . . . ;m;

Xn
j¼1

lj ¼ 1; ljX0

)
ð3Þ

The RDM in (3) is translation invariant and units

invariant, two important characteristics in DEA models

that can deal with negative data.

To prove translation invariance, assume that an

amount Kr is added to each output and Vi to each input.



The constraints in (3), therefore, become
P
j¼ 1
n lj(yrjþKr)X

(yroþKr)þboRro and
P
j¼ 1
n lj(xijþVi)p(xioþVi)–boRio.

Note that the range of improvement does not change with

the addition of a constant to each input and output. The left-

hand side of the output inequality (
P
j¼ 1
n lj(yrjþKr)) is

equivalent to
P
j¼ 1
n ljyrjþKr

P
j¼ 1
n lj. As

P
j¼ 1
n lj¼ 1,

then the constraints changed with Kr reduce to the

constraints in model (3). The same happens with the input

constraints changed by Vi. Note that VRS has been assumed

in RDM. It is only under VRS that we can have translation

invariance.

To prove units invariance assume that all levels of input i

are multiplied by ai, and of output r by gr. This results

in the following modified constraints of (3):
P
j¼ 1
n ljgryrjX

gryroþbogrRro and
P
j¼ 1
n ljaixijpaixio�boaiRio. These con-

straints reduce to those in (3), whose solution, therefore,

does not change when the unit of measurement changes.

The range of improvement Rro or Rio may be zero for

some output or input. This is in line with intuition, because a

range of zero improvement means that the unit has achieved

on that variable a large enough value (for outputs) so that

we have no observed evidence how that value might rise even

further by, for example, compensating input rises or

reductions in other output values. An analogous reasoning

can be advanced as to why zero ranges for minimum

observed input values are intuitive. Note that a constraint

associated with a zero range is necessarily binding (target

values equal observed values).

Interpreting b in model RDM

At the optimal solution to model RDM at least one

constraint is binding, meaning that b equals (yr
*�yro)/Rro

or (xio�xi*)/Rio for at least an output r or an input i. The star
stands for the target value obtained at the optimal solution

to model (3). This means b is equal to the ratio of an optimal
slack (that projects unit o on the frontier) to the maximum

possible slack (given by the range) unit o had on that

variable. Seen in this way b is clearly an inefficiency measure.
The RDM efficiency measure, 1�b, is therefore defined as

(MaxJ{yrj}�yr*)/(MaxJ{yrj}�yro) if a binding constraint

corresponds to output r, or (xi
*�MinJ{xij})/(xio�MinJ{xij})

if a binding constraint corresponds to input i. As target

outputs (target inputs) cannot be lower (higher) than

observed outputs (observed inputs), the numerator of

1�b is never larger than the denominator, meaning that

the upper bound of 1�b is 1. Efficiency of 1 will only be

achieved when the observed are also the target values for the

inputs and outputs of unit o as is the case in traditional DEA

models.2

The RDM efficiency measure can be better interpreted

with the aid of Figure 2 (depicting the same units as

Figure 1), where we are assuming an output-oriented RDM

model.

The efficiency measure 1�b of U3 equals the ratio

CB=CA, which in turn equals the ratio FE=FD. Note that

CB=CA measures the distance between the level of output 1

at the observed point U3 and its target point U3*. FE=FD is

interpreted in a similar manner in respect to the level of

output 2. Thus, we have for U3 a value of 1�b equal

to (5�1.07273)/(5�(�4))¼ (6�4.25455)/(6�2)¼ 43.36%, re-

flecting the relative distance between U3 and its target U3*.

Note that there is close similarity between the RDM

efficiency measure and radial measures of efficiency tradi-

tionally used in DEA. The difference is in the reference point

used to measure efficiency. In the RDM case, the reference

point is not the origin used in traditional DEA models but

rather the ideal point we defined using (2). In fact, if we

rotate Figure 2 suitably we can arrive at Figure 3 in which

the ideal point occupies the position of the origin in

traditional DEA models.

Using Figure 3, it is easy to see that the efficiency measure

yielded by model RDM, 1�b, is a distance measure between
the observed and its target point with reference to the ideal

point. The lower this distance the higher the value of 1�b
and the more efficient a unit will be. To see this note that the

direction of improvement followed by inefficient units U3

and U5 in Figure 3 is defined with reference to the ideal

point, a role played by the origin in traditional DEA models.

