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The magnetoresistance of ferromagnetic metals due to spin fluctuation through s-d in
teraction is calculated for the whole temperature region and for the weak magnetic :field. The 
ladder approximation (RPA) is used in the calculation of the spin Green's functions and .it is 
shown that the magnetoresistance has a logarithmic dependence on the temperature and the 
magnetic :field both at low temperatures and near the transition temperature. 

§ I. Introduction 

In a previous paper1''*' a simple theory of the magnetoresistance in magnet
ic metals due to electron scattering by localized spins has been developed in the 
frame-work of the molecular field approximation. It has been shown in I that 
the magnetoresistance is positive in the antiferromagnetic state, while it is nega
tive in the ferro- and paramagnetic states. Several experimental tendencies of 
rare-earth metals have been qualitatively explained by this theory. However, the 
theory of I has severe! unsatisfactory features characteristic of the molecular 
field approximation. In particular the low-temperature behaviour of the magneto
resistance proportional to exp (- const/T) and the lack of the spacial fluctuation 
of the localized spins are important failings characteristic of the molecular field 
approximation. The latter point is particularly important for the temparature 
dependence of magnetoresistance near the critical point. It is the purpose of this 
paper to improve these failings of the results of I in the case of the ferromagnetic 
metals. 

In the ferromagnetic metals a negative character of the magnetoresistance 
due to the electron-spin scattering arises from the following origin: The magne
tic field increases the effective field acting on the localized spins and suppresses 
the fluctuation of spins in space and time, which leads to the decrease of the 
resistivity. The negative character of the magnetoresistance, therefore, will re
main unchanged in the RPA calculation, as will be seen in this paper. 

The negative magnetoresistance is also shown in dilute alloys with paramagnetic 
impurities. Yoshida2> first explained the negative magnetoresistance of the magnetic 
alloys. He showed in the molecular field approximation that when impurity spins 
formed antiferromagnetic ordering the negative magnetoresistance arises from the 

*> Hereafter this paper will be referred to as I. 
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Negative Magnetoresistance of Ferromagnetic Metals 1829 

cross term due to the magnetic and non-magnetic impurity scattering. Recently 

Williams8l has also calculated the negative magnetoresistance of ferromagnetic dilute 

alloys in the spin wave approximation. Several works have been done on the 

magnetoresistance of dilute paramagnetic alloys concerning the Kondo problem.4""' 

In this paper we shall study the magnetoresistance of a ferromagnetic metal 

in which conduction electrons interact with the localized spins through the s-d 

interaction. The localized spins of this model, therefore, interact with each other 

through the conduction electrons, i.e., through the Ruderman-Kittel-Kasuya-Y oshida 

type interaction, and show the ferromagnetism below a transition temperature. 

In § 2 we set up the model and study it in the Hartree-Fock approximation. 

In § 3 we develop the perturbational treatment for the Green functions of 

the electron and the localized spin. We derive the explicit form of the Green 

functions in an R.P.A. approximation. 

In § 4 using the Nakano-Kubo-Mori approximate formula we calculate the 

resistivity and magnetoresistivity due to electron scattering by the localized spins 

in the first Born approximation. 

In § 5 we obtain the explicit form of the magnetic resistance for the whole 

temperature region. Section 6 will be devoted to the summary and discussion. 

In the Appendix we calculate the magnetoresistance near Tc using the scal

ing hypothesis for the spin correlation function. 

§ 2. Hamiltonian and Hartree-Fock approximation 

We start with a simplified model of a ferromagnetic metal in an external 

field, in which conduction electrons interact with localized spins through the s-d 

interaction and there exists a uniform field acting upon the electron spins and 

the localized spins. In this model the magnetic field is assumed to be small and 

the cyclotron motion of the conduction electron is neglected. The Hamiltonian 

of the system is represented by 

with 

and 

J 
3f.d= --I; Sa(q) ·S( -q), 

N q 

3{,, = - H[p.Si (0) + !1sS" (0)] 

~q=eq-!1, 

Sa(q) =I; e-iqR!S!a, (a=x, y, z) 
! 

(2·1) 

(2·2) 

(2·3) 

(2·4) 

(2·5) 

(2·6) 
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1830 H. Yamada and S. Takada 

where c:11 (Cq11 ) is the creation (annihilation) operator of a conduction electron, 
Sq and fJ. are the kinetic energy and the chemical potential of the conduction 
electron, s,a is the localized spin operator at the l-th lattice site and N is the 
total number of lattice sites. p../2 and p., are the magnetic moment of the con
duction electron and the localized spin, respectively. J(q) is the exchange inter
action between the conduction electron and the localized spins. The direction of 
the external field is taken to the positive z direction. The components of Sc (q) 
are explicitly given by 

(2·7) 

(2·8) 

(2·9) 

We introduce parameters m and M, which correspond to the magnetization 
of the conduction electron and the localized spin system, as follows: 

and rewrite ${,<1. in the following form: 

$C,<I.=JMmN-JMSc"(O) -JmS"(O)- J .I; Sc'(q) ·S'( -q), 
N q 

where a'=a-(a). Using this transformation one can rewrite ${ as 

with 

${=${RF+${', 

${RF=JmMN+ .I; .I; ~qtTC:11Cq11-y .I; S,•, 
q IT=± £ 

J 
${'=--.I; S'c(q) ·S'( -q) 

N q 

y=p.sH+mJ, 

y.=p..H+JM. 

