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Negative Norm Estimates and Superconvergence
in Galerkin Methods for Parabolic Problems

By Vidar Thomée

Abstract. Negative norm error estimates for semidiscrete Galerkin-finite element meth-

ods for parabolic problems are derived from known such estimates for elliptic problems
and applied to prove superconvergence of certain procedures for evaluating point values
of the exact solution and its derivatives.

Our first purpose in this paper is to show how known negative norm error esti-
mates for Galerkin-finite element type methods applied to the Dirichlet problem for
second order elliptic equations can be carried over to initial-boundary value problems
for nonhomogeneous parabolic equations. We then want to describe how such esti-
mates may be used to prove superconvergence of a number of procedures for evaluat-
ing point values of the exact solution and its derivatives. These applications include
in particular the case of one space dimension with continuous, piecewise polynomial
approximating subspaces, where we analyze methods proposed by Douglas, Dupont
and Wheeler [3]. Further, in higher dimensions we discuss the application of an aver-
aging procedure by Bramble and Schatz [1] for elements which are uniform in the in-
terior and in the nonuniform case a method employing a local Green’s function con-
sidered by Louis and Natterer [4].

The error analysis of this paper takes place in the general framework introduced
in Bramble, Schatz, Thomée and Wahlbin [2] allowing approximating subspaces which
do not necessarily satisfy the homogeneous boundary conditions of the exact solution.
These subspaces are assumed to permit approximation to order O(h") in L, (r = 2)
and to yield O(h%"~?2) error estimates for the elliptic problem in norms of order
—=(r — 2). The superconvergent order error estimates which we aim for in the parabolic
problem are then of this higher order. In [2], estimates of the type considered here
were obtained for homogeneous parabolic equations by spectral representation; our
basic results in this paper are derived by the energy method.

1. Preliminaries. We shall be concerned with the approximate solution of the

initial-boundary value problem (u, = ou/dt, R, = {t;¢t > 0})

Lu=u,+Au=f inQ xR,

1.1
. u(x, ) =0 on Q2 x R,

u(x, 0) = v(x) on £.

Received September 12, 1978.
AMS (MOS) subject classifications (1970). Primary 65N15, 65N30.

© 1980 American Mathematical Society
0025-5718/80/0000-0005/306.25

93

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




94 VIDAR THOMEE

Here £ is a bounded domain in RY with sufficiently smooth boundary 052,
N9 ou
Au=- Y — |ay =— | +ayu,
=R <’ axk>

with ;. and g, sufficiently smooth time-independent functions, the matrix (@;;) sym-
metric and uniformly positive definite and a, nonnegative in Q.

In order to introduce some notation, we consider first the corresponding elliptic
problem

(1.2) Au=f in§, u=0 onaS,

and denote by T: L,(2) — Hy(2) N H*(R) its solution operator, defined by u =
Tf. Notice that by the symmetry of 4, T is selfadjoint and positive definite in L,(£2).
Recall also the elliptic regularity estimate

1771, , < CIfl, fors >0,

where |-l denotes the norm in H*(Q).
Set now for s a nonnegative integer and v, w € L,(), with (-,-) the inner prod-

uct in L, (82),
(1.3) W W =T w), lvl_, = (T, v)!/2.
Since T is positive definite, (-, *)_ is an inner product. One can show that lI-I__ is

equivalent to the norm

sup{%f; e H‘(m},

where
H5(Y) = {9 € H(Q); 4’0 = 0 on 3L for j < 5/2}.

In fact, with {)\i}‘;° and {«p,.}‘;' the eigenvalues and orthonormal eigenfunctions
of A (with Dirichlet boundary conditions) an equivalent norm to I-ll; on HS(Q) is

o 12
ol gsq) =< > X (v, np,-)2> ;
=1

with this notation,

oo

w, w)_ = _Zl NE©, )W, 9).
i=

For the purpose of approximation, let {S, } denote a family of finite dimension-
al subspaces of L,(£2) depending on the “small” mesh parameter 4, and let {T} } de-
note a corresponding family of approximate linear solution operators T},: L,(2) —
Sy, of (1.2). Following [2], we shall assume throughout below that {S,, } and {7}, }
are tied together by the following two properties:

(i) T, is selfadjoint, positive semidefinite on L, () and positive definite on S,,.
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(ii) There is an integer r 2 2 such that
WT, - DI, <P*TI*2Ufl, for0<p, q <r-2,fEHYQ).

One example of a family { T}, } with the above properties is exhibited by the
standard Galerkin method, where for each &, §, C H&(Q), where {S,, } satisfies the ap-
proximation property (Il -l = Il ll,)

inf {Iw—xl +allw-x1,}<CHlwl, 1<s<r w€EH Q)N H®),

and where T}, is defined by

(14) AT, x)=(f, x) forx€S,,
with
y _J‘ N W dw dx
(v, w) = o ';1aik g O, aguw .
ik=

The properties (i) and (ii) hold also in other instances, including situations where the
bilinear form used in the definition of T, contains boundary terms, added to deal with
the difficulty of satisfying the homogeneous boundary conditions in .