Our efficiency measure has the same geometric interpreta-

tion as radial measures in DEA provided the ideal point is

treated as the origin. Consider for example U3 and define

two vectors A
!¼ I � T���!

that goes from ideal (I) to target (T)

point, and B
!¼ I �O���!

that goes from ideal to observed (O)

point. Then the efficiency measure (1�b) of U3 is given by

the ratio between the length of these two vectors, that is by

||A||/||B||¼ ||I�T||/||I�O||, exactly as would be under

traditional DEA, had the point I been the origin. (For

example, assuming an input-oriented DEA model, where

data are assumed to be non-negative, consider the ratio ||T||/

||O|| where (T) is an input target vector and (O) is an input

observed vector. T being the radial input target vector it

equals yO, where y is the input efficiency score, meaning that
the above ratio of norms reduces to y.)

Figure 2 RDM in a two-output example.



Pareto-efficiency

Efficient units will necessarily have in the RDM model an

optimal 1�b equal to 1, but this is not a sufficient condition

for Pareto-efficiency. The Pareto-optimality conditions for

model RDM are, therefore, two: (i) bo¼ 0, and (ii) all

constraints of (3) are satisfied in equality (ie all slacks are 0).

Note that although the RDM model does not assure

projection on Pareto-efficient targets, it may in some cases

correctly identify weak efficiency. This is the case for units X

and Y in Figure 2 (or in Figure 3), whose assessment through

the RDM model yields a value of 1�b different from 1. This

is an interesting characteristic of the RDM model that,

although behaving as a radial model, can in some cases

identify weak efficient units. Units located on an inefficient

part of the frontier have at least one of the ranges equal to 0,

which has no influence over the value of b. As b is

maximized in model RDM (see (3)) any inefficiencies in the

factors that have non-zero range may be found because these

will push b to be greater than 0.

Note that to find Pareto-efficient targets one can solve (3)

in a first stage and the additive model in a second stage as

described in Ali and Seiford.34 Alternatively, Pareto-efficient

solutions can be found by solving the additive model in a

first stage to identify those units that are Pareto-efficient and

then restrict the reference set in the RDM model to those

Pareto-efficient units. In our empirical implementation

detailed in the next section, we have chosen the latter

approach.

The aforementioned implies that the efficiency score 1�b
is not able to incorporate all the sources of inefficiency, since

slack values are not reflected in the value of b. Ranking units
based on an efficiency measure that does not include all the

sources of inefficiency may result in a biased ranking

especially if slacks are high. We can, however, use the ratio

of the norms (||A||/||B||¼ ||I�T||/||I�O||, as defined pre-

viously) to account for all inefficiencies including those from

slacks as long as target levels considered in the computation

of A and B are Pareto-efficient (see eg Cherchye and Van

Puyenbroeck35,36). Note, however, that when Pareto-efficient

targets are used in A and B these two vectors are not

necessarily collinear, meaning that the resulting efficiency

measure is dependent on units of measurement. In order to

avoid this problem, the ratio of norms (||A||/||B||) should be

used on normalized data only.

Target setting under negative data in DEA

In the RDM model, the direction towards the production

frontier is in a sense ‘biased’ towards the factors with the

largest potential for improvement. That is, the model seeks

targets such that the factors on which the unit has the largest

difference from the ‘best’ values observed elsewhere are

those where improvement is given priority. Thus, in a sense

the model seeks targets so that the unit will improve in those

factors where it does ‘worse’ relative to other units, and

therefore the targets may prove hard for the unit to achieve

in the short run.

This section puts forth an alternative direction of

improvement of inputs and outputs so that the unit will

identify targets where the factors on which it does best are

given priority to improve. Such targets will normally prove

easier for the unit to attain in the short term. This direction

uses the inverse of the ranges in (2) in the context of model

(3). The resulting model, referred to as Inverse RDM

(IRDM), is

max bo
Xn
j¼1

ljyrjXyro þ bo
1

Rro
; r ¼ 1; . . . ; s;

�����
(

Xn
j¼1

ljxi jpxio � bo
1

Rio
; i ¼ 1; . . . ;m;

Xn
j¼1

lj ¼ 1; ljX0

)
ð4Þ

For ranges in (4) which are 0, division by 0 is avoided and

we use 0 as the coefficient of the corresponding 1/Rio or

1/Rro. This treatment of zero ranges ensures that the

corresponding input or output has within the targets derived

the same value as that observed at the unit concerned. This

matches the treatment of zero ranges in the RDM model.

