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Initial experiments on wedge samples composed of isotropic metamaterials with simultaneously negative per-
mittivity and permeability have indicated that electromagnetic radiation can be negatively refracted. In more
recently reported experiments [Phys. Rev. Lett. 90, 1074011 (2003)], indefinite metamaterial samples, for
which the permittivity and permeability tensors are negative along only certain of the principal axes of the
metamaterial, have also been used to demonstrate negative refraction. We present here a detailed analysis of
the refraction and reflection behavior of electromagnetic waves at an interface between an indefinite medium
and vacuum. We conclude that certain classes of indefinite media have identical refractive properties as iso-
tropic negative index materials. However, there are limits to this correspondence, and other complicating
phenomena may occur when indefinite media are substituted for isotropic negative index materials. We il-
lustrate the results of our analysis with finite-element-based numerical simulations on planar slabs and
wedges of negative index and indefinite media. © 2004 Optical Society of America

OCIS codes: 080.0080, 160.1190, 260.2110, 260.1180.

1. INTRODUCTION

When a material possesses simultaneously a negative iso-
tropic permittivity e and a negative isotropic permeability
m, the index of refraction n, as determined by n

5 AeAm, is negative in sign.1–3 The change in sign of
the refractive index has been predicted to lead to a variety
of unique electromagnetic phenomena, and materials
with simultaneously negative e and m—frequently re-
ferred to as left-handed, negative refractive, or double-
negative materials—are currently under scrutiny by the
scientific community to explore their various merits.4

A fundamental consequence of negative refractive in-
dex is the apparent reversal of Snell’s law. A wave inci-
dent on the interface between two materials whose refrac-
tive indices are of opposite sign will emerge from the
interface on the same side of the surface normal, rather
than on the opposite side. The phenomenon of negative
refraction in materials with simultaneously negative e
and m was hypothesized in 1968 by Veselago4 and was ex-
perimentally demonstrated in microwave scattering ex-
periments in 2001.5 Although various aspects of the ex-
perimental results have been questioned,6,7 negative
refraction has nonetheless been confirmed in the most re-
cent set of experiments,8,9 and its theoretical foundation
was further explored.10–12

Because no naturally occurring material exists having
the property of negative refractive index, experiments to
date have been performed on artificially structured
metamaterials, for which the negative permeability re-
sponse results from an array of conducting (nonmagnetic)
split ring resonators (SRRs) and the negative permittivity
response results from an array of conducting wires. Both
the SRR and the wire dimensions are much smaller than
the free-space wavelength, so the arrays of scatterers can
be approximately described electromagnetically by con-
tinuous e and m tensors.

In the published experiments, s-polarized microwaves,

in the frequency range of 8–15 GHz, have been used to
demonstrate the refractive properties of metamaterials.
Given that the fields are restricted to one of the two pos-
sible polarizations, the number of relevant material pa-
rameter tensor elements is reduced. Applying the coor-
dinates shown in Fig. 1, an s-polarized wave will be
sensitive only to ez (the permittivity component in the di-
rection of the applied electric field, polarized along the z

axis) and mx and my (the permeability components in the
plane of propagation). Thus a metamaterial composed of
a two-dimensional array of SRRs whose axes are aligned
along the x and y directions, with an array of wires ori-
ented along the z direction, can have a negative index of
refraction isotropic in the x, y plane for s-polarized waves.
The experiments presented in Refs. 5 and 9 made use of
such a two-dimensional isotropic metamaterial.

Although materials with isotropic negative permittivity
and permeability can be described with a negative refrac-
tive index, certain classes of anisotropic materials can
also exhibit negative refraction.10–12 We use here the
term indefinite medium to refer to a material for which
the permittivity and permeability tensor elements (con-
sidered along principal axes) are not all the same sign.
In the experiment reported by Parazzoli et al.,8 for ex-
ample, a wedge composed of an indefinite medium formed
from SRRs with axes aligned along only one axis (the x

axis) and wires oriented along a second axis (the z axis)
was used to demonstrate negative refraction. The re-
sults indicated no practical difference between the refrac-
tive properties of a wedge composed of an isotropic nega-
tive index metamaterial (i.e., mx , my , and ez negative)
versus those of a wedge composed of an indefinite me-
dium, for which only mx and ez were less than zero.

Because there are nuances associated with anisotropic
media, it is our goal here to understand in detail the gen-
eral nature of reflection and refraction at the interface be-
tween an indefinite medium and free space. We are in-
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terested in understanding the conditions under which we
can substitute an indefinite medium in place of an isotro-
pic negative index medium. We show that, although in-
definite media have different dispersion characteristics as
compared with isotropic media, they nevertheless display
similar, sometimes exact, refractive (both positive and
negative) properties as their isotropic counterparts.

2. NEGATIVE REFRACTION IN
ANISOTROPIC MEDIA

In a typical Snell’s law negative refraction experi-
ment,5,8,9 a wave is incident normally onto the first inter-
face of a wedge sample, as depicted in Fig. 1. The wave
passes into the medium at the first interface, possibly
with some reflection but no refraction, propagates
through the medium, then undergoes reflection and re-
fraction (into vacuum) at the second interface. Because
we allow for the possibility of indefinite media here, we
draw the reflected ray at an arbitrary angle uR from the
surface normal, as the relationship uR 5 2uI is not gen-
erally true for anisotropic media.

