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Abstract—Code coverage measurement is an important el-
ement in white-box testing, both in industrial practice and
academic research. Other related areas are highly dependent
on code coverage as well, including test case generation, test
prioritization, fault localization, and others. Inaccuracies of a
code coverage tool sometimes do not matter that much but in
certain situations they can lead to serious confusion. For Java,
the prevalent approach to code coverage measurement is to use
bytecode instrumentation due to its various benefits over source
code instrumentation. However, if the results are to be mapped
back to source code this may lead to inaccuracies due to the
differences between the two program representations. In this
paper, we systematically investigate the amount of differences
in the results of these two Java code coverage approaches,
enumerate the possible reasons and discuss the implications
on various applications. For this purpose, we relied on two
widely used tools to represent the two approaches and a set
of benchmark programs from the open source domain.

Index Terms—Code coverage, white-box testing, Java bytecode
instrumentation, source code instrumentation, coverage tools

I. INTRODUCTION

Evolving software systems must rely on special testing
activities, which are able to cope with constantly changing
requirements and code. This includes, among others, white-
box test design, massive regression testing, selective retesting,
efficient fault detection and localization, as well as main-
taining the efficiency and effectiveness of the test assets on
the long term [1]. This paper investigates code coverage,
a test completeness measure which plays an important role
in many of the mentioned test activities. Essentially, code
coverage indicates which code parts are excercised during
the execution of a set of test cases on the system under
test. The knowledge about the (non-)covered elements will
underpin various decisions during these testing activities, so
any inaccuracies in the measured data might be critical.

Software testers have long established the theory and prac-
tice of code coverage measurement: the various types of
coverage criteria like statement, branch and others [2], as well
as technical solutions including instrumentation for runtime
analysis [3]. However, daily practice shows that the behavior
of the tools that are available for this task is in many cases
quite different than text-book methods.

In this paper, we concentrate on code coverage measure-
ment for Java systems. In this area, there are peculiar issues
which tool builders must face, the most notable one being
how code instrumentation is done. This technique is used

to place “probes” into the program, which will be activated
upon runtime to collect the necessary information about the
code coverage. In Java, there are two fundamentally different
instrumentation approaches: source code level and bytecode

level. Due to its various technical benefits (for example, it
does not require the source code nor its recompilation, it can
position the probes more precisely, and it can also handle
generated code), bytecode instrumentation is preferred in many
cases [4]. However, this approach also has its drawbacks
compared to source code instrumentation, most notably the
inability to perfectly map the coverage results back to the
source code, which is essential in many applications. In-
terestingly, there has been very little research performed to
systematically assess these drawbacks, while the benefits of
bytecode instrumentation are more often emphasized. In our
code coverage-related research, we also experienced signifi-
cant differences in the two approaches, and oftentimes noticed
inaccuracies due to the bytecode instrumentation with the tools
we used. This motivated us to perform an empirical study to
investigate the negative effects of bytecode instrumentation on
the code coverage when it is to be observed on source code
level. We did not want to deal with the benefits of bytecode
instrumentation as it is much more well-known. Similar studies
exist in relation to branches and statements [5], but we wanted
to verify the differences on higher granularity, on method level.
Also, we used real size systems with non-trivial test suites.

In this paper, we perform an empirical study involving two
representative and popular code coverage tools, one from each
instrumentation approach (JaCoCo and Clover), and a set of
benchmark programs. Our goal was to assess the differences,
most notably the inaccuracies of bytecode instrumentation.
We did this by quantitative and qualitative analysis, and by
elaborating on the possible impacts of the inaccuracies to a set
of applications. We make the following main contributions:

• We extended the bytecode instrumentation tool JaCoCo to
be able to provide per-test case coverage results. This
enables fine-grained comparison of the results to the other
tool, but will also enable other uses of the tool previously
not possible.

• We manually verified the coverage results provided by
the source code instrumentation tool Clover and found
it correct. This will make possible to use this tool as a
ground truth for source code coverage results.



• We performed a set of measurements to quantify the
differences of the bytecode instrumentation approach with
respect to source code. Although we used Java methods
as code items and beforehand we expected only minor
discrepancies due to this higher granularity, our findings
indicate notable differences – as much as 24% of the
actually covered items will be erroneously reported by
the bytecode instrumentation tool – which may be critical
in some situations.

• We list possible causes for the difference, which poten-
tially enables using workarounds when bytecode instru-
mentation based approach is used.

• We elaborate on the impacts of the inaccuracies on
applications such as white-box testing, fault localization,
test selection, test case generation and mutation analysis.

The paper is organized as follows. Section II revisits various
roles of code coverage independent of Java, and the possible
impacts in different applications. In Section III, we discuss
code coverage for Java and state our research aims. Section IV
describes the basic setup for the experiments, the tools and the
subject systems, while Section V presents the results of the
empirical study. Section VI describes the threats to validity of
the experiment, and finally, we conclude in Section VII.

II. ROLE OF CODE COVERAGE

The usual interpretation of the term “code coverage” is
the amount of program code which is excercised during the
execution of a set of test cases on the system under test.
This indicator may be used simply as an overall “coverage
percentage,” but typically more detailed data is also avail-
able about individual program elements or test cases. Code
coverage measurement is the basis of several software testing
and quality assurance industrial practices, most notably white-

box testing [6]. Apart from this significance, code coverage
measurement is an actively investigated topic in academic
research as well. Hence, the implications of inaccurate code
coverage data may be multiple.

A. White-box testing

White-box testing (often referred to also as structure-based

testing) is a dynamic test design technique that relies on code
coverage to systematically verify the amount of tests needed to
achieve a completeness goal (although, it is not clear whether
coverage metrics themselves can predict the effectiveness of
the test suite [7] or not [8]). This goal is sometimes expected to
be complete (that is, 100%) coverage, however in practice this
high level is rarely attainable due to various reasons. White-
box testing is usually associated with lower testing levels such
as unit tests, however there is no limitation to take advantage
of code coverage on higher testing levels, too.