Model (4) is translation invariant (the proof for transla-

tion invariance of (4) is exactly the same as for model (3),

because the range for improvement does not change when

the same constant is added to inputs and/or outputs), but

it is not units invariant. Assuming, for example, that

all levels of output r are multiplied by gr, we haveP
j¼ 1
n ljgryrjXgryroþ bo(1/gRro), which is not equivalent to

the constraint for output r in (4). In order to circumvent this

problem, we can use normalized data in model (4), so that its

solution is not dependent on unit of measurement. Using

Figure 3 Figure 2 after rotation.



normalized data, and ranges calculated on this normalized

data, makes model (4) units invariant. (As
P
j¼ 1
n lj(yrj/

Yr)Xyro/Yrþb(Yr/Rro) (where Yr is the maximum output r),

is equal to
P
j¼ 1
n lj(ayrj/aYr)X(ayro/aYr)þ b(aYr/aRro). Note

that the same is valid for input constraints.) The IRDM

model is, therefore, translation and units invariant on

normalized data. Model (4) is applied in this paper only to

data that have been previously normalized by a non-negative

value.

Model (4) shall be used in this paper for target setting

purposes only. This is because efficiency measure it yields

does not have a straightforward interpretation as will be seen

next.

The IRDM efficiency score 1�b in (4) measures the

distance from an observed point to a target point with

reference to some ideal point. However, the IRDM model

works as if a different ideal point was defined for each unit,

which represents a problem in interpreting and comparing

efficiency scores accruing from this model.

To illustrate this consider the optimum b, as resulting

from (4), after normalising outputs by Yr and inputs by Xi,

which is (yr
*�yro)/Yr)/(Yr/Rro) or ((xio�xi*)/Xi)/(Xi/Rio) when

respectively the constraint relating to output r or input i is

binding at the optimal solution to the IRDM model.

Consider now a new range of improvement as given by

R
0

ro¼Yr/Rro for outputs, and R
0

io¼Xi/Rio for inputs, and

normalised target and observed levels equal to ye
0*¼ ye*/ye,

y
0

eo¼ yeo/ye, xi0*¼xi*/Xi, and x
0

io¼xio/Xi. The optimal value
of b in the IRDM model reduces therefore to (yr

0*�y0

ro)/R
0

ro)

or (x
0

io�xi0*)/R
0

io when respectively the constraint relating to

output r or input i is binding at the optimal solution to the

IRDM model. The above IRDM efficiency relates directly

with the RDM efficiency measure, where the range of

possible improvement is defined in relation to an ideal point

I0 ¼ (y
0

roþR
0

ro, x
0

io�R
0

io). Point I
0 is no longer fixed as it was

in the case of the RDM model, but varies for each

production unit.

Since the IRDM model works as if different ideal points

were defined for each production unit under assessment, the

IRDM efficiency measures are not comparable within

themselves nor with RDM efficiency scores. This means

that the IRDM model should not be used to rank and

compare units but just for target setting purposes.

Closest targets and the RDM models

The IRDM model gives priority to improve the factors on

which production units perform best. As a result one expects

targets derived from this model to be less demanding (closer)

than those resulting from the RDM model. The IRDM

model may therefore be a good alternative to more

complicated procedures of finding closest targets to ineffi-

cient units. For example, the procedure developed by

Charnes et al37 for calculating the radius of stability

(minimum change needed to change the classification of a

unit) can be used for calculating targets with the minimum

L1 distance. This procedure is not, however, units invariant

and implies solving several linear programming models

(mþ s), each being an additive model that maximizes slack

variables in turn (see also Briec,38 who puts forward the

same model for finding the minimum L1 projection). Portela

et al23 have also developed a procedure for finding closest

targets to inefficient units. Their procedure is, however,

based on a measure that cannot be directly applied in the

presence of negative data as it is based on ratios of target to

observed input or output levels (which would be meaningless

in case observed data are negative).

The IRDM model does not assure closeness on any

criteria (such as any Lp metric) but by focusing improve-

ments on the factors at which the unit is already good at it

provides, in principle, targets that are near the closest.