(2·10) 

(2·11) 

(2·12) 

(2·13) 

(2·14) 

(2·15) 

In the above equations ${HF is the Hamiltonian in the Hartree-Fock approxima
tion, and we take it as the zeroth-order Hamiltonian and the remainder part ${' 
as the perturbation. In the Hartree-Fock approximation, the self-consistent equa
tions are obtained from (2 ·13) in the form 

M=b({3y), (2·16) 

(2·17) 
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Negative Magnetoresistance of Ferromagnetic Metals 1831 

where 

b(x)=(S+ !)coth[(s+ !)x]-! coth~, 

1 
f(x) = efix + 1 

(2·18) 

(2·19) 

Equations (2 ·15), (2 ·16) and (2 ·17) are self-consistent equations to deter

mine M and m. Since Y• is very small compared with the Fermi energy eF, 

we can expand Eq. (2 ·17) for m in terms of the small parameter 

y. =tJ..H+JM ~1. 
I>F I>F 

The self-consistent equation for M becomes 

where 

y=tJ.efiH+ Veff(O)M, 

M=b({1y), 

Veff(q, it;,)= :;x(q, it;,), 

x(q, it;,)=_ :E J_C~k)- f(~k+q) 
k tf;,+~k-~k+q 

and m is determined from M as 

m- Vef£(0)/J. H+ Vef£(0) M. 
J' eff J 

(2·20) 

(2·21) 

(2·22) 

(2·23) 

(2·24) 

(2·25) 

(2·26) 

In the above the effective interaction between localized spins V eff(q) is the usual 

R-K-K-Y interaction, and the self-consistent equations (2 · 21) and (2 · 22) are the 

same as the self-consistent equation of the spin system represented by a Heisen

berg Hamiltonian with exchange interaction V eff (q). 

The Curie temperature is given by 

in the present approximation. 

T.= S(S+ 1)Veff(O) 
3 

§ 3. Green's function and RPA approximation 

3 · 1 Green's function and perturbational expansion 

(2·27) 

In this section we perform the formal expansion of Green's functions of the 
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1832 H. Yamada and S. Takada 

electrons and the localized spins in terms of 3{' following the method of the 
cumulant expansion extended by Brout et al."> and Larkin et al.6> 

The thermal Green function of the electrons and the localized spins are 
defined in the usual way: 

where 

ga(q, i(n) =t rP dre'tn• { -<T.Cia(r)Cqa(O))}, 

g)ar(q, iCn) =t JP drettn•<T.S'a(q, r)S'r( -q, 0)), 
-P 

(a, r= +, -, z) 

A(r) =e.1t'Ae-.1t•, 

< · · ·) = (Spe-fl.1t)-1Sp (efl.1t · · ·), 

S±(q) =Sx(q) ±iSY(q), 

iCn=inTn 

(3·1) 

(3·2) 

(3·3) 

(3·4) 

(3·5) 

(3·6) 

and T. is the time ordering operator, n is an odd integer for g a and an even 
integer for g)ar. 

Using the Hamiltonian (2 ·12) and taking 3{ HF as an unperturbed Hamiltonian 
the Green functions (3 ·1) and (3 · 2) can be expanded in terms of 3{'. The 
Green function in the zeroth order is obtained as follows: 

g (0) ( i" ) - 1 
a q' ~;,n - ·r - t= ' 

Z~;,n 10 qa 

g)-+<O> ( i") = 2NM q, '»n '!' ' 
Z~;,n + Y 

g)ZZ(O) (q, i(n) = Nf3iJnob' ({3y), 

(3·7) 

(3·8) 

(3·9) 

where b' (x) =db (x) / dx . Each term in the expansion can be transformed into 
the product of the electron part and the spin part, both of which can be averaged 
independently. These terms are further expanded by using the Bloch-de Domi
nicis theorem for the electron part and the cumulant expansion method for the 
spin part. 

The cumulant average < .. )c of the spin operators are defined formally by 
the relation•>· 7> 

<T. exp [~tS+ (q~o r1) + ~23- Cq2, r2) +~aS'" (qs, rs)] )o 

= exp<T. exp [~tS+ (q~o r1) + ~23- Cq2, r2) +~aS'" (qs. rs) J>c, (3 ·10) 

where ~h ~ 2 and ~ 3 are arbitrary parameters. The < · · · )0 is defined as 

< · · · )0 = (Spexp(- [3y :E Sz") )-1 (Spexp (- [3y :E Sz") · · ·). (3·11) 
! ! 

As the localized spins of different sites are statistically independent in the Har-
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Negative Magnetoresistance of Ferromagnetic Metals 1833 

uJI2N 

_f;\_ 
l<;u '\:_)k•q,u 

s· (-q) 

J/2N 

nGiWiJ 
s-(~q) 

(a) (b) 

Fig. 1 ( a ) . The bare vertex parts of the s·d Fig 1 ( b ) . A graph of the spin-cumulant 

interaction. function given by Eq. (3·13). 

tree-Fock approximation as is seen from (2 ·13) and (3 ·11), the cumulant average 

which contains the spins of. different sites are zero according to the property of 

of the cumulant average. This leads to the crystal momentum conservation at 

the spin vertex block as is seen in Eq. (3 ·13) below. 

