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Negative quantum capacitance in graphene nanoribbons with lateral gates
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We present numerical simulations of the capacitive coupling between graphene nanoribbons of various widths

and gate electrodes in different configurations. We compare the influence of lateral metallic or graphene side gate

structures on the overall back gate capacitive coupling. Most interestingly, we find a complex interplay between

quantum capacitance effects in the graphene nanoribbon and the lateral graphene side gates, giving rise to an

unconventional negative quantum capacitance. The emerging nonlinear capacitive couplings are investigated

in detail. The experimentally relevant relative lever arm, the ratio between the coupling of the different gate

structures, is discussed.
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I. INTRODUCTION

Graphene nanoribbons [1–7] are of increasing interest due

to their promise of a band gap, overcoming the gapless band

structure of truly two-dimensional (2D) graphene [8,9]. In

particular, their overall semiconducting behavior allows the

fabrication of graphene field-effect transistors [10], tunneling

barriers [11], and quantum devices [12]. First experimental

demonstrations of graphene nanoribbon-based quantum dots

[13,14], double quantum dots [15], and charge sensors [16,17]

have been reported in recent years. In most of these quantum

devices the local electrostatic tunability of the electrochemical

potential along graphene nanoribbons is key for the device

functionality. For this purpose, local top gates and lateral

gates, based either on metals or in-plane graphene have been

fabricated (see, e.g., Refs. [18–21]). In particular, the 2D nature

of graphene makes it straightforward to pattern a number of

lateral graphene gates and in-plane charge detectors from the

very same graphene sheet as the adjacent top-down fabricated

nanoribbon [12,22]. Consequently, a better understanding of

the capacitive coupling between nanoribbons (with different

widths) and (graphene) gate electrodes is important for device

optimization and future graphene-based nanoelectronics. This

is particularly true for graphene nanodevices since their Fermi

energy is tuned using capacitive coupling. The strength of

these couplings, in turn, depends on the density of states

(DOS) via quantum capacitance effects [23,24]. The low DOS

close to the Dirac point thus makes graphene a rather unusual

gate material with reduced and energy-dependent screening

properties [25,26]. Graphene sheets have been subject to

a large number of theoretical and experimental studies of

quantum capacitance effects [27–37]. Indeed, recent advances

allowed experiments based on capacitance measurements to

observe such phenomena as Fermi velocity renormalization

[38], fractional quantum Hall phase transitions [39], and Hof-

stadter’s butterfly [40]. Furthermore, quantum Hall transport

has been used to probe the capacitance profile at graphene

edges [41]. These demonstrations give vested hope that
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quantum capacitance effects in graphene nanodevices could

be exploited in future applications.

Here we present numerical simulations of the electrostatic

capacitive coupling between graphene nanoribbons of differ-

ent widths and gates in different configurations. In particular

we elucidate the influence of metallic and graphene lateral

side gate structures (see Fig. 1) on the back gate capacitive

coupling. We show that the nonlinear capacitive couplings

give rise to a complex interplay between quantum capacitance

effects in the nanoribbon and the gates. Surprisingly, we

find the unconventional phenomenon of an effective negative

quantum capacitance in nanoribbons with lateral graphene

gates. Allowing for quantum capacitance effects will therefore

be essential in reliably interpreting experimental results.

The paper is organized as follows: In Sec. II we briefly

introduce the description of quantum capacitance effects

on the Thomas–Fermi level and the model system under

investigation. Results for graphene nanoribbons with different

width, and with metallic and graphene side gates are discussed

in Sec. III. Finally, we compare the capacitive coupling

between either nanoribbon and back gate or nanoribbon and

side gates. We conclude with a short summary.

II. QUANTUM CAPACITANCE AND MODEL SYSTEM

Accurate simulations of the influence of side gates require

a detailed treatment of the electrostatic problem beyond

analytical models available for simple geometries such as the

infinitely extended graphene sheet or an isolated nanoribbon

[34,42]. We therefore present a self-contained treatment of the

quantum capacitance effect, and present a numerical approach

to calculate quantum capacitance effects by coupling the

Poisson equation with a Thomas–Fermi approach for the

electronic structure. As a first test, we apply our formalism

to analytically solvable models [34].