Introducing the elliptic projection P, = T, A4, the property (ii) reduces to the

well-known error estimate
— + _
a5 I - Pywl_, <CHPT ol for0<p<r-2,2<q<r,
v € HY(Q) N HI(Q),

valid, in fact, for the standard Galerkin method for-1<p<r—-2,1<g<r. No-
tice also (cf. [2]) that for the orthogonal projection Py: L,(§2) — S, we have as a
result of (ii),

I = Poyl_, < CHP*lvl, for 2<p, g <r, vE Hy(Q) N HY(Q).

With the aid of the operator T = A~!, the initial-boundary value problem (1.1)
may be written

(1.6) Tu, + u=Tf fort=> 0, with u(0) = v.

We shall consider the following semidiscrete analogue, namely to find u,: R, — S,
such that

.7 Tyuy  +u, =T,f fort>0, with u,(0) = v,

where v, is some approximation to v. Notice that since T}, is positive definite on S,
this defines u,, for t > 0. When §, C Hé(SZ) and T, is defined by (1.4), the problem
(1.7) is equivalent to the standard Galerkin problem

(1.8) (uh,t, x) + A, x) = (£, x) for x €S, t =0, with u,(0) = v,,.

In the case of a homogeneous parabolic equation (f = 0), error estimates for the
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96 VIDAR THOMEE

semidiscrete problem (1.7) were derived in [2]. It was shown in particular, using spec-
tral representation, that with v, = P,v the L, -projection of v, we have for the error
e = u, —u, with D, = 9/ot,

(19) IDle(n)l_, < CvP+a+27 1yl for 0<p q<r-2,v € HY().
By an iteration argument this also implied the L, -estimate
Il D{e(t) I < 2ol

Our first purpose here is to derive negative norm estimates for the nonhomoge-
neous problem, valid uniformly for small . This will be done by the energy method.
In order to do so we introduce the discrete analogues of the inner product and norm
in (1.3),

W Wy =(Thu w), lol_g, = (Tyv, v)'/2.

Since T, is semidefinite on L, (£2) these are a semi-inner product and a seminorm, re-
spectively. In the following lemma we shall relate these discrete seminorms to the
negative norms previously defined.

LEMMA 1. Under the above assumptions about {T, }, we have for 0 < p <r,

vE L,(Q),
(1.10) lol_, , < C{lvll_, +A?lvll},
(1.11) l_, < c{lvl_, , + AP lvll}.

Proof. We first prove (1.10) by induction over p. The result is trivial for p =0
and also clear for p = 1, since

IZ, , = (T, v) = (Tv, v) + ((T), - Thv, v) < Il + R Ivl?,
by (ii). Let now p = 1 and assume that (1.10) is proved up to p. We have
IIvII_(pH),h = Thvll_(p_l),h < | Tvll_(p_l),h + (T, - T)vll_(p_l),,,.
By the induction assumption,
I Tvll__(p_l),h < c{limvl

nt P i Toll} = C{ vl + APl ).

~(p— —(p+1)

Using, for instance, spectral representations, we have easily

ol_, < i lob + AP~ Dlvl_, .y},
so that

VTVl_(p_yyp < ClIVE_ 4y +RPH VI )
Further, by the induction assumption and (ii) with ¢ = 0,
W(T, — T,y < CUNT, — TWI_(,_yy + BPTHI(T, = Tholl} < CRP* 0N,
This proves (1.10).
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By interchanging the roles of T and T}, (1.11) follows analogously. This com-
pletes the proof of the lemma.

Notice that since T}, is positive definite on S, Il_g , is a norm on S, and we
may then also use

Ixly p = (T % 0)'? forx €S,
When T, is defined by the standard Galerkin equation (1.4), we have
(1.12) xly 5 = A0 x)!/? for x € §,.

2. Error Estimates. Consider now the initial-value problem (1.1) or (1.6) and
its semidiscrete analogue (1.7). By subtraction we find immediately that the error
e = u, - u satisfies the equation

2.1) Tye, +e=p = (T, - NAu = (P, ~ Du.
Our basic negative norm estimate is then based on the following lemma.

LEMMA 2. Under the above assumptions about T, let e satisfy (2.1). Then
forany s =2 0,

le@I_, , < c{ LI, , + 10O, , + [ ||pt(‘r)||_s'hd1'}.

Proof. Let temporarily (-, *) denote any semi-inner product for which T, is
selfadjoint, nonnegative and let |-l be the corresponding seminorm. We have after
multiplication of the error equation by e,,

1d 2 _ _d
(Thet’ et) + 5 _d—t “e" - (p’ et) - E (p’ e) - (pt’ e)’
and hence
1
T30 <L o) + Mo, 1 - Hel.

It follows by integration

le()l? < c{ue(0)|12 + lo@h le(®)l + 1p(0)1 He(O)1 + fo' oM el dT}

<C sup le@)l {ne(O)n + sup L@l + [ lp,) d‘r}.
0 1<t 0Tt

Now choose ¢ € [0, ¢] such that

le(HI = sup HKe(n)l.

o<T<?