We illustrate this point through the example that has been

used previously (see eg Figure 2), namely showing distances

from unit U3 to alternative targets. We consider six different

targets to unit U3 in Table 1: target U1 (�3, 6) is the closest
target to this unit according to the procedure of Charnes

et al;37 target U2 (4, 3) results from solving the translation

invariant additive model of Lovell and Pastor;14 target

BCC1 (�2.1765, 5.65) results from solving the BCC model,

where output 1 is transformed into a positive output by

adding 5; target BCC2 (1.8125, 3.9375) results from solving

the BCC model, where output 1 is transformed into a

positive output by adding 10; target RDM (1.073, 4.255)

results from the RDM model; and target IRDM (�2.793,
5.911) results from the IRDM model. Note that the target

levels for output 1 obtained directly from the BCC model are

always non-negative due to the transformation imposed, but

we then re-transformed output 1 targets by subtracting a

value of 5 and 10, respectively, for BCC1 and BCC2.

U1 is the target yielding the smallest L1 norm, but this is

not true for the other Lp metrics, where the IRDM target

performs better than the procedure of Charnes et al.37 Note

that the BCC1 target performs very well in most Lp norms

except in the L1. Note also that the translation of the data

has a big impact on the target levels obtained and also on

their distance from observed levels.

Results in terms of Lp metrics should, however, be

interpreted carefully because these metrics are units depen-

Table 1 Distance of U3 from some targets

Target L1 L2 LN ||A||/||B|| (%)

Unit U1 5
ffiffiffiffiffi
17

p
4 83.35

Unit U2 9
ffiffiffiffiffi
65

p
8 28.05

BCC1 5.47
ffiffiffiffiffiffiffiffiffiffiffi
16:63

p
3.65 74.84

BCC2 7.75
ffiffiffiffiffiffiffiffiffiffiffi
37:54

p
5.81 37.73

RDM Tgt 7.33
ffiffiffiffiffiffiffiffiffiffiffi
30:82

p
5.07 43.64

IRDM Tgt 5.12
ffiffiffiffiffiffiffiffiffiffiffi
16:75

p
3.9 81.20



dent. This means that they are only valid when variables are

measured on the same scale or else they can induce

completely wrong interpretations. The units independent

ratio of norms (||A||/||B||¼ ||I�T||/||I�O||) can be used to

calculate the distance between any observed vector and a

target vector with reference to the ideal point. For the

alternative targets shown in Table 1, we calculated the ratio

of norms based on values normalized by the maximum and

used a common ideal point as defined by maximum outputs

[I¼ (5, 6)]. This means that all the ratios of norms in Table 1

are comparable among themselves. The highest value for this

ratio happens for projection of U3 on U1, with the second

best being attributed to the IRDM target. Note that the

additive target (U2) shows the highest distances from targets

in all the criteria, and the RDM target lies somewhere

between the IRDM and the additive model’s targets.

The above results are illustrative, but they support our

argument that the IRDM model has the advantage of

looking for closer projections on the efficient frontier when

compared to the RDM or to the additive model. The

empirical application presented on the next section will

further deal with the issue of the closest targets.

An application of the RDM to bank branches

In this section, we describe how we have used the RDM

model developed in this paper to estimate targets and to

measure the operational efficiency of a set of Portuguese

bank branches.

Input and output data

The input and output data used are detailed in Table 2,

where (t) denotes time period and the Greek D denotes

change in values between the start and the end of period t.

The inputs we have used are two: number of FTE staff

and the amount of rent paid monthly. The rent is a surrogate

variable used to reflect the size of the branch and its location.

Other variables reflecting the potential market of the branch

could be used if available because the potential of the branch

to increase its outputs depends on the size of the market in

which it operates, the economic status of the area, the level

of competition in the area, etc (see eg Athanassopoulos et al39

and Golany and Storbeck,40 who discuss the importance of

including market factors in output-oriented measures). We

did not have access to market size and therefore used rent as

a surrogate. This relies on the assumption that a branch

would attempt to negotiate the most economical rent

compatible with the size and location of the branch.

The outputs we have used are detailed in Table 2. They are

intended to capture the three main objectives of bank

branches: (i) to increase the customer base and the sales of

the branch, (ii) to serve clients that visit the branch, and (iii)

to foster the use of alternative distribution channels for basic

transactional activities. The change in the number of

customers from month t�1 to month t is intended to

capture growth in clients, the change in outputs 2–6 is

intended to capture growth of various bank products, and

the seventh output, number of transactions, is intended to

capture the servicing activities of the bank branch. This last

output is assumed to be non-discretionary. The branch needs

to provide the service for general transactions but it does not

wish it to increase, as transactions should be channelled to

less costly media such as the Internet and the telephone.