In white-box testing, code coverage measurement tools are
often used that are able to report different kinds of overall
coverage rates in terms of percentage, and also detailed reports
about the covered and non-covered program elements. The
inaccuracy of these tools may or may not notably influence
the decisions to be made during the testing process, depending

on the usage scenario and the nature of the inaccuracy, as
summarized below:

• If the overall coverage percentage is required only (for
example, as an initial assessment of the tests or to be
reported in a summary report) then minor differences of
a few percent are irrelevant.

• Generally, there may be two types of inaccuracies of a
coverage tool. In the first case, it will erroneously report
a not covered element for an actually covered code item.
We treat this case the safe but imprecise case because
it will draw the attention of the tester to a code for
investigation superfluously, but will not miss important
cases.

• On the other hand, if a piece of code is reported as
covered while actually not being covered, this may lead
to false confidence in the tests and potentially to higher
risks. For example, the tester will not notice in this
scenario that an important code item was not tested.

Note, that there are different levels of code coverage criteria
(such as method, statement, decision, and many others), and
the different tools may behave differently on these levels.
However, the above reasoning will be generally valid for all
different types of code coverage. Also, this is independent of
a particular programming language and technology.

B. Other applications

Other applications of code coverage measurement include
general software quality assessment [9], automatic test case
generation [10], [11], code coverage-based fault localiza-
tion [12], [13], test selection and prioritizaton [14], [15], [16],
[17], mutation testing [18], [19], and in general program and
test comprehension and traceability between the two [20].
As with white-box testing, the inaccuracy of code coverage
measurement may affect these activities in different ways.

Certain applications do not suffer that much if the coverage
data is not precise. This includes overall quality assessment,
where the coverage ratio is typically used as part of a
more complex set of metrics for software assessment. Here,
a difference of a few percent usually does not affect the
overall score. Program comprehension (and general project
traceability) is supported by knowing which program code is
executed by which test case. Depending on the usage scenario
of this information, inaccurate results may lead to either false
decisions or simply increased effort to interpret the data.

The other mentioned applications have high significance
in academic research, and the accuracy and validity of the
published results may be impacted by the issues with the code
coverage data. In coverage-driven test case generation, for in-
stance, the generation engine can be confused by an imprecise
coverage tool because a falsely reported non-coverage will
keep the generation algorithm trying to generate test cases
for the program element.

As another example, in code coverage-based fault local-
ization the program elements are ranked according to how
suspicious they are to contain the fault based on test case cov-
erage and pass/fail status. Wrong coverage data may influence



the fault localization process because if the faulty element is
erroneously reported as not covered by a failing test case, the
suspicion will move to other (possibly non-defective) program
elements.

Besides evaluating the code coverage inaccuracies them-
selves in an empirical study, this paper also addresses the
impact on the mentioned and other applications.

III. AIM OF THE STUDY

A. Code Coverage Measurement for Java

This paper deals with code coverage measurement for Java
programs. Apart from being a popular language in itself,
Java coverage measurement is important also because, due
to language design and the structure of the bytecode and
the virtual machine, measuring code coverage is a relatively
simple task (compared to other languages like C++). This is
further emphasized by an increased demand for code coverage
measurement in agile projects, where continuous integration
requires constant monitoring of the code quality and regression
testing. This has lead to appearance of a large set of tools
for this purpose, many of which are free of charge and open
source. However, it seems that the working principles, benefits,
drawbacks and any associated risks with these tools are not
well understood among practitioners and researchers yet.

In Java, there are two conceptually different approaches for
coverage measurement. Common to them is that the system
under test and/or the runtime engine is instrumented, meaning
that “measurement probes” are placed within the system at
specific points, which will enable the collection of runtime
data, but which do not alter the behaviour of the system. The
first approach is to instrument the source code, which means
that the original code is modified by inserting the probes, then
this version is built and executed during testing. The second
method is to instrument the compiled version of the system,
i.e. the bytecode. Here, there are two further approaches. First,
the probes may be inserted right after the build and effectively
producing modified versions of the bytecode files. Second, the
instrumentation may take place during runtime upon loading
a class for execution. In the following, we will refer to these
two approaches as offline and online bytecode instrumentation,
respectively. Some example tools for the three approaches are
Clover [21] (source code), Cobertura [22] (offline bytecode)
and JaCoCo [23] (online bytecode). There are different possi-
ble features available in tools employing these approaches, and
they also have various benefits and drawbacks. In Table I, we
overview the most important differences (some of them depend
on the situation, here we list our subjective assessment).

The many benefits of bytecode instrumentation (e.g. easier
implementation, no need for source code and separate build)
are so attractive that tools employing this technique are far
more popular than source code instrumentation-based tools [4].
Furthermore, most users do not take trouble over investigating
the drawbacks of this approach and the potential impact on
their task at hand. Interestingly, scientific literature is also very
poor in this respect, namely systematically investigating the

TABLE I
CODE COVERAGE APPROACHES FOR JAVA

Offline Online
Property Source code bytecode bytecode
Source code Needed Not needed Not needed
Special runtime Not needed Needed Needed
Bytecode and VM Not dependent Dependent Dependent
Filtering control Complete Partial Partial
Separate build Yes No No
Results in source Yes Partially Partially
Compile time Impacted Impacted Not impacted
Runtime Impacted Highly impacted Impacted
Implementation Difficult Easy Easy

negative effects of bytecode instrumentation on the presenta-
tion of results in source code (see Section III-C).

There are important benefits of source code instrumentation
visible from the table above, which might overweight bytecode
instrumentation in some situations. The most important is that
in the situations when the results are to be investigated on
source code level (in most of the cases!), mapping needs to
be done from computations made on the bytecode level. And
due to the fact that perfect one-to-one mapping is not generally
possible, this might impose various risks.