The resulting expansion of the Green function is expressed graphycally.5l·6l 

Each graph is constructed from the free-electron line and the spin vertex blocks 

which are connected to each other at the bare vertex shown in Fig. 1 (a). The 

spin vertex block is expressed as in Fig. 1 (b) and is defined analytically as 

ra,a,···ttn (qtq2·. ·qn, .it;.tit:.z· .. it;.n) 

=-1 - Jfl dtc·dtn(T.S'a•(qt. tt)S'a'(qz, r2) ·· ·S'an(qn. r,.) ) •. 
2"fj"-l -/1 

Using the property of the cumulant average, (3 ·12) can be written as 

ra,a;···ttn (qlqa·. ·q,, i(.lit:.a·. ·it;.,.) 

with 

(3·12) 

(3·13) 

where G is the reciprocal lattice vector. In Eq. (3 ·14) the cumulant average 

is taken at one site (i.e., by the Hamiltonian !}{ = - yS•). In our treatment the 

umklapp process at the spin vertex block is not taken into account and we 

set G=O in (3·13). 

Dyson's equations are written in the following form: 

g ( ., ) 1 
" q, Z~.on = g. (0)( "f' )-1_ ~ ( "f') ' " q, Z~.on ~., q, Z~.on 

(3·15) 
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1834 H. Yamada and S. Takada 

m~c ?)- 1 
q, "'" - Il"T(q, it;,.)-1- (Jj2N_)I 'X."T(q, it;,.) ' 

(3·16) 

where I. (q, it;,.) is the irreducible electron selfenergy part, and x"r (q, it;,.) is 
the electron spin propagator which cannot be separated into two parts by cutting 
a part of each graph which starts from S 7 (q) and ends at S"(q). Il"7 (q, it;,.) is 
defined by 

(3·17) 

and 11"7 (q1q1, il;1 iCs) is the sum of diagrams starting from S 7 (q1) and ending at 
S"(q1) and cannot be separated into two parts by cutting a line which starts 
from S/(q) and ends at S."(q). 

3 · 2 R.P.A. approximation 

The simplest correction for the Green's functions to the Hartree-Fock ap
proximation is obtained by using the lowest graph for I. (q, it;,.), 11"7 (q, it;,.) and 
'1."7 (q, it;,.). The lowest term rrar(O) (q, it;,.) of 11"7 (q, it;,.) is the two-particle spin 
vertex block P 7• From Eqs. (3·2), (3·13) and (3·17) we have 

Il"r<o>(q, it;,.) =mar<D>(q, it;,.). 

For the lowest order of '1."7 (q, it;,.), we obtain 

x-+<D>(q, it;,.)=_ :E ~(~~er) -f(~,.+qJ , 
k zt;,.+~k!-~,.+q> 

Inserting Eqs. (3·18), (3·19) and (3·20) into Eq. (3·16), we have 

(3·18) 

(3·19) 

(3·20) 

m-+c i" )= 2NM (3 21) q, "'" it;,.+y- (MJ'f2N)x-+<o>(q, iC,.) . 

and 

g)••(q, it;,.) NO ,.o{1b' ({3y) 
(3·22) 1- (J1j4N)x .. <0>(q, 0){3b'({3y) 

One of the self-consistent ways to determine the parameter m and M is to mini
mize the free energy with respect to m and M, which is calculated from the R.P .A. 
diagram.6> Here we use the iterative method to determine m and M, assuming 
that the correction to the zeroth term is small, and the solution of the Hartree
Fock approximation is used for m and M appeared in the Green function. 

Inserting Eq. (2·21) for y into Eq. (3·21) we have 

m-+c it:)= -2NM 
q, ,. . it;,.+ P.sH + mJ- (MJ' j2N)x-+<0> (q, it;,,.) 

(3·23) 
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Negative Magnetoresistance of Ferromagnetic Metals 1835 

If we neglect the terms higher than (tt8 H/eFY or (tt.H/eF)8, Eqs. (3·23) and 

(3·24) reduce to 

g)-+ (q, i(n) 
2NM 

(3·24) 

and 

gyu ( i" ) _ N{Jnof1b' ({1y) 
q, "n -1-{1b'({1y)Ve«(q,O)' 

(3. 25) 

where Ve«(q, i[;';n) is defined by (2·24) and (2·25). The expression (3·24) shows 

that the localized spins interact indirectly through the interaction Veff (q, i[;';n), i.e., 

through the Ruderman-Kittel-Kasuya-Y oshida type interaction. The expression 

(3·23) with M=S has been obtained by several authors,8>-n> and the nature of 

the spin collective mode is studied in some details.10' The energy of this collec

tive mode is determined by the pole of n-+ (q, if;,.,.)' i.e., 

(3·26) 

If the w dependence of V e«(q, w) is taken into account, there are two branches 

in the spin-wave spectrum, i.e., the optical mode and the acoustical mode, and 

also there appears a dip in the acoustical spin-wave mode in the high-energy 

region near the continuum of the Stoner excitation.10' 

In this paper we are concerned with the effect of spin fluctuation with the 

approximation Ve«(q, w)::::: Ve«(q, 0)= Ve«(q). Inclusion of w dependence of Ve«(q, w) 

will have only a small correction except in the temperature region much higher 

than the Curie temperature in which the contribution of high-frequency spin 

fluctuation becomes appreciable. In this approximation the spin-wave spectrum 

has the well-known form 

wq=tte«H+M[Ve«(O)- Ve«(q)]. 

