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Negative dielectric constant of water confined in
nanosheets
Akira Sugahara 1, Yasunobu Ando2,3, Satoshi Kajiyama 1, Koji Yazawa4, Kazuma Gotoh3,5, Minoru Otani2,3,

Masashi Okubo1,3 & Atsuo Yamada 1,3

Electric double-layer capacitors are efficient energy storage devices that have the potential to

account for uneven power demand in sustainable energy systems. Earlier attempts to

improve an unsatisfactory capacitance of electric double-layer capacitors have focused on

meso- or nanostructuring to increase the accessible surface area and minimize the distance

between the adsorbed ions and the electrode. However, the dielectric constant of the elec-

trolyte solvent embedded between adsorbed ions and the electrode surface, which also

governs the capacitance, has not been previously exploited to manipulate the capacitance.

Here we show that the capacitance of electric double-layer capacitor electrodes can be

enlarged when the water molecules are strongly confined into the two-dimensional slits of

titanium carbide MXene nanosheets. Using electrochemical methods and theoretical mod-

eling, we find that dipolar polarization of strongly confined water resonantly overscreens an

external electric field and enhances capacitance with a characteristically negative dielectric

constant of a water molecule.
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A
n electric double-layer capacitor (EDLC) is an important
class of electrochemical capacitors, in which electro-
chemical double layers are formed on the electrode sur-

face and polarized solvents between ions and the electrode act as a
dielectric medium1,2. Due to the fact that the electrochemical
double-layer formation is a fast and highly reversible surface
process with minimal ion migration, EDLCs can operate intrin-
sically at high charge/discharge rates without degradation over
millions of repeated cycles, which enables load-leveling of inter-
mittent power from renewable energy sources. However, as
capacitance of currently used EDLC electrodes is limited, energy
density of EDLCs is not satisfactory to be widely distributed in
power grids. Therefore, increasing the capacitance of EDLC
electrodes has been an active area of research3–8.

From a theoretical point of view, a conventional EDLC elec-
trode can be considered as a parallel-plate capacitor that delivers
a capacitance (C) according to

C ¼ εA

d
ð1Þ

where ε is the permittivity between the ions and the electrode, A
is the electrode surface area, and d is the separation between the
ions and the electrode (Supplementary Table 1)1. Consequently,
increasing A of the EDLC electrodes using meso- or nanos-
tructured materials is a classic approach toward realizing large
specific capacitance and high energy density3–7. Alternatively, in
2006, Chmiola et al.8 experimentally proved the confinement
effect on d in microporous carbon EDLCs (pore size < 1 nm) that
achieves an anomalous increase in the specific capacitance from
95 to 140 F g−18–10.

Two-dimensional materials, such as graphene sheets11, tran-
sition metal dichalcogenides12, and MXenes5, have recently been
developed as electrode materials in EDLCs. Complete delamina-
tion of the two-dimensional materials increases the accessible
surface area and the nanosheets with a large interlayer separation
give a large specific capacitance greater than 240 F g−15. However,
except for a few theoretical simulation results13, there has been
very limited research carried out on the application of the con-
finement effect in two-dimensional materials as an additional
strategy toward high-energy density capacitors.

Our aim was to quantify the contribution of the confinement
effect to capacitance in EDLC electrodes consisting of two-
dimensional materials, theoretically modeled as a slit capacitor
(Fig. 1a)9,13. This conceptually straightforward but experimen-
tally difficult study was performed using MXene EDLC electro-
des. As pioneered by research groups led by Gogotsi and
colleagues5,14,15, MXene is a class of two-dimensional materials
with the following chemical formula: Mn+1XnTx (where M is a
transition metal, X is carbon or nitrogen, T is surface termination
groups) and gives a large capacitance that is associated with ion
intercalation16. Importantly, MXene maintains its stacked struc-
ture with a short interlayer distance during ion (de)intercalation,
owing to strong interactions among the surface termination
groups, intercalated ion species, and embedded solvents17. Such
an anomalous interlayer interaction has led us to expect that
MXene nanosheets strongly confine the intercalated ions and
MXene is an ideal platform to study the guest confinement effect
in two-dimensional materials.