B. Research Questions

Hence, the primary aim of this research is to start filling this
gap and investigate both in quantitative and qualitative terms
the following. In what situations and to what extent bytecode
instrumentation distorts the code coverage results when they
are reflected back to source code, and what is the impact of
such inaccuracies on possible applications? To answer this
question we conduct an empirical study involving two rep-
resentative tools – one with source code instrumentation and
one with online bytecode instrumentation – and we measure
code coverage results on a set of benchmark programs. We
then elaborate on the possible causes and impacts.

More precisely, our research questions are:

RQ1 Quantitative evaluation.

RQ1a How big is the difference between code coverage
obtained by the two tools on the benchmark pro-
grams?

RQ1b On a per-method basis, in how many cases is the
coverage different?

RQ2 Qualitative evaluation. What are the typical causes for
the difference?

RQ3 What is the expected impact of code coverage inaccu-
racies to a set of applications?

In this paper we calculate and analyze coverage results on
method level, i.e. the basic element of a coverage information
is whether a specific Java method is invoked by the tests or
not, regardless of what statements or branches are taken in
that method. This might seem too coarse a granularity but we
think the results will be actionable due to the following. First,
in many scenarios coverage analysis is done hierarchically
starting from higher level code components like classes and
methods. If the coverage result is wrong at this level it will be



wrong at lower levels too. One might think that the differences
between bytecode and source code instrumentation are more
emphasized at statement and branch levels (as other research
also showed [5], [24]), however as we will see later in the
paper, there are method-level differences in Java which might
have significant impact. Finally, method level analysis enables
easier measurement of bigger systems as well.

C. Related Work

Despite the importance and the possible risks overviewed
above, the differences between bytecode and source code
instrumentation have been scarcely systematically investigated.
Probably the most closely related work is the study by Li et al.

[5] in which the authors evaluate the source code and bytecode
instrumentation methods and tools from the perspective of
branch coverage measurement. They used a single program
and a part of its test suite to evaluate the coverage tools. They
found that source code instrumentation is more appropriate
for branch coverage computation which is due to various
differences between the generated bytecode and source code.
This is aligned with our findings for method coverage. Fur-
thermore, our experiments have been performed on more and
much bigger systems. Kajo-Mece and Tartari [25] evaluated
two coverage tools (source code and bytecode instrumentation
based ones) on small programs and concluded that the source
code based one is more reliable for the use in determining the
quality of their tests.

Alemerien and Magel [24] conducted an experiment in
order to investigate how the results of code coverage tools
are consistent in terms of line, statement, branch, and method
coverage. They chose the overall coverage as the base metric
for comparing the tools. Their findings show that branch
and method coverage metrics are significantly different, but
statement and line coverage metrics are only slightly different.
They also found that program size affects significantly the
effectiveness of code coverage tools with large programs.

Kessis et al. [26] presented a paper in which the authors
investigated the usability of coverage analysis from practical
point of view. They conducted an empirical study on a large
Java middleware application, and found that although some
of the coverage measurement tools are not mature enough
to handle large scale programs properly, using the adequate
measurement policies would radically decrease the cost of
coverage analysis, and together with different test techniques
it can ensure a better software quality.

There are several papers in which the authors compare
different code coverage tools for Java (e.g. [27], [28]), but
common to these works is that they mostly concentrate on the
different features of the tools, and the accuracy of the results
they provide are not investigated.

IV. DESCRIPTION OF THE EXPERIMENT

A. Overview

For setting up the experiment for our empirical study, we
had two important tasks at first: selecting the code coverage

measurement tools (Section IV-B) and the benchmark pro-
grams (Section IV-C).

Then, we modified the build system of each subject program
to integrate the necessary tasks to collect the coverage data
using the two coverage tools. Our extensions of the build
and test process included a small modification to ignore the
test failures of a module that would normally prevent the
compilation of the dependent modules and the whole project.
This was necessary when some tests of the project failed on the
measured version, and in a few cases when the instrumentation
itself caused some tests to fail.

The execution of the tests using the two coverage tools pro-
duced coverage data in different forms. Hence, we had to unify
various components of the data including the identification of
methods, identification and separation of the individual test
cases and the representation of the coverage data. For this
purpose, we used the SoDA framework [29], [30], which was
also able to produce the various analyses on the raw coverage
data. Technically, the data generated by the coverage tool was
converted into a common SoDA representation – which is
essentially a coverage matrix with test cases in its rows and
methods in the columns – and then this representation was
used to perform the additional analyses.

Note, that this kind of measurement, when method coverage
is assigned to individual test cases, will result in the loss of
some coverage data. Namely, the coverage of a method is lost
if it cannot be directly associated to a specific test case (e.g.

the method is called at the test class initialization phase). We
measured the amount of this loss on our subject programs
(see Table II), and found that out of the eight programs it was
marginal for three, below 1.2% for two programs, and between
3.8% and 7.3% for the remaining ones. We think that even
the higher rates can be accepted in most applications because
the lost data represents the coverage of methods that are not
intentional goals of the tests (but are technically necessary for
the test execution).

B. Tools

For selecting the tools to be used in the experiments, we
established the following criteria. First, we aimed at tools that
are actively developed and maintained and are popular among
users. We measured the popularity of the tool candidates by
reviewing technical papers, open source projects, and utilizing
our experiences from previous projects. The tools had to
handle older and current Java versions including new language
constructs (support for at least Java 1.7 but preferably 1.8 was
needed) as recent program versions include such constructs.
Since we wanted a detailed study about the differences be-
tween the tools, we wanted to make sure that we can gather
per-test case coverage results (i.e. which test cases cover each
method) from the tools as well. Finally, we wanted the tool
to easily integrate into the Maven build system [31], as today
this seems to be a popular build system used in many open
source projects. In addition, the ability of smooth integration
reduces the chances of unwanted change in the behaviour of
the system and the tests used in the experiments.



