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Negative Norm Estimates and Superconvergence
in Galerkin Methods for Parabolic Problems

By Vidar Thomée

Abstract.   Negative norm error estimates for semidiscrete Galerkin-finite element meth-

ods for parabolic problems are derived from known such estimates for elliptic problems

and applied to prove superconvergence of certain procedures   for evaluating point values

of the exact solution and its derivatives.

Our first purpose in this paper is to show how known negative norm error esti-
mates for Galerkin-finite element type methods applied to the Dirichlet problem for
second order elliptic equations can be carried over to initial-boundary value problems
for nonhomogeneous parabolic equations.  We then want to describe how such esti-
mates may be used to prove superconvergence of a number of procedures for evaluat-
ing point values of the exact solution and its derivatives.  These applications include
in particular the case of one space dimension with continuous, piecewise polynomial
approximating subspaces, where we analyze methods proposed by Douglas, Dupont
and Wheeler [3].   Further, in higher dimensions we discuss the application of an aver-
aging procedure by Bramble and Schatz [1] for elements which are uniform in the in-
terior and in the nonuniform case a method employing a local Green's function con-
sidered by Louis and Natterer [4].

The error analysis of this paper takes place in the general framework introduced
in Bramble, Schatz, Thomée and Wahlbin [2] allowing approximating subspaces which
do not necessarily satisfy the homogeneous boundary conditions of the exact solution.
These subspaces are assumed to permit approximation to order 0(hr) in L2 (r > 2)
and to yield 0(h2r~2) error estimates for the elliptic problem in norms of order
— (r - 2).   The superconvergent order error estimates which we aim for in the parabolic

problem are then of this higher order.  In [2], estimates of the type considered here
were obtained for homogeneous parabolic equations by spectral representation; our
basic results in this paper are derived by the energy method.

1.   Preliminaries.   We shall be concerned with the approximate solution of the
initial-boundary value problem (ut = du/dt, R+ = {t; t > 0})

Lu=ut+Au=f   in£2x/?+,

' ' u(x, 0 = 0 on 9£2 x R+,

u(x, 0) = v(x) on £2.
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94 VIDAR THOMÉE

Here £2 is a bounded domain in RN with sufficiently smooth boundary 9£2,

with a¡k and a0 sufficiently smooth time-independent functions, the matrix (ak) sym-
metric and uniformly positive definite and a0 nonnegative in £2.

In order to introduce some notation, we consider first the corresponding elliptic
problem

0-2) Au=f   in £2,      u = 0    on 9£2,

and denote by T: I2(£2) —*■ //¿(£2) D /Y2(£2) its solution operator, defined by u =
Tf.  Notice that by the symmetry of A, T is selfadjoint and positive definite in L2(£l).
Recall also the elliptic regularity estimate

I23rt,+2<CI/I,    fors>0,

where II -11^ denotes the norm in Hs(£l).
Set now for s a nonnegative integer and v, w G Z-2(£2), with ( •, • ) the inner prod-

uct inZ,2(£2),

(1.3) (v, w)_s = (Tsv, w),      \\v\Ls - (7*u, v)112.

Since Tis positive definite, (•, -)_s is an inner product.  One can show that IHI_S is
equivalent to the norm

^,,«*m}.
where

H'(£l) = {ip G Hs(ü); A'ifi = 0 on 9£2 for / < s/2}.

In fact, with {X.-}" and {f.-}" the eigenvalues and orthonormal eigenfunctions
of A (with Dirichlet boundary conditions) an equivalent norm to 11-11   on Hs(Cl) is

■»l*-CO)-(f ̂ C*#) 1/2

with this notation,

(v, w)_s = £ X,. s(v, ^)(w, iff).

For the purpose of approximation, let {Sh } denote a family of finite dimension-
al subspaces of L2(£2) depending on the "small" mesh parameter h, and let {7^} de-
note a corresponding family of approximate linear solution operators Tn: ¿2(£2) —►
Sn of (1.2).  Following [2], we shall assume throughout below that {Sh } and {Tn }
are tied together by the following two properties:

(i) Th is selfadjoint, positive semidefinite on ¿2(£2) and positive definite on Sh.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GALERKIN METHODS FOR PARABOLIC PROBLEMS 95

(ii)  There is an integer r > 2 such that

\\(Th -T)f\\_p <Chp+q + 2\\f\\q    forO<p,q<r-2,fEHq(Sl).

One example of a family {Th} with the above properties is exhibited by the
standard Galerkin method, where for each h, Sn C //¿(£2), where {Sh } satisfies the ap-
proximation property (|| • || = II • ||0)

inf {llw-xll +AIIW-XÜ,} <Cft*lwli,       1 <s<r, w E H¿(Sl) r\ H'(0),
xssh

and where Th is defined by

(1.4) A(Thf, x) = (f, X)   for XESh,

with

\ /, k= 1 k      I /

The properties (i) and (ii) hold also in other instances, including situations where the
bilinear form used in the definition of Tn contains boundary terms, added to deal with
the difficulty of satisfying the homogeneous boundary conditions in Sh.