Consider the electrostatic problem of the capacitive cou-

pling between two conductors at different voltages, separated

by a medium with relative permittivity ε(r). The resulting

electrostatic potential �(r) follows the Poisson equation,

∇ · (ε(r)∇�(r)) = −
ρf(r)

ε0

, (2.1)
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FIG. 1. (Color online) (a) Schematic illustration of a typical

model system: a graphene nanoribbon (GNR) on an isolating substrate

(dark gray), capacitively coupled to a back gate (BG, light red) and

side gates (SG1, SG2). t = 30 nm, d = 300 nm, and varying w.

(b) Electrostatic potential and field lines on a two-dimensional plane

perpendicular to the nanoribbon direction. Voltages are VBG = 2 V

and VSG = −3 V; nanoribbon width w = 80 nm.

where ρf(r) is the free charge density and ε0 is the vacuum

permittivity. A given potential difference d� between the

conductors will lead to a charge accumulation dQ on one

conductor C (and −dQ on the other),

dQ =

∫

C

dρf(r)dr, (2.2)

according to Eq. (2.1). The classical capacitance Ccl then gives

the ratio between charge and potential difference,

Ccl =
dQ

d�
. (2.3)

For nanoscale devices, an additional contribution to the

capacitance can arise due to the electronic structure near the

Fermi energy of the conductor. This quantum capacitance

contribution is related to the additional energy cost for adding

electrons to the conductor, which increases when the DOS near

the Fermi edge decreases. Graphene with its vanishing DOS

at the Dirac point is a prototypical case.

Within a Thomas-Fermi approach the local electron density

n(r) related to the net free charge density through n(r) =

ρf(r)/e (with e the absolute value of the elementary charge),

is given by

n(r) =

∫ EF(r)

0

D(E; r) dE, (2.4)

with D(E; r) the local density of states and EF(r) the local

Fermi energy. In line with the semiclassical limit underlying

the Thomas-Fermi approximation we consider variations only

over length scales large compared to the de Broglie wavelength

of the electrons. Accordingly, effects such as size quantization

features [43–45] of the graphene nanostructures are neglected

in Eq. (2.4). They could be incorporated, e.g., through a

fully self-consistent solution of the Poisson equation and the

mean-field Schrödinger equation. However, for the relatively

large size of the nanoribbons and in the presence of a small

degree of disorder, the deviation from the Thomas-Fermi limit

is expected to be small. The leading quantum correction to

the classical capacitance should be captured by Eq. (2.4).

Accordingly, the electrochemical potential μ(r) contains in

addition to the electrostatic potential �(r) the contribution

from the local Fermi energy EF(r),

μ(r) = �(r) + e−1EF(r). (2.5)

The solution of the coupled system of Eqs. (2.1), (2.4), and

(2.5) allows the calculation of quantum capacitance effects.

Integrating the charge density over the spatial coordinates

yields the total capacitance that relates the accumulated

charge with the applied potential difference. The total inverse

capacitance C−1
tot is given by

C−1
tot =

dμ

dQ
=

d�

dQ
+

1

e

dEF

dQ
= C−1

cl + C−1
qm , (2.6)

where the inverse quantum capacitance reads

C−1
qm =

1

e

dEF

dQ
=

1

e2D(EF)
, (2.7)

and is inversely proportional to the density of states at the

Fermi level. For the latter we use in the following the bulk

limit in line with the Thomas-Fermi approximation, while

the variations of μ(r) and EF(r) over the length scale of the

device are fully included. The relative importance of quantum

capacitance corrections is governed by the ratio,

C−1
qm

C−1
cl

=
1

e

dEF

d�
=

1

e2D(EF)

dQ

d�
, (2.8)

i.e., the ratio of the electrostatically induced charge on the

capacitor, dQ, to the total charge e2D(EF)d� near the Fermi

edge accessible by a potential difference d�. In the classical

limit, the charge induced on a capacitor at finite voltage is small

compared to the total number of electrons at the Fermi level.

Conversely, a small density of states at the Fermi level implies

a large 1/Cqm, and thus a reduction of the total capacitance in

Eq. (2.6).

For infinitely extended two-dimensional graphene, EF(r) is

the energy difference between the highest occupied state on the

Dirac cone and the charge neutrality point (i.e., the so-called

Dirac point). We can insert the linear DOS of the Dirac cone,

yielding [46]

ρf(r) =
eE2

F(r)

π (vF�)2
, (2.9)

and

C−1
qm =

π (vF�)2

2e2EF

. (2.10)

We note that edge roughness or dopants in realistic finite-

size structures may strongly influence device properties, in

particular the capacitive coupling between nanoribbon and side

gates.