In Section III-A, we discussed three fundamental code
coverage calculation approaches for Java. But for the study
we chose to use one source code instrumentation tool and one
representing the two types of bytecode instrumentation. The
reason we do not investigate both types of the latter category
is that there are no fundamental differences in how and which
program elements are instrumented, only the “timing” of the
instrumentation is different.

We selected JaCoCo [23] for the bytecode instrumentation
approach. This is a free Java code coverage library developed
by the EclEmma team. JaCoCo measurements can be easily
integrated into a Maven-based build system, but originally it
cannot perform per-test case coverage measurements. So, to
be able to gather this information, we slightly modified the
execution of the JaCoCo Maven plugin and added a special
listener that detected the start and end of the execution of a test
case. To validate that this tool will be a good representative of
the bytecode instrumentation approach, we performed a one-
to-one comparison of coverage data obtained by JaCoCo and
Cobertura [22], and found no significant differences.

The tool selected for source code instrumentation approach
was Clover [21], a commercial tool by Atlassian. This tool
could also be easily integrated in the Maven build process and
there was no problems in producing per-test case coverage
information. We did a manual verification of the results of
Clover by performing manual instrumentation and execution
of a subset of our subject systems, and found no deviations
from our expected coverage results. Thus, we treat Clover as
a “ground truth” for source code coverage measurement.

C. Subjects

For setting up our set of benchmark programs we followed
these criteria. As we wanted to compare bytecode and source
code instrumentation the source code had to be available.
Hence, we used open source projects, which also enables
the replication of our experiments. As mentioned, we decided
to use the Maven infrastructure in which the code coverage
measurement tools easily integrate, so the projects needed to
be compilable with this framework. Finally, it was important
that the subject programs have a usable set of test cases of
realistic size, which are based on the JUnit framework [32]
(preferably version 4). This last restriction was necessary
because to measure per-test case method coverage the use of
this framework was the most straightforward. We searched for
candidate projects on GitHub [33], preferring those that had
been used in the experiments of previous works. We ended up
with 8 subject programs, which belong to different domains
and are non-trivial in size (see Table II).

V. RESULTS

A. Total Number of Methods

Before we go into the details of code coverage analysis
results, we need to establish a base set of program elements
to which the coverage is to be compared. Since we used tools
with fundamental differences in the analysis approach, not
only the covered methods may differ, but also the total set of

TABLE II
SUBJECT PROGRAMS. THE METRICS WERE CALCULATED FROM THE

SOURCE CODE (i.e. GENERATED CODE IS NOT COUNTED).

Program LOC Methods Tests Domain
checkstyle 114K 2 655 1 589 static analysis
commons-lang 69K 2 796 3 678 java library
commons-math 177K 6 835 5 805 java library
joda-time 85K 3 898 4 176 java library
mapdb 53K 1 582 1 784 database
netty 140K 8 133 4 079 networking
orientdb 229K 13 052 1 058 database
oryx 31K 1 557 208 machine learning

methods recognized by the tools. Having the code coverage
applications in mind, the basic concept we followed was to
use the set of methods which is actually present in the source

code, and not what is observed at runtime. In this section, we
analyze this difference, then we establish the base set.

1) Test methods: Unit tests themselves should not be in-
vestigated for coverage, hence all methods of unit test classes
needed to be excluded from further analysis. JaCoCo relies on
the project description to determine the test methods. On the
other hand, Clover tries to determine test methods by checking
the class and method names, and in most cases this is reliable.
However, in some cases when test class names did not follow
the naming conventions, Clover misclassified tests as regular
methods. To correct these errors, we relied on the Maven
project hierarchy and examined the source path information
of the classes, and we filtered out those methods that were
located in the test source directories, e.g. src/test.

After this initial filtering, the lists of all methods for a
program in the two tools differed in both directions: on
average, 6.43% of the methods (recognized by either tool)
were present only in JaCoCo, 5.42% were recognized only by
Clover, and only 88.15% were present in both of them.

2) Generated methods: The difference in favor of Ja-

CoCo consisted of various methods generated by the Java
compiler. Generated methods are considered for the coverage
analysis by most bytecode instrumentation tools – including
JaCoCo, however a source code tool like Clover does not
include them, of course. To recognize generated methods,
we used a third-party static analyzer (the SourceMeter [34]
tool). This tool could extract a lot of information regarding
the methods including whether they were generated ones or
present in the source code.

Table III shows the total number of generated methods in
its last two columns (the percentage is relative to the number
of methods in Clover results). Columns 6–8 of the table show
what constitute these, including default constructors (if they
are not given in the source), “<clinit>” methods, and
access methods in the case of some nested class operations.
The second to fourth columns are provided for reference, and
show how are the non-generated methods from the source code
divided into regular methods and user provided constructors.