Herein, using the MXene EDLC electrode as experimental and
theoretical models for a slit capacitor, we demonstrate the
negative dielectric constant of water confined between MXene
nanosheets. This specific dipolar polarization of the confined
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Fig. 1 Enlargement of the capacitance of a microslit capacitor. a Schematic illustration of a continuum model of a microslit capacitor consisting of MXene

Ti2CTx nanosheets. Ti (dark cyan), C (brown), surface termination group T (gray) atoms are shown. b Schematic illustration of a bilayer-capacitor model.

c Experimental specific capacitance of MXene Ti2CTx with aqueous Li+, Na+, K+, Rb+, TMA+ (tetramethylammonium), TEA+ (tetraethylammonium), and

TBA+ (tetrabutylammonium) electrolytes. Each capacitance is calculated from the CV curve at the scan rate of 0.5 mV s−1. d Orders of bare-ion size,

hydrated ion size, and observed capacitance. e Ion-MXene distance (b− a0) dependence of the experimental specific capacitance. The black dotted line

shows a calculated capacitance based on the continuum model (C ¼ εrε0A
b� a0

with constant εrε0), whereas the blue line shows a calculated capacitance based

on the bilayer-capacitor model with variable εrε0 from the 3D-RISM calculation
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water strongly overscreens an external electric field within the
MXene EDLC electrode, leading to an anomalously enhanced
capacitance.

Results
Intercalation capacitance of MXene. MXene Ti2CTx was syn-
thesized by removal of Al from Ti2AlC (Supplementary Fig. 1)
with LiF-HCl aqueous solution17. The chemical composition of
the resulting compound after complete dehydration at 200 °C
(anhydrous MXene) was determined as Ti2C(OH)0.3O0.7F0.6Cl0.4
using a standard microanalytical technique. As the water mole-
cules can easily penetrate into the MXene interlayer, anhydrous
MXene transforms to a hydrous form Ti2CTx·0.5H2O (hydrous
MXene) in ambient atmosphere. A transmission electron
micrograph confirms a stacked structure of the MXene nanosh-
eets (Supplementary Fig. 2), which enables a capacitance from ion
intercalation (intercalation capacitance; Supplementary Note 1).
The EDLC electrode consisting of the hydrous MXene was fab-
ricated without delaminating the stacked structure of the Ti2CTx

layers. However, scanning electron micrographs (Supplementary
Fig. 3) indicate an existence of partially exfoliated structures
allowing a certain contribution to a capacitance from surface ion
adsorption (surface capacitance)18. To spotlight on the two-
dimensional confinement effect on the intercalation capacitance
of the MXene nanosheets, we carefully separated the two con-
tributions using various aqueous electrolytes (Fig. 1a–e). First of
all, to isolate the contribution from the surface capacitance, we
measured capacitances with electrolytes consisting of large alky-
lammonium cations [N(CnH2n+1)4]+ (n= 1, 2, and 4) (Supple-
mentary Fig. 4), because these large cations cannot be intercalated
into nanoscale space between the MXene nanosheets. We believe
this simple methodology provides better analysis than a widely
used method using a rate-dependent capacitance (Supplementary
Fig. 5)19. As a result (Fig. 1c), for all tested alkylammonium

cation species a specific capacitance of the MXene electrode is
~40 F g−1, which is attributed to the surface capacitance. This
interpretation was validated by ex situ X-ray diffraction (XRD)
patterns for the charged electrode, which do not indicate any
change in the interlayer distance (Supplementary Fig. 6),
excluding the possibility of alkylammonium cation intercalation.

Having determined the surface capacitance of the MXene
electrode, we measured the intercalation capacitance using
electrolytes consisting of small alkali cations (Li+, Na+, K+,
and Rb+) at the scan rate of 0.5 mV s−1. The MXene electrode
gave a much larger specific capacitance (90–160 F g−1) than
the surface capacitance (Fig. 1c and Supplementary Fig. 4), and
the ex situ XRD patterns indicate an increase in the interlayer
distance upon charging (Supplementary Fig. 6). Furthermore,
ex situ Ti K-edge spectroscopy suggests the reversible redox of Ti
upon charge/discharge (Supplementary Fig. 7). All these experi-
mental observations confirm the occurrence of intercalation
capacitance. Cations are intercalated into nanoscale space
between the MXene nanosheets, which gives a capacitance (C)
of a slit capacitor with pore sizes < 2 nm expressed as follows13:

C ¼ εrε0A

b� a0
ð2Þ

where εr is the total dielectric constant between the electrode
surface and the ion, ε0 is the vacuum permittivity, A is the total
surface area of both walls, a0 is the ionic radius20,21, and 2b is the
separation of the slit walls (Fig. 1a). It is important to note that, in
contrast to a cylinder capacitor (Supplementary Table 1), b for the
slit capacitor depends on the alkali ion species intercalated in the
slit. This equation predicts that the capacitance of the slit
capacitor increases as the effective distance (b− a0) between the
electrode surface and the counterion decreases. However,
contrary to the prediction of the above equation (black dotted
line, Fig. 1e), the specific capacitance of the MXene electrode
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MXenes, respectively, and these values are consistent with the thermogravimetric experimental results (Supplementary Fig. 14b)
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increased as b− a0 increases (Li+ > Na+ > K+ > Rb+). The
enlarged capacitance, e.g., for a Li+ electrolyte is observed even
at faster charge/discharge rates and during 300 charge/discharge
cycles (Supplementary Fig. 8). The similar capacitance enlarge-
ment is generally observed for other MXenes (Ti3C2Tx and
Mo2CTx) (Supplementary Figs. 9 and 10).

The anomalous increase of the MXene electrode capacitance in
the order of Li+ > Na+ > K+ > Rb+ is further highlighted when
considering that a conventional activated carbon EDLC electrode
exhibits a roughly constant capacitance independent of the alkali
ions species (Supplementary Figs. 11 and 12). XRD analysis
shows that the intercalation of ions with larger “hydrated” ionic
radii (Fig. 1d, Li+ > Na+ > K+ > Rb+) gave rise to a larger
separation in the slit walls (Supplementary Fig. 6), whereas the 1H
magic angle spinning (MAS) NMR indicates that the amount of
confined water in MXene nanosheets increases after hydrated-ion
intercalation (Supplementary Fig. 13). Therefore, water molecules
are definitely co-intercalated (Fig. 1b) and we expect that the
hydration shell has an important role in determining the
structure inside the microslit and thus the anomalous
capacitance.

3D-RISM calculations of MXene. To further understand and
theoretically model the hydration structure in the MXene
microslit capacitor for various alkali ions, we conducted a three-
dimensional reference interaction site model (3D-RISM) calcu-
lation22–25. The 3D-RISM calculation allows the simulation of a
3D distribution of solvent molecules, as well as calculations of
solvation energy and optimal solvent density (Fig. 2a–f). Before
cation intercalation (Fig. 2d), the atomic density profile along the
c axis (perpendicular to the MXene layers) suggests that both

oxygen and hydrogen atoms primarily accumulate in the central
plane of the microslit (away from the MXene interface). We
presume that there is only a weak interaction between water and
the MXene surface. Osti et al.26 also reported that water in
pristine Ti3C2Tx has bulk-like characteristics, which indicates the
weak interaction between water and MXene.

3D-RISM calculations were then conducted for cation-
intercalated Ti2CTx·nH2O. The amount of H2O between the
MXene layers, n, was optimized energetically (Supplementary
Fig. 14a) for each alkali ion with the fixed interlayer distance that
was experimentally determined using the XRD patterns (Supple-
mentary Fig. 6). The optimized hydration structures indicate the
accommodation of larger amounts of water in MXene in the
order of Li+ > Na+ > K+ > Rb+. This trend is explained by the
increasing hydration energy of cations as their bare ionic radii
decrease. The experimentally determined amount of water for
each MXene using thermogravimetric (TG) analyses is in perfect
agreement with the 3D-RISM calculation results (Supplementary
Fig. 14b).

The oxygen distribution in the cation-intercalated MXenes
(Fig. 2a) indicates that the oxygen atoms accumulate inside the
hydration shells of the cations. Based on the radial distribution
function of an ion–oxygen distance (Fig. 2c), the oxygen density
immediately around Li+ is much higher than that around Rb+,
suggesting the stronger hydration energy of Li+ compared with
Rb+. Indeed, the oxygen density profile in the Li+-intercalated
MXene along the c axis contains two peaks around Li+ and these
peaks are more intense than those around Rb+ (Fig. 2e, f).
Simultaneously, the hydrogen density profiles for the cation-
intercalated MXene (Fig. 2b) indicate considerable hydrogen
density close to the MXene surface. Considering a small hydrogen
density near MXene before cation intercalation, the hydrogen
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atoms of water distributed along the surface of each MXene layer
are predominantly due to the formation of the hydration shell
around intercalated cations (Fig. 2e, f). The 3D-RISM calculations
for a series of alkali ions show that the cations with smaller bare
ionic radius tend to exhibit a larger hydrogen density near the
MXene surface (Supplementary Fig. 15). The significant inter-
ference to water arrangement between Ti3C2Tx nanosheets by
cation intercalation was also observed by Osti et al.26. It is most
likely to be that the hard hydration shell of strong Lewis acid
cations such as Li+ forces the hydrogen atoms to reside close to
the surface of the MXene layer, whereas the soft hydration shell of
weak Lewis acid cations such as Rb+ deforms easily when
confined within the microslit.

