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We visualized negative refraction of phonon polaritons, which occurs at the 
interface between two natural crystals. The polaritons - hybrids of infrared photons 
and lattice vibrations - form collimated rays that display negative refraction when 
passing through a planar interface between the two hyperbolic van der Waals 
materials: molybdenum oxide (MoO3) and isotopically pure hexagonal boron nitride 
(h11BN). At a special frequency 𝜔!, these rays can circulate along closed diamond-
shaped trajectories. We have shown that polariton eigenmodes display regions of 
both positive and negative dispersion interrupted by multiple gaps that result from 
polaritonic level repulsion and strong coupling. 
 
Refraction is an elemental phenomenon in optics, in which a ray of light changes direction 
after traveling across an interface between two media (1). Refraction is considered 
“negative” if the refracted beam emerges on the same side of the interface normal as the 
incident one. This uncommon occurrence was demonstrated in artificial metamaterials (2) 
and superlattices (3) whose permittivity 𝜀 and permeability 𝜇 are simultaneously negative. 
Negative refraction alters light amplification and emission (4, 5) as well as non-linear 
optics (6) and may also cause trapped light (7, 8) as well as “perfect” lensing (9). 
Interfaces between anisotropic meta-structures with rotationally misaligned principal axes 
can also enable negative refraction (10-12). Extreme anisotropy is offered by hyperbolic 
materials (HMs), whose hybrid light-matter modes – polaritons – are predicted to exhibit 
all-angle negative refraction at carefully crafted interfaces (11, 13). In this work, we 
studied polaritons in a previously unexplored class of hyperbolic hetero-bicrystals made 
of two thin crystals, molybdenum oxide (MoO3) (14-18) and isotopically pure hexagonal 
boron nitride (h11BN) (19-21). Our hyperspectral nano-imaging data reveal localization, 
negative refraction, and closed-loop circulation of polaritonic rays inside h11BN-MoO3 



hetero-bicrystals. Central to the observed effects is the gap in the polaritonic dispersion, 
which we extracted from hyperspectral images of polaritonic waves.  
 
The hyperbolic electrodynamics of both h11BN (crystal A) and MoO3 (crystal B) is born 
out of strong dipole active phonons (22). These resonances drive the permittivity negative 
along at least one principal axis, whereas positive “dielectric-like” positive permittivity is 
preserved along the remaining principal direction(s). Our results can be understood by 
focusing on the 𝑥 − 𝑧	plane (Fig. 1) for frequencies at which the phonon (Reststrahlen) 
bands of the constituent crystals overlap, 740	cm"# < 𝜔 < 822	cm"#. At these 
frequencies, the permittivity of h11BN is positive along 𝑥0 and negative along �̂�, 𝜀$%(𝜔) > 0, 
and 𝜀$&(𝜔) < 0 (type-I hyperbolicity). In MoO3, the signs are reversed, 𝜀'%(𝜔) < 0 and 
𝜀'&(𝜔) > 0 (type-II hyperbolicity; Fig. 1A) in the same frequency range.  
 
It is customary to refer to electromagnetic modes of polar materials as polaritons. The 
polariton dispersion assumes a simple form (𝑞%( 𝜀&⁄ ) + (𝑞&( 𝜀%⁄ ) = 𝜔( 𝑐(⁄  when the 
polariton momentum �⃗� = (𝑞% , 𝑞) , 𝑞&) is in the 𝑥 − 𝑧 plane, 𝑞) = 0. In HMs, the polariton 
isofrequency lines are hyperbolas (Fig. 1B) (14, 19, 20, 23). The asymptotes of these 
hyperbolas are inclined by the angle ±𝜃 with respect to the 𝑥-axis, where 𝜃 = 𝜃(𝜔), 
defined by tan 𝜃 = 𝑖	 √𝜀% √𝜀&⁄ , is positive for type-I and negative for type-II HMs. In the 
high-𝑞 limit, probed in our near-field experiments, the polariton group velocity �⃗� = ∇*+⃗ 	𝜔 
becomes orthogonal to �⃗� (24). Because the angles 𝜃$ > 0 and 𝜃' < 0 have opposite signs 
while momentum 𝑞% is conserved, the tangential velocity 𝑣% = −|𝑣|	sgn	𝑞% sin 𝜃 changes 
sign in refraction at the A-B interface. The net effect is that polaritons exhibit negative 
refraction (supplementary text, section S1). 
 

 
Figure 1| Polaritons in hyperbolic hetero-bicrystals. A, Real components of the permittivity, 𝜀!, of h11BN and MoO3. 
The dots are experimental data. The parameters for the calculations, indicated with solid lines, are extracted from our 
data (Table S1). B, Schematic showing qy=0 cuts of the polariton isofrequency surfaces of type-I (crystal A, red) and 



type-II (crystal B, blue) HMs (supplementary text, section S1). The group velocities �⃗�",$ and their tilt angles 𝜃" > 0, 
𝜃$ < 0 are indicated. C, Schematic of the polariton rays in a bicrystal assembled from a type-I HM (crystal A, h11BN) 
and a type-II HM (crystal B, MoO3). The lateral shifts inside the crystals 𝛿" > 0, 𝛿$ < 0 are indicated with arrows. The 
ray paths are closed if 𝛿" + 𝛿$ = 0.  

We report on a new class of hyperbolic hetero-bicrystal structures that reveal negative 
refraction of polaritons. If a hyperbolic ray emerges on the B-side of the A-B interface the 
ray will be laterally displaced by a distance 𝛿'/2 < 0 after propagating through Crystal B. 
Negative refraction occurs at the interface with crystal A prompting an additional 
displacement 𝛿$/2 > 0. At a frequency 𝜔! where the condition 𝛿$(𝜔!) + 𝛿'(𝜔!) = 0 is 
satisfied, polaritons travel in closed trajectories. Experimental signatures of the closed-
cycle electrodynamics near 𝜔!	are evident in our data (Figs. 2 and 3). However, these 
observations cannot be explained by polaritonic ray optics alone. We have shown that 
the principal modes of crystals A and B hybridize into a single strongly coupled eigenmode 
at 𝜔!, leading to prominent gaps in frequency-momentum dispersion.  
 
To visualize polaritons we used scanning near-field optical microscopy (SNOM). In SNOM 
measurements the metalized tip of an atomic force microscope probes optical effects with 
sub-diffractional spatial resolution, roughly given by the tip’s radius, which is about 20 nm 
(44). To meet the demand for quasi-monochromatic excitation at frequencies within the 
overlapping Reststrahlen bands of h11BN and MoO3 (Fig. 1A) (25) we generated ultra-
narrowband mid-infrared pulses with the spectral bandwidth <4 cm-1 (supplementary text, 
section S2.5).  
 
Nano-imaging data unequivocally demonstrated negative refraction in h11BN/MoO3 
hetero-bicrystals (Fig. 2). We patterned a gold strip with a width of 2𝑤 ≈ 750	nm on the 
surface of silicon dioxide (SiO2). The sharp edges of the strip along the y-axis enhance 
the infrared field and excite polaritons in the bicrystal with 𝑞) ≈ 0 (26). A MoO3 crystal 
was placed on top of the launcher with its c-axis perpendicular to the strip (supplementary 
Fig. S7). We obtained images of the scattering amplitude, |s|, at the temperature T=99 K 
to minimize losses. Images of	|𝑠|, collected at the surface of MoO3 (Fig. 2B), reveal a pair 
of characteristic twin-peak profiles near the edges of the launching strip (Fig. 2C, inset: 
marked 1, 2, 3, and 4). The separation, 𝛿', between peaks 1&2, or equivalently 3&4, is 
consistent with the directional propagation of hyperbolic rays introduced in Fig. 1 (14). 
Further, the magnitude of 𝛿' increases as the infrared frequency decreases 
(Supplementary Fig. S8), which also supports the notion of conical ray propagation in 
MoO3 that is characteristic for a hyperbolic medium. 
 
Next, we placed a crystal of h11BN on top of the MoO3/Au (gold) assembly and visualized 
the nano-optical intensity at the top of the hetero-bicrystal. We observed a single peak of 
|𝑠| in relation to each edge of the Au strip at 𝜔! = 787	cm"# (Fig. 2, A and C). We also 
detected a considerable intensity between the two peaks (supplementary text, sections 
S1, S2.6).  Our observations, augmented with modeling, are consistent with negative 
refraction guiding the hyperbolic rays to the same lateral positions at the top and bottom 
surfaces of the bicrystal (Fig. 2C, top inset). Effectively, negative refraction delivers a 
projection of the Au strip to the top surface of the bicrystal through diverging and 



converging trajectories of the hyperbolic rays inside the bicrystal. Numerical simulations 
capture gross features of the data in Fig. 2, A and B (analysis of subtle differences 
between the model and experiments is provided in the supplementary text, section S1.3). 
The totality of data in Fig. 2 and Fig. S8 establish negative refraction at the h11BN-MoO3 
interface. 
 

 
Figure 2| Negative refraction of polaritons. A-C, Near-field amplitude data, |𝑠|, obtained at various surfaces in the x 
– y plane of an h11BN/MoO3/Au stack. All data were obtained with at w=787 cm-1 at temperature T=99K, with thicknesses 
dhBN=98 nm on dMoO3=290 nm A=h11BN and B=MoO3 crystals, respectively. A, Imaging data of |𝑠| in perspective at the 
top surface of h11BN-MoO3-Au. B, Data obtained at the surface of MoO3-Au, displayed in an identical manner to that of 
panel (B). Calculations of |Ez| in the xz-plane, and a strip in the xy-plane, are also shown in false color (supplementary 
text, section S1) in (A) and (B). Yellow rectangles indicate gold bars, beneath the HMs, and black dashed lines indicate 
the strip’s edges. C, Line profiles of |𝑠| as a function of the real-space coordinate, X. (Insets) The geometry in the x – 
z plane. Two pairs of hyperbolic rays, 1&2 and 3&4, launched by the two edges of the Au strip are labeled. 