Throughout the following discussion, we restrict our at-
tention to the polarization typically used in the experi-
mental research and indicated in Fig. 1. That is, we as-
sume that waves propagate in the x – y plane, with the
electric field polarized along the z axis. The behavior of
p-polarized waves can be determined trivially by exchang-
ing the components of the permittivity and permeability
tensors (mz , ex , and ey become the relevant parameters).
We also assume the external medium to be free space
with isotropic e 5 m 5 1. To approximate the metama-
terial properties, we treat the medium as continuous,
having the indefinite permittivity and permeability ten-
sors as follows:

eI 5 F 1 0 0

0 1 0

0 0 ezz

G mI 5 F mxx myx 0

mxy myy 0

0 0 1
G . (1)

The permeability tensor in Eq. (1) is not diagonal. How-
ever, it is clear from the assumed form of the permittivity
that a rotation in the plane can always be performed that
will simultaneously diagonalize eI and mI, so that for our
purposes we can generally describe the properties of a
medium by specifying the two permeability components
in the propagation plane along principal axes and the out-
of-plane permittivity component ezz . If the principal
axes for the two tensors are not coincident, then specify-
ing the angle of rotation between the two provides a com-
plete description of the medium. Note that we assume
exx 5 eyy 5 mzz 5 1 always, although any value for these
parameters would not alter the results as the s-polarized
waves are not sensitive to these components.

Under our assumptions for the wave propagation direc-
tion and polarization, Maxwell’s equations yield a scalar
wave equation for Ez . In free space, the accompanying
dispersion relation has the familiar form

kx
2

1 ky
2

5

v2

c2
, (2)

where kx and ky are the x and y components of the propa-
gation vector, v is the frequency, and c is the speed of light
in vacuum. In the medium, for the given polarization,
the wave equation yields the dispersion relation

aqx
2

1 bqy
2

1 gqxqy 5

v2

c2
, (3)

where qx and qy are the x and y components of the wave
vector in the medium and a, b, and g are given by

a 5

mxx

mxxmyy 2 mxymyx

1

ez

,

b 5

myy

mxxmyy 2 mxymyx

1

ez

,

g 5

myx 1 mxy

mxxmyy 2 mxymyx

1

ez

, (4)

where mxy and myx are off-diagonal terms of the perme-
ability tensor. When referring to diagonal eI and mI ten-
sors, we denote the components by a single subscript,
such as ex , ey , and ez for eI.

We assume in this section that the interface between
free space and the indefinite material lies parallel to the x

axis, so that qx 5 kx and kx can be used to parameterize
the solutions. At a fixed frequency, the solutions corre-
sponding to Eqs. (2) and (3) can be depicted as curves
(isofrequency curves) on a plot of ky (and qy) versus kx , as
shown in Fig. 2.13

Isofrequency curves can be used to predict the refrac-
tive properties at an interface by a construction such as
that shown in Fig. 2. Assuming an outgoing wave vector

Fig. 1. In a typical negative refraction experiment, a wave from
free space impinges on the flat side of a prism sample. The
wave passes through the material and undergoes refraction at
the second interface as shown. In this diagram, arrows repre-
sent the direction of energy flow. In the ensuing analysis, waves
are assumed polarized such that the electric field points along
the z axis and the magnetic field lies in the plane of propagation
(s polarization).
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in free space, indicated by the black arrow, we can find
the wave vector solutions in an isotropic medium by not-
ing those points where the parallel (x) component of the
wave vector intersects with the isofrequency surface
(dashed circle). There are two possible solutions, whose
wave vectors are indicated by gray arrows, one corre-
sponding to the incident wave and the other to the re-

flected wave. The association of a given wave vector with
an incoming or outgoing wave, however, depends on the
relationship of the direction of the energy flow with re-
spect to the direction of the wave vector. For a medium
with negative index, phase and energy velocity are anti-
parallel, so the solution for a wave in the medium having
energy directed toward the interface corresponds to the
wave vector directed away from the interface. From this
construction, one obtains the result that, at the interface
between a positive index material and a negative index
material, a wave will undergo negative refraction. Use of
isofrequency curves to describe positive and negative re-
fraction has been outlined in Ref. 14.

The isofrequency curves corresponding to indefinite
media are distinct from general anisotropic media in that
they are characterized by hyperbolic isofrequency curves,
as shown in Fig. 3.14,15 Similar dispersion characteris-
tics can be observed near certain bands in photonic
crystals,16 as well as in anisotropic magnetized plasmas.17