3) Methods not recognized by JaCoCo: The other type
of difference is when a method is not recognized by the
bytecode instrumentation approach. This can happen in the



TABLE III
PERCENTAGE OF SPECIAL METHODS (SHOWN RELATIVE TO Clover ELEMENTS)

Regular User Generated Other Total
Program methods constructors constructors <clinit> generated generated
checkstyle 2 435 91.96% 213 8.04% 139 82 0 221 8.35%
commons-lang 2 552 91.44% 239 8.56% 35 60 14 109 3.91%
commons-math 5 549 81.29% 1 277 18.71% 149 158 70 377 5.52%
joda-time 3 407 87.70% 478 12.30% 12 74 2 88 2.27%
mapdb 1 444 90.31% 155 9.69% 78 43 0 121 7.57%
netty 8 296 86.67% 1 276 13.33% 257 464 112 833 8.70%
orientdb 12 200 90.26% 1 317 9.74% 487 422 124 1 033 7.64%
oryx 1 749 84.29% 326 15.71% 77 80 12 169 8.14%

following situations. A submodule of the program has no tests,
so JaCoCo is not executed and cannot collect information
about the methods of the module. Or, the signature of the
generated method does not match (for technical reasons) the
source code signature (e.g. it has additional parameters inserted
by the compiler). Table IV shows what we measured for this
aspect. It shows in the second column how many methods are
recognized by both tools, and how many only by Clover (third
column). The last column shows the sum of these two values,
i.e. the total number of methods recognized by Clover. Observe
that for the last three programs, the number of unrecognized
methods by JaCoCo is quite high, while for the other programs
it is 1% of Clover’s methods or much fewer. The main reason
for this is that these programs are organized into multiple
submodules and JaCoCo handles the coverage of submodules
differently than Clover. JaCoCo considers a method as covered
if it is tested by its own module, while Clover aggregates
coverage among all modules.

TABLE IV
NUMBER OF ALL METHODS

Program Both Clover only Total Clover
checkstyle 2 646 2 2 648
commons-lang 2 778 13 2 791
commons-math 6 807 19 6 826
joda-time 3 871 14 3 885
mapdb 1 582 17 1 599
netty 8 133 1 439 9 572
orientdb 13 052 465 13 517
oryx 1 557 518 2 075

Eventually, we established our base set to be the total set
of methods recognized by Clover, visible in the last column
of Table IV. Comparing to this base set we are be able to
precisely assess the accuracy of the bytecode instrumentation
approach with respect to the source code.

The base set supposed to be the set of methods actually
appearing in the source code, so we wanted to verify if
Clover produces this list accurately. For that we used again
the SourceMeter tool, and found that there were no differences
between the two lists in any of the programs.

B. Quantitative Evaluation

In this section, we present our measurement data regarding
the differences in the coverage reported by JaCoCo and Clover.

The qualitative evaluation of the possible differences will be
presented in the next section.

1) Total coverage: First, we compared the overall method-
level code coverage values obtained by the two tools for
each program (this addresses our research question RQ1a). To
calculate this, we divided the number of methods reported as
covered by each tool by the total number of methods reported
by Clover (the base set). In the case of JaCoCo, the number of
covered items included only methods which were recognized
by both tools, i.e. covered generated methods were excluded.
We also did not distinguish the cases when a method was not
recognized from recognized but not covered by JaCoCo. This
way, we achieved the most relevant comparison in terms of
the source code.

By treating Clover as the ground truth (with its base set and
the covered set, both verified manually and using a third-party
tool) and treating unrecognized methods by JaCoCo as not
covered, there were only two types of inaccuracies remaining.
We will use the term falsely covering to denote the situation
when JaCoCo reports a method as covered while it should not
be (according to Clover); and the term falsely not covering

when JaCoCo does not cover a method while Clover does
cover it.

The overall coverage data can be seen in Table V, where
the mentioned numbers and coverage percentages are shown,
respectively.1 The difference is between 0.2% and 8.5%,
but what is interesting is that programs netty, orientdb and
oryx produced significantly larger difference. Also, except
commons-math, JaCoCo’s coverage was always smaller. This
suggests that bytecode instrumentation typically shows the safe

but imprecise case, but we investigate these differences in more
detail in the following sections.

Table VI shows how big is the difference in the coverage
between JaCoCo and Clover relative to the coverage obtained
by Clover. This measure is relevant because we treat the source
code instrumentation results as the ground truth to which
bytecode based results should be compared. The last column
of the table shows the difference in the number of covered
methods overall for the whole test suite (in either direction),
divided by the number of methods covered by Clover. As can
be seen, the difference is more emphasized for the last three

1Note, that the overall percentage shown for JaCoCo is not directly
comparable to any percentage that the tool originally reports through its UI
due to a different denominator and the filtering mentioned above.



TABLE V
OVERALL COVERAGE RATIOS

Total Covered Covered Percent Percent
Program Clover JaCoCo Clover JaCoCo Clover
checkstyle 2 648 2 483 2 501 93.8% 94.4%
commons-lang 2 791 2 608 2 615 93.4% 93.7%
commons-math 6 826 5 998 5 989 87.9% 87.7%
joda-time 3 885 3 516 3 532 90.5% 90.9%
mapdb 1 599 1 237 1 243 77.4% 77.7%
netty 9 572 3 552 4 361 37.1% 45.6%
orientdb 13 517 4 233 5 311 31.3% 39.3%
oryx 2 075 434 570 20.9% 27.5%

programs according to this measurement than what we got
in Table V. For program oryx, for instance, the number of
erroneously reported methods by JaCoCo is nearly one quarter
of the number of covered methods by Clover.

TABLE VI
RELATIVE DIFFERENCE IN THE COVERAGE

Per-test case average Overall
Program Average Q1 Median Q3 coverage
checkstyle 9.11% 0.00% 0.00% 0.00% 0.719%
commons-lang 6.99% 0.00% 0.00% 1.85% 0.267%
commons-math 40.78% 0.00% 0.83% 15.79% 0.150%
joda-time 34.56% 0.00% 7.59% 10.42% 0.453%
mapdb 243.50% 0.00% 8.36% 96.15% 0.482%
netty 126.95% 19.35% 43.91% 94.32% 18.550%
orientdb 6.25% 0.00% 0.00% 1.90% 20.297%
oryx 100.83% 16.67% 50.00% 100.00% 23.859%

We also performed this kind of measurement individually
for each test case in the test suites of the benchmark programs.
Namely, we calculated how big is the difference for each
individual test case relative to Clover data. The result can
be seen in the second to fifth columns of the table, where
the average, lower quartile (Q1), median, and upper quartile
(Q3) values are shown, respectively. It can be observed that
the difference is quite varying and is, not surprisingly, not
really related to the overall coverage data. There are, however,
some quite high average values such as for mapdb, netty and
oryx. This means that, on average, the number of erroneously
reported methods by JaCoCo may be as high as more than
two times of the number of covered methods by Clover.
The median and quartile values show that the high average
difference is probably caused by a small number of outliers.