We then inquired into the frequency-momentum (𝜔, 𝑞%) dispersion of the hetero-bicrystal 
polaritons and its implications for the observed negative refraction. We collected 
hyperspectral data of the frequency dependent near-field amplitude |𝑆P(𝑋, 𝜔)| as a 
function of the distance 𝑋 from the bicrystal edge, following established procedures (20, 
27, 44). Except for a narrow window of frequencies around 𝜔! = 787	cm"#, we witnessed 
oscillations (or fringes) of |𝑆P(𝑋, 𝜔)| in our hyperspectral data (Fig. 3B). The period of the 
oscillations identified in Fig. 3B systematically varies with 𝜔. Thus, our observations 
revealed how the wavelength of polaritonic waves, 𝜆-(𝜔), evolves with the frequency of 
incident infrared light. The data in Fig. 3B, provide access to the polaritonic (𝜔, |𝑞%|) 
dispersion, because 𝜆-(𝜔) = 2𝜋 |𝑞%(𝜔)|⁄  (Fig. 3C). We stress a non-monotonic trend of 
𝜆-(𝜔). Indeed, 𝜆-(𝜔) decreased when the frequency was near the lower bound of the 
overlapping Reststrahlen bands, but then reversed the trend near the upper bound of this 
frequency range. Near the frequency 𝜔" = 773	cm"#, we detected two different fringe 
periods; hence, there are two sets of 𝑞% points in the vicinity of 𝜔" in Fig. 3C (Fig. S6). 
These features, at 𝜔! and 𝜔", are not present in the dispersions of constituent crystals 
(Fig. S11). Thus, the hyperspectral data in Fig.3 indicate that polaritons in the bicrystal 
are coupled modes.  
 
A standard method for calculating the polariton dispersion involves finding the maxima of 
the reflection coefficient 𝑟- = 𝑟-(𝜔, |𝑞%|) of a 𝑝-polarized plane wave (20, 27-29). The 



results for the imaginary part of the p-polarized reflection coefficient (Im	𝑟-) (Fig. 3) reveal 
the existence of multiple dispersion branches. The data points match the calculated 
branches with the smallest |𝑞%|, the so-called principal modes. The full dispersion of the 
bicrystal displays a nonmonotonic |𝑞%(𝜔)| punctuated by spectral gaps (Fig. 3C). This 
dispersion can be understood as the family of avoided crossings exhibited by the modes 
of the constituent crystals. The polariton branches have a negative dispersion in crystal 
A (Fig. 3D, red curves) and positive dispersion	in Crystal B (Fig. 3D, blue curves; see also 
Fig. S11). Accordingly, the dispersion of the coupled modes of the bicrystal alternates in 
sign each time |𝑞%| passes through an avoided crossing. The locations of the crossings 
are determined by a Bohr-Sommerfeld-like quantization condition:  
 

 (𝛿$ + 𝛿')𝑞% = 𝜋𝑛 + const, (1) 

 
where 𝑛 is an integer. Equation (1) implies that the frequency 𝜔!, at which 𝛿$ + 𝛿' 
vanishes, is typically gapped at all 𝑞%, which agrees with Fig. 3C. Our modeling predicts 
that the magnitude of these gaps scale with the polariton’s velocity. Therefore, the gap 
decreases as ∼ 1 |𝑞%|⁄ , at large |𝑞%| (supplementary text, section S1). Within the gaps, 
the pole of 𝑟-(𝜔, 𝑞%) occurs at a complex 𝑞% with a nonzero imaginary part even in the 
absence of dissipation. Thus, exactly at 𝜔! the polaritonic modes are evanescent, i.e., 
exponentially localized near a launcher because of the combined effects of negative 
refraction and wave interference. We observe a gap near 𝜔! (Figs. 3C) situated at |𝑞%| =
24	µm"# with the size ∆ω = 13 ± 3	cm"#, which is in good agreement with the calculated 
value of ∆ω(|𝑞%| = 26	µm"#) = 16	cm"# (Figs. 3, C and D).  The hetero-bicrystal 
polaritons visualized here comply with the definition of the strong mode coupling: The 
magnitude of the gap exceeds the linewidth of the mode (supplementary text, section S1). 
 

 

Figure 3| Spectral gaps in the hetero-bicrystal dispersion. All data were obtained on a h11BN/MoO3 bicrystal with 
thicknesses of dhBN=58 nm and dMoO3=150 nm at ambient temperature. A, Schematic illustrating ray trajectories in 
h11BN (red) and MoO3 (blue) for 𝜔 ≪ 𝜔%. B, Amplitude data, |𝑆0(𝑋,𝜔)| as a function of the distance, X, between the tip 
and bicrystal edge (solid red line). The edge of h11BN is located at X = -700 nm (supplementary text, section S1). The 
red dashed lines indicate locations where maxima are observed in our calculations (Fig. S6D). C, The imaginary part 



of the p-polarized reflection coefficient (Im rp) is shown as a function of 𝜔 and the absolute value of the momentum 
component, |𝑞&|. The calculation uses realistic room-temperature losses of h11BN and MoO3 (table S1). Data points 
are indicated with yellow dots (Fig. S6). D, The bicrystal dispersion is indicated with black lines for the idealized case 
with vanishing losses. Thin color traces indicate the dispersions the parent crystals, MoO3 (blue), and h11BN (red) 
calculated by using parameters in table S1.  

In this work, we introduced hyperbolic hetero-bicrystal polaritons. We showed that the 
interface polaritons in h11BN-MoO3 can display negative refraction, spectral gaps, strong 
coupling, and localization. These attributes of hetero-bicrystals are broadly relevant to 
photonic applications (30, 31) by using HMs. Moreover, polaritons in hetero-bicrystals can 
be focused to sub-diffraction-limited spot-sizes (18, 32, 33), which can enable perfect 
lensing by means of negative refraction (9). The attainable focal spots can, however, be 
limited by extrinsic factors, including crystal losses and imperfect polaritonic launchers 
(Fig. S15). Further, similar to Fabry-Pérot cavities, negative refraction can cause radiation 
to propagate in closed cycles in our hetero-bicrystal nano-cavities. Dielectric losses 
remain a challenge but could possibly be mitigated with active loss compensation (4, 5, 
34). 
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Materials and Methods 
 
Experimental Setup 

 
We used the pseudo heterodyne technique (14, 19, 20) to extract the amplitude 

(𝑆) and phase (𝜑) of the near-field signal in imaging experiments (Fig. 2) and nano-FTIR 
(20, 27, 35) to extract spectra of 𝑆(𝜔) and 𝜑(𝜔) (Fig. 3) with spatial resolution 
approximately given by tip’s radius of curvature, which is around 20 nm. In this work, we 
demonstrate a homebuilt monochromator for quasi-monochromatic nano-imaging of 
polaritons with a pulsed light source (25). Details of our experimental apparatus are in 
Supplementary section S2.5.  
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S1. Hyperbolic modes and hyperbolic rays 

S1.1 Bulk modes and their reflection/refraction at interfaces 

The dispersion of electromagnetic modes in an anisotropic crystal is governed by 
Fresnel’s equation 

 

a𝜀%𝑞%( + 𝜀)𝑞)( + 𝜀&𝑞&(ba𝑞%( + 𝑞)( + 𝑞&(b	
−	c(𝜀) + 𝜀&)𝜀%𝑞%( + (𝜀% + 𝜀&)𝜀)𝑞)( + (𝜀% + 𝜀))𝜀&𝑞&(d𝑞!(	
+	𝜀%𝜀)𝜀&𝑞!.	
= 0	, 

(S1) 

where 𝜀/ = 𝜀/(𝜔) are the dielectric permittivities along the principal axes of the crystal 
𝑖	 = 	𝑥, 𝑦, 𝑧, vector �⃗� = (𝑞% , 𝑞) , 𝑞&) is the mode momentum, and 𝑞! = 𝜔 𝑐⁄  is the free-



space photon momentum. For our near-field experiments, the quasi-static limit 𝑞( ≫ 𝑞!( 
is pertinent. Here 𝑞 = g𝑞%( + 𝑞)( + 𝑞&( is the magnitude of vector �⃗�. 

For a given direction of the �⃗� vector, Eq. (S1) has two solutions for 𝑞, which are referred 
to as the ordinary and extraordinary. To understand their basic properties, we can 
consider the case where �⃗� is in the 𝑥-𝑧 plane, so that 𝑞) = 0, which is relevant for our 
experimental setup. It is easy to show that in this case the dispersion equation for the 
ordinary mode simplifies to 𝑞( = 𝑞%( + 𝑞&( = 𝜀)𝑞!(. This equation however has no real 
solutions that belong to the quasi-static range 𝑞 ≫ 𝑞! (unless 𝜀) is unusually large and 
positive). Therefore, the ordinary modes play little role in our experiments. On the other 
hand, the dispersion of the extraordinary modes is 

 𝑞%(

𝜀& +
𝑞&(

𝜀% =
𝜔(

𝑐(	 
(S2) 

for 𝑞) = 0. This equation does have solutions with large real momenta 𝑞 ≫ 𝑞! if 𝜀& and 
𝜀%	are of opposite sign. In this case, for a given fixed 𝜔, Eq. (S2) describes a hyperbola 
in the 𝑞%-𝑞& plane, see Fig. 1B of the main text and Fig. S1. The crystal is characterized 
as a hyperbolic material (HM) of type I if 𝜀& < 0 < 𝜀% and a HM of type II if 𝜀% < 0 < 𝜀&. 
We call the extraordinary modes of such HMs hyperbolic polaritons. 

At 𝑞 ≫ 𝑞!, the hyperbolic polariton dispersion curve becomes asymptotic to the pair of 
straight lines 

 𝑞& = ±𝑞% tan 𝜃 , tan 𝜃 = 𝑖
√𝜀%

√𝜀&
	 (S3) 

tilted by the angle ±𝜃 with respect to the 𝑥-𝑦 plane and the complementary angle 𝜃∗ =
(𝜋 2⁄ ) − |𝜃|	with respect to the 𝑧-axis (Fig. S1). The angle 𝜃 = 𝜃(𝜔) is an important 
parameter in the problem. It was introduced in the main text. 

                 



In a uniaxial HM (such as h11BN) where 𝜀) = 𝜀%, Eqs. (S2) and (S3) are valid for an 
arbitrary 𝑞) if 𝑞%(	is replaced by 𝑞%( + 𝑞)(. Hence, the isofrequency surface in a 3D 𝑞-
space is a hyperboloid asymptotic to a circular cone with the opening angle 𝜃	in the 
momentum space. For MoO3, which is biaxial, we have a distorted cone instead. 