In these cases, unique wave propagation behavior
results.18

To determine the refraction behavior of waves incident
on an indefinite medium interface, we follow the same
process as described for the isotropic medium in Fig. 2.
The outgoing wave vector, the black arrow in Fig. 3, now
imposes two possible solutions in the medium that corre-
spond to the intersection of the parallel component of the
wave vector with the hyperbolic isofrequency curves of
the medium. In analogy with positive and negative iso-
tropic media, we define two types of indefinite media hav-
ing hyperbolic dispersion surfaces: positive and negative
refracting. Unlike isotropic media, the energy velocity in
indefinite media is neither parallel nor antiparallel to the
phase velocity, but rather makes either an acute or an ob-
tuse angle with respect to the phase velocity or wave vec-
tor. In general, to distinguish between these two solu-
tions, we must calculate the direction of the Poynting
vector with respect to the wave vector for each solution,
as we discuss in Section 3. Alternatively, the direction of
the energy velocity can be found when we calculate the
group velocity, which is generally in the same direction as
the energy velocity provided that the frequency is far
from regions of anomalous dispersion. The group veloc-
ity can be computed from vg 5 ¹kv(k) and always lies
normal to the isofrequency contour.15 Figure 3 depicts
the phase and group-velocity solutions for an interface be-
tween free space and an indefinite medium. The permit-
tivity and permeability tensors are assumed to lie along
principal axes, with the wave incident at an arbitrary
angle to the interface.

The two types of indefinite media with the hyperbolic
dispersion surface shown in Fig. 3 can be formed from dif-
ferent combinations of the material parameter tensor el-
ements. A medium for which the signs of ez and mx are
less than zero, with my greater than zero, will be negative
refracting; for waves propagating in this medium, the
angle between the phase and energy velocities of the in-
cident wave will be obtuse. By contrast, a medium for
which ez . 0, mx . 0, and my , 0 corresponds to a posi-
tive refracting medium; for waves propagating in this me-
dium, the angle between phase and energy velocities will
be acute.

Fig. 2. Isofrequency curves corresponding to free space (solid
circle) and an isotropic medium with unu 5 2 (dashed circle).
Arrows indicate the graphical solution of an interface matching
problem, showing both positive and negative refracting solutions.

Fig. 3. Isofrequency curves corresponding to free space (solid
circle) and an indefinite medium (dashed curves). Arrows indi-
cate the graphical solution of an interface matching problem.
The direction of energy flow within the indefinite medium is in-
dicated by the arrows drawn normal to the hyperbolic isofre-
quency surface. The dark gray arrows indicate the case for
negatively refracting indefinite media, and the light gray arrows
indicate the case for positively refracting indefinite media.
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3. REFLECTION AND REFRACTION AT AN
INDEFINITE MEDIUM INTERFACE

We now solve for the angle of refraction and the reflec-
tance for a wave incident on the interface between free
space and an indefinite medium, where the wave is as-
sumed to have the same polarization as described above.
A similar study has been performed by Hu and Chui19 for
waves propagating in uniaxially anisotropic indefinite
media. Here we present a general analysis that allows
for the interface to cut the indefinite material along a
nonprincipal axis, leading to the situation depicted in Fig.
4. In general, the incoming and outgoing wave vectors in
the medium are no longer necessarily equal in magnitude,
nor are their deviations from the surface normal neces-
sarily equal and opposite. The y components of the wave
vector can be found by the solution of Eq. (3), which yields

qy 5 2

g

2b
qx 6 F S g

2b
qxD 2

2

1

b
S aqx

2
2

v2

c2 D G
1/2

.

(5)

We define q i 5 qxx̂ 1 qyŷ and q r 5 qxx̂ 1 qy8ŷ for the
wave vectors corresponding to the wave solutions propa-
gating toward and away from the interface in the me-
dium. Making this distinction, the incident, refracted,
and reflected angles can be found from

uI 5 tan21
kx

qy

,

uT 5 tan21
kx

ky

,

uR 5 tan21
kx

qy8
. (6)

In addition to the refraction of a wave incident at the
interface between the vacuum and an indefinite medium,
we are also interested in the magnitude of the reflection
coefficient, so we must solve the boundary-value problem
at the interface. In the medium, the field is composed of
the incident and reflected waves, having the form

EI 5 exp@i~qxx 1 qyy !# 1 r exp@i~qxx 1 qy8y !#, (7)

where the electric field is polarized along the z direction
and the propagation direction is along the y axis. The
transmitted field has the form

ET 5 t exp@i~kxx 1 kyy !#. (8)

Continuity of the electric field at the interface, assumed
to intersect the y axis at y 5 0, yields the equation

1 1 r 5 t. (9)

A second equation can be found when we require continu-
ity of the transverse component of the H field, which we
can find from the electric field by use of the Maxwell curl
equation combined with the general constitutive relation
B 5 mIH:

H 5 2i
c

v
mI

21¹ 3 E. (10)

Equating the x components of the H vectors correspond-
ing to the incident, reflected, and transmitted fields, we
have

x̂ • mI
21

• S qyx̂ 2 qxŷ

ky
D 1 rx̂ • mI

21
• S qy8x̂ 2 qxŷ

ky
D 5 t.

(11)

Combining Eq. (11) with Eq. (9), we find the following ex-
pression for the reflection coefficient:

r 5 2

1 2 x̂ • mI
21

• S 2 qxx̂ 1 qyŷ

ky
D

1 2 x̂ • mI
21

• S 2 qxx̂ 1 qy8ŷ

ky
D

. (12)

As described in Section 2, to determine which of the
two solutions in the indefinite material corresponds to the
incoming or outgoing waves, we calculate the Poynting
vector, or S 5 (c/8p)E 3 H*. Using Eq. (10) we write

S 5 2

c2

8pv
E* 3 @mI

21~q 3 E!#

5

1

8p

c2

v
uEu2ẑ 3 @mI

21~q 3 ẑ !#, (13)

which can be further simplified to

S 5

mz

8p

c2

v

mIq

det~mI !
uEu2. (14)

Fig. 4. Isofrequency curves corresponding to free space (solid
circle) and an indefinite medium (dashed curves). The interface
here is assumed to cut the indefinite medium along a nonprinci-
pal axis. Arrows indicate the graphical solution of the interface
matching problem and show that the two wave-vector solutions
in the medium do not have the same magnitudes or directions.
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The sign of Eq. (14) determines which of the calculated so-
lutions propagates toward the interface and which propa-
gates away from the interface.