We then have

le(HI? < Clle@ {ne(0)||+ sup llo(r)h + f: ||pt||d‘r},

0<T<1
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98 VIDAR THOMEE

and hence

le@1 + sup Nl + [ Up lar}.
07!t

le(t)l < le(HI < C

Since

t
sup lp(D)lI < 1p(0)ll +f0 ol ar,
0<7<?

the result now follows by application to (-, -) = (*, )_g p-

We are now ready to state and prove our basic negative norm error estimate.
Here and below we let our regularity assumptions be implicitly defined, unless explic-
itly stated, by the norms appearing on the right in the error estimates, recalling al-
ways that the solution vanishes on 952 so that for instance the appearance of llvll q
for ¢ > 1 means that v € H}(Q2) N HI().

THEOREM 1. Under the above assumptions we have for 0 Sp<r—-2,2<gq
<r,

t
lel_, < C{lle(O)Il_p’h + hP+a [Ilvllq +, Nud, df]}.
Proof. In view of Lemma 1 and (1.5) we have

IIp(O)II_p’h < II(I—Pl)vll_p + WP II - P} < Ch”“’llvllq,
and similarly

+
Uo I, < CRP¥ .

The result hence follows by Lemma 2.
Notice in particular, with for instance v, = Pyv or v, = P,v,

le(r)l_, < CH"+? {uun, +f! uu,u,dr}.
For the homogeneous equation we have then
lu, (D, < Clu(m)l, ., <CrO-eDivl, . if ve H4(RQ),
and hence for any € > 0,
le(r)l_, < CH*Plul,, . if veE BT ().

Generalizing the argument in [2] for p = 0, one easily shows the somewhat more pre-
cise estimate

le(i_, < W *Plvll, forvEH'(Q),0<p<r-2.

The above theorem is complemented by the following well-known H! error esti-
mate for the standard Galerkin method (cf. e.g. [6]).
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THEOREM 2. Consider the standard Galerkin method (1.8),and let 2 < q <.
Then

le(l, < ¢ gue(o)u, + hq—l[sup lu(r)l, +( {212, dT) 1/2] }
Tt

Proof. Setting 6 = u, — P u, we have now

(0% + 406, =—(p, x) forx €S,
and hence with x = 6,,
1d 1 2,1 2
16,17 + 222 4(0,0) = ~(o,, 6,) <7 16,17 + 51"
By integration this yields
t
A9, 0)1) <A, 0X0) + [, o, 12 dr,
or since 8 =e —p,
t
le()i? < Cglle(O)llf + sup lo(n)I? + .[o I|p,||2d‘r§.
TSt

Recalling that (cf. (1.5))

1 - Pyl < CrE ol j=0,1,for2<q<r,

q—1+j>

the result obtains.
Our applications will require estimates for time derivatives of the error for posi-
tive time. We start with a lemma on the homogeneous semidiscrete equation.

LEMMA 3. Let u,(t) € S, be the solution of
Tyuy ,+u, =0 fort>0,u,(0)=v,,
andlet -1 <p<s,j=0. Then
1D, I_,, , < CEGHREPDNY 0_, for t> 0.

Proof. By the definition of the discrete negative norm, we have with 7} 1=

A,,
"x“—p,h = (TPx, X)1/2 = (T;A;{’(’"”)x, A;l'z(s—p)x)lﬂ = "AZ’(S—”)x"_s,h-
Since
up(t) = e Anty,,
we have

Diu, () = (—A,Ye 4nty,.

The result is, therefore, an immediate consequence of the uniform boundedness for
t 2 0 of the operator (Aht)le—Ah’ (I =j + (s — p)/2) with respect to the norm
I-I_s,,, which in turn follows at once by the boundedness of w'e™® for w > 0.

We are now ready to prove the negative norm error estimate for time derivatives
at positive time.
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THEOREM 3. Letj20,s20and 0<p <r— 2. We then have for t > 6 > 0,

IDie(p)l_, < Cliv, — Pyoll_g

i t . t
+ o+l S D, + [, 1D tul,ar + |, ||ut|lp+2d1'$.
=0

Proof. Consider a fixed t = ¢, > 8. Let 9 € C” be such that o(t) = 1 for ¢ >
—8/2, (t) =0 for t <-8. Set v,(t) = ¢(t —t;), and write u = u; + u, where u,
= uyp,, uy = u(l —¢,). Recalling that L = D, + A, we have

Lu, =f, =fo, + up; fort>0,u,(0)=0,
Lu, =f, =f(1 —¢;) —up; fort=>0,u,(0)=v.

Let now u, , and u, , be the solutions of the corresponding semidiscrete problems
with u; ,(0) = 0, u, ,,(0) = Pyv, and let u, ,, be the solution of the homogeneous
semidiscrete equation with u; ,(0) = v, — Pou, so thatu, =u, , +u, , +uy ;.
Vith ¢; = Upp — U fori=1,2 we then havee =¢, + ¢, + Uz p-

In order to estimate D{e1 we notice that D{ul satisfies

L(Diu,) = Dif, fort>0,Du,(0)=0,

and that D{ul,h is the solution of the corresponding semidiscrete problem with
D{ul’h(O) = 0. Hence, by Theorem 1

, L1 .
IDjey (eI, < Cw*P [ 1D+ 1u N dr
‘ J 1 ty ,
<arPi3 1Du)I, +ftl_6 IDI* tull dr}.