Operational efficiency assessments should, in principle,

use quantity variables rather than value variables (see eg

Berger and Humphrey41). As quantity data were not

available, we use value information concerning current

accounts, other resources (which includes term deposit

accounts, emigrant accounts, investment funds, savings

insurance, etc), titles deposited (set of shares or bonds that

the client deposits in the bank for the management of which

the bank charges a certain commission), and credit. The

bank under analysis distinguishes between two types of

credit; directly through the bank and through associates. The

former consists of all types of credit that the bank itself can

provide, while the latter consists in special types of credit

that the bank provides through some associate companies

(like leasing or factoring credit).

The use of changes in activity levels as outputs results

necessarily in some outputs being negative for some of the

branches. We used the models developed in this paper to

cope with such data.

Results from the operational efficiency assessment

We had monthly data on the variables in Table 2 for a set of

bank branches located in the northern region of Portugal

covering several months. The precise results are confidential

to the bank. However, for the purposes of illustrating the

RDM model, we use here data on 57 bank branches for the

month of April 2001.

We used an output-oriented RDM measure, which means

that the directional vector associated with inputs (Rio) was

set to zero for all i. At the same time, the directional vector

associated to the non-discretionary output, number of

Table 2 Inputs and Outputs used to assess operational
efficiency in month t

Inputs Outputs

1. Number Staff (t) 1. DNumber of Clients (t)
2. Rent (t) 2. DValue Current Accounts (t)

3. DValue Other Resources (t)
4. DValue Titles Deposited (t)
5. DValue Credit Over Bank (t)
6. DValue Credit Associates (t)
7. Number Transactions (t)



transactions, was also set to 0. This is consistent with treating

non-discretionary factors according to the Banker and

Morey42 approach.

Results from the use of the RDM model in terms of the

efficiency measures are shown in Table 3. Results in this

table are sorted by the RDM ratio of norms.

The efficiency scores in Table 3 should be interpreted as

distances from each bank branch to its targets (with

reference to the ideal point) and therefore branches can be

directly ranked and compared even when the data used to

produce such results were negative.

In Table 3, we show efficiency scores for each branch as

obtained directly from the RDMmodel, and also the ratio of

norms (calculated with normalized data and based on

discretionary outputs only). The difference between 1�b
and the ratio of norms efficiency score relates to the existence

of slacks. Therefore, the ratio of norms is never higher than

the efficiency score 1�b. Note that only for one bank branch
(B13) there were no slacks identified in the RDM model

since this model gives the same efficiency score as the ratio of

norms. For all the other branches slacks were identified. The

average RDM efficiency is 89.1% and the average ratio of

norms efficiency is 85.44%. Slacks account, therefore, on

average only for a small part of inefficiency. In terms of

rankings, the correlation between the rank based on the

RDM efficiency score and on the ratio of norms is very high

(0.9393), meaning that these efficiency scores result in very

similar ranks. Nevertheless, there is a large difference in rank

for some branches. For example, the highest difference

happens for branch B43, which is ranked 19 under the RDM

efficiency score and 39 when slacks are taken into account in

the ratio of norms.

Target setting

Targets for each bank branch were determined using the

RDM and the IRDM models. The advantage of using both

the RDM and IRDM models is that we can provide

alternative targets that represent different routes that a

branch can choose in order to become efficient. We have

chosen three inefficient units to illustrate the targets resulting

from our approach. Table 4 shows the observed and target

levels of units B8. B15, and B19 based on the RDM and

IRDM models.

The RDM and IRDM procedures clearly give different

priorities to improving different variables, with RDM targets

being more demanding in certain variables, while the IRDM

targets being more demanding in others. Take for example

branch B19, whose output range of improvement (normal-

ized by the maximum output so that different units of

measurement do not distort our interpretations) is (1.09,

1.076, 0.837, 1.608, 1.014, 0.96) (see Table 5). The highest

value of this range occurs for the fourth output (DTdep),
which means that the RDM measure will give priority to

improving this output, while the IRDM will give priority to

improving the third output (DOthre), and eventually the last
output (DCredas). Note that the output improvements

(difference between target and observed values) correspond-

ing to the RDM and IRDM targets of branch B19, shown in

Table 5, clearly indicate that factors with a higher range

improve more under the RDM than the IRDM, and factors

with a lower range improve more under the IRDM model.