4. REFLECTION AND REFRACTION AT A
PLANAR INDEFINITE MEDIUM
INTERFACE CUT ALONG PRINCIPAL AXES

To be uniform throughout the following analysis, and to
be consistent with the specific geometries studied in Sec-
tions 6 and 7, we assume that an s-polarized wave is in-
cident on the interface between free space and an indefi-
nite material from within the medium. In this section
we also assume that the interface cuts the indefinite me-
dium along a principal axis, as depicted in Fig. 5. Before
considering an interface with an indefinite medium, we
first present the familiar case of reflection and refraction
from an interface between free space and an isotropic,
positive index material (with n . 1) as shown in Fig. 6.
Because the wave is incident from the medium side, total
internal reflection occurs for angles of incidence larger
than a critical angle uC , in this case just above 40°. In
this example the permeability is isotropic with a value of
m 5 2 whereas the permittivity has a value of unity.
Note the occurrence of a Brewster’s angle just below the
critical angle, where the reflectance reaches a value of
zero.

Figure 6 also shows the angle of refraction as a function
of the incident angle on the right-hand axis. As ex-
pected, the angle of refraction sharply approaches 90 deg
where the incident angle nears the critical (total internal
reflection) angle.

The Brewster’s angle usually arises in the context of a
p-polarized wave reflected from a medium with positive e
and m 5 1.20 Such waves are characterized by the elec-
tric field polarized parallel to the plane of incidence. For
the case analyzed in Fig. 6, however, the incident wave is
s polarized (electric field perpendicular to the plane of in-
cidence); the appearance of the Brewster’s angle for this
polarization is due to the medium having primarily a
magnetic response that reverses the roles of s and p po-
larization. If we instead compute the reflectance proper-
ties of a medium with m 5 1 and e 5 2, we recover the

usual result (no Brewster’s angle) for s polarization,
shown by the dashed curve in Fig. 6.

The reflection and refraction angles for a wave incident
on the planar interface between an isotropic negative in-
dex material (m 5 22 and e 5 21) and vacuum is shown
in Fig. 7. Again, the wave is assumed to be incident on
the interface from within the material. The reflectance
is identical to that for the positive index case shown in
Fig. 6, but the angle of refraction is exactly opposite to
that shown in Fig. 6 as the wave is negatively refracted.

As discussed in Section 2 there are two types of indefi-
nite media that exhibit hyperbolic dispersion curves,
which we have termed negative and positive refracting.
Because we are interested in the type of indefinite me-
dium used in the Snell’s law experiments,8 we consider in

Fig. 5. Shown is a wave, incident from within an indefinite me-
dium, that reflects and refracts from an interface with free space.
The principal axes within the medium are indicated by the
lighter lines, which show that the interface lies along one of the
principal axes. The analysis in Section 4 follows this geometry.
Note that even though the phase diagram indicates negative re-
fraction, the group velocity may not in general exhibit negative
refraction.

Fig. 6. Reflectance for an isotropic medium with m 5 2 and e
5 1 (solid curve) and for an isotropic medium with m 5 1 and
e 5 2 (dashed curve). The gray curve shows the angle of refrac-
tion (right axis).

Fig. 7. Reflectance (black curve) and angle of refraction (gray
curve) for an isotropic medium with m 5 22 and e 5 21. Note
that the angle of refraction is for the phase, which is neither par-
allel nor antiparallel to the direction of energy flow.
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this and in Sections 5–8 only the negative refracting type,
for which only ez and mx are negative. For compactness,
we describe the material properties of the indefinite me-
dium by specifying the principal axes tensor permeability
components mI 5 (mx , my , mz) and the z component of its
permittivity tensor ez .

The reflectance and refracted angle for an s-polarized
wave incident on the interface from within an indefinite
medium with permeability m 5 (22, 1, 1) and ez 5 21
are shown in Fig. 8. Because the interface coincides with
a principal axis of the indefinite medium, the angle of re-
flection of the reflected wave has equal magnitude but op-
posite sign as the angle of the incident wave. This can be
understood from the diagram of Fig. 3, in which the two
wave-vector solutions in the medium, represented by the
two arrows that intersect the upper and lower hyperbolic
curves, have equal magnitude. The indefinite medium
appears to behave qualitatively like the isotropic negative
index medium shown in Fig. 7, but with the Brewster’s
and critical angles moved toward a smaller angle. How-
ever, the difference is much greater than would at first
appear; as the phase and group velocities are not antipar-
allel in an indefinite medium, we are not able to deter-
mine from Fig. 8 the direction of energy propagation of
the wave in the medium. In fact, comparison with the
isofrequency curves in Fig. 3 shows that the energy is ac-
tually positively refracted at the interface. This is the
general characteristic of refraction at the interface be-
tween free space and a negative refracting indefinite me-
dium cut along a principal axis (parallel to the x axis):
Positive group refraction occurs for all incident waves.