Performing the integration given in Eq. (2·25), one has 

= H+ 3M N. _£_{1 - 4pi-l ln[2pp+q I}· 
Wq tle« 16 N tt 4ppq 2pp-q 

For small q such as qj (2pF) ~1, Wq becomes 

with 

Wq = tle«H + cq2 

M 
c=-V:«(O) 

8 2 e"" 
PF 

and 

§ 4. The resistivity due to spin fluctuation 

(3·27) 

(3. 28) 

(3·29) 

(3·30) 

In this section we calculate the resistivity resulting from the scattering of 
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1836 H. Yamada and . S. Takada 

conduction electrons by the fluctuation of the localized spins. For this purpose 

we adopt the hydrodynamical approximation of Kubo's formula7h 12l• 18l 

where 

ar=Re limJ':dte-ts<ja(t), jr(O)) 

P a->+o <fr, gr)2 • 

(a, r =x, y, z) 

aa_ e ~ ~ f)t::qC* c 
Cf - ,- ...:..... ...:..... - ql! qlf ' 

vV ql!=±fJqa 

<A (t)' B)= f9 dA.<eU<t-£~lAe-Uc<t-£~) B*), 

<C)= {Spe-M)~ 1 (Spe-t1.9CC), 

ja = 1:- [Ja, 3(], 
t 

(4·1) 

(4·2) 

(4·3) 

(4·4) 

(4·5) 

and A, B and C represent arbitrary operators and B* is the hermite conjugate 

of B, and V is the volume of the system. There are various ways of deriving 

Eq. ( 4 ·1). One way is to regard the charge flow as a hydrodynamical mode, 

and to consider the damping of this flow to be caused by the ramdom force acting 

on the flow. The rate of this damping is determined by the correlation of this 

random force as in the case of Brownian motion of a particle suspended in a 

liquid.18l Expression (4·1) corresponds to the constant relaxation-time approxima

tion of the exact Kubo formula at least in the case of the first Born approxi

mation and leads to the well-known results in the case of the resistivity due to 

phonons and impurities.12l It should be noted that in Eq. ( 4 ·1) the difference 

of the Fermi surfaces or the numbers of the up-spin electrons and the downcspin 

electrons is not taken into account. As we are concerned with the resistivity in 

the first Born approximation, such effects are of higher order of (JjeF). The 

difference of Fermi surfaces of up and down spin electrons becomes important 

when the spin-independent scattering is present as in. the alloys with paramagnetic 
impurities.2l 

For the denominator of ( 4 ·1), we have 

<Ja, gr) =_!_ :E :E fJeq fJeq (-__§_<c;lfcqlf)) 
V q lf=±fJqa f)q 7 f)eq 

(4·6) 

from the current sum rule. Using the result of the Hartree-Fock approximation 

for <C;11Cq11 ) and the effective mass approximation for eq, ( 4 · 6) reduces to 

(4·7) 

where eq=q2/2m*, and n, is the number of conduction electrons per unit volume. 

For the calculation of the numerator of Eq. ( 4 ·1), it is convenient to em-
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Negative Magnetoresistance of Ferromagnetic Metals 1837 

ploy the thermal Green's-function method used in § 3. The diagram chosen here 

is the simplest one corresponding to the Born approximation to the scattering 

process of conduction electrons. The numerator par of Eq. (4·1) is obtained 

from the thermal Green function Qar (i(J)n) by the following procedure: 

Par-R [ · 0 Qar(" ) ] - e - Z -. Z(J),. iwn-+w+iB , 
O(J) ~-' 

6->+0 

(4·8) 

where 

(4-9) 

and 

(4-10) 

with 

ja(r) =e•.K jae-•.K. (4-11) 

From Eqs. (4·5) and (2·1) we have 

ja = . 1 _!!_____ J 'E qaSa(q) ·S( -q). 
z-/V m* N q 

(4-12) 

From Eqs. (4·10) and (4-12), Qar(i(J),.) has the form 

1 ( e ) 2
( J) 2 

Qar(i(J),.) =- - - E E qaqn 
V m* N · q q' .. 

x([S0 (q) ·S( -q)] (r)S0 (q') ·S( -q'))t.,,.· (4·13) 

We can expand Qar (i(J)n) ·in. the same way as in § 3 · using the cumulant expan

sion method andtaking 3{HF as the zeroth Hamil-

(a)--.--
t<AJn 

(c) 
il4. 