Introducing the elliptic projection P¡ — ThA, the property (ii) reduces to the
well-known error estimate

ll(/-/J1)uLp<Clip+i?llull(?    for0<p<r-2, 2<q<r,

i>6ig(!ß)njy*(Q),

valid, in fact, for the standard Galerkin method for-1 < p < r - 2, 1 <<7<r.   No-
tice also (cf. [2]) that for the orthogonal projection PQ: ¿2(£2) —► Sn we have as a
result of (ii),

11(7 - P0)v\\_p < Chp + q \\v\\q    fox2<p,q<r,vE ^¿(£2) n /Yq(£2).

With the aid of the operator T = A~l, the initial-boundary value problem (1.1)
may be written

(1.6) Tut + u = Tf   for t > 0, with w(0) = l>.

We shall consider the following semidiscrete analogue, namely to find uh: R+ —► Sn
such that

(1.7) Thuhi t + uh = Thf   for t > 0, with «„(0) = vh,

where vn is some approximation to u. Notice that since Th is positive definite on Sh,
this defines uh for t > 0.  When Sh C /Y¿(£2) and Tn is defined by (1.4), the problem
(1.7) is equivalent to the standard Galerkin problem

(1.8) (uhrt,x)+A(uh,x) = (f,X)   for x £Sh,t>0, with u„(0) = vh.

In the case of a homogeneous parabolic equation (/ = 0), error estimates for the
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96 VIDAR THOMÉE

semidiscrete problem (1.7) were derived in [2].   It was shown in particular, using spec-
tral representation, that with vh = P0v the L2-projection of u, we have for the error
e = un - u, with Dt = 9/9r,

(1.9) \\D>te(t)\\_p < Chp + q + 2r'i-'\\v\\q    for0<p,q<r-2, vEHq(£l).

By an iteration argument this also implied the L2 -estimate

\\D'te(t)\\ <Chrrrl2-'IlvII.

Our first purpose here is to derive negative norm estimates for the nonhomoge-
neous problem, valid uniformly for small t. This will be done by the energy method.
In order to do so we introduce the discrete analogues of the inner product and norm
in (1.3),

(v, w)-s,h = (Tshv, w),       \\v\LSrh = (7>, v)1 <2.

Since Tn is semidefinite on ¿2(£2) these are a semi-inner product and a seminorm, re-
spectively.  In the following lemma we shall relate these discrete seminorms to the
negative norms previously defined.

Lemma 1.   Under the above assumptions about {Tn }, we have for 0 < p < r,
i;GL2(£2),

(1.10) lui.,,,, <C{M_p +hn\v\\},

(1.11) \\v\\_p<C{\\v\\_pJl +hp\\v\\}.

Proof.   We first prove (1.10) by induction over p.  The result is trivial for p = 0
and also clear for p - 1, since

lloll-i,ft = (Thv> v) = (Tv> v) + ((rft - ?>• u) < ,ül-l + °^ llu"2'

by (ii).  Let now p> \ and assume that (1.10) is proved up to p.  We have

llull_(p+1)i/1 = \\Tnv\\_(p_lhh < llrulL{p_1)jA + ll(r, - T)v\\_(p_lhh.

By the induction assumption,

WTv\\_{p_lhh <C{ll7Vll_(p_1) -rhf-'WTvW} = C{lli;IL(p + 1) + aV"1 llull_2}.

Using, for instance, spectral representations, we have easily

llull_2 <C{fc2lli;ll +Ä-(p_1>Ii;i_(p+1)}I

so that

\\Tv\L(p.l)>n<C{\\v\\_ip + 1)+hp + 1\\v\\}.

Further, by the induction assumption and (ii) with q = 0,

11(7; - 7>ll_(p_1)>ft < C{\\(Th - T^uIL^d + h?"1 \{Th - 7>ll} < Ch"+ltvi.

This proves (1.10).
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By interchanging the roles of T and Tn, (1.11) follows analogously. This com-
pletes the proof of the lemma.

Notice that since Tn is positive definite on Sh, II -ll_s n is a norm on Sn and we
may then also use

Hxlli,ft=(7'fa-1X>X)1/2    for X G Sh.

When Th is defined by the standard Galerkin equation (1 A), we have

O-12) llxlli,ft=¿(x,x)1/2   forxes„.

2.  Error Estimates.  Consider now the initial-value problem (1.1) or (1.6) and
its semidiscrete analogue (1.7).   By subtraction we find immediately that the error
e = un - u satisfies the equation

(2.1) Thet+e = p = (Th - T)Au = (Pt - I)u.

Our basic negative norm estimate is then based on the following lemma.

Lemma 2.   Under the above assumptions about Th, let e satisfy (2.1).  Then
for any s > 0,

Ht)\LSih<c\\\e(0)\Lsn + Wp(0)\LSth +j¡ llpf(r)ll_^cfr}.

Proof. Let temporarily ( •, • ) denote any semi-inner product for which Tn is
selfadjoint, nonnegative and let II-II be the corresponding seminorm. We have after
multiplication of the error equation by et,

(Thet, et) + \| Hell2 = (p, et) = | (p, e) - (p„ e),

and hence

\jtM2<dt{p'e)+ tptl ■ M-

It follows by integration

\\e(t)\\2 < c(\\e(0)\\2 + llp(r)H He(r)ll + ||p(0)ll lle(0)ll + Jj llpfll llelldrj"

<C   sup   ire(r)ll {lle(0)ll +   sup   llp(r)ll + f llpfll dr\.