The polariton modes we discussed so far are plane waves of constant amplitude and 
fixed momentum �⃗�. Such modes can be excited only by sources of infinite size. On the 
other hand, the field generated by a localized source of small size 𝑎 ≪ 𝑞!"# has a 
strikingly different real-space structure in which the amplitude of the field is not constant 
but concentrated on a certain conical surface. It is useful to think that such a field 
configuration is composed of numerous hyperbolic rays. Each ray is a wavepacket of 
polariton modes centered around a given momentum �⃗�. The rays propagate with the 
group velocity 

 𝑣 = ∇*+⃗𝜔	.	 (S4) 

From Eq. (S2), we find that for rays with momenta 𝑞 ∼ 𝑎"# ≫ 𝑞!, this velocity is given by 

 𝑣% ≃ −
Ω tan 𝜃
𝑞%

		 , 𝑣& ≃
Ω tan 𝜃
𝑞&

		 , Ω(𝜔) ≡ n	
𝑑
𝑑𝜔 tan 𝜃p

"#

> 0	. (S5) 

(Although nonuniversal, the last inequality, i.e., Ω > 0, is valid for both h11BN and MoO3 
and should apply for most other HMs as well.)  Equation (S5) indicates that the 
hyperbolic rays propagate at an angle 𝜃	with respect to the 𝑧-axis. This angle does not 
depend on the momentum: it is common for all the rays in the quasistatic limit. 
Therefore, the real-space field distribution created by the rays emitted by a localized 
source in an infinite HM is peaked at the surface of the so-called “resonant cone” 
inclined by the same angle 𝜃 from the 𝑧-axis. The 𝑥-𝑧 cross-section of this resonant 
cone consists of two lines tilted by the angle ±𝜃 with respect to the 𝑧-axis. The relation 
between the momentum space and the real space distributions is reciprocal: a narrow 
isofrequency cone in 𝑞-space corresponds to a wide resonant cone in real space, and 
vice versa. The described properties can be also understood geometrically. Per 
Eq. (S4), 𝑣	is normal to the polariton isofrequency surface, which is hyperboloidal or 
approximately conical. Hence, the momentum and the group velocity vectors of high-𝑞 
hyperbolic modes are nearly mutually orthogonal, 𝑣 ⋅ �⃗� ≈ 0, see Fig. S1. 
A key innovation of the heterostructures studied in our experiments is the interface of 
two different HMs: h11BN (crystal A) and MoO3 (crystal B). The hyperbolic modes 

Figure S1| Isofrequency curves of a hyperbolic crystal. A. The 𝑞! = 0 cross-section of the 
isofrequency surface in a type I HM with 𝜀" < 0 < 𝜀# and 𝜀! > 0	consists of a hyperbola representing the 
extraordinary mode and an ellipse corresponding to the ordinary mode. The momenta of high-𝑞 
extraordinary modes are tilted by the angle 𝜃∗ with respect to the 𝑧-axis and the angle 𝜃 > 0 with respect 
to the x-axis. The wavepackets of these modes form hyperbolic rays that propagate along the direction 
of the group velocity �⃗�%. The group velocity points away from the asymptotes (straight dashed lines).  B. 
A similar diagram for a type II HM with 𝜀# < 0 < 𝜀" and 𝜀! > 0	where the hyperbola appears on the other 
side of the asymptotes and 𝜃 < 0, 𝜃∗ is also shown. 



experience reflection and refraction at this interface, which is oriented normal to the 𝑧-
axis in our case. For either reflection or refraction, the sign and magnitude of the in-
plane momentum component 𝑞% are conserved along the normal to the boundary. The 
angle between 𝑞% and the normal to the boundary is given by the complementary angle 
𝜃∗ defined above for the geometry explored in this work. The direction of the 
reflected/refracted rays is determined by the group velocity. From Eq. (S5) we see that 
in a HM, the signs of 𝑣% and 𝑞% are not necessarily the same. This leads to the 
possibility of negative refraction (see Fig.1 of the main text for an illustration), where the 
refracted ray bends back rather than continues across the surface normal. Specifically, 
the group velocity component 𝑣%	changes sign across the A-B interface if tan 𝜃$	and 
tan 𝜃' have opposite signs. In other words, the negative refraction occurs if one of the 
crystals is of type I (so that tan 𝜃 > 0) and the other of type II (tan 𝜃 < 0).  In contrast, 
the in-plane phase velocity component (𝑞% 𝑞⁄ )(𝜔 𝑞⁄ ) has the same sign as 𝑞%, and so it 
does not change sign across the interface. 
Another process that occurs at the A-B interface is reflection. It is easy to show that 
under the assumptions we made previously (𝑞% ≫ 𝑞! and 𝑞) = 0), the reflection 
coefficient for the hyperbolic polariton incident on this interface from Crystal A has a 
momentum-independent value 

 𝑟$' =
𝜀'̅ − 𝜀$̅
𝜀'̅ + 𝜀$̅

		 , 𝜀1̅ ≡ g𝜀1%g𝜀1&	.	 (S6) 

For the interface of two lossless HMs (with purely real 𝜀2& and 𝜀2%), this quantity is real, 
and its magnitude |𝑟$'| is between 0 and 1. This means that, in general, the polaritons 
are partially transmitted and partially reflected at the A-B interface. On the other hand, 
at the outer surface of an HM, i.e., at its interface with air, 𝜀% = 𝜀& = 𝜀!	, the reflection 
coefficient, which we denote by 𝛽, is complex and its magnitude is equal to unity: 

 𝛽 =
𝜀̅ − 𝜀!
𝜀̅ + 𝜀!

= −𝑒(/34(6&), 𝛼(𝜖) ≡
1
𝜋 	arctan n

𝑖𝜖
𝜀̅
p −

1
2	. (S7) 

Therefore, at the outer surface, the polaritons experience a total internal reflection with 
the phase shift 𝜋𝛼(𝜀!). The reflection coefficient can be expressed in terms of these 
phase shifts as follows 

 𝑟$' =
𝛽' − 𝛽$
1 − 𝛽'𝛽$

=
sin[𝜋𝛼'(𝜀!) − 𝜋𝛼$(𝜀!)]
sin[𝜋𝛼'(𝜀!) + 𝜋𝛼$(𝜀!)]

	,		 (S8) 

where the subscripts added to 𝛼 and 𝛽 designate the material. In Fig. S2 we show the 
internal reflectivity 𝑅$'(𝜔) = |𝑟$'|( and the air reflectivity 𝑅89:,1 ≡ |𝛽1|( computed for the 
studied materials using optical constants from Table S1. Notice two items: i) the interval 
740	cm"# < 𝜔	 < 822	cm"#	of fractional reflectivity 0 ≤ 𝑅$' < 1 where both crystals are 



hyperbolic and ii) a special frequency 𝜔<! = 814	cm"# near the 𝑧-axis phonon frequency 
of h11BN 𝜔=>

[!!#] = 822	cm"#	(see Table S1) where 𝜀'̅ ≈ 𝜀$̅, so that  𝑅89:,$ ≈ 𝑅89:,' and, in 
accordance with Eq. (S8), the A-B interface is nearly reflectionless, 𝑅$' ≈ 0. As we will 
discuss in Sec. S1.2 below, smallness of 𝑅$' promotes coupling between the polariton 
eigenmodes of the two crystals. 

 

Figure S2 | Large-momentum (near-field) reflectivity of material interfaces present in h11BN/MoO3 
heterostructures. The calculated reflectivity	𝑅'(),+ = |𝛽+|, of bulk crystal A (h11BN) - air interface is 
shown by the red line, that of bulk crystal B (MoO3) - air 	𝑅'(),- = |𝛽-|,	is shown by the blue line, and 
that of the A-B interface 𝑅+-(𝜔) = |𝑟+-|,	is represented by the black line. The frequency 𝜔./ where 𝑅+- 
vanishes is marked by the arrow. The tangential component of the polariton momentum is along the 
[001] principal axis of MoO3. 

S1.2 Modes of layered heterostructures 

A finite-thickness layered system can support “waveguide” polariton modes that are 
confined in the out-of-plane (𝑧)-direction but have a definite momentum (𝑞% , 𝑞)) along 
the plane. Let us again assume that 𝑞) = 0 so that 𝑞 = g𝑞%( + 𝑞)( = |𝑞%| ≥ 0 . The 
momentum of the waveguide modes must be outside the light line, 𝑞 > 𝑞!. A standard 
method for finding the waveguide mode spectrum is to consider the reflection coefficient 
of a 𝑝-polarized plane wave incident on the surface of the sample from vacuum (or air). 
For a given frequency 𝜔, this coefficient 𝑟- = 𝑟-(𝑞, 𝜔) is a function of 𝑞. The waveguide 
modes show up as the poles of function 𝑟-(𝑞, 𝜔) at complex 𝑞 = 𝑞′ + 𝑖𝑞′′ or equivalently, 
as sharp peaks of Im	𝑟-(𝑞, 𝜔) at real and positive 𝑞 = 𝑞′.  

In turn, a standard approach for computing 𝑟-(𝑞, 𝜔) is the transfer matrix method. For a 
heterostructure of 𝑀 layers indexed by 1 ≤ 𝑗 ≤ 𝑀 from top to bottom, this method leads 
to the following recursion relation (see, e.g., (36)) 



 𝑟/ =
𝑟/,/A# + 𝑟/A#exp(2𝑖𝑘/A#𝑑/A#)
1 + 𝑟/,/A#𝑟/A#exp(2𝑖𝑘/A#𝑑/A#)

  , 𝑘/ = �𝑞!(𝜀/% −
𝜀/%

𝜀/&
𝑞(	 (S9) 

for the reflection coefficient 𝑟/ 	of a sub-stack of layers 𝑖 ≤ 𝑗 ≤ 𝑀 − 1. By convention, 
layer index 𝑗 = 0 refers to the air-filled half-space above the sample. The recursion is 
initialized at 𝑖 = 𝑀 − 1 with 𝑟B"# = 𝑟B"#,B and is continued to successively smaller 𝑖. 
The desired reflection coefficient of the entire sample is 𝑟- = 𝑟!. Note that 𝑘/ has the 
meaning of the 𝑧-axis momentum 𝑞& in the 𝑖th layer, cf. Eq. (S2), and that to compute the 
reflection coefficients 𝑟/,/A#	of individual interfaces Eq. (S6) can be used. 
Table S1 | Optical constants of h11BN and MoO3. Optical constants were obtained by fitting our 
experimental data in Fig. S11 and S13. These parameters are in a reasonable agreement with prior 
investigations of h11BN (19) and MoO3 (37, 38).  For h11BN, the [001] direction (c-axis) is along the 𝑧-
axis, which is out of the plane. The [010] and [100] directions are along the 𝑥 and 𝑦-axis, respectively. 
For MoO3, the [001] and [100] directions are in the 𝑥-𝑦 plane, with the [001] axis making a 𝜑 = 7.5/ 
angle with respect to the 𝑥-axis in the data of Figs. 3 and S11; the [010] direction is out of the plane, 
along the 𝑧-axis. Accordingly, the requisite components of the dielectric tensor of MoO3 are given by 
𝜀-# = cos,𝜑	𝜀-

[//1] + sin,𝜑	𝜀-
[1//], 𝜀-" = 𝜀-

[/1/]. The ‘-‘ symbol indicates a quantity was not determined in 
this work. 