Fig. 2. The first-order . diagrams of 

Qar(iw,.) given by Eq. (4·10). 

tonian and 3{' as the perturbation. The simplest 

diagram for Qar (i(J),.) is shown in Fig. 2. The 

real line represents the electron Green function 

given by Eqs. (3-24) and (3-25). The terms 

Q~+ (i(J),.) and Q~r- (i(J),.) represented by (a) and 

(b) in Fig. 3 correspond to the scattering of con

duction electron due to transverse spin fluctua

tion and Q~1(i(J) 10 ) represented by (c) in Fig. 3 

corresponds to the scattering due to the longi

tudinal spin fluctuation; If we replace the spin 

line in Figs. 2 (a), (b) and (c) by a phonon 

line or an impurity line the resulting resistivity 

gives the Bloch-Griineisen law for the phonon 

case or the well-known form of residual resis-
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1838 H. Yamada and S. Takada 

tivity for the impurity case.12> 

In the present paper we study the resistivity due to the scattering of electrons 
by the acoustical spin-wave mode and neglect the dependence of effective inter
spin interaction. Then the wavy line in (a) and (b) in Fig. 2 represents the 
renormalized Green function 

with 

g)-+ (q, it;,,.) = . 2NM 
zt;,,.+wq 

(4·14) 

Wq=!LeffH+M[Veff(O)- Veff(q)]. (4·15) 

First let us consider the resistivity due to transverse spin fluctuation. From the 
diagrams (a), (b) given in Fig. 2 we have 

Q':!+ (iw,.) + Q~- (iw,.) 

x {[JC~k+qt) -(Cwq+~k~)] [f(~k~) +n( -wq)] 
tl!),. -l!)q- ~ k~ + ~ k+qt 

_ [f(~k+q~) -f( -Wq+~kt)] [f(~kt) +n(Wq)]} 

iw,. + Wq- ~ kt + ~ k+qJ. · 
(4·16) 

From the relation ( 4 · 8) we obtain 

P':.~ + P<;r_ = 4n{3 (__!!___) 2 (_!__) 2 NM .E .E qaqr 
m* 2N k q 

xf(~ kJ.) [1- f(~ k+qt)] n (Wq) ~#· kJ. + Wq- ~ k+qt), ( 4 ·17) 

where n(x) = (e.ez-1)-1• In the above, P':.~ and P~ are the part of par which 
corresponds to (a) and (b) in Fig. 2, respectively. The resistivity due to trans
verse spin fluctuation Pt is obtained by Eqs. (4·1), (4·7) and (4·17) as 

- 1 J2 M/3 v rqD dB 2 c )IC ) C4 18) Pt- 6 (2nt e2n.2 N Jo qq n Wq q . · 

with 

(4·19) 

where QD is some cutoff wave number. The summation over q and k was 
transformed into integration in the above expression. In the lowest-order approxi
mation, neglecting the terms of the order of (y./ eF), and noting Wq = Wq for 
isotropic system we have 

(4·20) 
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Negative Magnetoresistance of Ferromagnetic Metals 1839 

Then p, is given as 

p,= Sp(oo) M fq"dq·qa {3Wq 

S(S+1) q.' Jo (e.&.,q-1)(1-e-.&.,q) 
(4·21) 

with 

p(oo) = S(S+1)(m*) 2J 2 V q0 4
, 

48n8 en. N 4 
(4·22) 

where qo is qD or 2pF according to qD<2PF or 2PF<qD, respectively. 

The resistivity due to the longitudinal spin fluctration p1 corresponding to 

Fig. 2(c) can be obtained in a similar way. The result is 

_ 4p ( oo) 1 iq" 8 b' ({3y) 
Pt- - dqq • 

S(S+1) qi o 1-{3b'({3y)Veff(q) 
(4·23) 

The total resistivity due to spin fluctuation p is given by 

(4·24) 

The set of Eqs. (4·21), (4·23) and (4·24) together with t~e self-consistent 

equations (2 · 21) and (2 · 22) determine the temperature and magnetic field de

pendence of the resistivity due to the spin fluctuation over the whole temperature 

region and for the weak magnetic field. 

§ 5. The temperature and magnetic field dependence of the resistivity 

First let us briefly mention the temperature dependence of the resistivity in 

the absence of the external magnetic field. At low temperatures T /T 0 <,1, 

b' ({3y) in Eq. ( 4 · 23) is exponentially small and p1 can be neglected. We can 

easily obtain p, from Eq. ( 4 · 21) by scaling Wq c::::.cq2) by temperature and ex

tending the integration limit to infinity. The result is 

(_z_<.1) = 4n2 S p(oo)T 2 

P T. 3 S(S+ 1) C2qa' . 
(5·1) 

This T 2-dependence of the resistivity which arises from the scattering of conduc

tion electrons by spin waves agrees wih the result of the Boltzmann-equation 

approach, including the proportionality constant. In the paramagnetic region we 

put b'({3y) =S(S+1)/3 in Eq. (4·23), then p1 becomes 

- p ( 00) 4 rq· qa 

Pt--3- q0' Jo dq 1- {S(S+ 1)/3T} Veff(q) . 
(5·2) 

For p, in the paramagnetic region, we use the relation 

lim M = S(S+ 1)/3 , 
H-+o {3wq 1- {S(S + 1) /3T} Veff(q) 

(5·3) 
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1840 H. Yamada and S. Takada 

which is obtained by solving the self-consistent equation for M in a finite field 
H. Then Eq. (4·21) becomes 

2. 4 rq· qs 
Pe=3p(oo) qa' Jo dq 1- {S(S+1)/3T} Veff(q) 

and we have for the total resistivity 

4 rq· s 

p(T>T"' H=O)=p(oo) q04 Jo dq 1- {S(S+1~/3T} Veff(q). 