In this case, the improvements resulting from the RDM

model are higher than those resulting from the IRDMmodel

for all outputs except the third, which has the lowest range of

improvement. It is, therefore, evident that the IRDM targets

Table 3 Efficiency results for April 2001

Unit 1�b Ratio norm Unit 1�b Ratio norm Unit 1�b Ratio norm

B1 1 1 B32 0.9602 0.925 B19 0.7971 0.7878
B10 1 1 B25 0.9998 0.9165 B37 0.8437 0.7859
B14 1 1 B49 0.9282 0.8952 B51 0.799 0.7778
B16 1 1 B12 0.9061 0.8815 B21 0.7785 0.7765
B2 1 1 B45 0.9204 0.8748 B50 0.7941 0.7665
B23 1 1 B8 0.8878 0.8694 B30 0.8671 0.7622
B28 1 1 B36 0.9275 0.8601 B20 0.8359 0.7608
B3 1 1 B44 0.8673 0.8544 B52 0.7956 0.76
B33 1 1 B46 0.889 0.8541 B55 0.7632 0.7542
B34 1 1 B26 0.9225 0.8537 B56 0.771 0.7388
B38 1 1 B22 0.8836 0.8526 B17 0.7398 0.7319
B4 1 1 B29 0.9218 0.8485 B60 0.7211 0.7155
B41 1 1 B40 0.8718 0.8405 B39 0.726 0.704
B53 1 1 B31 0.9082 0.8404 B48 0.7041 0.7028
B54 1 1 B27 0.902 0.8276 B18 0.7218 0.6989
B57 1 1 B35 0.8899 0.8002 B11 0.7274 0.6539
B58 1 1 B15 0.8111 0.8 B42 0.7451 0.6456
B7 1 1 B13 0.7984 0.7984 B59 0.7841 0.5655
B9 1 1 B5 0.8388 0.7969 B43 0.8456 0.421



require less effort by branch B19 to attain them than the

RDM targets. Obviously, if branch B19 has particular

difficulty in selling ‘other resources’ items and foresees that it

cannot improve it as much as given by the IRDM targets, it

has the alternative of using targets given by the RDMmodel.

In Table 5, we also show the improvements resulting from

the additive model of Lovell and Pastor.14 These are higher

than those identified by the RDM and IRDM procedures

except for the case of the first two outputs, where the

improvements are much lower for the additive case. One

may posit that lower improvements in the first two outputs

compensate for higher improvements in the remaining

outputs. But arguably this is not so. In fact, using the ratio

of norms to calculate the distance between branch B19 and

additive targets results in a value of 67.03%. This compares

to 78.78 and 82.63% for the targets resulting from the RDM

and IRDM model, respectively, indicating that the targets

from the additive model require a higher effort from branch

B19.

The targets in Table 4 may reveal additional inefficiencies

apart from those associated with discretionary outputs.

These should be used as informational only. For example,

we can say that branch B15 could have achieved the same

output targets even if it had less staff, which suggests that

this bank branch is over-staffed. At the same time, all

branches (B8, B15, and B19) could have achieved the same

targets and also perform more transactions that seems to

indicate that staff have some free time that could be used in

other activities.

In terms of the whole sample, the average distances from

bank branches and alternative targets can be compared

through the ratio of norms. The average ratio of norms

obtained for the RDM model is 85.4%, the average ratio of

norms obtained for the IRDM model is 88.7%, and the

average ratio of norms obtained for the additive model of

Lovell and Pastor14 is 81.59%. These values show that on an

average the IRDM model provides closer targets to

production units, followed by the RDM model, and finally

by the additive model that tends to provide the furthest

targets as expressed through the lowest average ratio of

norms.

As usual in DEA analyses apart from targets, we can also

provide inefficient units with peer or reference units to which

they can compare themselves. For the case of branch B19,

Table 6 presents the reference units as given by the RDM

and IRDM models. The peers presented can be used by

branch B19 as benchmarks of performance. All of these

benchmarks perform better than branch B19 in most

respects, while having less favourable conditions in terms

of rent (location and space) and transactions (see also

transactions per staff in Table 6). Note that branch B58

dominates the peer set both for the RDM and IRDM

measures. This means that this branch should be looked at

by branch B19 as the main benchmark unit whatever the

direction it chooses to follow towards the efficient frontier.