Parameter Crystal A (h11BN) Crystal B (MoO3) 
𝜀3
[1//] 5.9 4.7 

𝜔45
[1//] 1608.7	[cm61] 972	[cm61] 

𝜔75
[1//] 1359.8	[cm61] 820	[cm61] 

Γ[1//] 2.5	[cm61] 7	[cm61] 

𝜀3
[/1/] 5.9 2.4 

𝜔45
[/1/] 1608.7	[cm61] 1004	[cm61] 

𝜔75
[/1/] 1359.8	[cm61] 958	[cm61] 

Γ[/1/] 2.5	[cm61] − 

𝜀3
[//1] 2.8	 5.2 

𝜔45
[//1] 822	[cm61] 851	[cm61] 

𝜔75
[//1] 740	[cm61] 545	[cm61] 

Γ[//1] 4	[cm61] 7	[cm61] 

 
  



For the electric field inside the layers, we derived the following recursion relations: 

 

𝐸%(𝑥, 𝑧) = −
𝜕
𝜕𝑥Φ

(𝑥, 𝑧), 𝐸&(𝑥, 𝑧) = −
𝜕
𝜕𝑧Φ

(𝑥, 𝑧)	,	

Φ(𝑥, 𝑧) = �
𝑑𝑞
2𝜋	𝑒

/*%	Φ�(𝑞, 𝑧)	 ,	

	Φ�(𝑞, 𝑧) = 𝐴2(𝑞)𝑒"/C8D&"&8E +	𝐵2(𝑞)𝑒/C8D&"&8E,			𝑧2 < 	𝑧 < 𝑧2"#	,	

𝐴2A#(𝑞) = −
1 − 𝑟2,2A#

𝑟2A#,2𝑟2A#exp(2𝑖𝑘/A#𝑑/A#) − 1
	exp(𝑖𝑘/A#𝑑/A#)	𝐴2(𝑞)	,	

𝐵2(𝑞) = −𝑟2 	𝐴2 	. 

(S10) 

Here 𝑧2 = −∑ 𝑑/
2
/F#  is the 𝑧-coordinate of the bottom of 𝑗th layer. The recursion is initialized 

with 𝐴!(𝑞) = Φ�!(𝑞), where Φ�!(𝑞)	is the Fourier transform of the scalar potential due to 
the incident field at the top surface 𝑧 = 𝑧! = 0. 
 
We used a similar set of equations to compute the field induced by the strip launcher 
discussed in the main text. We treated the launcher as a source located just inside the 
substrate. In this formulation, the potential created by the launcher is therefore incident 
from the bottom not the top of the structure. To adapt Eq. (S9) to this situation, the only 
change needed is switching the direction of the 𝑧-axis and renumbering of the layers in 
the opposite order (bottom to top). For the source potential, we used the known analytical 
solution for an ideal metallic strip of width 𝑤 subject to a unit uniform external field: 
Φ!(𝑥) = Re	a𝑥 − g𝑥( − (𝑤 2⁄ )(b, Φ�!(𝑞) = 𝑖𝜋𝑎𝐽#(𝑞𝑤 2⁄ )/|𝑞|	, where 𝐽#(𝑧) is the Bessel 
function. Representative results for 𝐸& in the interior of the sample and on its top surface 
are shown in Fig. 2 of the main text and Fig. S6B, S6D, S6E and S6H-J below.  
 
To model the response of h11BN and MoO3 we use the single Lorentzian oscillator form, 

 𝜀1/ = 𝜀G,1/ �1 +
𝜔H>,1/ ( − 𝜔=>,1/ (

𝜔=>,1/ ( − 𝜔( − 𝑖𝜔Γ1/
�	, 𝑖 = 𝑥, 𝑦, or	𝑧, (S11) 

with parameters listed in Table S1.  
Before discussing the bicrystal, it is instructive to review the case (39) of an 𝑀 = 2 
system - a single finite-thickness slab of an HM on a half-infinite substrate - for which a 
single recursion step of the calculation suffices. After some algebra, 𝑟- can be written as 

 𝑟- = −
sin �	12𝜙 − 𝜋𝛼(𝜀!)�

sin �	12𝜙 + 𝜋𝛼(𝜀!)�
	, (S12) 

 𝜙 = 𝑞𝛿 + 2𝜋𝛼(𝜀I)	, (S13) 



 𝛿 = 2𝑑	tan𝜃 = 2𝑖𝑑
√𝜀%

√𝜀&
	. (S14) 

Here 𝜀I̅ = g𝜀I%g𝜀I& is the effective permittivity of the substrate and 𝜀%, 𝜀& are the in- and 
out-of-plane permittivities of the slab. The physical meaning of quantity 𝜙 is the phase 
accumulation of the polariton wave over a single “bounce” trajectory that involves 
traveling inside the slab from top to bottom, reflecting from the bottom surface, and 
returning to the top. The quantity 𝛿 is the lateral shift of the polariton rays over the same 
bounce. This important parameter will be discussed in more detail shortly. 

As stated above, the waveguide mode momenta are the poles of function 𝑟-(𝑞, 𝜔). As 
one can see from Eq. (S12), such poles arise whenever the sum 𝜙 + 2𝜋𝛼(𝜀!) 
approaches an integer multiple of 2𝜋. This is just the usual Bohr quantization rule that 
the total phase accumulation on a closed-cycle trajectory must be equal to 2𝜋𝑙. There is 
an infinite number of such poles (20, 40): 

 𝑞J =
2𝜋
𝛿
[𝑙 − 𝛼(𝜀!) − 𝛼(𝜀I)]	. (S15) 

Admissible values of 𝑙 are determined from the condition 𝑞J = |𝑞%| ≥ 0. Note the sign of 
𝛿 is the same as the sign of tan 𝜃. Therefore, 𝑙 = 0, 1, 2, … are allowed for a type-I HM 
with 𝛿 > 0, such as our crystal A (h11BN) and 𝑙 = −1,−2,−3, … are allowed for a type-II 
HM (crystal B or MoO3), where 𝛿 < 0. The first entries of these lists (𝑙 = 0 for type I and 
𝑙 = −1 for type II) are the principal modes. They are usually easiest to detect 
experimentally. 

Taking the derivative in Eq. (S15), we find the in-plane group velocity 𝑣 ≡ 𝑣%(𝑞% = 𝑞 ≥
0) of the waveguide modes: 

 𝑣 =
𝑑𝜔
𝑑𝑞J

= −
Ω(𝜔) tan 𝜃

𝑞J
	�1 +

Ω(𝜔)	tan𝜃
𝑙 − 𝛼(𝜀!) − 𝛼(𝜀I)

	
𝑑
𝑑𝜔

[𝛼(𝜀!) + 𝛼(𝜀I)]�
"#

	. (S16) 

The leading factor in this formula is identical to the first equation in Eq. (S5) for a bulk 
HM. The expression inside the braces represents a correction due to the reflection 
phase shifts 𝜋𝛼(𝜀!) and 𝜋𝛼(𝜀I) at the surfaces, i.e., the polaritonic Goos-Hänchen effect 
(36). Assuming this correction is not large, Eq. (S16) predicts that for a type-I HM 
(h11BN) the sign of the in-plane component of the group velocity, 𝑣, of the waveguide 
modes is opposite in sign to the phase velocity. For a type-II HM (MoO3), the in-plane 
group and phase velocity components have the same sign. 
Due to unavoidable dielectric losses characterized by the imaginary parts of the 
permittivity components 𝜀/, the momenta 𝑞J = 𝑞JK + 𝑖𝑞J′′ and the velocities 𝑣 = 𝑣′ + 𝑖𝑣′′ 
given by Eqs. (S15), (S16) are in fact complex. The physically relevant real quantities 
are the mode wavelengths 𝜆J = 2𝜋 𝑞J′⁄  and the mode propagation lengths 𝐿J =



sgn 𝑣′ 𝑞J′′⁄ > 0. Per Eq. (S15), both quantities scale approximately as 𝜆J , 𝐿J ∝ 1 𝑙⁄  with 
the mode index 𝑙. Hence, higher index modes have shorter propagation lengths. 
Distinguishing discrete eigenmodes remains possible if their momentum spacing Δ𝑞 =
𝑞JA# − 𝑞J = 2𝜋 𝛿⁄ 	exceeds their momentum broadening 𝑞J′′, which is equivalent to the 
condition that the propagation length 𝐿J is longer than |𝛿|. This condition can be 
reinterpreted in terms of the ray picture. It means that the quantized waveguide modes 
exist only if polariton rays can survive multiple roundtrips between the two surfaces of 
the slab, see below. 
Instead of working with real 𝜔 and complex 𝑞, we can restrict 𝑞 to be real, in which case 
the corresponding mode frequency 𝜔J(𝑞) = 𝜔JK(𝑞) + 𝑖𝜔J′′(𝑞) must be complex, with 
some positive imaginary part 𝜔JKK > 0, which plays the role of the mode linewidth. For 
weak losses, 𝜔JKK ≃ 𝑣′𝑞JKK. The mode quantization persists until 𝜔JKK, which is roughly 𝑙	-
independent, remains smaller than the intermode spectral gap  