The generic reflection and refraction properties of iso-
tropic and anisotropic negative refracting media are simi-
lar, as a comparison of Figs. 6–8 shows. However, a
negative index medium having isotropic e 5 m 5 21 rep-
resents a rather unique material condition and deserves
further discussion. Such a medium, which has been re-
ferred to as antivacuum,21 has the property that it is per-

fectly matched to free space. That is, there is no reflec-
tion for waves incident on the interface between free
space and an e 5 m 5 21 medium for any angle of inci-
dence, although there is significant refraction. Remark-
able applications have been suggested for matched nega-
tive index materials, including subdiffraction imaging22

and highly efficient, compact low-reflection lenses.23

Like the isotropic e 5 m 5 21 medium, an indefinite
medium can also exhibit nearly zero reflectance, but over
a restricted range of incident angles. Figure 9 shows the
reflectance for waves incident from within an indefinite
material characterized by m 5 (21, 1, 1) and ez 5 21 on
a planar interface parallel to the x axis. Over an angular
range of approximately 40 deg (20 deg on either side of
the normal) the reflectance is close to zero, and the angle
of refraction for the wave vector is approximately equal in
magnitude (but opposite in sign) to the angle of incidence.
If the medium were isotropic with n 5 21, the reflectance
would be zero for all angles, and the refracted angle ver-
sus incident angle curve would be linear with a slope of
21.

5. REFRACTION AND REFLECTION AT A
PLANAR INTERFACE ALONG
NONPRINCIPAL AXES

When the interface does not lie along a principal axis of
the permeability tensor, we can apply a straightforward
rotation of the tensor to determine the components of the
permeability tensor with respect to the new axes defined
by the interface. The geometry considered in this section
is indicated in Fig. 10. Figure 11 shows three curves cor-
responding to the diagonal permeability tensor m
5 (21, 1, 1) and ez 5 21, but with the medium axes ro-
tated by 210°, 0°, and 110° with respect to the interface.
As in Section 4, the incident wave is assumed to propa-
gate within the medium, whereas the refracted wave exits
the medium into free space. In Fig. 11, the case of 210°
is the curve farthest to the left and corresponds to the me-
dium axes as depicted in Fig. 10 being rotated clockwise.
The case of the medium axes being rotated 110° is far-

Fig. 8. Reflectance (black curve) and angle of refraction (gray
curve) for an indefinite medium with m 5 (22, 1, 1) and ez

5 21. In this case, the refraction angle for the energy is actu-
ally positive.

Fig. 9. Reflectance (black curve) and angle of refraction (gray
curve) for an indefinite medium with m 5 (21, 1, 1) and ez

5 21.
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thest to the right in Fig. 10. The qualitative character-
istics of refraction and reflection are not significantly al-
tered by the rotation of the principal axes; however, the
cutoff angle is shifted.

As the ratio of mx /ez increases from unity, a Brewster’s
angle emerges and the position of the critical angle also
changes. Figure 12 shows the reflectance and the refrac-
tion angle as a function of incident angle for values of
mx 5 28, 26, 24, 22, 21, and 20.5, with ez 5 21 al-
ways. All other tensor elements have the same values as
in Figs. 6–9 and 11, and the medium axes are rotated by
110°. For the larger mismatches, the reflectance for nor-
mal incidence increases (largest in Fig. 12 for mx 5 28),
and a Brewster’s angle is apparent near the incident
angle of 20°. When mx falls below ez , however, there is a
mismatch at all incident angles, and the Brewster angle
vanishes.

Figures 11 and 12 show the refraction and reflection
characteristics of waves incident from within a medium,
where the direction of propagation of the wave does not
necessarily coincide with the principal axis. By contrast,
in the experimental wedge geometry one of the principal
axes of the indefinite medium typically lies along the first

Fig. 10. Shown is a wave, incident from within an indefinite me-
dium, that reflects and refracts from an interface with free space.
The principal axes within the medium, depicted by the lighter
lines, indicate that the interface does not lie along one of the
principal axes. The analysis in Section 5 follows this geometry.

Fig. 11. Reflectance (black curves) and angle of refraction (gray
curves) for an indefinite medium with m 5 (21, 1, 1) and ez

5 21. The principal axes of the medium have been rotated by
210° (leftmost dashed curve), 0° (solid curve), and 110° (right-
most dashed curve). Note that the rotation is with respect to
the surface normal, as defined in Fig. 10.

Fig. 12. Reflectance (black curves) and angle of refraction (gray
curves) for an indefinite medium with mx 5 28, 26, 24, 22, 21,
and 20.5, with ez 5 21.

Fig. 13. Isofrequency curves for an indefinite medium (upper
and lower dashed curves) and for free space (solid circle). The
incident wave is assumed to propagate along the principal axis in
the material, for which the phase and group velocities are anti-
parallel. The black arrow indicates the wave vector correspond-
ing to the indefinite material considered. The short dashed line
is plotted along the cut of the interface; a line perpendicular to
the interface line and intersecting the tip of the incident wave
vector defines the outgoing wave in free space. In this case, the
wave undergoes negative refraction at the interface.