Now choose t E [0, t] such that

\e(J)\\ =   sup   lle(T)ll.
0<T<f

We then have

IIe(t)II2 < CIIe(i)II ille(0)II +   sup   Ip(t)II + /' IIp,IIdr\,
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and hence

IIe(t)II < IIe(t)IK C j IIe(0)II +   sup    IIp(r)II + V IIptWdA.

Since

sup   IIp(r)II < llp(0)ll + j1 Wpt\\dT,
0«T<f

the result now follows by application to (-,•) = (-, • )_s h.
We are now ready to state and prove our basic negative norm error estimate.

Here and below we let our regularity assumptions be implicitly defined, unless explic-
itly stated, by the norms appearing on the right in the error estimates, recalling al-
ways that the solution vanishes on 9£2 so that for instance the appearance of II vII
for q > 1 means that v G 77¿(£2) n H" (SI).

Theorem 1.  Under the above assumptions we have for 0 < p < r - 2, 2 < q
<r,

\\e(t)\\_p <c{\\e(0)l_p>h +hp+q [lui, + f¡ ll«,«^]}.

Proof.   In view of Lemma 1 and (1.5) we have

h(0)lLp¡h<C{\\(I-Pl)v\Lp+hP\\(I-Pl)v\\}<Chp+q\\v\\q,

and similarly

]]Pt^p,h<Chp + q\\ut\\q.

The result hence follows by Lemma 2.
Notice in particular, with for instance vh = P0v or vh = Ptv,

We(t)\\_p <Chr+phv\\r +fo Wut\\rdA.

For the homogeneous equation we have then

llUf(r)ll,. < Clln(T)llr+2 < CT-(1-6/2)bll,+ e    if uG77r+e(£2),

and hence for any e > 0,

We(t)\Lp<Chr+P\\v\\r+e    if vEHr+t(SI).

Generalizing the argument in [2] for p = 0, one easily shows the somewhat more pre-
cise estimate

lle(r)Lp <CV+pllull,.    for v E Hr(tl), 0 < p < r - 2.

The above theorem is complemented by the following well-known H1 error esti-
mate for the standard Galerkin method (cf. e.g. [6]).
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Theorem 2.   Consider the standard Galerkin method (1.8), and let 2 < q < r.
Then

!</)!, <CJIc(0)l1 +^-irsupll«(r)H(? +(/0f Kll^dr)172]!.

Proof.   Setting 6 = un - P1u,we have now

(6t,x)+A(9,x) = -(Pt,x)    ior XESh,

and hence with x = 0t,

wet\\2 + \jtA(6, e) = -(pt, et) < \ \\et\\2 + \ lip,«2.

By integration this yields

A(6, 6)(t) <A(9, 0X0)+/^ llp^dr,

or since 6 = e - p,

lle(r)ll2 < C jlle(0)ll2 + sup llp(r)ll2 + j¡ Wpt\\2dA.

Recalling that (cf. (1.5))

H(7-7'1)ull/<a'7-1llull(7_1+/,     / = 0, l,for2<?<r,

the result obtains.
Our applications will require estimates for time derivatives of the error for posi-

tive time.  We start with a lemma on the homogeneous semidiscrete equation.

Lemma 3. Let un(t) G Sn be the solution of

Thuh,t + Uh=°   fort>0,un(0) = vh,

and let-I <p<s,j>0.   Then

\\D^h(t)ll_p>„ < Ct-V+ *(s-p))IIvn \_sH    for t > 0.

Proof.   By the definition of the discrete negative norm, we have with T^1 =

An,

HxLp.ft =(^X,X)1/2 =(7-^^)X,^2(i"P)X)1/2 = WA^-Ph\\_Sth.

Since

un(t) = e-A"\,

we have

D'tuh(t) = (-Anye-AHtVh.

The result is, therefore, an immediate consequence of the uniform boundedness for
t > 0 of the operator (Antje~Aht (I = / + (s - p)/2) with respect to the norm
II'IL, ft which in turn follows at once by the boundedness of <Je~w for co > 0.

We are now ready to prove the negative norm error estimate for time derivatives
at positive time.
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Theorem 3. Let j > 0, s > 0 and 0 < p < r - 2.   We then have for t > 5 > 0,

\\DÍe(t)\\_p<C\\vh-P0v\\_s>h

+ Chr+r   ¿  \\D^(t)\\r+ft_s lDÍ+1ulrdT + ílliUttp^drl.

Proof.   Consider a fixed t = tx > S.   Let <¿> G C°° be such that ip(t) = 1 for r >
- S/2, sp(r) = 0 for t < -8.  Set ^j(r) = ip(r - r,), and write u = ux + u2 where «x
= uyx, «2 = «(1 - i^j).   Recalling that L = Dt + A, we have

¿Uj = /j =/>! + «<^i for í > 0, MjiO) = 0,

Lu2 = f2 =f(l - ipj) - uip\    for r > 0, w2(0) = u.

Let now ux h and u2 n be the solutions of the corresponding semidiscrete problems
with ulh(0) = 0, «2 n(0) = P0v, and let u3 h be the solution of the homogeneous
semidiscrete equation with u3 n(0) = vn -P0v, so that uh = u% n + u2 n + u3 h.
With e¡ = u¡ h - u¡ for i = 1,2 we then have e = ex + e2 + u3 n.