2) Per-Method Coverage: In the next experiment, we
recorded for each method from the base set how many of the
test cases cover that method according to the two tools. Then
we counted the number of methods for which the number of
covering test cases was equal, and how many times one or the
other tool reported this differently (addressing our research
question RQ1b). To compare the “number of covering test
cases” we used two approaches: in a less strict one only the
coverage fact was compared, i.e. if it was covered at least once
or not at all. In a more strict approach the two numbers of test
cases were directly compared to each other. This enabled us a
more subtle analysis of the differences in the overall coverage
results from the previous section.

There may be two main kinds of differences in the number

of covering test cases: Clover reports a method covered while
according to JaCoCo it is not covered, and vice versa (with
the strict approach, this is the direction of the non-equal
relation). Based on results so far, we expected that there will
be no cases when JaCoCo covers a source element while
Clover does not cover it. However, we found several cases
when this was not true. Altogether there were 116 such
problematic methods, which we all investigated manually to
find out the reasons for the difference. We found that it was
due to various differences related to the behaviour of the tools
or some peculiar aspects of our measurement environment.
Namely, in 63 cases the method in question was called from
test fixture code. Clover uses its own mechanism to identify
test cases and decide what covered program elements belong
to the individual test cases, and which ones are “common,”
belonging to none individually. JaCoCo employs a slightly
different concept, and treats these common methods as part
of each individual test case. The mentioned common test
code includes setup and teardown test methods (annotated by
@Before or @After in JUnit) and test class constructors.
In the next 13 cases the methods reported by JaCoCo as
covered were invoked during test class initialization (i.e. from
the generated <clinit> method), class setup, or class tear-
down (annotated by @BeforeClass and @AfterClass in
JUnit). The remaining 40 cases were caused by the deficiency
of Clover to recognize a test case as a test case.

In the following, we concentrate on the other type of
difference, namely when JaCoCo fails to report a coverage
while Clover does this. Table VII shows the associated results.
Columns two and three correspond to the less strict approach:
how many times the method was not recognized and how
many times it has not been covered by any of the test cases,
respectively. The last column shows the result for the strict
approach, namely how many times the method was covered
by at least one test case but this number was smaller than for
the Clover case.

TABLE VII
NUMBER OF METHODS WHERE THE JaCoCo COVERAGE WAS SMALLER

THAN THE Clover COVERAGE

Program Not recognized Zero tests Fewer than Clover
checkstyle 2 17 266
commons-lang 13 5 131
commons-math 17 7 324
joda-time 12 7 226
mapdb 17 2 30
netty 24 800 1 735
orientdb 72 1 040 2 682
oryx 2 140 91

We can observe the following from the table. First, there are
relatively few cases of the inaccuracy of JaCoCo which are
due to unrecognized methods. The other thing to notice is that
where the difference of the coverage was higher (see Table V),
this is also reflected in this table. The strict measurement
follows this trend but we can see that even when the coverage
fact itself is not impacted there are still many inaccuracies in
the details of the coverage results. We elaborate on the possible



reasons for this particular set of differences in the next section.
In Figure 1, the summary of differences is shown. This

diagram is based on the numbers from the previous table, this
time relative to the number of methods in the base set. The
results indicate that in the three programs with the biggest
overall coverage difference, about 6–8% of the methods are
falsely reported as not covered, and that when all factors
including not recognized and fewer times covered cases are
taken into account, the difference is much more emphasized.
On average, 17.9% of all methods of the 8 programs have
false coverage data, when investigated more closely.

Fig. 1. Summary of differences in the per-method coverage

C. Qualitative Evaluation

In this section, we address our research question RQ2,
i.e. the possible causes for the differences we observed and
presented in the previous section. We carefully examined
the differences between the coverage results reported by Ja-

CoCo and Clover by looking at the source code and generated
bytecode if necessary, as well as other factors like build
configuration. Due to their large number, we could not look
into each individual difference, instead we manually selected
the typical cases making sure that each system and module
is sufficiently covered by our investigation. Altogether, we
manually investigated several hundred individual methods and
test cases during this work. Finally, we were able to identify a
set of common reasons, which we overview in the following.

1) Instrumentation: In some cases the instrumentation itself
modifies the behavior of the tests, which may influence the list
of executed methods. An example is in the joda-time program,
where two specific test cases fail after being instrumented
by Clover. This is because the tests depend on a number of
subclasses of the tested class, and – as Clover implements
coverage measurements and test case detection by inserting
subclasses into the examined class – these two tests fail on
assertions right at the beginning of the tests. Similar failures
occur in the checkstyle project as well, where two of the test
cases try to ensure that the classes they test have a fixed
number of fields, however with the additional fields which
Clover inserts in the classes these assertions fail.

2) Cross-coverage among submodules: Larger systems are
organized into submodules, which is also reflected in the
build configuration, in our case the Maven projects. Here, a

submodule can define its own dependencies and build process
including unit tests. This means that each submodule has
its own test suite with a set of test cases. JaCoCo and
Clover handle submodules differently. Let A and B be two
different submodules in a Maven project. During the build (and
test phase) of module B, module A is treated as an “external”
dependency, which prevents JaCoCo from instrumenting and
measuring the coverage of the elements of A. Thus, it only
considers a method of module A covered if the method is
invoked from the tests of module A. On the other hand,
Clover aggregates coverage among all modules, so if a method
from A is used in a test in B, Clover considers the method
as covered. These different behaviors can lead to differences
in the global coverage of the projects. Our subjects netty,
orientdb and oryx are examples of multiple module projects,
and these have the biggest difference in the coverage as well
(see Table V). The other five programs are single module
projects. Although we investigated only Maven based projects
in our experiments, we think that similar problems may occur
in other build configuration systems as well.