Fig. 14. Negative refracting indefinite medium. The wave vec-
tor emerging from the wedge always lies on the same side of the
surface normal as the incident wave vector, in the same manner
as if the wedge had an isotropic negative index of refraction.
The medium parameters are m 5 (21, 1, 1) with ez 5 21.
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interface. Therefore the wave enters the medium and
propagates along a principal axis until it reaches the sec-
ond interface, which does not lie along a principal axis.
Although we could pursue the same analysis as above,
computing the reflectance and the phase refraction angle,
for this geometry it is more instructive to refer to the iso-
frequency curves, shown in Fig. 13.

For the wave propagating along the principal axis, the
phase and group velocities are antiparallel. Thus the in-
coming wave vector found in Fig. 13 is shown as the black
arrow drawn from the origin and intersecting the lower
hyperbolic sheet. We assumed in Fig. 13 that the me-
dium is described by mx 5 (21, 1, 1) and ez 5 21. Be-
cause the wave vector points in the same direction as the
phase velocity and is directed away from the interface,
the group (or energy) velocity is directed toward the inter-
face. To find the wave vector for the wave refracted into
free space, we first draw a line through the origin in the
direction of the interface (in this case, 20°). We then
draw a second line perpendicular to the interface line that
intersects the tip of the incident wave vector; this is
equivalently the condition that the component of the wave
vector parallel to the interface is conserved. The inter-
section of this second line with the free-space isofre-
quency surface determines the outgoing wave vector, in
this case indicated by the gray arrow.

The resulting refraction diagram relative to the wedge
interface is illustrated in Fig. 14. Figures 13 and 14
show that, for the negative refracting indefinite medium
considered (ez , 0 and mx , 0), waves propagating along
the principal axis and incident on an interface cut along a
nonprincipal axis are always negatively refracted. This
behavior is in contrast to the case considered in Section 4,
in which waves incident at an angle to an indefinite me-
dium interface cut along principal axes undergo positive
group refraction.

Further consideration of Fig. 13 reveals that, so long as
the incident wave vector lies along the principal axis of
the negative refracting indefinite medium, the refraction
properties of an isotropic negative index medium for
which e 5 m 5 21 and the negative refracting indefinite
medium for which ez 5 mx 5 21 are identical. An in-
definite medium can thus be substituted for isotropic
negative index media in refraction experiments and po-
tentially other applications, as we discuss in Section 7.

6. SIMULATED REFRACTION FROM
INDEFINITE MEDIA WEDGES

In the analysis presented in Section 2, the reflection and
refraction properties of an interface are determined by
consideration of only three wave excitations: the inci-
dent, reflected, and refracted waves. The finite-wedge
geometry, however, leads to the possibility of multiple
scattering from the two broad interfaces, as well as the
sides, of the structure. The additional reflected and re-
fracted waves represent a potential complication to the
otherwise simple picture. Because of the unusual reflec-
tion and refraction properties of indefinite media, we
might expect artifacts related to multiple scattering that
may be difficult to predict a priori.

To gain some idea of the potential effects due to mul-
tiple scattering in the wedge geometry, we can utilize the
predicted refraction angles to compute expected ray dia-
grams for refraction based on geometrical optics. For an
indefinite medium with m 5 (22, 1, 1), we arrive at the
diagram shown in Fig. 15 by calculating the angles of re-
flection at each surface according to the analysis pre-
sented above. We assume that the angle of the wedge is
10°. Figure 15 predicts that the incident wave will have
a refraction angle of roughly 215° from the surface nor-
mal. Although minimal, there is a finite amount of re-
flectance from the interface such that additional refracted
beams are possible. A beam reflected from the bottom
surface, for example, would be incident on the interface at
an angle of 30° and be refracted at an angle of approxi-
mately 260° from the surface normal. A beam reflected
from the side would be incident on the wedge interface at

Fig. 15. Ray diagrams showing the possibilities of subsidiary
peaks due to multiple reflections in the sample. These ray dia-
grams take into account the anisotropic properties of the me-
dium, with m 5 (22, 1, 1) for the wedge on the left and m
5 (21.5, 1, 1) for the wedge on the right. ez 5 21 in both
cases.

Fig. 16. Numerically computed spatial maps of the magnitude
of the electric field for an incident wave refracting from a wedge.
The incident wave is guided to the first interface of the wedge by
an absorber, for which Re(m) 5 Re(e) 5 1 and Im(e) 5 0.5. The
material parameters of the wedge are (A) m 5 (21.4, 1, 1) and
ezz 5 21.4, (B) m 5 (22, 1, 1) and ezz 5 22, (C) m 5 (22, 1, 1)
and ezz 5 20.5, (D) m 5 (24, 1, 1) and ezz 5 20.25. In (A) and
(B), the index varies but the impedance is matched to free space,
whereas in (C) and (D) the index is fixed at n 5 1, but the im-
pedance varies.
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an angle of 210° and would thus appear to be positively
refracted by an angle ;20° from the surface normal. A
similar picture is shown on the right in Fig. 15 for a
wedge having the parameters m 5 (21.5, 1, 1). For this
sample, the beam reflected from the side wall appears to
emerge from the slab in the same direction as the incident
beam.