After confirming that the hydrogen and oxygen distributions in
the microslit depend on the intercalated ionic species, we
calculated the electrostatic potential profiles, relative to the
MXene electrode (Fig. 3a, b and Supplementary Fig. 16). In the
Rb+-intercalated MXene (Fig. 3a), the electrostatic potential (Φ)
monotonically decreases from the MXene layer until very close to
the ion location in the center of the microslit, as expected for a
conventional capacitor sandwiching a dielectric layer. The charge
density (ρ), electric field (E), and Φ are depicted schematically in
Fig. 3c. For Li+-intercalated MXene (Fig. 3b), in contrast, the
profile change in Φ is not monotonic; Φ rises near the locus of
Li+, leading to a reduced total potential difference (∆Φ). The 3D-
RISM calculations for intercalation of a series of alkali ions show
that the smaller cation-intercalated MXenes induces more
reduced total ∆Φ (Supplementary Fig. 16). Considering the
capacitance (C) is expressed as,

C ¼ ΔQ

ΔΦ
ð3Þ

where ∆Q is the stored charge by applying ∆Φ (Supplementary
Note 1), the reduced ∆Φ explains the larger capacitance of the
MXene electrode in the order of Li+ > Na+ > K+ > Rb+ (Fig. 1d).
Indeed, the calculated C based on the value of ∆Φ from 3D-RISM
well reproduces the experimental C (blue line, Fig. 1e and
Supplementary Fig. 17).

Discussion
Then, we consider the origin and implications of the reduced ∆Φ
specifically observed in Li+-intercalated MXene. The electric-
double layer formed in MXene system can be modeled as an
equivalent circuit of a bilayer capacitor (Fig. 1b). The capacitance
of a capacitor sandwiching two series of a contact layer and a
water layer can be expressed as,

C ¼ Aε0
λ

ð4Þ

where

λ ¼ lc

εr
c
þ lh

εr
h

ð5Þ

with thicknesses (lc, lh) and dielectric constants ðεrc; εrhÞ for a
contact layer and a water layer, respectively27.

Based on density functional theory (DFT) calculations28, in the
first term lc

εr
c for the contact layer between the water and an

electrode, εr
c is small to be around 100 and lc is 2–3 Å. In the

second term lh

εr
h for the water layer confined in spaces ranging

from macroslit (2b > 50 nm) to mesoslit (2 nm < 2b < 50 nm)
(Supplementary Table 1), water molecules are weakly bounded to
rotate freely and give a large positive εr

h of ~80, where the
situation becomes as such lc

εr
c � lh

εr
h, and hence λ � lc

εr
c
28.

Therefore, in macroslit and mesoslit capacitors, the dielectric
contact layer (the first term) dominates the overall capacitance,
where the water molecules do not have essential roles.

In striking contrast, in a microslit capacitor, the water layer (the
second term) largely influences the overall capacitance. The increase
in Φ near the locus of Li+ indicates excess polarization (called
overscreening)29,30 and inversion of E at the confined water layer
(i.e., hydration shell) relative to the external electric field (Eext;
Fig. 3d). This inversion of E whereE ¼ Eext

εr

� �

indicates that the
dielectric constant of the hydration shell is negative. As theoretically
shown by Bopp et al.29, a negative dielectric constant of water is
possible under the condition of microscopic overscreening, which is
realized by a resonant effect between dipolar polarization of water
and an external electric field. Resonant conditions were suggested as
follows: (i) an external electric field has several Å modulation and
(ii) water is confined between a slit wall and an ion30.