The above analysis is especially meaningful when under-

taken over time so that consistent efficient or inefficient

behaviour is identified in bank branches. For managerial

purposes, it is interesting to analyse efficiency and produc-

tivity change over time. These changes could be analysed in

more detail through Malmquist index approaches adapted

to the present RDM measure. These issues are currently the

subject of further research.

It can be shown (though we do not pursue it in this paper)

that the use of unrestricted in sign differences as output

Table 4 Target levels for some units

B8 B15 B19

Observed RDM IRDM Observed RDM IRDM Observed RDM IRDM

Rent 2.36 2.24 2.25 4.4 3.34 2.51 4.58 2.92 2.99
Staff 4 4 4 7 5.52 5.73 5 5 5
DCli �4 10.63 9.25 �32 38.46 24.12 �32 34.03 29.38
DCurac �102.428 �54.59 �53.64 �90.282 36.89 0.59 �44.029 66.67 62.69
DOthre 127.443 308.64 306.08 259.335 550.13 623.24 174.594 416.62 426.41
DTdep �49.506 �42.4 �46.24 �102.917 �61.19 �91.57 �71.707 �38.12 �57.25
DCredb 128.416 179.43 186.31 188.037 403.85 466.97 �18.071 271.36 268.44
DCredas 5.183 80.29 79.06 66.634 101.43 128.12 10.679 99.39 96.93
Trans 2983 4027.97 4021.57 3441 4958.28 4983.33 3834 4762.5 4749.31

Rnoems 0.8694 0.8861 0.8 0.8614 0.7878 0.8263

Table 5 Output improvements for branch B19

DCli DCurac DOthre DTdep DCredb DCredas

Range 1.09 1.076 0.837 1.608 1.014 0.96
RDM 66.03 110.99 242.026 33.59 289.431 88.711
IRDM 61.38 106.72 251.82 14.46 286.511 86.251
Additive 10.09 0 343.76 167.197 342.401 116.441



variables, as we do here, is equivalent to using the original

non-negative variables from which the differences are

derived (with values at the beginning of a time period on

the input side and values at the end of that period on the

output side), with certain constraints on their DEA weights.

In our case, this option would result in six more inputs, while

changing outputs from changes to actual values at the end of

April. Targets would be less easy to interpret because they

would imply trade-offs in outputs, but also in inputs due to

our weights restrictions. The use of the RDM model is,

therefore, preferable because it requires less factors to be

used in the analysis and it facilitates the interpretation of the

resulting targets.

Conclusion

In the presence of negative data, traditional radial models

for efficiency assessment cannot be used without transform-

ing the data, as they move negative inputs/outputs in the

wrong direction. The standard additive model is the main

efficiency assessment tool that has been used in these cases,

because of its translation-invariant properties (and units

invariant in some cases). The additive model has, however,

two main disadvantages that are overcome in this paper: it

tends to project units on the furthest points of the frontier,

therefore implying unnecessary efforts by production units,

and it does not provide a final efficiency measure by which

comparisons and rankings can he made.

In this paper, we developed a model based on the

directional distance function approach, where the direction

is the range of possible improvement (defined as maximum

output minus observed output, or observed input minus

minimum input). We call this model RDM. The RDM

model is units and translation invariant, which makes it

suitable to be used in the presence of negative data. In

addition, the RDM model results in an efficiency measure

that is very similar to those used in radial models except that

the point with reference to which efficiency is measured is no

longer the origin but an ideal point (having maximum

outputs and minimum inputs). Such a measure represents an

interesting development in the literature as there was to date

no radial or non-radial efficiency measure, to the authors’

knowledge, that could be applied directly to negative data.

We extended our approach by considering a variant of the

RDM model, where the directional vector is the inverse of

the range of possible improvement. The resulting model

(IRDM) has the advantage of prioritizing improvement of

the factors on which the unit performs best, and therefore it

tends to yield closer targets to the assessed unit than the

RDM model or the well-known additive model. The RDM

and IRDM were applied in this paper to a sample of

Portuguese bank branches. The advantage of using both

specifications is that bank branches can choose from

different types of targets (one prioritizing improvements on

the factors on which the unit performs worst, and the other

prioritizing improvement of the factors on which the unit

performs best) both leading to the production frontier.
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distance functions. J Econ Theory 70: 407–419.
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