 Δ𝜔 ≈ 𝑣KΔ𝑞 ≈
𝜋
𝑞𝑑 Ω	, (S17) 

which decreases with 𝑞 ∝ 𝑙. 
To illustrate these properties on concrete examples we consider: i) crystal A (h11BN) 
suspended in air and ii) crystal B (MoO3) on SiO2 substrate. These examples represent 
the top and bottom halves of our actual sample. The corresponding reflection 
coefficients are given by (cf. Eq. (S12)) 

 𝑟- = −
sin �	12𝜙1 − 𝜋𝛼1(𝜀!)�

sin �	12𝜙1 + 𝜋𝛼1(𝜀!)�
	 , 𝑋 = 𝐴	or	𝐵, (S18) 

 𝜙$ ≡ 𝑞𝛿$ + 2𝜋𝛼(𝜀!), 𝜙' ≡ 𝑞𝛿' + 2𝜋𝛼(𝜀I), 𝛿1 ≡ 2𝑑1 tan 𝜃1	.	 (S19) 

The plots Im	𝑟-	for these subsystems are presented in Fig. S3A and S3B, respectively. 
The bright lines tracing the peaks of Im	𝑟-	are the dispersion curves as a function of 𝑞 >
0. These curves have a negative dispersion	for crystal A and a positive dispersion	for 
crystal B, in agreement with the above determination. 
In our discussion of a local source in a bulk HM we introduced two complementary 
concepts: modes and rays. The same can be done in the case of a finite-thickness slab. 
The ray picture is useful for understanding real-space field distributions at short 
distances from the source whereas the long-distance behavior is easier to analyze in 
terms of the waveguide modes. To see how the ray picture is modified due to the 
presence of the boundaries, we can expand the reflection coefficient 𝑟- in the infinite 
series 



 𝑟-(𝑞, 𝜔) = −𝑒(/34(6&) − c1 − 𝑒(/34(6&)d𝑒(/34(69)�𝑒(/3(L"#)[4(6&)A4(69)]𝑒/L*M
G

LF#

	. (S20) 

(This series are converging because Im	𝛿 > 0 in the presence of losses.) Importantly, 
the only 𝑞-dependence of the coefficients is due to the factors 𝑒/L*M, which act as shift 
operators in the real space. This permits one to interpret the result in terms of the 
method of images: whereas in a bulk HM, a local source creates a field distribution 
peaked on a “resonant” conical surface, in the slab, the field is the superposition of this 
resonant cone with all its images obtained by successive reflections with respect to the 
top and bottom surfaces. The 𝑥-𝑧 cross-section of this distribution consists of ray-like 
trajectories that bounce between the two surfaces maintaining the same angle ±𝜃 with 
respect to the 𝑧-axis. These hyperbolic rays return to each surface with regular intervals 
𝛿 = 2𝑑 tan 𝜃, producing sharp peaks of the field. 

As the rays gradually broaden with the distance travelled, the contributions of 
successive reflections start to overlap and an alternative description in terms of 
waveguide modes becomes more convenient. Indeed, as the distance from the source 
increases, high-𝑙 modes, which have shorter propagation lengths, get rapidly damped, 
so that the long-distance pattern is dominated by the principal mode, a decaying sine 
wave. The period of this wave is 2𝜋 𝑞!K⁄  (in type-I HM), which exceeds the ray repeat 
distance |𝛿| by a numerical factor. In most of near field imaging experiments, including 
ours, this regime is reached rather quickly, as shown in Fig. 2 of the main text and 
Fig. S6 below. Conversely, description of the short distance “ray behavior” in terms of 
waveguide modes is a bit less intuitive. It relies on the fact that the momentum spacing 
of the waveguide modes Δ𝑞 = 𝑞JA# − 𝑞J = 2𝜋 𝛿⁄  is equidistant, see Eq. (S15). Coherent 
beating of multiple such modes produces the sharp 𝛿-periodic peaks in the real space. 
We are now ready to consider the case of a bicrystal, which we model as an 𝑀 =
3	structure with layers 𝑗 = 1, 2, and 3 representing crystal A (h11BN), crystal B (MoO3), 
and the substrate (SiO2), respectively. The reflection coefficient 𝑟- of this system can be 
calculated using two recursion steps of Eq. (S7). After some algebraic manipulations, 
the result can be written as 

 𝑟- = −
sin �𝜙$ + 𝜙'2 − 2𝜋𝛼$(𝜀!)� + 𝑟$' sin �

𝜙$ − 𝜙'
2 − 2𝜋𝛼$(𝜀!)�

sin �𝜙$ + 𝜙'2 � − 𝑟$' sin �
𝜙$ − 𝜙'

2 �
	, (S21) 

where 𝜙$, 𝜙', and 𝑟$' are given by Eqs. (S8) and (S17). The plot of Im	𝑟-	calculated 
according to this formula is shown in Figs. S3C and S3D. In Fig. S3C, we use artificially 
reduced damping parameters to visualize the mode dispersion more clearly; in 
Fig. S3D, we use the realistic parameters from Table S1. The dispersion is complicated, 
consisting of numerous branches that are non-monotonic in 𝑞. As we discuss below, 
these branches result from hybridization and avoided crossing between the two families 
of waveguide modes seen in Figs. S3A and S3B.  



 

 

 
Figure S3 | Waveguide mode dispersions in crystals A, B, and in the A-B bicrystal. A, Mode 
dispersions of crystal A (h11BN). B Same for crystal B (MoO3). C, and D, Dispersions in the A-B bicrystal 
with realistic and reduced losses, respectively. The loss parameters 𝛤 are artificially reduced by a factor 
of 10: compared to Table S1. 

According to Eq. (S21), the poles of 𝑟-, which are the mode dispersions, are the roots of 
the following equation: 

 sin n
𝜙$ + 𝜙'

2 p − 𝑟$' sin n
𝜙$ − 𝜙'

2 p = 0	.	 (S22) 

To analyze mathematical properties of these roots we treat the A-B interface reflection 
coefficient −1 ≤ 𝑟$' ≤ 1 as a fixed real parameter and solve Eq. (S20) for 𝜙$ and 𝜙'. A 
few of such solutions are plotted in Fig. S4, using the sum 𝜙A ≡ 𝜙$ + 𝜙' 	and difference 
𝜙" ≡ 𝜙$ − 𝜙' phase variables as the coordinates on the axes. For each 𝑟$', the 
solution consists of an infinite number of curves of the same shape which are related by 
periodic translations. In three cases 𝑟$' = −1, 0, 1, the curves straighten into lines, e.g., 
for the reflectionless interface 𝑟$' = 0 these are the horizontal lines 𝜙A = 2𝜋𝑚, where 𝑚 
is an integer. When 𝑟$' deviates from zero, a special set of points on these lines, where 
𝜙A and 𝜙" are both integer multiples of 2𝜋	remain solutions of Eq. (S22). In between 



such “anchor” points, the curves move either closer or further away from their neighbors 
along the vertical (𝜙A) direction. The minimal distance in 𝜙A between the nearest 
neighbor curves is  

 Δ𝜙A = 4arccos 	|𝑟$'|	,	 (S23) 

which is a decreasing function of the A-B interface reflectivity. If |𝑟$'| = 1, then Δ𝜙A 
vanishes; if 𝑟$' = 0, then Δ𝜙A has the maximum possible value of 2𝜋. 

 

The interpretation of the described structure in terms of eigenmode coupling is 
straightforward. If |𝑟$'| = 1, then the interface is impenetrable, and so the crystal A and 
B are isolated from one another. Their mode dispersion lines (the diagonal lines in 
Fig. S4) can freely intersect, which means that the dispersion of the whole bicrystal is 
gapless. If |𝑟$'| < 1, the A-B interface is partially transparent, so that the two 
subsystems interact. This interaction causes spectral repulsion and the gaps in the 
dispersion. If the interface is fully transmitting, 𝑟$' = 0, then the mode coupling is the 
strongest and the gaps are the largest. In this latter case the two subsystems are 
perfectly impedance-matched, so that they behave as a single slab with 𝛿 equal to 𝛿$ +
𝛿'. Indeed, using Eq. (S19), it is easy to check that the mode quantization condition 
𝜙A = 2𝜋𝑚 that applies for 𝑟$' = 0	is equivalent to the following modification of 
Eq. (S15):  

 𝑞 =
2𝜋

𝛿$ + 𝛿'
[𝑚 − 𝛼(𝜀!) − 𝛼(𝜀I)]								(𝑟$' = 0)	. (S24) 

Here we dropped the subscripts of 𝛼’s because 𝛼$ = 𝛼' in this case. 

 
Figure S4 | Waveguide mode dispersion of a bicrystal, expressed in phase variables. The line colors 
mark the A-B reflection coefficient 𝑟+- that varies from −1 (blue) to +1 (red) in six increments. The 
reflectionless interface 𝑟+- = 0 (black horizontal lines) produces the largest possible spectral gaps. 



Turning to the group velocity component 𝑣, for the (nearly) impenetrable interface case 
|𝑟$'| ≃ 1, it alternates as a function of 𝑞 between two values, 𝑣$ and 𝑣', given by 
Eq. (S15): 

 𝑣1 =	−
Ω1(𝜔) tan 𝜃1

𝑞 	, 𝑋 = 𝐴	or	𝐵 (S25) 

(for simplicity, we neglected the Goos-Hänchen correction). Since 𝑣$ < 0 and 𝑣' > 0,  
the group velocity changes sign at each anti-crossing. For the reflectionless case, the 
group velocity of each branch does not alternate in sign. It is given by the expression  

 𝑣 = 	
𝛿$ + 𝛿'

𝛿$𝑣$"# + 𝛿'𝑣'"#
											(𝑟$' = 0) (S26) 

whose denominator is always negative. Hence, the sign of 𝑣 is opposite to that of the 
numerator 𝛿NON = 𝛿$ + 𝛿'. The plot of 𝛿NON(𝜔) computed for our experimental system 
(Fig. S5) indicates that it is an increasing function that crosses zero at frequency 𝜔! =
785	cm"#. 

 
Figure S5 | Calculated ray displacements (real parts) in the bicrystal (see text). 