In order to estimate D'tei we notice that Dfal satisfies

L(D'tul) = D[fl    for t > 0, D'tu1 (0) = 0,

and that D'tul h is the solution of the corresponding semidiscrete problem with
Dju, Ä(0) = 0.   Hence, by Theorem 1

iD&iitiW-p ^Chr+Pi01 llD't+1"iKdr

(  ' rt\ )
<Chr+p\Z  W¡u(tl)i.+ \t   , \\D[+lu\\rdT\.

[i=o Jfi_6 |

On the other hand, since e2(t) = u2 h(t) and f2(t) = 0 for t > tx - §/2, we have by
Lemmas 1 and 3,

'^3(í1)l-p<C{l2)íe2(í1)l_P(A +AP|D(e2(r1)I}<Cle2(ii - 8/2)l_(r_a)^;

and hence, by Theorem 1 (with p = r - 2, q = p + 2) since u2n(0) = PQu2(0),

\\D>te2(t1)\Lp<Chr+r{\\v\\p + 2 + £ Wut\\p + 2drj

<C*r+"|l«(i1)lr+Jo'   ■«,!,«*}•

Finally, by Lemma 3

(2.2) ll7JÍ«3i,(í1)ILp < Cln3>Ä(0)l_M = Cllu, -/»„»I.,,*,

which completes the proof.
In particular, for t positive, and with for instance vn = P0v or Plv, we have
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\\D'te(t)\\_p < C(u)hr+P,

with stringent regularity assumptions on u only near t.
Using (1.9), we may further reduce the regularity assumptions away from t for

maximal order negative norm error estimates, in the instance p > 1 at the expense of
having to impose the boundary conditions of the spaces 77p(£2) on v and /.

Theorem 4. Let j > 0, s > 0 and 0 < p < r - 2.  Then ifvE 77p(£2) and
f E L j (0, r; 77p(£2)), we have fort>8>0

KDÍe(t)\\_p<C\\vh-P0v\LSth
(2.3) ,  ,- j

+ Chr+r\z  WD'^Ol+i^ »^+I«"rrfr+lülp+J0'l/!prfTf.
(z=o )

Proof. With the notation of the proof of Theorem 3, D'tel and £>{«3 n are esti-
mated as before by the right-hand side of (2.3) and it remains only to consider D'te2.
Let now E(t) denote the solution operator of the homogeneous parabolic equation,
En(t) the solution operator of the corresponding semidiscrete problem and Fh(t) -
Eh(t)P0 - E(t) the error operator corresponding to vn = P0v. With this notation we
have by (1.9), for 0 < p < r - 2,

(2.4) ll^ft(0«ll-(r-2),ft < Chr+Pt~x \\v\\p    for v G 77p(£2),

and Duhamel's principle shows for t > 0,

(2.5) e2(t) = Fh(t)v + j'0 Fh(t - T)f2(r)dr.

In the same way as above, Lemma 3 implies since e2(t) = u2 h(t) and /2(r) = 0 for
T>ti- 5/4 that

WD{e2(tl)\\_p<C\\e2(tx-blA)\\_(r_2)M.

Further, by (2.4) and (2.5), now since f2(r) = 0 for t > tx — 5/2,

\\e2(tl -5/4)ll_(,_2))„ <C72'-+po-1{llullp +/J1"'  2 Wf2\\pdr}

(2-6) < C7r'-+P|llullp +foi (\\f\\p + \\u\\p)dT}

ai'+P^\v\\p+ft ll/llpdr|.

Here the last step follows by the fact that under our assumptions on v and f,uE
Z,x(0, r; 77p(£2)) and

(2.7) fQl Ilullpd7<c{llullp+J0'1 l/l„dr}.

In fact, it follows immediately by eigenfunction expansions that

H7i(0i;llp < Cllullp    for v E 7/p(£2), t > 0,
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which shows (2.7) by Duhamel's principle.  This concludes the proof.
For the standard Galerkin method we also have the following H' estimate.

Theorem 5.   Consider the standard Galerkin method and let j > 0 and s> 0.
Then for t > 5 > 0,

IZJ&O», <C\\vh-P0v\LSrh

+ Chr-l\t      sup    iDiu(r)lr +(CslDi+tuîl1dr)l,\
j/=0   f~6<T«f \ / )

cTi'jllull + ¡I \\f\\dr\.+

Proof.   With the notation of the proof of Theorem 3 above we now have by
Theorem 2,

1/2)
\\D[el(tl)\\l < Chr~x j sup WD>¿tx(T)\\r +(Q \\D>t+xux ll2_, rfr)

< Chr~l j ¿        sup       ll$<r)l, + (j"'1     IIDJ+ »«ll2_, dr)

Recalling that by (1.12),

llXll2<C4(x,x)=Cllxll2>ft    forXe5ft,

we have as above by Lemma 3,

WD[e2(tx)\\x <CU2(t1 -5/4)IL(,_2)„,

and hence as in (2.6),

(2-8) 117^2(^)11, <ar{lMI + /J1 WfWdrV
Finally, as in (2.2),

(2.9) ^DÍu3,h(h)h < Cll"3,ft(°)lU/1 = CK -po^-s,h-

Together these estimates complete the proof.
In particular this shows for t positive, under the appropriate assumptions about

initial data and regularity,

iizyfe(r)ii, <cx«yir-1.