On the other hand, since e,(f) = u, ,(¢) and £,(6) = 0for t >t —§/2, we have by
Lemmas 1 and 3,

IDje,(t)I_, < C{IDley (), 5 + hP IDiey (1)1} < Clley(ty = 8/2)N 12y,

and hence, by Theorem 1 (with p =r — 2, q = p + 2) since u, ;,(0) = Pou,(0),

. 51
IDiey (1)), < Chr+p{ lolyys + “ut||p+2d‘r}

51
<c~hr+p{uu(t,)u, +f ||u,||p+2d1}.
Finally, by Lemma 3

(2:2) IDiu, , (), < Cluy (O, , = Cllu, = Pgol_ ,,
t*3,h\"1 D 3,h s, h h 0 s, h

which completes the proof.
In particular, for ¢ positive, and with for instance v, = P,v or P,v, we have
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IDle(p)l_, < Clyn'P,

with stringent regularity assumptions on u only near ¢.

Using (1.9), we may further reduce the regularity assumptions away from ¢ for
maximal order negative norm error estimates, in the instance p > 1 at the expense of
having to impose the boundary conditions of the spaces HP () onvandf.

THEOREM 4. Letj>0,5s> 0and 0<p <r-—2. Then if v € HP(S) and
FEL,O, t; HP(R)), we have for t > § >0

IDie(t)l_, < Cllu, — Pyul_g

2.3) j t
varel$: opon, L, 10+ ot
=0

Proof. With the notation of the proof of Theorem 3, D{el and D{u3’h are esti-
mated as before by the right-hand side of (2.3) and it remains only to consider D{e2.
Let now E(#) denote the solution operator of the homogeneous parabolic equation,
E,(?) the solution operator of the corresponding semidiscrete problem and F(f) =
E, ()P, — E(2) the error operator corresponding to v, = Pyu. With this notation we
have by (1.9),for 0<p <r—2,

(24) IF, (e Wl_(—gy n < CH*PE M, for v € HP(Q),
and Duhamel’s principle shows for ¢ = 0,

t
@.5) e2(0) = Fy(ew + [, Fy(t = Dy ()ar.

In the same way as above, Lemma 3 implies since e,(f) = u, ,(¢) and f,(¢) = 0 for
T>1t, —5/4 that

"D{ez(tl)“—p <cl eZ(tl - 8/4)“"("—2)’}1

Further, by (2.4) and (2.5), now since f,(r) = 0 for 7 > ¢, — §/2,

_ t1—6/2
ley(ty = 8/ gy < W28~ {00, + [ ° 7 Ufy N dr

(2.6) < Ch""P{ﬂv"p + s, + nunp)df}

t
< Qe {Ilvllp + lIfIIpdr}.
Here the last step follows by the fact that under our assumptions on vand f, u €
L,(0, t; HP(R)) and
ty 1
@7 [ wtyar<cuot, + [ asi,art.

In fact, it follows immediately by eigenfunction expansions that

LE@ewl, < Clvl, for vE HP(Q), t >0,
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which shows (2.7) by Duhamel’s principle. This concludes the proof.
For the standard Galerkin method we also have the following H! estimate.

THEOREM 5. Consider the standard Galerkin method and let j 2 0 and s 2 0.
Then fort > 8 > 0,

I1Die(n)l; < Clly, = Pyol_,

j t : 2 1/2
+Ch"‘g2 sup  ADMu), +( [T, 1D ulZ ar

1=0 t—-6<7<t

+ar {uol + f 1p1arh.

Proof. With the notation of the proof of Theorem 3 above we now have by
Theorem 2,

) , t A 1/2
IDle, (e )1, < Ch’"lg sup 1D}, ), +( [ D2, dr) $
TR

)< f ) ) 1/2
<Y  sp WD, + ( ftl_s IDI* tul2 d'r) :
I1=0 t1-6<7<1)
Recalling that by (1.12),
Ixh2 < CA(x, x) = Clixli} ;, for x €S,
we have as above by Lemma 3,
UDje,(t)l, < Clley(t; = 8/M)_,_yy 1

and hence as in (2.6),

(2.8) IDle, (e, < W’ {Ilvll + jo" ifl dr}.
Finally, as in (2.2),
(2.9) 1Diu; (eI, < Chuy ,(O)N_ , = Clly, = Povll_g .

Together these estimates complete the proof.
In particular this shows for ¢ positive, under the appropriate assumptions about
initial data and regularity,

I De(t)l, < CQup™".

The latter estimate we shall in fact only need here in the case of one space di-
mension with @ =7 = [0, 1] and with S, the space of continuous functions on /
which vanish at x = 0 and x = 1 and which reduce to polynomials of degree at most
r — 1 on each subinterval I; = (x;, x;, ;) of a partition 0 = x5 <x, <---<x, =1
with max h,- < h where hi =Xj.q —X;. Inone of our results below in this case we
shall also have use for a maximum-norm estimate. We first quote the following lemma
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(Theorem 1 in Wheeler [7]). Here and below we denote by |:l, ; the norm in WZ,(J)
with r and J omitted when r = 0 and J = I, respectively.