When q0 = 2pF, the value of p ( oo) ·of ( 4 · 22) becomes 

p(oo) =m* [..!.s(S+1)J2v g(o)]. 
e2n. 2 N 

(5·4) 

(5·5) 

(5·6) 

where g (0) is the density of state per unit volume at the Fermi surface. If we 
set Veff(q)={3/S(S+1)}T.(sinaqjaq) with some parameter a characterizing 
the range of potential, then (5 · 5) reduces to the expression of de Gennes and 
Friedel.15> 

It is necessary to know the temperature and magnetic field dependence of 
M and b'({3y), in order to know the behaviour ofthe resistivity fromEqs. (4·21) 
and (4·23), As mentioned earlier, the iterative way is used to determine M 
and y, assuming the correction to the Hartree-Fock approximation is small, and 
the solution of Eqs. (2·21) and (2·22) is used for Eqs. (4·21) and (4·23) in 
the treatment below. 

According to the temperature dependence of the resistivity due to the spin 
fluctuation in the weak external magnetic field, we can divide the temperature 
region into three; i.e., for the high-temperature region (T";P T.), the one near 
the transition temperature (T"'Tc) and for the spin-wave region (T<,T.). The 
second region can be devided into two, according to the relative magnitude of 
r= (T-T.)/Tc and h=!J.effH/T.. The temperature and the magnetic field de
pendence of M and b'({3y) for various regions can be obtained from (2·24) and 
(2 · 25) and can be summarized as follows :6> 

(1) ar3";Pch2, r";P-1 

M =a!!_ - _£__ ( !!_ r. 
r 3 r 

( h \2 
b'({3;j) =a-c ~) , (5·7) 

(2) ar5";Pch2, 1";P-r:2:;0 

h c. h8 

b' ({3y) =a-c ( ~) 2
, M=a----, 

r 3 r' 
(5·8) 

(3) ch2";Palrl 8 

(3a' rs ( 3a r/S M= -h , b' ({3y) =a -c ----;-- h , 
c 

(5·9) 
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Negative Magnetoresistance of Ferromagnetic Metals 

(4) a( -r) 3 ~ch 2 , 1~ ( -r) 2:;0 

(5) 

where 

M=[3as ( -r)]l/2 +~ _h_' 
c · 2 ( -r) 

b'({1y) =a-3a(- r) __ h_[3ac( -r)J12, 
( -r) 

r=T-T. h=tJ.H 
T. ' T. ' 

b' ({1y) "-'0 ' 

a= S(S+1) 
3 ' 

C=S(S+1)(S3 +S+t). 
15 

1841 

(5·10) 

(5·11) 

In the following we treat the case in which the effective inter-spin interaction 

satisfies 

(5·12) 

where a is given by 

(5·13) 

When Veff(q) is of the form of the R-K-K-Y type [Eq. (3·28)] a is M/8PF2 

from (3 · 30) and the above case corresponds to the case when cut-off wave 

number QD is much smaller than 2PF· First we consider the resistivity due to 

the longitudinal spin fluctuations. From Eq. ( 4 · 23) we have 

p,= 2p(oo) (a-()) (1+r) [1 - A ln(1 + q<l )] 
S(S+ 1)qa2a qi A 

(5·14) 

with the use of Eq. (5 ·13), where 

A-~ (r+ !)• b'({1y)=a-(). (5·15) 

The value of () is given by Eqs. (5 · 7)"" (5 ·10) for various regions and we have 

(1) r~1~h?;O 

p, = p ( 00) [1 + _.!_ - ..£.. (!!:__) ']' 
3 r a r 

(5·16) 

(2) ar 8 ~ch 2 , 1~r;:::o 

p,=~ p(oo) (1--r-lnl-r-l __ r_lln-r-1£_ h') 
3 aq.' aq.3 aq.' aq.' aq.2 a r 3 

(5·17) 
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1842 H. Yamada and S. Takada 

Pz= 32 p(oo; [1 
aqc 

2(-r)lln 2(-r)l- 2(-r)j 3ch2 lin 2(-r)IJ· 
aqc2 aqc2 aqc2 4a( -r)3 aqc2 

(5·19) 

In the spin wave region at low temperature, b' in ( 4 · 23) is exponentially small 
and Pz is also negligibly small compared with Pt· 

Next we consider the resistivity due to transverse spin fluctuations. From 
( 4 · 21) and (5 · 13) p1 is expressed as 

where 

_ 4p(oo) 1 (a) 2
( T ) 2 f"'c x(H+x) 

Pt- S(S+1) qc4M a Tc Jo dx (e"'+il-1)(1-e_,_fl)' 

- /l.eHH H=-T • 
M a Tc 2 xa= --qa. 

a T 

(5·20) 

(5·21) 

For the high-temperature limit r:>l or near Tc, when weak external field exists, 
the inequality l:>xc holds, and the integrand in (5·20) can be expanded by x and 
then Pt takes the form 

Pt=- --(1+r) 1-u In 1+-4 p(oo) [ ( 1)] 
3 aqa2 u 

with 

Using (5·7)"-'(5·9) we have 

(1) r:>1:>h2:0 

p1 =-p(oo) 1+---- , 2 [ 1 c (h) 2
] 

3 r 3a r 

(2) ar8:>ch2, 1:>r2:0 

Pt=_!p(oo)[1--r lln-r ~-~h2 _r lln-r IJ 
3 aqc2 aqc2 aqc2 3a r 8 aqc2 aqc2 ' 