The latter estimate we shall in fact only need here in the case of one space di-
mension with £2=7= [0, 1 ] and with Sh the space of continuous functions on 7
which vanish at x = 0 and x = 1 and which reduce to polynomials of degree at most
r - 1 on each subinterval 7- = (x-, x/+1) of a partition 0 = jc0 < xx < • ■ • < xm = 1
with max ft- < h where h. - x+, - x-.  In one of our results below in this case we
shall also have use for a maximum-norm estimate.  We first quote the following lemma
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(Theorem 1 in Wheeler [7]).  Here and below we denote by l-lr 3 the norm in W„(J)
with r and J omitted when r = 0 and / = 7, respectively.

Lemma 4.   Consider the standard Galerkin method in one space dimension un-
der the above assumptions on {Sn} and let vh = Pxv.  Then for t>0,

°(t)\ < Chr jsup \u(r)\r + (f[ Wut\\2dA
1/2]

We now have

Theorem 6.  Consider the standard Galerkin method in one space dimension
under the above assumptions on Sn and let / > 0 and s > 0.  Then for t > 5 > 0,

l£>'fe(r)l +max(/IfclD'fe(r)l1,/.)

(2.10) ( / / ft \i/2
< Cll Vh - P0V\\_S h + Chr \     SUp        Z    IDH^r + ( J t-6   "D't+   " "Î dT/

(f-6<T<f  /=0

+ Hull +Jo' 11/11 dr!.

77-oo/   Still with the notation of the proof of Theorem 3, we have by Lemma 4
for the first part of the error, recalling that «, = «(¿>,,

\Dfc1(tl)\<Chr\sap  l7^«,(r)lr+( C1 HT)'*1«, ll2dr) '   !
[r<ti w° '     J

< Of        sup       ¿   \D¡u(T)\r + If'1'    WD{+ xu\\2 dr) '
(f1-6<T<f1 /=o \   n ° /

Further, by Sobolev's inequality and (2.8),

l7)'fe2(íi)KCllí>^2(r,)ll, <Oir{llull +/0Í1 WfWdA,

and similarly by (2.9),

lDÍu3th(tl)\<C\\vh-P0v\Ls¡h.

Together these estimates show that \Lyte(t)\ is bounded by the right-hand side of (2.10).
In order to complete the proof we only need to notice that for any t > 0, using

the inverse property of Sn on 7fc, with x an interpolating polynomial of D}u(t) on 7fc,

h^At)\lJk < hk\D{uk(t) - Xl1;/fc + hk\D>u(t) - X\Uk

<C\D'kuh(t)-X\ik+Chk\D'iu(t)\r,Ik

<C\Dite(t)\Ik+Chk\D{u(t)\rJk,

which is bounded in the way stated above.
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Thus, with the appropriate regularity assumptions and choices of initial data we
have for t positive, \D'te(t)\ < C(u)hr.  If in addition hk > ch with c fixed positive
(in particular for quasi-uniform partitions), we have

\Dfe{t))Uk<cmr-1'

3. Superconvergence for C° Piecewise Polynomial Subspaces in One Space
Dimension.  We shall now turn to some examples of superconvergence in the case of
one space dimension.  Consider thus again a partition 0 = xo<x1<---<xm = l
of 7 = [0, 1 ], set h = max(x +, - jc •), and let Sh be the finite-dimensional space of
continuous functions on 7 which vanish at x = 0 and x = 1, and which reduce to
polynomials of degree at most r - 1 on each subinterval 7;- = (x¡, xj+, ). We then
have

(m-l \ 1/2
(llw-xll +/!llw-xll1}<öz'"[

xeSft
(3-D

(m-l
Z iiwii2,
/=0

for vv G 77,5(7) n(   f|   77r(7y.)
m-\

Let now uh(t) G Sh denote the solution of the standard Galerkin parabolic prob-
lem

K,t. X) + A(u„, x) - (/, X)   for x£Sh,

with a suitable choice of vn = uh(0).  We shall prove some error estimates for this
problem which combined with our above error estimates at positive time show super-
convergence of different procedures for approximating u and its derivatives.

Our first such result yields superconvergence at the knots of the partition, a
fact which has previously been proved by Douglas, Dupont and Wheeler [3].  Their
analysis used a so-called quasi-projection of the exact solution into the subspace as a
comparison function, and required a more special choice of discrete initial data and
higher regularity of the exact solution than the present result.

Theorem 7.  Under the above assumptions about {Sn}, let x E (0, I) be a
knot for each h considered, and let t > 0 and n > 0.  Then

\e(x, OKClh"-1 £  117^(011, +AVIl£>7 + 1e(0ll + ^ + le(t)\L(2n+1)\.
(       /=« \

Proof.   Let g = gx denote the Green's function corresponding to the two-point
boundary value problem

(3.2) Au=f   in 7, w(0) = u(l) = 0.

As is well known, g is continuous on 7 and smooth except at x where g has a simple
discontinuity.   In particular, g E 77¿(7) and we have

(3.3) w(x) = A(w, g)    for w G 770' (I).
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Now let w = w(x, t), be such that D>tw G 77¿(7), / = 0, . . . , n, Dl+1w G L2(I).
Then with

(3-4) L(w, if) = (wt, <p) + A(w, </>),

we have

(3.5)     w(x, t) = A(w,g) = £(-l)'L(D{w, T'g) + (-l)n + 1(D"t + 1w, T"g).
j=o

This follows at once by (3.3) and the fact that for / > 1,

L(D'tw, T'g) = (D't+1w, T'g)+A(D{w, T'g) = (D't+lw, T'g) + (D'tw, T'~lg).