We also include finite temperature effects. Since the energy

scales associated with variations of the DOS are of the order

of thermal energies, such corrections may become important.

We therefore investigate the relevance of quantum capacitance

corrections at, e.g., room temperature. At finite temperature T ,

the occupation of electronic states is smeared out by the Fermi-

Dirac distribution function f (E,T ) modifying the expression

for the density [Eq. (2.4)] to

n(r; T ) =

∫ ∞

0

D(E)f (E − EF(r),T ) dE. (2.11)
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The total charge carrier density (electron and hole charge) for

the Dirac cones in graphene then becomes

ρf(T ) =
2e

π

(

kBT

�vF

)2

[Li2(−eη) − Li2(−e−η)], (2.12)

where Lin(x) is the polylogarithm and η = EF/kBT . Equations

(2.12), (2.1), and (2.5) are solved for �(r). All data we present

in the following are evaluated at room temperature (T =

300 K).

III. RESULTS AND DISCUSSION

We want to describe a capacitor formed by a graphene

nanoribbon, a metallic back gate, and two side gates [see

Fig. 1(a)]. The step from idealized, infinite graphene to a

nanoribbon with side gates (of possibly different materials and

at different potentials) introduces several new device-specific

quantum capacitance-related effects. We disentangle them

by considering configurations of increasing complexity. To

test the validity of our numerical simulation, we start our

discussion with the simplest case of an infinitely extended

graphene sheet [see Fig. 2(a)]. The nanocapacitor is completed

by an infinite back gate at a distance of d = 300 nm [see

Fig. 1(a)]; the gap between the two sheets filled with a

dielectric substrate, SiO2 with ε = 3.9; above the nanoribbon

is air. The boundary conditions for μ(r) are given by the

potentials applied externally to the different gates. We assume
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FIG. 2. (Color online) (a) Capacitance of an infinite graphene

sheet with respect to a back gate with d = 300 nm, ε = 3.9, and T =

300 K. The analytic solution [34] (gray line) coincides exactly with

our numerical calculation (black line). (b) Capacitance of a graphene

nanoribbon as a function of back gate voltage for different nanoribbon

widths w (see insets). w = ∞ denotes the bulk limit shown in (a).

For narrower ribbons, the quantum capacitance dip at VBG = 0 V

becomes increasingly prominent. (c) Width-dependent capacitance

of graphene nanoribbon: analytical model (from electrostatics, blue

dashed line) and at VBG = 0 V (quantum capacitance, red trace) and

VBG = 60 V (classical limit, green trace).

translational symmetry perpendicular to the cross section

shown in Fig. 1(b), thus reducing the calculation to 2D (for

technical details, see Appendix). As expected, the capacitance

decreases at the Dirac point [see Fig. 2(a)] signifying the

quantum capacitance effect due to the reduction of the DOS

at the Dirac point. Our numerical results agree (within the

numerical accuracy) with analytical models [34].

A. Graphene nanoribbons without side gates

For a nanoribbon of finite width w but without side gates,

the quantum capacitance effect is substantially increased due

to the smaller DOS, leading to a more pronounced quantum

capacitance dip for narrower nanoribbons [see Fig. 2(b)].

Consequently, an inclusion of quantum capacitance effects

becomes more important for smaller nanostructures. Concur-

rently, the classical capacitance per unit area of a nanoribbon

increases with decreasing nanoribbon width [see Fig. 2(c)],

further amplifying the absolute change in capacitance at the

Dirac point. We find good agreement between our simulation

and the analytical model discussed by Lin et al. [42] [see blue

dashed line in Fig. 2(c)],

Ccl(w) = C0

[

2

π
arctan

(

w

4d

)