In general, 𝜔! is the solution of the equation 

 𝛿NON(𝜔!) = 𝛿$(𝜔!) + 𝛿'(𝜔!) =
g𝜀$%(𝜔)

g𝜀$&(𝜔)
𝑑$ +

g𝜀'%(𝜔)

g𝜀'&(𝜔)
𝑑' = 0	, (S27) 

so it depends on the thickness ratio 𝑑$ 𝑑'⁄  of the two crystals. Frequency 𝜔! plays the 
role of the separatrix dividing the regions of predominantly positive and predominantly 
negative dispersion. Frequency 𝜔! also has an intuitive interpretation within the 
semiclassical ray picture. At frequency 𝜔! the ray orbits become closed (or periodic), 
see Fig. 1C, suggesting that 𝑣 should be zero, in agreement with Eq. (S26). Finally, we 
give the formula for the spectral gaps separating the dispersion curves:  



 Δ𝜔 = 𝑣Δ𝑞 = n
1
Δ𝜔$

+
1
Δ𝜔'

p
"#

∝ 	
1
𝑞 										

(𝑟$' = 0)	. (S28) 

Here the gaps Δ𝜔1 of each subsystem in isolation are given by Eq. (S17). 
In the actual bicrystal, |𝑟$'| varies with frequency and is typically somewhere in between 
0 and 1. Therefore, the numerically calculated dispersions seen in Fig. S3C and S3D 
exhibit behavior intermediate between the two limits described above. For example, the 
coupling of the principal modes of Crystal A and B produces the dispersion lines with 
sign alternating slopes, as appropriate for a non-negligible 𝑟$'. Combining Eqs. (S23) 
and (S28), we estimate the size of the gap for these principal modes to be 

 Δ𝜔 ∼
2
𝜋	n

1
Δ𝜔$

+
1
Δ𝜔'

p
"#

arccos	|𝑟$'|	.	 (S29) 

Strong coupling of the eigenmodes is realized, by definition, when the mode 
hybridization gap exceeds their combined linewidth, i.e., if Δ𝜔 > 𝜔$KK + 𝜔'KK	. Since Δ𝜔 
decreases with 𝑞 while 𝜔1′′ stays roughly constant, the latter condition is more difficult 
to achieve for higher-order modes. Using the parameters from Table S1, we conclude 
that this condition is satisfied for the crossing of the principal modes only.  

S1.3 Numerical simulations of layered heterostructures 

To model the real-space fringe pattern observed via s-SNOM near a MoOP edge, we 
assumed that the polaritons were launched by the sharp MoOP edge alone, with the 
s-SNOM tip acting only as a detector. We further assumed that the measured complex 
near-field signal 𝑠𝑒/Q is proportional to the out-of-plane field component 𝐸&. To simplify 
the calculation of the field component, 𝐸&, we neglected variation of all the quantities 
along the 𝑦-direction, parallel to the edge of the MoOP. As in Eq. (S9), we adopted the 
quasistatic approximation 𝐸& = − R

R&
Φ(𝑥, 𝑧), where Φ(𝑥, 𝑧)	is the scalar potential obeying 

the equation 

  	
∂
∂𝑥 𝜀

%(𝑥, 𝑧)
∂
∂𝑥 +

∂
∂𝑧 𝜀

&(𝑥, 𝑧)
∂
∂𝑧	¢ Φ

(𝑥, 𝑧) = 0	. (S30) 

The solution of Eq. (S30) was computed numerically using the MATLAB PDE Toolbox. 
We took the simulation domain to be a 4 × 1.3	𝜇m( rectangle subdivided into layers of 
different materials as depicted in Fig. S6. To include a uniform external electric field 
𝐸¤⃗ !	incident at angle 𝜋 4⁄  in the 𝑥-𝑧 plane we used the boundary condition Φ = −𝐸¤⃗ ! ⋅ 𝑟 at 
the edges of the domain. The frequency dependence of the solution comes from that of 
the permittivity components 𝜀%(𝑥, 𝑧)	and 𝜀&(𝑥, 𝑧). 



 
Figure S6 | Numerical solutions of Eq. (S30) and comparison with experimental data. A, Geometry used to 
model the experiments with edge-launched polaritons. B, Amplitude of a two-dimensional Fourier transform, |𝑆0'(∗ |, 
of the calculated complex electric field component, Ez, evaluated at the top surface of the bicrystal. The thicknesses 
in the calculations are 58 nm (h11BN) and 150 nm (MoO3), appropriate for Fig. 3 of the main text and panel (C) in 
this figure. C, The amplitude of the two-dimensional Fourier transform of nano-optical data |𝑆0'((𝑞&, 𝜔)| is shown with 
a red-white-blue colormap. The inset shows the frequency derivative 𝛻*7𝑆0'((𝑞&, 𝜔)7 with a red-white-gray colormap, 
to sharpen subtle features in the data. These data were obtained on the same crystal studied in Fig. 3 of the main 
text. The green dots in panels (B) and (C) show locations where maxima are observed in calculations of Im rp (see 
text). D, and E, Amplitude of a one-dimensional Fourier transform, |𝑆0!(∗ | of the calculated electric field component, 
Ez. D, Both the h11BN and MoO3 edges are at 𝑥 = 0. E, The h11BN edge is located at 𝑥 = −700	𝑛𝑚, while the MoO3 
edge is located at 𝑥 = 0, to replicate the conditions in our experiments (see Fig. S9). The white dashed lines are 
used to indicate the region where experimental data are shown in Fig. 3B of the main text. F, A linecut of 
−𝛻*7𝑆0'((𝑞&, 𝜔)7 taken at constant frequency 𝜔+ = 773 +/−3	𝑐𝑚+! (magenta arrow in panel C). The arrows mark the 
positions where peaks are anticipated from our calculations. G, Linecut taken at a constant momentum 𝑞& = 24	𝜇𝑚+! 
(black arrow in panel C) shows extrema of −𝛻*7𝑆0'((𝑞&, 𝜔)7, split by ∆𝜔 = 13 +/−3	𝑐𝑚+! as we indicate with a black 
arrow. H-J, Calculated profiles of the normal electric field component produced by strip-launched polaritons just 
above the hetero-bicrystal at frequencies 787, 800, and 775	𝑐𝑚+!, respectively. The crystal thicknesses in the 
calculations are 98 nm (h11BN) and 290 nm (MoO3), appropriate for Fig. 2 of the main text and Fig. S7 and S8 below. 

We proceed to discuss simulations of the edge launched experiments and the 
comparison with our experimental data. We solved Eq. (S30) repeatedly on a grid of 
frequency values and the results are presented in Fig. S6. We stress that owing to the 
700	nm lateral displacement between the h11BN and MoO3 edges, interference between 
bicrystal polaritons and polaritons launched by the natural h11BN edge slightly modifies 
their dispersion (see Fig. S6D and S6E). The dashed lines of Fig. 3A of the main text 
show the locations where maxima are observed in the calculations of Fig. S6D, 
obtained for a simplified model where h11BN and MoO3 edges are aligned. The 
simplified model captures the salient features of the experimental data. The two-
dimensional Fourier transform in Fig. S6B was calculated with the 700 nm displacement 
and shows excellent agreement with the experimental dispersion in Fig. S6C. The 



dispersion relationship obtained from the maxima in calculations of Im rp (green dots) is 
superimposed on our data and calculations to highlight this agreement. In addition to 
the dispersion of the principal branch, reported in Fig. 3 of the main text, features 
associated with higher order modes are also identified in ‘hBN-like’ portion of the 
dispersion in Fig. S6B and S6C. We stress that the dispersion of Im rp are calculated as 
a function of the absolute value of the momentum. The results are plotted for negative 
or positive qx if the dispersion is negative or positive respectively.  

The electric field profiles calculated for the strip-launched polaritons are presented in 
Fig. S6H-J. For simplicity, these calculations were performed using the semi-analytic 
recursion procedure (Eq. (S9)) instead of the fully numerical PDE solver. The 
calculations reproduce the main qualitative features of the data: (1) rapid decay of the 
polaritonic oscillations away from the launcher at 𝜔! = 787	cm"#		vs. their gradual decay 
above and below this frequency (2) lone vs. twin peaks of electric field above the strip 
edges, 𝑥 = ±𝑤 2⁄ , at and away from 𝜔!, respectively (3) enhanced electric field above 
the Au strip, −𝑤 2⁄ < 𝑥 < 𝑤 2⁄ , compared to that above the un-patterned SiO2 substrate. 
We note however one key discrepancy between the numerical simulations and the 
experimental data. By symmetry, the solution of Eq. (S30) for 𝐸&(𝑥) is an odd function 
vanishing at 𝑥 = 0. However, a non-zero SNOM signal is measured at 𝑥 = 0 in the 
experiments (Fig. 2 of the main text). One of the possible reasons for this discrepancy is 
that our model does not include the tip-launched waves. The tip contribution to 𝐸&(𝑥)	is 
even, so that the total 𝐸&(0) can indeed be nonvanishing. Qualitatively, the tip-induced 
field should display a contrast between Au-patterned and un-patterned parts of the 
substrate and, in addition, 𝜆- 2⁄ -periodic fringes caused by reflections of tip-launched 
polaritons off the strip edges. A quantitatively accurate calculation of this field profile 
remains a challenge for the theory. 