In order to show the theorem we apply (3.5) to w = e = uh - u, observing that

L(e, x) = L(un ,x)-L(u,x) = 0    for X G Sh,

and hence for / — 0, ... , n,

L(D[e, Tig) = L(D[e, Vg - X)    for X G Sh.

In view of the fact that for each ; > 0, T'g G 7/¿(7) n IT(0, x) n If(x, 1), this
yields by (3.1),

\L(D{e, T'g)\<  inf { \\D't+1e\\ \\T'g-x\\ + WDi^Wl WT'g - Xll, }
xeSft

<C{hr\\D{+1e\\ +hr-l\\D'te\\1}.

Also, since g G 77¿(7),

l(7^ + 1e, Tng)\ = \(Tnrrt + ie,g)\ = \A(Tn + lD"t + le, g)\

<Clir+17)? + 1ell,llgll, <Cll£»? + 1elL(2„ + ,).
Together these estimates complete the proof.

Combining this result with our error estimates of Section 3, we find under the
appropriate regularity assumptions for r positive and with v„ = P0v or Ptv, for instance,

\e(x, t)\ <C(uyi2r-2.

Notice as usual that strong regularity assumptions only have to be made near t.
In our next example we shall treat a procedure for approximating the first

derivative of the solution at a knot, proposed by Douglas, Dupont and Wheeler [3].
Again we shall express the error bound in terms of such norms of the error, including
negative norms, for which we have estimates at our disposal, thus allowing us to show
superconvergence, under somewhat milder regularity assumptions and more general
choices of discrete initial data than in [3].

The starting point of the procedure is the following identity (cf. [3]):

xau'(x) - A_(u, x) - (Au, x)_,

where with x E (0, 1), A_(-, •) and (•, •)■_ denote the bilinear form and 7,2 inner
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product taken over the interval (0, x) rather than over 7 and where a = a,,.  It follows
for u a solution of the parabolic problem, with LJ-, •) correspondingly defined from

(3.4),

(3-6) xa g (x, t) = L_(u, x) - (/ x)_.

With the semidiscrete solution un(t) computed, we now study the approximation to
du(x, t)/bx defined by

(3-7) xaul ¿(x, t) = L_(uh, x) - (/, x)_.

We have

Theorem 8.  Under the assumptions of Theorem 1 we have for t> 0 and
n>0,

»i,h(x> ')"¿(*. 0 <C\hr-x ¿   ll7J>>e(r)ll, +hr\\iy¡ + 1e(t)\\ + ll£>? + 1e(r)IL2„
i=°

Proof.   We have by (3.6) and (3.7),

xa (ulth(x, i) - § & i)) - LJe, x) = (ef, *)_ + A Je, x)

= (et, x)_ + (e, Ax)_ + ae(x, t) = (et, ^,) + (e, </>0) + ae(x, t),

where ¡p0 and i/j, are discontinuous at x but smooth otherwise. The last term is
estimated by Theorem 7 and the remaining two terms by the following lemma which
completes the proof.

Lemma 5.   Under the assumptions of Theorem 7, let <p G L2(l) D If~2(Q, x) n
If-2(x, 1).   Then for any n>0,

\(e, ̂ \<CUTi Z  ll^dl, +^H7^ell + ll7^elL2„!.

Proof.   The case n = 0 is trivial.  For n positive we have similarly to above,
with \p = Tip,

(3.8)        (e, & = A{e, *) = £ (- \)'L(D\e, fty) + (- l)"(7>?e, Tn~l *).
/=o

Here for / = 0, ...,«- 1,

L(D[e, ¡Tty) = I(7)je, T'i> - x)   for XeSA;

and hence, since T'\J/ E 77¿(7) n //(O, x ) n 77r(3c", 1),

li(7)>e, 7-^)1 <   inf  {llT^+'ell IT1* - \l + llß'ell, WT'ip - x",}
xeSft

<C{/il£>>+1ell +/ir-11173^11,}.
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Also
\(lTte, T"-^)\ = \{fTte, 7"V)I = \(TnU\e, &\

< \TnIfte\\ \ip\ <Cll7^ell_2„.
In view of (3.8) these estimates prove the lemma.

We shall now show that a superconvergent order approximation of the first
derivative can also be based on difference quotients of the semidiscrete solution,
provided these are taken over mesh intervals of length at least ch with c fixed positive.
Since a derivative of a smooth function can be approximated locally to any order by a
linear combination of such difference quotients, it is sufficient to show a superconver-
gent order error bound for a forward difference quotient, say.  Thus let x E (0, 1)
be a knot for the Sn considered, let x + h denote the knot immediately to the right
of x , and set

du(x) = h~l(u(x + h) - u(x)).

Our result is then

Theorem 9.  Under the assumptions of Theorem 1 we have for t>0 and
n>0,

\be(x, t)\<c\hr~i  ¿  (117)^(0«! + \D{e(t)\u7)

+ hr(\\iy1t + 1e(t)\\ + I7^ + Ie(i)l7)+ ll7^+1e(OlL2„[.