LEMMA 4. Consider the standard Galerkin method in one space dimension un-
der the above assumptions on {S,} and let v, = P,v. Then for t 20,

Tt

. 2
le(r)l < Ch’gsup lu(n)l, + (J: lu, W? d‘r)l % .

We now have

THEOREM 6. Consider the standard Galerkin method in one space dimension
under the above assumptions on S, and let j > 0 and s = 0. Then for t > & > 0,

|Dle()] + rr;‘ax(hk \Dle(9)], 1,)

j t . 2 1/2
sup 3 IDlu@l, + (It_s 1D+ tul? dr
t-s<r<t I=0

(2.10)
< Cly, —Pull_g , + CH” 3

b+ llflldri.

Proof. Still with the notation of the proof of Theorem 3, we have by Lemma 4
for the first part of the error, recalling that ul = uyp,,

IDle, )< O | sup 1Dhuy ), +( [ 1Dty 2ar)
Dile,(t)I < CH"{ sup |Dlu,(n)l, + jo IDI* a2 dr

<ty

I . 1/2
< Ch’% sup 3. IDlu(nl, + <f:11—6 I1DI* tuh? dr) f .

t1-8<7<#; I=0

Further, by Sobolev’s inequality and (2.8),
. t
|Dle,(¢,)! < CIDle, (eI, < Ch’{llvll +fo‘ IIfIId‘r},

and similarly by (2.9),
Together these estimates show that lD’;e(t)I is bounded by the right-hand side of (2.10).
In order to complete the proof we only need to notice that for any ¢ = 0, using
the inverse property of S, on I;, with x an interpolating polynomial of D{u(t) on [,
hi\Dle(t)), ;< b\ D) = x!y g, + by | D) — X1y g,
< ClDju, (1) - x11, + Ch | Diu(p)
< CIDle(n)ly,, + CHy|Din(o)l, 1,

which is bounded in the way stated above.

rIg
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Thus, with the appropriate regularity assumptions and choices of initial data we
have for ¢ positive, lD{e(t)l < (u)r”. If in addition h, > ch with ¢ fixed positive
(in particular for quasi-uniform partitions), we have

\Dle(n)], 5, < Ca™™*.

3. Superconvergence for C° Piecewise Polynomial Subspaces in One Space
Dimension. We shall now turn to some examples of superconvergence in the case of
one space dimension. Consider thus again a partition 0 = xy <x, <---<x, =1
of I = [0, 1], set h = max(x;, ; —x;), and let S, be the finite-dimensional space of
continuous functions on I which vanish at x = 0 and x = 1, and which reduce to
polynomials of degree at most r — 1 on each subinterval [; = (x;, x;, 1)- We then
have

m—1 1/2
inf (lw—xI +hlw=xl,}<cn| 3 llwllf,)
XESh j=0 T
G.1)

m-—1
for w € Hy(D N ( n H’(Ij)>.
j=0
Let now u,, () € S, denote the solution of the standard Galerkin parabolic prob-
lem

W, X) + Ay, x) = (f, x) for X €S,

with a suitable choice of v, = u,(0). We shall prove some error estimates for this
problem which combined with our above error estimates at positive time show super-
convergence of different procedures for approximating ¥ and its derivatives.

Our first such result yields superconvergence at the knots of the partition, a
fact which has previously been proved by Douglas, Dupont and Wheeler [3}. Their
analysis used a so-called quasi-projection of the exact solution into the subspace as a
comparison function, and required a more special choice of discrete initial data and
higher regularity of the exact solution than the present result.

THEOREM 7. Under the above assumptions about {S,}, let x € (0, 1) be a

knot for each h considered, and let t 2 0 and n = 0. Then

—_— n :
leGx, )l < C{A™1 3 IDje(), + WD et + IDF* e(t)_3 4 1y -
=0
Proof. Let g = gz denote the Green’s function corresponding to the two-point
boundary value problem

3.2) Au=f inl, u(0) = u(1) =0.

As is well known, g is continuous on I and smooth except at X where g’ has a simple
discontinuity. In particular, g € Hy(I) and we have

(3.3) w(x) = A(w, g) for w € Hy ().
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Now let w = w(x, ¢), be such that Diw € Hy(),j =0, . .. ,n, D! 1w e L,(I).
Then with

(34 L(w, ¢) = (w,, ) + A(w, v),
we have

(B.5) wx, ) =AW, g) = f (- 1YLDlw, Tig) + 1Y (D * 1w, T"g).
j=0

This follows at once by (3.3) and the fact that for j > 1,
L(Diw, Tig) = (Di*'w, T'g) + A(Diw, T'g) = (DI*'w, T'g) + (Diw, T g).