(3) ch2:>alrl 8, 1:>h, lrl 

(4) a(-rY:>ch2, 1:>(-r)2:0 

4 p c =) { 1 Jc h 1 [ 1 rc h J 1} Pt =3 aqc2 1 - ( -r) - aqc2 3a .f=r In aqc2 ,V 3a ./- r · 

(5·22) 

(5·23) 

(5·24) 

(5·25) 

(5·26) 

(5·27) 
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Negative Magnetoresistance of Ferromagnetic Metals 1843 

For the spin-wave region at low temperature (T/T.~1), we have x.~1, and 
(5 · 20) becomes 

(5·28) 

with 

I=C""ax _x(il+x) -. 
Jo (e.r+H-1)(1-e-.r-H) 

(5·29) 

The integral I can be devided into three parts: 

I=I1+I:+Ia (5·30) 

with 

i"" y 
I1=2 dy--, 

o e11 -1 
i ii y 

I,=-2 dy--, 
o e11 -1 

-1"' 1 Ia=-H dy--. 
ii e11 -1 

(5. 31) 

The value of I 1 and I 8 is obtained easily. The integrand in I 2 can be expanded 
in powers of y when the field is weak 1~11>0. Then we have finally 

(5·32) 

The total resistivity () = () 1 + ()1 due to the fluctuation of localized spins is sum
marized from Eqs. (5·16)"-'(5·19), Eqs. (5·24)"-'(5·27) and (5·32) as follows: 

(1) r~1~h;?;O (the high-temperature limit) 

_()_=1 + _.!_ -~ _£_ (!!:..)', 
p(oo) r 9 a r 

(5·33) 

(2) ar 8 ~ch2, 1~r;?;O (near and above the transition temperature and the 
weak magnetic-field region) 

p(~) =a:.' (1-a;.: lin a;., I) _190 (a:.'Y :lin a;.a[(~)'. (5·34) 

(3) ch'~alrl 3 , 1~h, lrl (just above or below the transition temperature) 

~P =-2 (1+~ r) _1o[_1 (_!__)1/Bh'fsJIIn[-1 (_!__)1/Bh'fsJI, 
p(oo) aq.' 3 3 aqc2 3a aq.2 3a 

(5·35) 

(4) a( -rY~ch 2 , 1~( -r);?;O (near and below the transition temperature and 
the weak magnetic field region) 

p 2 2 2( -r)j 2( -r) I 4 1 [ 1 jc h ] 
p(oo) = aq.2 -3 (aq.')' In aq.' -3 aq.' aq.' 3a .f=r 
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1844 H. Yamada and S; Takada 

I [ 1 jT h Jl X ln -- ----
aq.' 3a ./=r ' (5·36) 

(5) 1~ ~. , 1~ p.e;.H (spin-wave region) 

_P_=4;r' S(S+1) 1 (L)'[ 1 -~ P.eff.Hiln/J.eff.HI _ _§_ /J.eff.H]. 
p(oo) 27 S (aq.'Y T. n' T T n' T 

(5·37) 

It is seen from Eqs. (5 ·16) "'-' (5 ·18) and Eqs. (5 · 33) "'-' (5 · 35) that the ratio 
of the negative magnetoresistivity .dp, (H) of transverse part to the longitudinal 
part .dp, is 

l
.dp, (H) I=~ for regions (1), (2) and (3) 
.dp,(H) 3 

(5·38) 

and 

l.dp, (H) I~ l.dp, (H) I for regions ( 4) and (5). (5·39) 

A very low temperatures satisfying the condition /J.eff.H/T~ 1 , it is seen that 
the magnetoresistance is proportional to exp (- /J.ef!H/T). This is the same 
situation as the decrease of resistivity when the spin-wave spectrum has an energy 
gap due to the internal anisotropy field as was first pointed out by ·Mackintosh.19> 

§ 6. Summary and discussion 

The magnetic-field-dependent part .dp of p defined as 

.dp(T, H) =p(T, H) -p(T, 0) 
p(oo) 

is obtained from Eqs. (5 · 33) "'-' (5 · 37), and is shown schematically in Fig. 3. 
When we compare the present results with that obtained by the simple molecular
field· approximation in I [Fig. 3], we see that due to the spacial fluctuations 
of the localized spins there appears a logarithmic singularity in the magnetoresis
tance near the transition temperature T. as seen from Eqs. (5·34), (5·35) and 
(5 · 36). In the spin wave region, on the other hand, the magnetoresistance is 
proportional to T'(p.eff.H/T)Iln(fJ.eff.H/T)I in contrast to the exp(-const/T)-type. 