Our numerical simulations and experimental Nano-FTIR data are compared in Fig. S6C. 
These data are simply another representation of the previously displayed hyperspectral 
data of |𝑆P#S(𝑋, 𝜔)| shown in Fig. 3B of the main text. Here, we adopted a two-
dimensional Fourier transform analysis of Nano-FTIR data, as introduced in Ref. (27). 
The analysis involves performing the Fourier transform of 𝑆P#S(𝑋, 𝜔) along the 𝑥-axis and 
taking its absolute value, which yields |𝑆P(S(𝑞% , 𝜔)|. The maxima of |𝑆P(S(𝑞% , 𝜔)| reveal 
the polariton dispersion 𝑞% = 𝑞%(𝜔) of the principal mode, including both the magnitude 
and sign of 𝑞%. By considering ∇T|𝑆P(S(𝑞% , 𝜔)|, in the inset of Fig. S6C subtle polaritonic 
features are sharpened over the background noise. Note that ∇T|𝑆P(S(𝑞% , 𝜔)| displays 
inflection points at the frequencies where |𝑆P(S(𝑞% , 𝜔)|is maximized. Thus, the (𝑞% , 𝜔) 
values corresponding to the principal mode are slightly red shifted from the locations 
where minima are observed in ∇T¥𝑆P(S(𝑞% , 𝜔)¥ in Fig. S6C. Good agreement between the 
experimental data and numerical calculations is readily observed. This includes a few 
data points associated with higher-order branches identified in the ‘hBN-like’ portion of 
the dispersion in the inset.  
The data in Fig. S6C establish that a change in sign of 𝑞% is associated with the 
crossover between positive and negative dispersion in the bicrystal. The negative 



dispersion on the left-hand side of the plot in Fig. S6C derives from h11BN whereas 
positive dispersion on the righthand side stems from MoO3. Polaritons with ‘h11BN-like’ 
character (𝑞% < 0) display a gap in their dispersion at 𝜔! (Fig. 3; Fig. S6B, S6C, S6G) 
and, notably, persist at a slightly lower frequency, 𝜔" (Fig. 3; Fig. S6B, S6C, S6F).  
‘MoO3-like’ modes (𝑞% > 0), which are also observed at 𝜔", abruptly vanish at 𝜔 ≥ 𝜔!. 
To highlight these features, we show linecuts from the data in Fig. S6C in Figs. S6F and 
S6G. First, in Fig. S6F we show a linecut of ∇T|𝑆P(S(𝑞% , 𝜔 = 𝜔" = 773	cm"#)|. The 
extremum identified near 𝑞% = 26	𝜇m"#, marks the MoO3-like polariton. A second 
extremum is also detected near 𝑞% = −28	𝜇m"#. Thus, at least two modes are detected 
at 𝜔", one with positive and one with negative 𝑞%. A linecut of ∇T|𝑆P(S(𝑞% =
−24	𝜇m"#, 𝜔)| reveals a two-peak profile, indicating a gap in the polariton dispersion. 
The ∆𝜔 ≅ 13	cm"# magnitude of the gap, reported in the main text, is indicated with a 
black arrow in Fig. S6G. The error quoted in the main text represents the spectral 
resolution of the measurement. Our observations establish mode repulsion at 𝜔! and 
waves with both positive and negative dispersion at 𝜔". 
  



S2. Extended data  
S2.1 Near-field experiments with strip-launched polaritons 
 

 
Figure S7 | Microscope image of the device used in experiments with Au launchers. The white 
scale bar is about 34 µm in length (See text for details).  
 

Figure S7 shows a microscope image of the device studied in our experiments where 
polaritons were launched by Au strips, Fig. 2 of the main text. The strips were patterned 
on an SiO2 substrate. Next, crystal B (MoO3) was transferred on top of the Au 
launchers, covering them in both regions i and ii, with its c-axis nearly perpendicular to 
the facets of the strips. Finally, crystal A (h11BN) was transferred on top of crystal B 
(MoO3) forming the h11BN /MoO3 bicrystal. Images collected inside regions roughly 
indicated by the white boxes A and B are shown in Fig. 2 of the main text. The data 
shown in Fig. S8 were acquired on the same device, with panels A-C obtained within 
region B and panels D-F within region A. 
 

 
Figure S8 | Near-field images and ray trajectories. images collected on the device shown in Fig. S7 at 
ambient temperature. A-C images collected at the MoO3 surface. D-F images obtained at the 
h11BN/MoO3 surface.  The black lines are guides to the eye that mark the maxima observed in the images 



 
Figure S8 shows data collected with the bicrystal at three infrared frequencies: below, 
at, and above 𝜔! ≅ 790	cm"#. To remove (extrinsic) slowly varying backgrounds the 
data shown in Fig. S8 were Fourier filtered for clarity, whereas unfiltered data are shown 
in Fig. 2 of the main text. The top and bottom rows correspond to the top surfaces of 
MoO3 alone and h11BN /MoO3, respectively. Data obtained at a frequency 𝜔 =
775	cm"#, which is below 𝜔!, are shown in Figs. S8A and S8D; data obtained at 
frequency 𝜔 = 795	cm"# which is above 𝜔!. Images obtained at 𝜔! are shown in Figs. 
S8C and S8F. Note that the data in Fig.S8 were obtained at room temperature. 

We identify the maxima of |𝑠|, indicated by the black lines used as guides for the eye, 
with the locations where polariton rays launched by an underlying Au strip reach the top 
surface. In MoO3 polaritonic rays are detected at a finite lateral distance away from the 
underlying gold strip. This distance decreases as the infrared frequency increases, 
consistent with the dispersion of MoO3 in Fig. S11. At the bicrystal surface, the 
displacement of polaritonic rays relative to the edge of the strip is non-monotonic with 
frequency. Specifically, at frequencies below 𝜔! the rays are observed away from the 
edges of the underlying gold strip. At 𝜔! the maxima of |𝑠| are nearly re-aligned with the 
lateral positions of the underlying edges of the gold launcher. Above 𝜔! the maxima of 
|𝑠| are, again, displaced from the edges of the underlying strip. The associated 
polaritonic ray trajectories are consistent with negative refraction as illustrated in the 
schematic insets.  

  

of the near-field amplitude, |s|. Illustrations of the inferred ray trajectories are sketched in the insets. The 
frequency of incident radiation and the position of the underlying Au launcher are indicated at the top of 
each column. Scale bars are indicated with magenta lines in each panel, which are 1 µm in length. The 
schematic insets depict the geometry in the xz-plane.  



 
S2.2 Near-field experiments with edge-launched polaritons 

Bicrystal dispersion data in Fig. 3 of the main text were obtained on the sample shown in 
Fig. S9. Optical contrast associated with the SiO2 substrate, a rectangular MoO3 crystal, 
an overlying thin h11BN crystal and the h11BN/MoO3 bicrystal are identified in the optical 
microscope image shown in Fig. S9A. A topographic scan recorded near the bicrystal 
edge, within the magenta rectangle in Fig. S9A, is shown in Fig. S9B. At the bottom of 
the image, the substrate establishes a baseline for the topography (Z=0). An increase of 
topographic height marks the sample’s edge. While gradual changes are identified in 
topography data collected within the interior of the sample surrounding the boundaries of 
MoO3, sharp topographic features marking this boundary are not clearly observed. On 
the other hand, the optical data in Fig.S9C, recorded in the same region, reveals clear 
optical contrast between regions where MoO3 is present and surrounding areas where it 
is not. The optical contrast image in Fig.S9C was therefore, used to determine boundaries 
of MoO3. These boundaries are indicated with black dashed lines in Fig. S9B and S9C. 
Co-located linecuts of the data in Fig. S9B and S9C are shown in Fig.S9D. The optical 

 

 
Figure S9| Experiments with edge-launched polaritons. A, Microscope image of the device. The 
magenta rectangle indicates the region where the data in panels (B) and (C) were recorded. B, AFM 
topography image showing the height, Z, of the sample. C, White-light near-field image showing the 
fourth harmonic of the scattering amplitude, S4, collected with a broadband light source (see Fig. S14) at 
ambient temperature. The perimeter of MoO3 is outlined with a black dashed line in panels (B) and (C). 
D, Co-located line profiles of Z and S4 taken along the white dashed lines indicated in panels (B) and 
(C). E, Schematic illustrating the cross-section of the sample along the vertical plane that passes through 
the white dashed lines indicated in panels (B) and (C). 
 



contrast, associated with the edge of MoO3, lags the single-step edge identified in 
topography by a lateral distance of about 700 nm. These data are all consistent with the 
schematic in Fig. S9E. The thin h11BN crystal, on top of MoO3, overhangs the underlying 
MoO3 crystal edge for a small lateral distance. The sharp edge observed in topography 
marks the edge of h11BN while the boundary of MoO3, which we refer to as the ‘bicrystal 
edge’ in the main text and in Fig. S6, is located about 700 nm away from the h11BN edge. 
We stress that this interpretation is consistent with the entire image of Fig. S9C. On the 
right-hand side of the image only h11BN is present. The measured change in the 
topographic height on the right-hand side of Fig.S9B (~60 nm) is consistent with the 58 
nm thickness of h11BN measured at the boundary of h11BN well away from the bicrystal 
and along the h11BN/MoO3 boundary indicated with the orange line in panel A. Near the 
center of the topographic image in Fig. S9B (white dashed line) we witness a sharp 
change in the topographic height, with a larger magnitude of about 201 nm, at the 
sample/substrate interface. The height gradually increases to 208 nm in the interior of the 
bicrystal, consistent with the total combined thickness of 58 nm h11BN and 150 nm MoO3, 
which were independently measured with topographic scans well away from the bicrystal 
edge on the same sample.  
 
The specific linecut where the hyperspectral data were acquired is indicated with the white 
dashed line. Here the MoO3 and h11BN edges are nearly parallel.  Further, the [001]MoO3 
direction is nearly perpendicular to the h11BN edge. Finally, we note that the edges of 
h11BN and MoO3 are nearly aligned. We note that ‘MoO3-like’ polaritons with positive 
dispersion were not observed in experimental hyperspectral dispersion data shown in 
Fig. S10A, which were obtained along the edge of only h11BN shown with the orange line 
in Fig. S9A. To explain these results, we performed numerical simulations with the same 
geometry as in the experiment, shown in Fig. S10B. The numerical results confirm the 
qualitative aspect of our observations, that ‘h11BN-like’ modes are launched with higher 
intensity than ‘MoO3-like’ modes. These results are readily rationalized by considering 
that h11BN and MoO3 are nearly impedance matched within the overlapping Reststrahlen 
band. Thus, the h11BN/MoO3 edge is an inefficient polariton launcher. It is possible that 
‘MoO3-like’ modes could be detected at this edge in more careful experiments. 
 
 



 
 
We also measured the dispersions of the individual h11BN and MoO3 crystals. These data 
can be represented as a hyperspectral map of ¥𝑆P#S(𝑥, 𝜔)¥ where oscilations normal to the 
crystal edge reveal polaritons. Taking the absolute value after an additional Fourier 
transform of the complex quantity,	𝑆P#S(𝑥, 𝜔), is taken along the 𝑥-axis yields ¥𝑆P(S(𝑞% , 𝜔)¥. 
The maxima of this quantity correspond to the polariton momenta. We refined the optical 
constants of our crystals (Table S1 and Fig. 1A of the main text) to obtain a good 
agreement between observed and calculated dispersions. The far-field reflectance data 
of Fig. S13 was another input into this fitting process. With these parameters, we 
calculated the full dispersion relationship of the hetero-bicrystal polaritons shown in Fig. 3. 