3) Untested submodules: The “Clover only” column in
Table IV lists the number of methods recognized only by
Clover but not recognized by JaCoCo. This difference is
another consequence of the different submodule handling
between JaCoCo and Clover. In the case of JaCoCo, if module
A does not have any tests, it will not recognize any of its
methods, which means that the methods of A will be missed
from the set of all methods of the project. Clover, on the
other hand, correctly determines the set of all methods across
all submodules. For example, netty has 1439 methods which
are recognized by Clover only. 1395 of these methods are in
submodules that do not have any tests. oryx has 518 such
methods, 516 of them are in untested submodules, and orientdb

has 278 of 465 methods that are not recognized by JaCoCo for
the same reason.

4) Name encoding: A common reason for the differences is
related to enums, anonymous and nested classes. The problem
is that in some cases a method of such a class may get
additional parameters to access the members of its enclosing
class. Other cases show that methods might even lose some
of their parameters. These modifications result in different
signatures of the source code and bytecode instance of the
same method.

For example, a constructor like MyEnum(String name)

of an enum type in the pack package will have the
signature pack/MyEnum/MyEnum(LString;)V in the
source code, while the bytecode based tools will see it as
pack/MyEnum/MyEnum(LString;ILString;)V. An-
other example is when there is a private static class named
Bar with a private constructor Bar(final Foo f) nested
in a final class named Foo. The source code based tools recog-
nize the constructor as Foo$Bar(LFoo;)V, while bytecode
based ones will see Foo$Bar()V.

Such missing or extra parameters in the bytecode make
the signatures of these methods different in JaCoCo and
Clover measurements. This difference prevents the automatic



assignment of the methods of the two measurements, and
caused the reduction of JaCoCo coverage count in our ex-
periments.

5) Exception handling during coverage measurement:

When JaCoCo instruments the bytecode, it inserts probes into
strategic locations by analyzing the control flow of all methods
of a class. If the control flow is interrupted by an exception
between two probes, JaCoCo will not consider the instructions
between the probes as covered. For example, if a method
throws an exception at the beginning of the caller method,
JaCoCo marks the caller method as not covered. However,
Clover’s instrumentation strategy is able to handle this situation
and it will mark the caller method as covered.

6) Generated code: All programs we investigated include
code constructs that result in compiler generated methods,
which are not visible in source code, only in bytecode. This
includes default constructors and initializers as well, but we
handled these cases by the aforementioned filtering at the
beginning of the measurements. On the other hand, some
projects (for instance, checkstyle) generate some portion of
the code of the application on-the-fly using some external tool
like ANTLR, or a configuration setting. Instrumentation tools
may consider this situation differently, but usually they can be
configured to consider also this section of the source code as
part of the code base. Bytecode instrumentation tools are able
to handle generated code more easily.

7) Other: Although we did not conduct qualitative analysis
on other issues we think that there might be other hidden
problems, e.g. dynamic runtime optimization performed by the
JVM, which may affect the differences between JaCoCo and
Clover measurements.

To summarize, we found that although there are some
tool specific issues, most of them are generalizable, and will
probably be applicable to other bytecode and source code
instrumentation based tools. Indeed, we found that most of
the specific issues of JaCoCo are present in Cobertura, the
other bytecode instrumentation tool we considered, as well.

D. Impact on applications

In this section, we address our research question RQ3,
i.e. what are the possible implications of the inaccuracies of
bytecode instrumentation. We collected some of the most im-
portant applications of code coverage measurement, which are
summarized in Table VIII. The table lists the applications and
briefly mentions the impact of both cases of the inaccuracies:
the second column shows the case when an actual coverage is
not reported by the tool, and the third column is the opposite.

If we compare the different cases we can observe that the
level of impact is typically not the same for falsely covering
and falsely not covering. In the following, we elaborate on the
different applications in more detail.

1) White-box testing, quality, traceability: As mentioned at
the beginning of the article, white-box testing may suffer from
coverage inaccuracies in two ways. The falsely covering case
is a more serious one because it may give a false confidence
in the completeness of the testing. Fortunately, our results

TABLE VIII
SUMMARY OF THE IMPACTS OF INACCURATE CODE COVERAGE

Application Falsely not covering Falsely covering

White-box testing,
quality, traceability

Increased effort False confidence

Fault localization Impossible
localizability

Moderate impact
on scores

Test selection and pri-
oritization

Suboptimal priority Suboptimal prior-
ity

Test case generation Inability to check suc-
cess

Reduction in suc-
cess

Mutation analysis Minor Inability to kill
mutants

show that bytecode instrumentation rarely results in this kind
of error. However, the other case is much more frequent, as
presented in the previous section. Here, falsely not covering
program elements will usually result in more effort required
to action on the coverage results. Namely, it will mean more
program elements to investigate during testing. Results from
Figure 1 show that, for instance, when investigating uncovered
methods of the last three programs about 6–8% of the methods
will be examined superfluously.

2) Fault localization: Code coverage based fault localiza-
tion (sometimes referred to as spectrum based fault localiza-
tion) [35], [16] fundamentally relies on code coverage. There
are variations to it, but the basic approach of this technique
is to narrow down the search for the faulty program element
based on a “suspiciousness score.” It will be higher for a pro-
gram element if there are many test cases that cover it and fail,
while test cases not covering it pass at the same time. Clearly,
an error in the coverage will impact the suspiciousness score
and hence the chances of localizing the fault. In particular,
if the fault is in the program element which is erroneously
reported as not covered it will never be localized using the
standard algorithms (most scores such as Tarantula [12] will be
set to 0 in this case). Even in the case when the coverage is not
totally missing but there are fewer covering test cases reported
(the strict approach from Section V-B2), it will decrease the
chances for fault localization. For instance, for some of the
programs in Figure 1 up to 25% of the methods will be affected
by this issue. The falsely covering case will also impact the
localization scores, though moderately.