+
w

4dπ
ln

(

1 +
16d2

w2

)]−1

,

(3.1)
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FIG. 3. (Color online) Voltage-dependent relative change in ca-

pacitance (relative to respective classical capacitance Ccl) of graphene

nanoribbons featuring (a) grounded metal side gates and (b) grounded

graphene side gates, for different nanoribbon widths [Same parame-

ters as in Fig. 2(a)]. Width dependence of (c) the total capacitance (at

VBG = 0) and (d) the ratio of classical and quantum capacitance [see

Eq. (2.8)] for a nanoribbon with no side gates (analytical model from

Ref. [34], dashed black line), graphene side gates (blue solid line),

and metal side gates (green solid line).
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FIG. 4. (Color online) Capacitance of a graphene nanoribbon with metallic side gates at symmetric [VSG1 = VSG2, top row panels (a) and

(b)] and antisymmetric [VSG1 = −VSG2, bottom row panels (c) and (d)] finite side gate voltages (see insets). (b) and (d) Contour plots of the

total capacitance as a function of VSG and VBG. Dashed white lines mark the voltage combinations where charge accumulated at one of the

edges of the nanoribbon is zero.

where C0 is the capacitance of the plate capacitor per unit

area, C0 = ε0ε/d. The residual differences are most likely due

to the assumption of a spatially constant effective dielectric

constant used in the analytical model [the average value ε =

(3.9 + 1)/2 of the dielectric constants of substrate and air is

used]. As discussed above, one can use a full quantum local

density of states (LDOS) in Eq. (2.4) beyond the Thomas-

Fermi approximation. Using the quantum LDOS calculated

for this geometry we have verified that such a correction yields

a negligible change in the capacitance for realistic nanoribbon

widths. In line with Eq. (2.8) we expect the approach of the

classical limit with increasing width w [Fig. 2(b)], illustrating

that C−1
qm/C−1

cl → 0 as w → ∞ [Fig. 3(d)].

B. Graphene nanoribbons with side gates

The introduction of side gates precludes an analytic solution

of the problem. Side gates decrease the overall capacitance

of the nanoribbon since the classical field lines further away

from the nanoribbon no longer bend towards the nanoribbon

(increasing its capacitance), but towards the side gates [see

Fig. 1(b)]. Therefore, charge will accumulate at the side gates

which decreases the nanoribbon capacitance [compare scale

on Figs. 3(c) and 2(c)]. In addition to this classical effect, the

different DOS in the graphene nanoribbon and metal side gates

further increase the quantum capacitance effect [see Fig. 3(a)].

Put simply, it is energetically much more costly to put electrons

into the nanoribbon (due to its small size and the small DOS)

than into the metal side gates. A drastically different behavior

emerges for graphene side gates [see Figs. 3(b)–3(d)], since at

the Dirac point the DOS decreases in both the side gates and

the nanoribbon simultaneously.

In the experiment, the electrostatic tuning of device proper-

ties proceeds by varying the voltages of the side gates relative

to that of the back gate. As two prototypical examples, we

treat the symmetric (i.e., VSG1 = VSG2) and antisymmetric (i.e.,

VSG1 = −VSG2) voltage configurations. Due to the nonuniform

potential distribution �(r), different parts of the device reach

the (local) Dirac point at different voltage configurations,

namely when locally μ(r) = �(r).

We first consider metal side gates and the symmetric voltage

configuration: For positive side gate voltages, the position

of the quantum capacitance dip shifts to negative back gate

voltages where the side gate influence is compensated [see

Figs. 4(a) and 4(b)]. When the energy of the Dirac point is

reached in the nanoribbon, the capacitance decreases. The

relative depth of the dip depends inversely on the nanoribbon

width. For finite voltages VSG, the side gates cause a nonuni-

form electrostatic potential in the nanoribbon, and the Dirac

point is thus reached at different positions in the nanoribbon

for different back gate voltages. With increasing side gate

voltage, the nonuniformity of the electrostatic potential grows.

Consequently, the quantum capacitance dip becomes wider

and more shallow: A capacitance landscape in the VBG-VSG

plane reveals two lines crossing each other at a small angle [see

white lines in Fig. 4(b)] denoting the voltage combinations
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FIG. 5. (Color online) Same as Fig. 4 for graphene side gates. Note the regions of increased capacitance due to quantum-capacitance effects

in the side gates (blue areas in color maps). These regions are delimited by voltage combinations where charge vanishes at the ribbon edges

(white dashed lines). Black triangles on the color scale denote the classical capacitance value.

where no local charge is induced by the gates at either the

center of the nanoribbon or its edges. These combinations

control the width and shape of the quantum capacitance dip.