 
Figure S10| Polariton dispersions at the h11BN edge. A, The amplitude of the two-dimensional Fourier 
transform of nano-optical data obtained at the bicrystal surface |𝑆N,;(𝑞# , 𝜔)| is shown as a function of the 
momentum component q< and frequency of the incident light, ω. These data were recorded along the 
orange line in Fig.S9A. Along this line the h11BN has an edge, while the underlying MoO3 crystal runs 
continuously. B, Numerical calculations of the z-component of the electric field, |Ez|, which are solutions 
to Eq. (S30).  C, Geometry of the device in our experiment, panel (A), and calculations, panel (B). 

 



 
  

 
Figure S11| Polariton dispersions of MoO3 and h11BN crystals. A, The amplitude of the one-
dimensional Fourier transform of nano-optical data obtained at the surface of MoO3 |𝑆N1;(𝑞# , 𝜔)| is shown 
as a function of the momentum component q< and frequency of the incident light, ω. The red solid line 
marks the crystal’s physical edge. B, and C, The amplitude of the two-dimensional Fourier transform of 
nano-optical data Q𝑆N,;(𝑞# , 𝜔)Q, obtained at the surface of B, MoO3 with 150 nm thickness and C, h11BN 
with 98 nm thickness. The white lines show qx=0. The green lines show locations where maxima are 
observed in calculations of Im rp for l (solid lines) and l/2 modes (dashed lines). D, and E, Calculations 
of Im rp as a function of ω and the absolute value of the momentum, |𝑞#|. D, for MoO3, experimental data 
from panel (B) are shown with yellow dots. E, for h11BN, experimental data from panel (C) are shown 
with yellow dots. 



 
S2.3 Experiments with disk-launched polaritons 
 

 
In this section we present two-dimensional images of polaritons excited by a disk-
shaped launcher. Near-field images obtained on the top surface of h11BN reveal ‘hot 
rings’ surrounding the edges of the Au disk (40). Their concentric shape is consistent 
with in-plane symmetry of the material. MoO3 is orthorhombic. At 775 cm-1 only the [001] 
component of the dielectric tensor is negative and the crystal is, therefore, in-plane 
hyperbolic (38). In Fig. S12B we show an image obtained on the top surface of an 
h11BN/MoO3 hetero-bicrystal. The image in Fig. S12B demonstrates that polaritons 
launched by the underlying disk propagate along the [001] direction of MoO3. No 
polaritons propagating along the orthogonal [100] axis have been detected. These 
observations are consistent with the notion that the hetero-bicrystal inherits its in-plane 
hyperbolicity from MoO3.  

Our observations in Fig. S12 suggest that it is possible to reduce the symmetries 
of propagating polaritons in hetero-bicrystals. Moreover, atomically layered structures 
are amenable to various forms of tuning once these structures are augmented by 
plasmonic (39), or photo-susceptible (41, 42), layers. These structures could, 
potentially, also be monolithically integrated with Si photonics and electronics (43) in 
future works. 

 

 
Figure S12| Experiments with disk launched polaritons. A, Experimental near-field amplitude data |s| 
at the surface of h11BN placed on top of an Au disk launcher with a diameter of about 1 µm. B, |s| 
measured at the surface of the h11BN/MoO3/Au disk assembly. The c-axis of MoO3 is indicated with a 
white arrow. The white scale bars in (A) and (B) are 1 µm in length. The data in both (A) and (B) were 
collected at w=777+/-4 cm-1 at ambient temperature. The approximate boundary of the disks is indicated 
in (A) and (B) with black dashed lines.  
 



S2.4 Far field reflectivity of h11BN and MoO3 

 
The near-field data in the main-text were augmented with far-field reflectivity 
measurements to determine the optical constants in Table S1. It can readily be 
appreciated that measurements of the dispersion relationship of phonon-polaritons, 
such as those in Fig. 11, are insufficient to determine the full dielectric tensor since the 
wavevector of propagating polaritons depends on both the in and out of plane 
components of the permittivity at a particular frequency. Infrared reflectivity provides a 
second measurement, which can be used to determine the optical constants within the 
xy-plane of the experiment, along the axis of polarization of the reflected light. The pair 

 

 
Figure S13| Far-field Reflectivity spectra of h11BN and MoO3. A-C Far-field reflectivity of h11BN and 
MoO3. A-B, Reflectivity spectra on MoO3. A, blue dots show data obtained with the polarization along 
the [001] axis. A fit with parameters in Table S1 is shown with black points. B, Green dots show data 
obtained with the polarization along the [100] axis. A fit with parameters in Table S1 is shown with 
magenta points. C, Black dots show the reflectivity spectra obtained on h11BN. A fit with parameters in 
Table S1 is shown with red points. 
 



of measurements allows us to determine the two unknown quantities, namely the in- 
and out-of-plane components of the dielectric tensor, at each frequency.   



S2.5. Ultranarrow band mid-infrared beamline from a pulsed light source 
 
Here we describe the procedure used to generate the ultra-narrowband light used in 
imaging experiments. The spectral intensity of various sources used in this work are 
shown in Fig. S14. First, we show the spectra from our broadband source, generated by 
combining a tunable idler beam with a bandwidth around 250 cm-1 with a 100 cm-1 broad 
1600 nm pump beam in a 500-micron thick GaSe crystal, in black in Fig. S14. The 
broadband radiation has full width at half maximum spectral width of around 250 cm-1. 
Narrowband light is generated by combining a 40 cm-1 broad 1030 nm pump beam with 
a 250 cm-1 broad tunable idler beam in a 1.5 mm thick GaSe crystal. The full width at half 
maximum spectral width of the narrowband channel is reduced to around 30 cm-1 (red 
trace). We then send the mid-infrared light to a home-built monochromator by placing a 
slit in the Fourier plane of a pulse shaper (composed of a grating, followed by a cylindrical 
lens, a slit, another cylindrical lens, and another grating) to select radiation within a narrow 
bandwidth <4 cm-1 (44). The result is a channel of ultra-narrowband radiation with spectral 
width <4cm-1 (blue trace). We remark that the spectrometer used to measure the data in 
Fig. S14 has a resolution of only around 4 cm-1, and thus the ultra-narrowband radiation 
could have a linewidth narrower than 4 cm-1. 
 

 
  

 
Figure S14| Spectra of the infrared light sources used in this work. (see text) 
 



S2.5. Fundamental limits of the polariton width 
 
To address the important challenge of focusing hyperbolic polaritons (18, 32, 33), we 
discuss factors that limit the polariton’s width in this section. Representative data 
obtained on two hetero-bicrystals at the frequency 𝜔! of two different thicknesses are 
shown in Fig. S15A and S15C. We observe maxima in the near-field amplitude at 
positions that are in lateral alignment with the edges of gold strips, buried beneath the 
hetero-bicrystals. The full-width-at-half-maximum of these peaks relative to the baseline 
intensity at the center of the launcher, D, are D = 140 nm for the data in Fig. S15A and 
D = 90 nm for the data in Fig. S15C. The general trends observed in the data are 
captured with numerical solutions to Eq. (S30) displayed in Fig. S15B and S15D. We 
emphasize that the width increases with increasing bicrystal thickness in both theory 
and experiment. However, critically, to account for the experimentally observed widths, 
it was necessary to include a large air gap between the gold launcher and the sample, 
ℎ = 20	𝑛𝑚, in our simulations (see inset in Fig. S15G).  
 
To test the theoretical limits of the attainable spot size we carried out numerical 
simulations shown in Fig. S15E-G. We display the full-width-at-half-maximum of the 
observed peaks near the edges of the launchers, as schematically shown in Fig. S15B 
and S15D. The results in Fig. S15E show that the width, D, decreases as the bicrystal 
thickness is reduced, while other parameters are held fixed. Further, the results shown 
in Fig. S15F show that the width can theoretically decrease for a bicrystal of a given 
thickness if the losses of the crystals are reduced. These results in Fig. S15F were 
obtained by multiplying the imaginary components of the permittivity of both crystal by 
an artificial “damping factor” while all other parameters in the simulation were fixed. 
Finally, in Fig. S15G we show the spot size increases as ℎ increases, e.g. as the quality 
of the launcher worsens, with the other parameters held constant. 
 
These results are all consistent with the relationship 𝑤 ∝ 𝐼𝑚(𝛿UVU) + 2ℎ given in Ref 
(40). The displacement of the ray, 𝛿UVU = 𝛿$ + 𝛿' (see Eq. (14)) is a complex quantity 
with an imaginary component that depends on the thicknesses of crystals “A” and “B” as 
well as the linewidth of their phonon resonances. Thus, the width can be considerably 
sharpened by reducing the bicrystal thickness, even with fixed losses. If the losses can 
be reduced, either by decreasing the sample’s temperature or improving linewidths of 
the phonons (or generally the dipole active resonances responsible for hyperbolicity), 
the polariton’s spot-size could theoretically be further sharpened. However, the quality 
of the launcher can also impose limitations on the attainable spot sizes. Our simulations 
support the notion that ℎ~20	𝑛𝑚 is necessary to account for the width in the present 
experiments, which limits the attainable spot size. Since the experiments were 
performed with relatively thick launchers with imperfect edges, it may be possible to 
reduce the width, D, by optimizing the quality of the launchers in future experiments. 
 



 
Figure S15| Fundamental limits of the spot-size. A and C, Data obtained on (A) a heterobicrystal with 
dhBN=98 nm and dMoO3 = 290 nm at the frequency w=787 cm-1 and (C) a heterobicrystal with dhBN = 27 nm 
and dMoO3 = 100 nm at the frequency w = 785 cm-1. B, calculations using ℎ = 20	𝑛𝑚 and the thickness and 
frequency parameters corresponding to panel (A). D, same as panel (B) with thickness and frequency 
parameters corresponding to panel (C). E-G Calculations of the full-width-at-half maximum of the peak 
‘D’, indicated in panels (B) and (D), for a series of parameters. Panel E, the damping is equal to the 
experimental value and a small air gap, ℎ = 2	𝑛𝑚, is considered while the total thickness of the hetero-
bicrystal is varied (with the ratio dMoO3 ≅	3 dhBN fixed). Panel F, calculations with fixed values of d=388 nm 
and ℎ = 2𝑛𝑚, while artificially reducing losses with a ‘damping factor’ (see text). Panel G, the damping, 
equal to the experimental value, and d = 388 nm are fixed while ℎ is varied. 
 

 
 