In order to show the theorem we apply (3.5) to w = e = u, — u, observing that

L(e, x) = L(u, x) L, ) =0 forx €S,

and hence forj=0,...,n,
L(Dle, T'g) = L(Die, Tig —x) for x €S,

In view of the fact that for each j >0, T/g € H(I)(I) NH(0,x) N H(x, 1), this
yields by (3.1),

IL(Dle, T7g)l < inf {IDI*el IT/g — x| + IDlel W Tg — X1, }
XESH

< C{H"IDi* el + WY IDlell, }.
Also, since g € Hy(D),
WD tle, Tl = I(T"D2t e, )l = |A(T" 1D e, o)l
<l T"“D;'“elll lgl, < C||D;'+le||_(2n+l).
Together these estimates complete the proof.

Combining this result with our error estimates of Section 3, we find under the
appropriate regularity assumptions for ¢ positive and with v, = Pyv or P, v, for instance,

le(x, DI < Cun*™2.
Notice as usual that strong regularity assumptions only have to be made near ¢.

In our next example we shall treat a procedure for approximating the first
derivative of the solution at a knot, proposed by Douglas, Dupont and Wheeler [3].
Again we shall express the error bound in terms of such norms of the error, including
negative norms, for which we have estimates at our disposal, thus allowing us to show
superconvergence, under somewhat milder regularity assumptions and more general
choices of discrete initial data than in [3].

The starting point of the procedure is the following identity (cf. [3]):

xau'(x) = A_(u, x) - (Au, x)_,

where with x € (0, 1), 4_(-, -) and (-, *)_ denote the bilinear form and L, inner
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product taken over the interval (0, X) rather than over 7 and where a = a,,. It follows
for u a solution of the parabolic problem, with L_(-, -) correspondingly defined from

G4,
(3.6) %a %g G ) =L_(u %)~ (f, ).

With the semidiscrete solution u,(f) computed, we now study the approximation to
du(x, t)/ox defined by

3.7 xaity , (X, 1) = L_(up, x) = (f, x)_.
We have

THEOREM 8. Under the assumptions of Theorem 7 we have for t 2 0 and
nz=0,

n . .
1Y Dkl + K ID* Le()l + 1D} e()l
=0

<C

~ - ou —
ul,h(x’ t) - 3; (x’ t) ~2np

Proof. We have by (3.6) and (3.7),
Xa (?il - g—; *, t)) =L (e, x) = (e, x)_ + A_(e, x)

= (e, x)_ + (e, Ax)_ + ae(x, 1) = (e,, 9,) + (e, ¢o) + ae(x, 1),

where ¢, and ¢, are discontinuous at x but smooth otherwise. The last term is
estimated by Theorem 7 and the remaining two terms by the following lemma which
completes the proof.

LEMMA 5. Under the assumptions of Theorem7,let ¢ € L,(I) N H' =20, X )N
H~%(x,1). Then forany n =0,

n—1
(e, )l SC{W™1 Y IDlell, + W IDell + ID%el_,, ¢
j=0

Proof. The case n = 0 is trivial. For n positive we have similarly to above,
with § = T,

n—-1 , ,
(B8) (e 9)=Ale V)= 3 1YL(Dle, T'Y) + (-1)"(Dfe, T" 1Y)
=0
Here forj=0,...,n—1,
L(Dle, T'y) = L(Dle, T"Y —x) for x €S);
and hence, since /Y € Hy() N H'(0, X) N H'(%, 1),

|L(Dle, T7Y)l < msf {IDI+ el IT7y — xIl + UDiel 0Ty — xI;}
XESpy

< C{WIDi* el + h ' IDel, }.
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Also
|(D}e, T" 1Y)l = |(D}e, T"p)|l = |(T"Dfe, ¢)|

< IT"Dfel kgl < ClDfell_,,,.

In view of (3.8) these estimates prove the lemma.

We shall now show that a superconvergent order approximation of the first
derivative can also be based on difference quotients of the semidiscrete solution,
provided these are taken over mesh intervals of length at least ch with ¢ fixed positive.
Since a derivative of a smooth function can be approximated locally to any order by a
linear combination of such difference quotients, it is sufficient to show a superconver-
gent order error bound for a forward difference quotient, say. Thus let X € (0, 1)
be a knot for the S, considered, let ¥ + & denote the knot immediately to the right
of X, and set

du®x) = k1w + h) - ux)).

Our result is then

THEOREM 9. Under the assumptions of Theorem 7 we have for t = 0 and
nz=0,

n . Y
l2ex, )l <=t S (IDie®)l, + \Die(r)), P
j=0

+h’(|lD;’“e(t)|l + ID’t"“e(t)IT) + IID;““e(t)II_Zn .
Proof. With g as above the Green’s function of the two-point boundary value
problem (3.2), and g{V(x) = A~} (g5 . 7 (x) — g5 (x)), we have

n . . .
de(x, 1) = A(e, V) = 3 (~1)YL(Dle, Tig™M) + (-1)"* 1 (D7 * e, T(V)),
j=0

With I =&, X +h),I_=(0, ¥)and I, = (¥ +k, 1) we have now

IL(Dle, T'g™)I< inf {||D£+1e||,_U,+l|Tig(‘)—xlI,_U,+
XESy

j+1 (1) — -
+ |D} el7||Tg x“Ll(I)

i (1)
+ 1Dlelly ; oy NT%Y =Xy g s,

iol _|| T7e(1) =
+ IDtell,llng x"W}(T)}'