We are thus led to the conclusion that in a refraction
experiment in which we use a negative refracting wedge
sample, there will likely be two additional refracted
beams. One of these beams will refract at an angle more
negative with respect to the surface normal than the pri-
mary beam, and the other will refract at a positive angle
with respect to the surface normal. The relative height

of these beams will, of course, depend crucially on the de-
tailed geometry and material parameters. Note that as
the mismatch between the indefinite media and the
vacuum increases, the possibility for the secondary beams
is reduced, as these beams more rapidly encounter total
internal reflection.

Because it is nontrivial to determine the refracted
fields from a realistic finite-wedge geometry by our ana-
lytical methods, we utilize an electromagnetic mode
solver to compute the field distributions of waves re-
fracted by finite wedges of indefinite media. The electric
field spatial maps shown in Fig. 16 were computed with
the driven solution in HFSS (Ansoft). In all examples,
only ez and mx of the indefinite media are assumed to be
negative and have magnitudes different from unity.
Also, the indefinite medium in each of the examples is as-
sumed to be diagonal, with the first interface cut along a
principal axis. Thus, if the ratio mx /ez is unity, there will
be no reflection from the first surface, but there will gen-
erally be reflection from the second wedge interface un-
less the incident angle providentially corresponds to the
Brewster’s angle.

The simulated geometry is similar to that used in two-
dimensional scattering experiments.5,8 In these experi-
ments, confining metal plates restrict the polarization of
the electric field to lie uniformly along the z direction and
further restrict propagation to the x – y plane. An inci-
dent aperture is formed by the creation of a channel in ab-
sorbing material and with the wedge sample placed di-
rectly at the end of the channel. For the simulations, the
absorber was modeled by a material for which the real
parts of e and m were equal to unity, with the loss tangent
for ez being 0.05. An incident wave, at a frequency of 10
GHz, was excited at one end of a 10-cm-wide channel in
the absorber. The channel extended from where the in-
cident wave was launched up to the first interface of the
wedge, which had a length 12 cm.

A spatial map of the magnitude of the field for a wedge
with m 5 (21.4, 1, 1) and ez 5 21.4 is shown in Fig.
16(A). Because mx /ez 5 1, there is no reflection at the
first surface and only minimal reflection at the second
surface. An angular plot of the field intensity around the
circumference of a circle centered on the wedge interface,
shown in Fig. 17, thus shows only a single refracted peak.
The location of the peak occurs near 225° with respect to
the surface normal, as expected for an isotropic sample
with an index of n 5 21.4. Increasing the values of mx

and ex , while keeping the ratio mx /ex near unity, leads to
similar results, as shown in Fig. 16(B). Note that reflec-
tance begins to increase for nonnormal incidence so that
some additional structure exists in the refracted wave for
the larger values of mx and ez .

Field plots for the complementary case, wherein the
product umxezu 5 1, are shown in Figs. 16(C) and 16(D).
In Fig. 16(C), m 5 (22, 1, 1) and ez 5 20.5, so there is a
substantial impedance mismatch, even at normal inci-
dence. This increased reflection coefficient can be seen in
Fig. 16(C) as the larger field intensity in the absorber
channel and throughout the wedge. An even greater
mismatch exists for the wedge in Fig. 16(D), for which m
5 (24, 1, 1) and ez 5 20.25. Note that in both Figs.
16(C) and 16(D) the field structure is within and near the

Fig. 17. Angular plot of the log of the field intensity shown in
Fig. 16(A), taken along the circumference of the circle depicted in
Fig. 16(B). The dashed line corresponds to the angle of the sur-
face normal, defined here as 0°.

Fig. 18. Angular plot of the log of the field intensity shown in
Fig. 16(D), taken along the circumference of the circle shown in
Fig. 16(B). The dashed line corresponds to the angle of the sur-
face normal, defined here as 0°.

1040 J. Opt. Soc. Am. B/Vol. 21, No. 5 /May 2004 Smith et al.



thicker portion of the wedge (left side of the wedge). Al-
though the ray-tracing picture presented in Fig. 15 is not
necessarily an appropriate description, the effect of mul-
tiple reflections at the side can clearly be seen and leads
to a positively refracted secondary beam. Figure 18
shows the angular plot of the field intensity for the wedge
of Fig. 16(D). The primary beam refracts at a somewhat
larger angle than the 18° angle of incidence, as expected
for an indefinite medium sample with umxeyu 5 1. How-
ever, there are two well-defined secondary peaks, one at a
more negative angle than the primary and one positively
refracted—consistent with the ray-tracing picture of Fig.
15. Although the secondary peaks are relatively minor
in this example (recall that the vertical scale is logarith-
mic), recent refraction experiments on indefinite media
samples indicate secondary beams can be quite
substantial.24

7. FOCUSING WITH INDEFINITE MEDIA

Our analysis of refraction and reflection at the interface
between an indefinite medium and a vacuum indicates
that, over a substantial spread of angles, an anisotropic
medium can be used in place of an isotropic negative in-
dex material. Because the fabrication of three-
dimensional isotropic metamaterials can be quite intri-
cate and costly, it is advantageous to use indefinite media
samples in experiments to demonstrate phenomena re-
lated to negative refraction, as well as in applications that
may require negative refracting samples. There are,
however, limits to the types of phenomena that can be ob-
served.