For the antisymmetric voltage combinations, the situation

changes: The width of the dip is now given by the voltage

combinations where there is no charge on either the left or

the right edge of the nanoribbon [see white lines in Fig. 4(d)],

making the change in dip shape more obvious [see Fig. 4(c)].

For graphene side gates, the situation becomes more

complicated and novel features emerge: Since the DOS of

both the nanoribbon and the side gates features minima at

the respective Dirac points, quantum capacitance (QC) effects

in the nanoribbon and the side gates interact, leading to

features beyond the standard “QC dip”. We find an increase

in capacitance for larger side gate voltages [i.e., a quantum

capacitance peak; see Fig. 5(a)]. This counterintuitive increase
in capacitance due to the limited density of states rather than

a reduction arises from the reduced screening response by

the side gates which, in turn, restores the capacitance of

the nanoribbon. At specific combinations of back gate and

side gate voltages, the local chemical potential in some region

of the side gates coincides with the Dirac point. In this

case, the screening ability of graphene side gates suffers due

to the reduced capacitance in the side gates. In turn, this

increases the capacitive coupling between the back gate and

the nanoribbon. The loss in screening by the side gates thus

causes a positive peak in the nanoribbon capacitance [see

top right in Fig. 5(a)]. These results imply the surprising

phenomenon of an effectively negative quantum capacitance.

Previously, negative quantum capacitance effects were only

reported due to many-body effects [47], in superconducting

qubits [48] or for graphene heavily doped with Ag adatoms,

which lead to dispersionless resonant impurity bands near the

charge neutrality point [36]. The explanation for the splitting

and broadening of the QC dips applies analogously to the QC

peaks [see dashed lines in Figs. 5(c) and 5(d)].

A comparison of the size of the quantum capacitance dip

suggests that the quantum capacitance effect is larger for

grounded (VSG1 = VSG2 = 0) metal than grounded graphene

side gates [compare Figs. 3(a) and 3(b)]. The observation that

the capacitance of the nanoribbon increases when the side gates

locally reach their Dirac point offers an additional explanation

why the QC dip is deeper for metal side gates than for graphene

side gates: Since the nanoribbon and the side gates reach the

Dirac point at the same potential, the large negative nanoribbon

QC dip is superimposed on a positive effective side gate QC

peak, and thus, the dip depth is decreased. This overlap can

be seen in the capacitance distribution in the VBG-VSG plane

[see Figs. 5(c) and 5(d)]: Regions of low (blue) and high (red)

capacitance converge at the center. As soon as the graphene

side gates are at a finite electrostatic potential, the QC peak

and the QC dip are shifted relative to each other causing the

broadening of the peak and an increase in dip depth.

C. Relative lever arms

Instead of considering the back gate capacitance as modi-

fied by side gates, one may alternatively consider separately the

charges induced on the nanoribbon due to finite side gate and

the back gate voltages: For each gate, we define a capacitance
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FIG. 6. (Color online) Relative lever arm αrel [see Eq. (3.2)], i.e.,

relative capacitance of the nanoribbon towards back gate and side

gate, in symmetric gate voltage configuration for (a) metallic and (b)

graphene side gates. The graphene nanoribbon has a width of 80 nm

and the spacing to the side gates is 30 nm.

relating the voltage on the gate to the induced charge on the

nanoribbon. A comparison of the relative capacitive couplings,

i.e., the ratios of the capacitances, is of great interest for

experiments: The back gate and side gates usually feature

very different coupling coefficients due to the different spatial

distance to the nanoribbon. This relative coupling is usually

referred to as relative lever arm,

αrel = CBG/CSG. (3.2)

Accurate knowledge of αrel is essential for a detailed interpre-

tation of experimental results. Due to quantum capacitance

effects, αrel depends on VBG and VSG, as we now investi-

gate in detail. We determine side gate capacitance CSG as

CSG = dQGNR/dVSG|VBG
and CBG = dQGNR/dVBG|VSG

. The

relative lever arm as a function of VBG and VSG features a

substantial energy dependence already for metallic side gates

[see Fig. 6(a)]: We find the relative lever arm decreased by

roughly 3% around zero carrier density in the nanoribbon. For

the case of graphene side gates, we observe a decrease by up

to 15% of the relative lever arm along a positive diagonal in

the gate voltage plane [highlighted in Fig. 6(b)]. This is of

importance as experimental devices often feature side gates

and nanoribbon etched from the same graphene sheet.