For a microslit (2b < 2 nm) capacitor, such as the MXene sys-
tem described here, we presume that the resonant condition (i)
on double-layer thickness is satisfied for all of Li+, Na+, K+, and
Rb+ ions based on calculation results (Supplementary Fig. 16),
whereas the resonant condition (ii) on firm water confinement is
satisfied only by strong Lewis acid cations such as Li+. The soft
hydration shell of the weakly hydrated cations such as Rb+ largely
deforms even in the microslit as demonstrated in Fig. 2e, whereby
water molecules are not confined effectively, and remain to have a
positive dielectric constant. In contrast, the hard hydration shell
of Li+ is strongly confined between the MXene wall and Li+ as
evidenced in Fig. 2f, and water dipolar polarization resonantly
overscreens the external electric field to induce an inverse E. It is
this situation that can lead to a negative dielectric constant for the
hydration layer and hence an increase in capacitance. Impor-
tantly, the overscreening of a hydration shell confined in a
microslit capacitor is a general phenomenon: e.g., the 3D-RISM
calculation for Li+-intercalated Mo2CTx also indicates the nega-
tive dielectric constant of confined water (Supplementary Fig. 18),
explaining the capacitance enhancement experimentally observed
for Mo2CTx (Supplementary Fig. 10). As the simplest combina-
tion, the water confined in the microslit consisting of graphene is
also predicted to exhibit the negative dielectric constant and the
overscreening behavior (Supplementary Fig. 19). Furthermore,
Geng et al.31 reported that the capacitance of metallic 1T MoS2
with an aqueous Li+ electrolyte is larger than that with an aqu-
eous Na+ electrolyte. These verifications strongly suggest that
exploiting the water confinement effect is a versatile strategy to
enhance the capacitance of microslit capacitors.

In general, the strategy of using larger surface area materials to
increase the gravimetric capacitance severely suffers from smaller
electrode density and smaller volumetric capacitance thereof32.
Our discovery of a negative dielectric constant of confined water
and its contribution to larger capacitance of the microslit capa-
citor not only solve this long-standing dilemma but also offer an
important prospect that stacked two-dimensional materials might
have considerable potential as EDLC electrodes. The capacitance
enlargement by confined negative dielectric water could be
extended to other systems. For example, H+ intercalation, which
was not considered in this work, has been reported to exhibit a
large capacitance through the protonation of MXene33; therefore,
the influence of water to the H+ capacitance would be of parti-
cular interest to further increase the capacitance. The influence of
non-aqueous electrolyte solvents to the MXene capacitance is also
an important issue that needs to be clarified (Supplementary
Fig. 20), as it includes more complicated phenomena such as
interfacial desolvation, solid-electrolyte interphase formation, and
co-intercalation34,35. Moreover, existence of water molecules with
a negative dielectric constant casts doubt on a conventional
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capacitor model postulated by Stern36 with low-dielectric surface
water layer and potentially leads to redefinition of how to con-
struct theoretical models for EDLC electrodes. Further studies on
similar confinement effects in other microporous materials are
expected to stimulate a range of striking discoveries of EDLCs
with higher gravimetric and volumetric energy densities.

Methods
Synthesis of MXene. Ti2AlC was prepared by high-frequency induction heating of
a precursor mixture consisting of TiC, Ti, and Al at 1300 °C for 1 h under an Ar
flow. Ti2CTx was synthesized by reacting 0.5 g of Ti2AlC powder with an aqueous
mixture of 2 M LiF and 6M HCl for 12 h at room temperature. The treated powder
was dried under vacuum at 200 °C for 24 h (anhydrous MXene). The chemical
composition of anhydrous MXene Ti2CTx was determined by the standard
microanalytical method for C, H, F, and Cl, and by X-ray photoelectron spectro-
scopy for an O/OH ratio. Calc. (Found) for Ti2C(OH)0.3O0.7F0.6Cl0.4: C: 8.03%
(7.50%), H: 0.20% (0.25%), F: 7.62% (7.84%), Cl: 9.48% (9.22%). Ti3C2Tx and
Mo2CTx were synthesized according to the procedures reported previously5,37.

Characterization. The powder XRD patterns were recorded on a Rigaku SMART-
LAB powder diffractometer with Cu Kα radiation with a step of 0.02° over a 2θ
range of 3°–80°. Samples for ex situ XRD patterns were prepared electrochemically
and were used for the measurements without drying. The number of intercalated
water molecules in MXene was estimated by TG analysis. The TG data were
collected on a Seiko Extar 6000 TG/DTA instrument over a 30–400 °C temperature
range using an Ar gas atmosphere. The heating rate was fixed at 5 Kmin−1.