3) Test selection and prioritization: Test selection and
prioritization methods that rely on code coverage ([15], [16],
[17]) may also be severely impacted by inaccuracies in the
coverage. Algorithms that give preference to highly cover-
ing test cases basically prioritize test cases either globally
according to the coverage ratio or to how much additional
coverage a test case provides [36]. Test selection methods then
select the first given number of test cases from this list. This
means that any difference in the per-test case coverage will
have a high impact on the performance of the algorithms. In
Section V-B1, we have seen that the difference in per-test case
coverage may be quite dramatic: from 100% to nearly 250%
of the number of correctly covered methods will appear as
incorrect coverage information for some of the programs. This



can then fundamentally influence the priority lists computed
by the algorithms. This problem affects both the falsely not
covering and falsely covering cases.

4) Test case generation: The impact of inaccurate code
coverage on test case generation algorithms [10], [11] is sim-
ilar to the impact on general white-box test design technique.
Except that in this case there is no human involved who can
understand (with increased effort) that there is a missing or
superfluous coverage. Consequently, a missing coverage will
result in the algorithm not being able to check the success of a
generated test case because it will always observe that it failed
to cover a program element. A superfluous coverage on the
other hand, will reduce the successfulness of the generation
because the algorithm will think that an element is covered
by some of the generated test cases and will not continue
searching further.

5) Mutation analysis: Our final example of code coverage
application is mutation analysis and mutation testing [18],
[19]. In mutation analysis, the program is modified to insert
artificial faults (creating mutants) and verify if any of the test
cases can detect the fault (in other words, can kill the mutant).
If the mutant is not killed, then in a mutation testing approach a
new test case is created or generated to kill it. Here, the falsely
covering case will have the effect that the algorithm will be
unable to kill the mutant because due to actual non-coverage
the fault will not be detected (only false belief will remain due
to the reported coverage). A falsely not covering case will have
a minor impact because the fault will be detected regardless of
code coverage information, but it will still be confusing. Also,
mutation testing will suffer from the same difficulties as with
test case generation since it uses this technique to augment the
test cases in order to kill the mutants.

VI. THREATS TO VALIDITY

The main aim of the paper was to investigate the effects of
bytecode instrumentation technique for code coverage mea-
surement with respect to source code instrumentation. We
did this by empirical measurements using two specific tools.
Clearly, this raises the question how generalizable are the
result to other tools using similar techniques. When interpret-
ing the results, we tried to separate tool-specific issues from
approach-specific ones. Also, we did a comparison of bytecode
instrumentation results of JaCoCo to that of a similar tool,
Cobertura and found no significant differences. Finally, the
results of source code instrumentation with Clover have been
verified with manual instrumentation.

Our experiments showed results with respect to method-
level coverage analysis. Generalization to other granularities
such as statement or branch level may not directly be possible.
We used a limited set of Java programs, and our findings
may not be valid for other programs. Furthermore, all projects
use the Maven build system and JUnit test framework, which
could also affect the generizability of the results. However,
these programs were selected from different domains and have
different size (both in terms of code and tests).

We slightly modified the instrumentation process of Ja-

CoCo by adding a listener that detected the start and end of
the execution of a test case. The results obtained with this
modification may not directly translate to coverage results
everyday users would experience with the stock version of
JaCoCo. However, we compared the results of the unmodified
JaCoCo measurement to our version in terms of actually cov-
ered program elements and found no significant differences.

VII. CONCLUSIONS AND FUTURE WORK

Our experiments presented in this paper show that the differ-
ence between bytecode and source code instrumentation based
code coverage measurement tools can be significant. To our
knowledge, this kind of systematic comparison with realistic
systems and test suites has not been presented previously. At
first, the difference in the overall percentage results presented
to the user might not seem too big (we found it to be between
0.5–8.5%), but relative to the actually covered elements, the
difference can be as high as 24%. The difference might not
influence an engineer’s decisions in some situations, e.g. when
the overall confidence in the testing is to be assessed. However,
on a per-test and per-method levels, it can have bigger impact.
In the last section we listed several applications where these
fine differences matter a lot.

In this research, we used two specific tools that are popular
in industry and research: Clover and JaCoCo. They represent
source code and bytecode instrumentation approaches, respec-
tively. Although we found some tool-specific differences, we
think that most of our findings will be applicable to other tools
with similar working principles.

The implications of the results might be multiple. For
industry practitioners, it will depend on the actual application
of code coverage measurement but it will range from increased
effort to false confidence in testing. Apart from the numerous
advantages of bytecode instrumentation, one should consider
also the drawbacks we identified. In academic research, the
inaccuracies of the tools used may have great impact on
the validity of the results, so we think that, depending on
the application, usage of source code level instrumentation
should be considered. Finally, our list of possible reasons for
the difference may be used as guidelines how to avoid and
workaround the inaccuracies if bytecode level instrumentation
tools are still to be used.

In this work, we concentrated on method-level analysis, but
we plan to extend the experiment to other coverage criteria
such as statement and branch. We plan to consider other tools
for more careful analysis as well such as offline bytecode
instrumentation tools. Finally, in this phase we only considered
the potential impact on the applications but did not actually
studied it empirically. In the near future, we will consider the
actual measurable impacts of the inaccuracies to some of the
applications mentioned in this paper.

ONLINE APPENDIX

The measurement data are available online at
http://www.sed.inf.u-szeged.hu/java-instrumentation
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