Proof.  With g- as above the Green's function of the two-point boundary value
problem (3.2), and g(1)(x) = h~1(g^ + h-(x) - g^(x)), we have

be(x, t) = A(e, gi»)) = ¿ (-\yL(D{e, rV!)) + (-l)n+1(D?+1e. T"g^).
/=o

With T = (x, x + h ), I_ = (0, x) and 7+ = (x + h , 1) we have now

\L(D[e, rV°)l <   inf   {ïi>Î+I«l/ u/+lr,<<l>-xljLo/+
xeSft

+ iz)i+1el7iir^)-xiiLi(7)

+ ll^lli,/_u/+"^(1)-xll1(/_u/+

+ l^eli)7llrV1>-xllf(/i(7)}.
Since for i// = T'g(l) - x,

W£i(7)</7l*l7,    i^^^l*^,

it follows by (3.10) of Lemma 6 below

\L(D'te, T'g(l))\ <C{hTl(lD^i1 + \D'te\ij) + hr(\\DÍ+le\\ + l7>'f+1el7)}.
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Using also (3.9) of Lemma 6, we have

l(7^ + 1e, Tng^)\ = l(7/"D? + 1e,g(1>)K WD^ + ̂ W^Jg^W <C\\Dnt + 1e\\_2n.

Together these estimates show the theorem.
It thus remains to show:

Lemma 6.  With the above notation, we have

(3.9) \¿n\,<c

and

inf {lTV1>-xl/_u/+ +h\Pg^-X\u_UI+ +h\T'g^-x\7

(3.10)
xesh

7>oo/   We first recall

+ hh\T'g(-x)-x\   7}<Chr.
i >-f

com, (x)u2 (x)   for x > x,
g-(x) = .

Í <Jjul(x)u2(x)   for x <x,

where «, and u2 are two solutions of Au = 0 satisfying «,(0) = u2(\) = 0 and
where œ = constant =£ 0 independent of x and x .  It follows

g(1)(x) =

ujuy(x)h~x(u2(x + h) - u2(x)) forJC<x

c^u2(x)h~l(ul(x + h) - «,(*)) for x>x + h,

ojh~l(u1(x)u2(x + h) — u2(x)ul(x))    for x <x <x + h,

which in particular yields (3.9).  The expression for g^ further shows that

(3.11) ^1\i_ui++^1\j<C

which implies (3.10) for / = 0 by choosing x as a suitable interpolant of g^1^.
In order to treat the case / > 0 wë first notice that by the maximum principle

and by (3.9),

(3.12) llV°l/ < cir^V°i/ < C\¿%< C

Further, an easy calculation shows that for each k > 0 and each subinterval / < 7,

|Vvlfc+2^<C{lwl37+ \Aw\KJ),

with C independent of/ as long as the length of J is bounded below.  By repeated
application this implies, using (3.11) and (3.12),

l:**1\jjjí+ < c ¿ ]Tig(1)]>+ l«il)W+1 < ç
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Similarly,

ITV^I -^-'(ITVI 7+l7%_-I -)
°        r,I v x r,l x + h  r,r

^h-JlT'g-l        -JlTtg-J-     )<di~l
x r,I+ui x + h  r.IUlJ       ^"      '

and thus

lTiS(1\i^i++h\T'g^\rJ<C,

completing the proof for / > 0.

4.  Interior Superconvergence with Uniform Elements.  We shall now turn to an
application of our negative norm estimates in higher dimensions in which the subspaces
are based on uniform partitions in a specific sense in some interior domain £20. We
shall not describe this uniformity assumption in detail but content ourselves by
referring to such {Sn} as /--regular on £20, following the definition of this concept in

[2].
We first quote the following result (Theorem 3 in [5]) which generalizes to the

case of derivatives a construction due to Bramble and Schatz [1].  Here and below the
interior domain over which the 7,2 and maximum norm based norms are defined are
indicated in the notation.  For the negative norms we denote for £20 CC £2,

„ec-rfto) Mp.no

Lemma 7. Let 9£ denote the forward difference quotient corresponding to
D01, \p the B-spline in RN of order r - 2 and N0 = [N/2] + 1.   Then there exists a
function Kh of the form

with k   = 0 when \y¡\ > r - 1 such that for £2, CC £20 CC £2 and e = uh - u we
have

\Kh*rhuh-Dau\ni

<cj/I2-2l«l2,_2 + lal>no+ £        H9r^lL(r_2))íío
( \ß\<r-2+N0

+ h'-2    Z     ^ah+ße\n0l
ljSKr-2 j

In order to apply this estimate we need to have at our disposal the appropriate
estimates for 9^e.  These are contained in the following lemma.

Lemma 8. Assume that {Sh} is r-regular in £20 CC £2, and let £2, CC £20.   We
then have at time t,
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II^L(r-2))íí,  <C*2'-2 £        I^Ulal-21,110
2¡<r+ loci

+ C       2:     (A-2ll^lln 0 + H7){elL(r_2)(no),
2/«2 + I oc f

and

\àahe\n<œ      £     ii7?R+,al+iV0_2Z>no + c      £      ii7^un
2/<r+ lol+AT0 2/<2+ \a\+N0

Proof For the case / = 0 these results were proved in Lemmas 7.3 and 6.5 of
[2]. The proofs for the inhomogeneous equation are obvious modifications of those
in the case / = 0.