Electrochemistry. For the electrochemical measurements, the working electrode
was fabricated by mixing Ti2CTx, acetylene black, and polytetrafluoroethylene in
80:10:10 weight ratio. The resulting paste was pressed onto a nickel mesh. A three-
electrode glass cell was assembled with a Pt mesh as the counter electrode and Ag/
AgCl in saturated aqueous solution of KCl for a reference electrode. Aqueous
solutions (0.5 M) of Li2SO4, Na2SO4, K2SO4, Rb2SO4, tetramethylammonium
chloride, tetraethylammonium chloride, and tetrabutylammonium chloride were
used as the electrolytes. The sweep rate of the cyclic voltammetry (CV) measure-
ments was set to 0.5 and 2.0 mV s−1, and the cutoff voltages were −0.7 V and
−0.2 V (vs. Ag/AgCl). The specific capacitance from the CV curve was calculated

as 1
ΔV

R jðVÞ
s
dV , where V is the potential, ΔV is the potential window, j(V) is the

specific current, and s is the scan rate. The activated carbon for the reference
experiment (Supplementary Figs. 6 and 7) was purchased from Kansai Coke and
Chemicals (MSC-30 with a specific surface area of 3000 m2 g−1). The X-ray
absorption spectra were measured in the transmission mode at room temperature
at BL-9C of Photon Factory. The X-ray energy for each edge was calibrated by
using a corresponding metal foil. The obtained experimental data were analyzed
using Rigaku REX2000 software. The 1H MAS NMR spectra were recorded at
frequency of 800MHz (18.79 T) using a JEOL JNM-ECA800 system equipped with
a JEOL 1.0 mm HXMAS probe. To reduce the 1H background signal from the
probe material, the DEPTH2 pulse sequence was used. The experimental condi-
tions were set up with 90° pulse length of 1.2 µs, recycle delay of 5 s, and the MAS
rate of 60 kHz. The 1H chemical shift was referenced to the peak of silicon rubber
and set to 0.12 p.p.m. from tetramethylsilane.

Calculations. The hydration energy and atomic distributions are calculated by
using a 3D-RISM theory combined with DFT. The 3D-RISM code is implemented
into a DFT simulation package named “Quantum Espresso”24,38. The
exchange–correlation functional was used within the generalized gradient
approximation proposed by Perdew et al.25. The ultrasoft pseudopotential scheme
combined with plane-wave basis sets imposing cutoff energies of 30 and 300 Ry was
used to describe the Kohn–Sham orbitals and electron density, respectively. The
Brillouin-zone summation was evaluated using a 3 × 3 × 1 k-point grid for structure
optimization and total energy calculation. The convergence criteria for structure
optimization included 10 × 10−3 Ry per Bohr for forces and 10 × 10−4 Ry for the
energy.

The structural model of MXene Ti2CTx consisted of 2 ´ 2
ffiffiffi

3
p

rectangular
supercell with four different surface functions (representing F, Cl, O, and OH). The
chemical composition of hydrous MXene was assumed to be Ti2C
(F0.5Cl0.5O0.5OH0.5)·0.5H2O. The lattice constants of the supercell were
theoretically optimized as 12.326 × 21.349 Å2. The interlayer distance between the
central carbon layers of the adjacent MXene sheets was set to experimentally
determined values (i.e., 13.2, 13.1, 12.8, 12.7 Å for Li+-, Na+-, K+-, and Rb+-
intercalated models, respectively). Each intercalated model has two ions located at
(1/4, 1/4, 1/2) and (3/4, 3/4, 1/2) in the fractional coordinates of each supercell. The
validity of our structural models was confirmed by the perfect agreement between
the experimentally determined and the theoretically optimized water contents (n)
in various cation-intercalated MXenes (Supplementary Fig. 14). The calculated
capacitance (C) for each cation-intercalated MXene (inset in Fig. 1b) was obtained

by the equation as,

C ¼ Csurface þ
ΔQintercalation

ΔΦcalc
ð6Þ

where Csurface= 40 F g−1, ∆Qintercalation= 80.6 C g−1 (0.125 cation intercalation per
the formula unit), ∆Φ(Rb)calc= 1.46 eV, ∆Φ(K)calc= 1.17 eV, ∆Φ(Na)calc= 1.0 eV,
and ∆Φ(Li)calc= 0.91 eV, respectively.

Data availability
The whole datasets are available from the corresponding author on request.
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