An intriguing phenomenon associated with negative re-
fraction that has generated considerable interest is focus-
ing by an isotropic negative index planar slab.1 The ef-
fect is illustrated in Fig. 19(A), which shows the computed
spatial map of the electric field produced by a radiating
line source next to a finite-width planar slab with e 5 m
5 21. The source is a current distribution occupying
the area indicated by the circle shown in Fig. 19(A). All
fields that emanate from the source and reach the first in-
terface are negatively refracted, effectively reversing
their propagation and forming an image within the mate-
rial. At the second interface, the process is repeated,
with the diverging rays from the first image being refo-
cused to the right of the slab. Note that, in principle, the
near-field components associated with the source will also
be brought to the focus17; however, near-field effects are
not probed in the calculations presented here.

The spatial Fourier decomposition of a line source is a
sum over both homogeneous and inhomogeneous plane
waves, with the homogeneous waves emerging in all di-
rections away from the source.25 Each of these plane-
wave components is incident on the first slab interface at
some angle to the normal. If the slab is isotropic with e
5 m 5 21, then each plane-wave component is negative
refracted. In contrast, as was discussed in Section 3, al-
though a slab of negative refracting indefinite media for
which mx 5 21 and ez 5 21 exhibits negative phase re-
fraction, the energy is always positively refracted. This

can be seen from Fig. 3, which shows that the group ve-
locity of the refracted wave, indicated on the lower sheet
of the hyperbola, is directed into the same quadrant as
the incident wave for all angles of incidence. The result
is that a line source next to a negative refracting indefi-
nite medium slab does not produce a focus in either the
medium or in free space, as shown in Fig. 19(B).

Note that, although the negative refracting indefinite
medium planar slab exhibits positive refraction for rays
emanating from a diverging source, a positively refracting
indefinite medium planar slab will, in fact, exhibit some
degree of refocusing. This same mechanism has been
previously explored to achieve focusing in certain designs
of photonic crystals, which can be effectively modeled
with anisotropic permittivity and permeability tensors.13

Although true aplanatic points are not possible with a
planar slab composed of any type of indefinite media,
some degree of field enhancement can clearly be obtained,
as shown in Fig. 19(C).

The focusing of a source by a planar slab of isotropic
negative index material is a unique example of the un-
usual optics associated with negative refraction and an
example of an effect that cannot be reproduced by indefi-
nite media. However, many other lensing or imaging ap-
plications enabled by isotropic negative index media can
be potentially realized by use of indefinite media, or com-
binations of different types of indefinite media. A specific
example is that of a converging negative index lens.
Cited initially as an example of the effect of negative re-
fractive index on geometrical optics, the converging nega-
tive index lens was briefly described by Veselago,1 who
noted that a concave negative index lens would have the
same function as a convex positive index lens. The com-
parison between positive and negative index converging
lenses was also studied in Ref. 23.

A converging lens formed from an isotropic negative in-
dex material having an index n 5 21 has the same re-
fractive power as a material with an index of n 5 13, yet
can exhibit nearly zero reflection if e 5 m 5 21. Figure

Fig. 19. Line source placed next to (A) an isotropic slab with e
5 21 and m 5 21, (B) a slab of negative refracting indefinite
media with mx 5 21 and ez 5 21, (C) a slab of positively refract-
ing indefinite medium with mz 5 21.
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20(A) shows the simulated field pattern for an isotropic
negative index plano–concave lens (e 5 21, m 5 21),
driven by a bounded plane wave incident on the flat side.
The field at the focus of the lens has been previously
shown to be identical to the field pattern at the focus of a
positive index (n 5 13) plano–convex lens.23

We expect that we can replace the isotropic negative in-
dex material with a negative refracting indefinite mate-
rial and obtain the same results, because the incident
wave propagates within the material uniformly along one
axis. As long as the phase and energy directions are an-
tiparallel along this axis, we expect the refraction that oc-
curs on the convex side of the lens to be identical to that
which would occur for an isotropic lens, as discussed in
Section 4. We thus expect virtually no difference
between the isotropic and the anisotropic lenses, as long
as the angle of refraction in the indefinite medium is not
beyond the cutoff angle. Figure 20(B) confirms the be-
havior of the indefinite medium lens, which has the iden-
tical geometry as the isotropic lens in Fig. 20(A), but with
mx 5 21 and ez 5 21. A comparison of the nodal pat-
terns indicates that the focal properties of the isotropic
and indefinite negative refractive lenses are the same.
This equivalence, however, is not likely to hold for rays in-
cident at nonnormal incidence.

8. CONCLUSION

In summary, we have performed a detailed analysis of the
refraction and reflection characteristics of indefinite me-
dia and have shown how these characteristics effect the
imaging performance for certain geometries. We con-
clude that certain types of phenomena may not be pos-
sible with indefinite media due to the unique dispersion
properties; nonetheless, such applications as converging
lenses, with less-strict requirements on numerical aper-
ture, are expected to be feasible. This is an important
consideration as the fabrication of higher-dimensional
negative refractive metamaterials can be difficult and
costly.
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