The low-temperature behaviour of the magnetoresistance obtained in this 
paper is exact in the sense that the spin-wave state of a ferromagnet is an exact 
eigenstate at low-energy region. The magnetoresistance at the high-temperature 
limit coincides with the result of the molecular field approximation and is also 
exact concerning the spin fluctuation. On the other hand, however, our approxi
mation becomes poor as the temperature comes near the Curie point. Because 
in this region the fluctuation of the magnetization gets very large in space and time 
and the interaction between fluctuations, which is neglected in the R. P. A. ap-
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r. 
I 
I 
I 
I 
I 
I 
I 
I 
I 

11n H l__fL : rr.;=r ff.7f ~ I 
I I 

\Q)~ 1 H"'JtnHJ 
I I I 
\I I 

-r 

\If 
(a) (b) 

1845 

-r 

Fig. 3. The schematic graphs of the negative magnetoresistance. ( a ) Present results. ( b ) The 
results of the molecular-field approximation obtained in I. The number (!) ....... ® in the graphs 
represents the following regions: 

<D T;Tc);-l, 1);-~H, c c 
® (T;.T·Y>(':.Y· 1);-T-:;,T• ~o. c 
® (JJHY IT-T.I3 1);-/l~' IT;~· I· T );- T ' • • 
® (T·-Tr (JJHr 1);-T•;:T ~0, T );- T ' • c • 
® 

T I}>Te ' 1);-ll:. 

proX:imation; becomes essential. In this region the correct critical index of the 
magnetization, the susceptibility and the coherence length must be used, and a 
more careful treatment must be necessary in the calculation near T.. In this case 
we could cakulate the magnetoresistance with the use of the scaling hypothesis 
as was done by several authors in studying the resistive anomalies at the magne
tic critical points.16l' 17l• 18l A simple treatment in this direction, for the case T> 
T. is shown in the Appendix. The index of the magnetoresistivity Jprv -lln(T 
-T.) I {H2/(T-T.)2}, -~' 3 lln HI in the regions (2) and (3) in Fig. 3 (a) 
changes into the form -lln(T-T.) I {H 2(T-T.t}, -H• or -H"Iln HI and the 
indices a, b and c are given by the linear combination of the two critical index 
as shown in the Appendix. 

Although we have started with the Hamiltonian representing rare earth 
metals, some other contributions characteristic of rare earth metals, for example 
the optical branch of spin waves, the appearance of a dip in the acoustical spin
wave branch or the effect of the Stoner excitation , are not taken into,, account. 
Such effect may have the correction to the resistivity obtained in this paper es
pecially in the high-temperature 'region. 
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1846 H. Yamada and S. Takada 

and critical reading of the manuscript. 

Appendix 

In this appendix we calculate the magnetoresistance near above Tc in the 
framework of the present calculation using the static scaling hypothesis for the 
spin Green's functions. Near Tc the most singular part of the resistivity due to 
magnetic scattering arises from g)+- (q, 0) and g) .. (q, 0), i.e., the part of C:n = 0, 
and then above the,, transition point 

(A·1) 

similarly in Eqs. (5·3) and (5·4) in the text. 
The static-scaling hypothesis postulates that g)+- (q, 0) has the homogeneous 

property20
'' 31' 

g)+-( 0)- a 
q, - r7f(q/x. H/s) ' 

(A·2) 

where a is the constant, r is the critical indices of the susceptibility, and 

x=xor", 

s= Eof4• 

(A·3) 

(A·4) 

Here Xo and Eo are the some constants and the critical index satisfies the index 
relations 

A=fi+r, v= (2(i+r)/3 (A·5) 

using r and the critical index of the magnetization denoted by (i. The func
tion f(q/x, H/E) has the following properties for q~x. and H~E, i.e., for the 
hydrodynamic region, 

f(q/x, H/e):::::1 +Cl(q/xY+C:(H/e)2, (A·6) 

while for q";;J>x, H";;J> E, i.e., for the critical region, 

(A·7) 

where C1o C2, C3 and C4 are the some dimensionless constants. Equation (A· 7) 
tells us that g)+- (q, 0) has a finite nonvanishing value at Tc for arbitrary q and 
3{ unless q=H=O. 

From Eqs. (A·1), (A·2) and (A·6) we have 

p(H) -p(O) X2 rr.c { 1 [1 +C2(Hje)2]q }a 
p(O) ocC1r7 Jo 1+Cl(q/xY- 1+Cs(H/eY+Cl(q/xY q 

=__L_{ln[1 +C1Ckc/xYJ- [1 +C2(Hje)2] 
2Clr7 
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Negative Magnetoresistance of Ferromagnetic Metals 1847 

X ln 1 +Cs(H/E)2 +C1 (kc/rY} 
1+C2(H/eY ' 

(A·S) 

where kc is some cutoff momentum. It should be noted that although we use 
the expansion with respect to (q/x) in the above calculation, the logarithmic 
singularity arises from the region q'"'-'0 and does not concern with the behaviour 
of large q. From Eqs. (A·5) and (A·S) we finally get 

p(H) -p(O)oc- (rb-2,8-Br ln kc)H2 
p(O) X 

(A·9) 

for H<,.e. 

Using Eq. (A· 7), we have for H";? E 

p(H) -p(O) oc -Hr/4 fk• qHI•dq 

p (0) Jo Ca (H/ EoY14 + c4 (q/XoY1" 

(A·10) 

from Eqs. (A·1) and (A·2). 

If we use the critical indices in the molecular-field approximation, i.e., v = 1/2 
r = 1 and t3 = 1/2 in Eqs. (A· 9) and (A ·10), we get the results in the text. 

According to the index relation r I))= 2 -1j, where 1J is the critical index for 
the spacial behaviour of the spin-correlation functions, we find r jv<2. Then we 
have 

p(H) -p(O)oc-HrJ4= -Hri<P+r> 
p(O) 

for rlv<2, and when r/v=2, we get 

p (H) - p (O) ocHri<P+r> In H. 
p(O) 
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