Since for ¢ = T/g(1) - x,

Iyl L@
it follows by (3.10) of Lemma 6 below

<EI¢I7, Iyl ) - <hlyl

wi @) 1,0

IL(Dle, T’ ) < C{H™'(IDlell, + IDjel ) + W(ID[*'ell + IDJ*el)}.
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Using also (3.9) of Lemma 6, we have
|(D7* e, T VD) = I(T"D* e, g < IDF* el gD < CUD} el

Together these estimates show the theorem.
It thus remains to show:

LEMMA 6. With the above notation, we have
(3.9 |g(l)|, <C
and
inf {177 = xl_op, +HITRED = xly ; oy, +KITIED - xI;
s
G.10) F
+hrh|Tig®) — x| -}< .
Proof. We first recall
wu, (X, (x) for x >Xx,
g;(x) = _
wt, (X, (x)  forx <x,

where u, and u, are two solutions of Au = 0 satisfying u, (0) = u,(1)=0and
where w = constant # 0 independent of x and x. It follows

wu, (O uy(x + h) — u,y (X)) for x <X,
gMx) = wuz(x)l;—‘(ul(§+f7)—ul(ﬂ) forx>x+h,
w}T_l(ul(x)uz(J_c +h)- u, (e, (%)) forx <x <x + h,

which in particular yields (3.9). The expression for gV further shows that
(3.11) g1, or, +h1g®) <G

which implies (3.10) for j = 0 by choosing x as a suitable interpolant of gm,
In order to treat the case j > 0 we first notice that by the maximum principle
and by (3.9),

(3.12) 1T, < CITH1gW, < clgM, < C
Further, an easy calculation shows that for each k 2 0 and each subinterval J </,

|w|k+2J < C{lwly, + IAwIk’J},
with C independent of J as long as the length of J is bounded below. By repeated
application this implies, using (3.11) and (3.12),

. i
|T'g(l)|r,1_u1+ <c{y ITW, + |8(1)|r,1_u1+ <C
i=o
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Similarly,
Tig() =T/ + |70
I £ Ir,I <h (ngsc-lr,I ITg;+h_Ir,I)

! )y,

<h (I TIe + 1 Tig. _| =
<h ('Tgxlr,1+uf Tgx+h rnIul_

and thus
ITig®I,; oy, +RITEDI < ¢

completing the proof for j > 0.

4. Interior Superconvergence with Uniform Elements. We shall now turn to an
application of our negative norm estimates in higher dimensions in which the subspaces
are based on uniform partitions in a specific sense in some interior domain ,. We
shall not describe this uniformity assumption in detail but content ourselves by
referring to such {S,} as r-regular on &, following the definition of this concept in
[2].

We first quote the following result (Theorem 3 in [5]) which generalizes to the
case of derivatives a construction due to Bramble and Schatz [1]. Here and below the
interior domain over which the L, and maximum norm based norms are defined are
indicated in the notation. For the negative norms we denote for £, CC £,

ol = sup . ¢)
-p,Slg hot |
PECT (24) lol, 04

LEMMA 7. Let 9} denote the forward difference quotient corresponding to
D, the B-spline in RN of order r — 2 and Ny = [N/2} + 1. Then there exists a
function K, of the form

Kye) =Y 2 kWt x ),
Y

with k. = O when ly;t = r = 1 such that for @, CC Q, CC Q and e = u;, —u we
have

& -
lKh*ahuh Daulnl

2r-2
< Cih r= [u|2r_2+ |a|’no + Z " aﬁ+Be"_(r_2)’Qo
Igl<r-2+Ng

-2 atf
+ 5 > log eIno .
I8l <r—2

In order to apply this estimate we need to have at our disposal the appropriate
estimates for dfe. These are contained in the following lemma.

LEMMA 8. Assume that {S,} is r-regular in Q, CC (Q, and let Q, CC Q,. We
then have at time t,
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o 2r—2 {
Nogel sy, <Ch 2 Dl a0,

2i1<r+ lal
r—2 ) I
+C > IIDteIIno + I|Dte||_(,_2),ﬂo),
212+ lal
and
[ r ] !
l3gel < Cn 2 Dl gisngann, ¥C 2 IDlelg,.
i< r+ |a|+vN0 21<2+|a|+N0

Proof. For the case f = 0 these results were proved in Lemmas 7.3 and 6.5 of
[2]. The proofs for the inhomogeneous equation are obvious modifications of those
in the case f = 0.