We obtain immediately by combination of Lemmas 7 and 8:

Theorem 10. Assume that {Sn} is r-regular on £20 CC £2, let D01 be an
arbitrary derivative with respect to x and £2, CC £20.   We then have for t>0,

\Kh*Kuh(t)-lTu(t)\ni

<Ch2r~2 £ »J>i"(0«2r-2+lal+JVo-2/.n0
2/<2r-2+ IqI+ATq

+ C £ QT2 WD\e(t)\\no + WDlte(t)\L(r_2)>no).
2Kr+ \a\+N0

As a consequence, observing that

M_p,O0 < CM_p    forp>0,

we obtain in view of our previous error estimates that for positive time and suitable
discrete initial data,

'*» * 9ft"ft(0 - ßa"(0ln, < <Xu)hlr-2,

with stringent regularity assumptions only near t.

5.   Superconvergence Based on Local Green's Functions.   In our final example,
we shall show that also in the case of nonuniform partitions in arbitrary dimensions it
is possible to construct superconvergent order approximations to u(x0, t) for x0 an
interior point and t positive.  This approximation will depend on ujx, t) and f(x, t)
in a fixed neighborhood of x0 independent of A.  Although it might not be easy to
apply, our result shows that uh carries with it through the computation the capability
of reproducing u to superconvergent order.

For motivation, we consider first the elliptic problem (1.2) (cf. Louis and
Natterer [4]).   Let x0 G £20 C £2, and let G0 = G^0 be the Green's function with
singularity at xQ of the Dirichlet problem

(5.1) Aw = f   in £20,      w = 0    on 9£20,

so that for w smooth and vanishing on 9£2Q,

(5.2) w(x0) = JnQ Aw(y)G0(y)dy.
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In particular, with >p G C^(£20), ip = 1 in a neighborhood of £2, D £2, 3 xQ we have
for the solution u of (1.2),

"(*o) = (M*"), Go)n0>

where, if GQ $ ¿2(£20), (•, -)n   denotes the integral of the product.  Introducing the
solution operator T0 of (5.1), we have T0Av = v for v G 772(£20) so that for «
sufficiently smooth and any k > 0,

TkAk+l(<pu)=A(<pu).

This yields

(5.3) u(*0) = (Tk0Ak+i(*u), G0)no = (¿fe+V), 7*G0)„o.

By Leibniz' formula,

(54) A'+1dfu) = <pA*+1u+ £       c^tfu.
\a+ß\<2k+2

ot^O
Hence, noticing that TqG0 is smooth except at x0, we conclude from (5.3), using
integration by parts for the terms of the sum in (5.4),

(5.5) u(x0) = (<pAk+1u, TkGQ) + (u, *fc)    with *fc G C0~(£20\£2,).

In order to find an accurate approximation of the solution of the elliptic problem
(1.2) we may utilize this representation for k = 0 and set

(5.6) «„(*„) " M. G0) + (uh, *0).

We have at once

uh(x0) - u(x0) = (e, *0) = (e, T*A*r¡,0) = (Tse, A^0),

and hence for any s > 0 the error estimate

(5-7) \uh(x0)-u(x0)\<C\\e\\_s.

In order to avoid the computation of the singular integral in (5.6) we could
alternatively have used (5.5) with k > 0 and set

uh(x0) = (<pAkf, t£G0) + (uh, 4>k),

again concluding (5.7).
We now turn to the parabolic case and first state the following representation

result.

Lemma 9. Let x0 G £20 C £2, let G0 and TQ be as above, and let <p G C^^),<p = 1
on £2, where x0 G £2,.   Then for any k > 0 there is a \pk E C03°(£20\£2,) such that
for t > 0,

"(*o> Ô = £ (-l)k+ï-'(k * %Dk+l~iL'u, TkG0) + (u, *fc).
j=o x   i    '
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Proof   This follows at once from (5.5) upon noticing that since L and Dt
commute,

*+i Ik + l\
Ak+1 =(L-Dt)k+l = ¿ Í     .     j(-7)f)k+1-a/.

We may now use the above representation to define an approximation of
u(x0, t) in terms of uh(x, t) and /Tx, t) on £20 by

"ft(*o> 0 = £  (-lf+W{* + *W+WL/_V; roG0)
(5.8) '=' V   ]   I

+ (-l)k+1(<pDk+1uh, TkG0) + (uh, *k).

We have then the following error estimate.  For suitable choice of k and s this shows
superconvergence by our previous estimates.

Theorem  11. Let k0 be such that T0°G0 E L2(Q0), and let uh be defined
by (5.8) with k > k0.   Then for any s>0,

\uh(x0, t)-u(x0, r)KC{ H7^+1eIL2(fcHto) + M_,}.

Proof.   We have by Lemma 9 and (5.8),

"ft(*o> 0 - «(*o. 0 - C- i)k+l(*Dk+le, TkG0) + (e, *fc).

Here the second term is estimated as in the elliptic case treated above to yield

l(e, \pk)\ <C\\e\Ls   for any s > 0.

For the first term we have easily

(*Dk+1e, TkG0) = (Tk-k»(*Dk+le), TkoG0)no

< Cl7*-*0(^+ie)lno < CH7)f+1elL2(fc_fco).
Together these estimates prove the theorem.

Starting instead of (5.2) with the identity
du r 9Gn9« f 0,Jo
aj;^o) = Jno^«Cv)^0'^o)^

we may similarly construct a superconvergent order approximation to duldx¡(x0) by
replacing G0 by G; = bG0/dx¡ everywhere above.  We notice that since G¡ is more
singular than G0 near x0 we may now have to choose k0 larger than before.
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