Interestingly, when comparing our numerical results with

the experimental data reported in Ref. [49] one finds that

the experimentally extracted αrel is nearly a factor three

larger than our calculation suggests. Since the back gate

coupling is well controlled in experiments on large-scale

graphene devices, we conjecture that this discrepancy might

be related to a significantly reduced side gate coupling in the

experiment. In particular, the edges of a realistic experimental

nanoribbon device feature edge roughness and uncontrolled

edge terminations (both not included in the present model)

which may lead to a large local density of states at the edges,

and thus to a significant charge accumulation at the edge

of the nanoribbon. These charges may partly screen the

lateral side gates and therefore increase the measured relative

lever arm. Such a screening effect is also consistent with

recent observations on hydrofluoric acid (HF) treated graphene

nanoribbons where an increased side gate coupling strength

has been found after HF dipping [50].

IV. SUMMARY AND OUTLOOK

We have shown that side gated graphene nanoribbons

exhibit significant variation in capacitance as a function of gate

voltages due to classical screening and quantum capacitance

effects in the nanoribbon. Both the nanoribbon geometry,

as well as the presence of side gates and their properties

strongly influence quantum capacitance effects. We find both

positive and, surprisingly, unconventional negative quantum

capacitance corrections. The former is the usual decrease

of total capacitance due to the additional energy required

to fill electronic states at a low density of states. The latter

occurs due to a decrease of screening by graphene side gates.

Since the capacitance of a graphene nanodevice frequently

enters in the tuning of the effective energy of electrons in,

e.g., transport experiments, inclusion of quantum capacitance

effects is critical for the correct interpretation of experimental

data. The proposed increase in total capacitance for finite

voltage at graphene side gates and the significant change in the

relative gate lever arms should be observable experimentally

for clean samples.
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APPENDIX: NUMERICAL METHOD

In the following, we provide further technical details on

our calculations. We solve the Poisson equation [Eq. 2.1]

using a finite difference scheme with a grid spacing of 1 nm.

Dirichlet boundary conditions are applied to the conducting

parts of the system: The lower boundary (where the back

gate fixes the potential), the nanoribbon, and the side gates.

The left, right, and top border are best modeled using

Neumann boundary conditions, i.e., d�
dr

= 0, as these emulate

the infinitely extended system better than Dirichlet boundary

conditions. For the case of T = 0 K, we solve Eq. (2.5)

for �(r) using the charge density for graphene, Eq. (2.9),

in combination with the Poisson equation (2.1). After the

discretization, the resulting nonlinear system of equations

can be solved using any nonlinear solver. On all grid points

ri of the graphene parts, there is a difference between the

electrochemical potential μ(ri) and the electrostatic potential

115406-6



NEGATIVE QUANTUM CAPACITANCE IN GRAPHENE . . . PHYSICAL REVIEW B 89, 115406 (2014)

�(ri), given by a discretized version of Eq. (2.5). Inserting

these constraints into the Poisson equation, Eq. (2.1), yields

ε0��(r) =

{

q

π

(

μ(ri )−�(ri )

vF�

)2
, r ∈ ri

0, r /∈ ri,
(A1)

where ri are the grid points on the graphene parts. This

system of equations (r = ri , i = 1, . . . ,N) is solved for �(ri).

For the temperature-dependent case, the procedure remains

unchanged, except for the use of the temperature-dependent

expression ρf (EF,T ), i.e., Eq. (2.12) instead of Eq. (2.9).

Quantum capacitance can also be formulated for a nonlocal

relationship between energy and charge (as required, e.g., for

ab initio calculations of the system),

μ(r) = �(r) +
1

e
EF[ε0∇ · (ε(r)∇�(r))](r). (A2)

This equation can be reformulated in terms of charge densities

instead of energies by applying the inverse map ρf [μ(r),�(r)],

ρf [μ(r),�(r)](r) = ε0∇ · [ε(r)∇�(r)], (A3)

which gives the charge density ρf , as a function of the potential

�(r) and the chemical potential μ(r). Assuming a local

dependence between EF[ρf(r)](r) and ρf(r) allows replacing

the functional formulation (A2) by the simpler (2.5) used in

the main text.
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