We obtain immediately by combination of Lemmas 7 and 8:

THEOREM 10. Assume that {S,} is r-regular on Q, CC Q, let D* be an
arbitrary derivative with respect to x and Q, CC Q. We then have for t 2 0,

IK,, » 385u, (1) - D°u(t)l g

2r-2 1
<’ > 1Dy, 2 4 1at+ Ng-20,2¢
21<2r-2+lal+Ng

+C p (2 1Dle(t)lg ) + 1D _(12),0,)-
2i<r+ lal+Nyg
As a consequence, observing that

Il g, <Clvl_, forp>0,

we obtain in view of our previous error estimates that for positive time and suitable
discrete initial data,

2r—2
IK,, * 0qu,(t) — D"‘u(t)lQl < Quh“™*,
with stringent regularity assumptions only near ¢.

5. Superconvergence Based on Local Green’s Functions. In our final example,
we shall show that also in the case of nonuniform partitions in arbitrary dimensions it
is possible to construct superconvergent order approximations to u(x,, ¢) for x, an
interior point and ¢ positive. This approximation will depend on u,(x, ¢) and f(x, t)
in a fixed neighborhood of x, independent of k. Although it might not be easy to
apply, our result shows that u, carries with it through the computation the capability
of reproducing u to superconvergent order.

For motivation, we consider first the elliptic problem (1.2) (cf. Louis and
Natterer [4]). Let x, € Q, C Q, and let G, = G;O be the Green’s function with
singularity at x,, of the Dirichlet problem

é.1) Aw=f in,, w=0 on 0%,

so that for w smooth and vanishing on 9%,

(52) w(xg) = fno AwR)Gy(y)dy .
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In particular, with ¢ € C5(R,), ¢ = 1 in a neighborhood of ﬁl 2 Q, 3 x, we have
for the solution u of (1.2),

u(xy) = (A(pu), Go)no,

where, if Gy € L,(Q,), (s -)no denotes the integral of the product. Introducing the
solution operator T, of (5.1), we have ToAv = v for v € flz(ﬂo) so that for u
sufficiently smooth and any k > 0,

TEA* 1 (ou) = A(pu).

This yields
(53) u(xg) = (TgA*+' (), Go)g . = (A** ! (wu), T§Go)g,-
By Leibniz’ formula,
54) AV ou) = pA¥Hlu + > capD"chﬁu.
la+BI<2k+2
a#0

Hence, noticing that T{)‘Go is smooth except at x,,, we conclude from (5.3), using
integration by parts for the terms of the sum in (5.4),

(5.5) u(xy) = (pA*+ 'y, TEG) + (u, ¥,) with ¥, € C5(2,\Q,).

In order to find an accurate approximation of the solution of the elliptic problem
(1.2) we may utilize this representation for k¥ = 0 and set

(5.6) U (xg) = (0f, Go) + (uy, ¥y).
We have at once
up(xo) — ulxo) = (e, W) = (6, T°AY,) = (T%, A%Y,),
and hence for any s 2 0 the error estimate
5.7 Vit () — u(xg)!l < Cllell_.

In order to avoid the computation of the singular integral in (5.6) we could
alternatively have used (5.5) with k¥ > 0 and set

W,(x0) = (0A*f, TEG,) + (uy,, ¥)),

again concluding (5.7).
We now turn to the parabolic case and first state the following representation
result.

LEMMA 9. Let x, € Q, C Q, let G, and T, be as above, and let 9 € Cg'(Q),9 =1
on S, where x, € ;. Then for any k > 0 there is a Y, € C5'(\R,) such that

fort =0,
N k+1—j (K + 1\ ok+1-jpi,, Tk
u(xy, 1) = ,-Z—o 1) ( ;@D I, TEGy) + (u, by,
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Proof. This follows at once from (5.5) upon noticing that since L and D,
commute,

k+1 k+1_k+l k+1 -D k+1—iLi
A =(L'—Dt) = Zo i ( t) .
]:

We may now use the above representation to define an approximation of
u(x,, t) in terms of u,(x, ¢) and fix, #) on Q, by

~ =k+l _ k+1—i<k+ 1) k+1—jrj~lg mk
Uy(xy, ) =Y. (1) . @D TEG,)
(5.8) =1 4
+ (D DRy, TEG)) + (4, ¥y)-
We have then the following error estimate. For suitable choice of k and s this shows
superconvergence by our previous estimates.

THEOREM 11. Let k, be such that Ty0G, € L,(S,), and let &, be defined
by (5.8) with k > k. Then for any s >0,
1, (xg, 1) — ulxo, DI < CUDFF el _y gy, + el ).

Proof. We have by Lemma 9 and (5.8),

Uy(xg, 1) —ulxy, 1) = 1)1 @D e, TgGo) + (e, ).
Here the second term is estimated as in the elliptic case treated above to yield
te, )l < Cllel_; foranys>0.

For the first term we have easily
(eDf* e, TgGo) = (T(,)c—ko(‘PDf+ te), T(’)COGO)QO

< CITg*o(eDi* e)lg, < CIDF* el_y i )-

Together these estimates prove the theorem.
Starting instead of (5.2) with the identity

ou _ aG,
axl (xo) - Jﬂo Auo’) _a—x';- O’r xo)dy’

we may similarly construct a superconvergent order approximation to du/dx,(x,) by
replacing G, by G, = 3G, /dx, everywhere above. We notice that since G, is more
singular than G, near x, we may now have to choose k, larger than before.
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