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Abstract: It is shown that certain metallic photonic crystals can
enable negative refraction and subwavelength imaging without relying
on a negative effective index. These metallic structures are very simple
in design and appear straightforward for fabrication. Their unusual
electromagnetic response should provide an interesting comparison with
the metallic left-handed materials.
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The work of Pendry, Smith, and coworkers [1–3] has given birth to a novel class of
metallic structures that has become known as “left-handed metamaterials.” These meta-
materials are characterized by a negative effective permittivity ǫ and simultaneously a
negative effective permeability µ, and can lead to a variety of unusual electromagnetic
and optical phenomena [4–6]. For instance, negative refraction of light [4, 6] and sub-
wavelength focusing [5] are two interesting results. Since their discovery, such left-handed
metamaterials have received an enormous amount of attention and interest in the scien-
tific community. An up-to-date summary and recent developments in this growing field
can be found in [7].

Recently, it has also become clear that dielectric structures with periodic variations
on the scale of wavelength, i.e. photonic crystals [8–10], may enable similar anoma-
lous light behavior [11–16]. The physical principles behind these unusual phenomena in
photonic crystals are based on complex Bragg scattering effects, and are very different
from those in a left-handed metamaterial. For example, both negative refraction and
subwavelength imaging may be realized in photonic crystals without employing a nega-
tive index or a backward-wave effect [13, 16]. Photonic crystals thus represent another
class of metamaterial with electromagnetic properties not available in a conventional
medium.

This paper aims to extend the concepts of negative refraction and subwavelength
focusing without a negative index in dielectric photonic crystals [13,16] to systems con-
taining metallic components. Such systems, also known as metallic/metallodielectric
photonic crystals [17–24], have been studied in detail previously from the viewpoint of
forbidden band gaps. Here we focus on the properties of propagating waves in these
structures. For simplicity, we consider ideal metals, in which the electric field is every-
where zero without any ohmic losses. Such an ideal metal is the simplest metallic model,
is appropriate in the microwave regime, and may also give a useful estimate at infrared
frequencies. In contrast to left-handed materials, which currently have two-dimensional
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(2D) functionalities but require an intrinsically three-dimensional (3D) analysis, the
metallic photonic crystals studied here present a much simpler concept in design: a 2D
analysis suffices for all 2D effects, and a 3D crystal can realize truly 3D phenomena.
Compared to its all-dielectric counterpart, a metallic photonic crystal also possesses
some differences and even advantages in achieving negative refraction. The most signif-
icant advantage is that the required refractive index for the crystal constituents can be
lowered in a metallic photonic crystal, making negative refraction and subwavelength
imaging possible using a broader range of materials. The presence of metals in a pho-
tonic crystal may also increase polarization dependence and improve focusing ability, as
will be discussed later. For the sake of tractability, throughout this paper we adopt the
finite-difference time-domain (FDTD) method as our main computational tool, both to
calculate the photonic band structure in the reciprocal space [20, 23] and to perform
numerical simulations in the real space.

As in our previous work, we focus on the possibility of all-angle negative refraction
(AANR), i.e. a single refracted beam resulting from a single incoming beam at all angles
of incidence and traveling on the negative side of the surface normal. This can be realized
if a constant-frequency contour near the top region of a photonic band is all-convex and
single-branch at a sufficiently low frequency. In contrast to [12], our results are mainly
in the first photonic band and are therefore less sensitive to disorder.

We first consider a 2D square lattice (period a) of metallic cylinders immersed in
a background medium with dielectric constant ǫ = 9 (e.g. alumina at microwave fre-
quencies). The cylinder radii are chosen to be r = 0.2a, corresponding to a modest
filling fraction of 13%. In a 2D system, light waves can be classified into TE (electric
field in the 2D plane) or TM (electric field parallel to the cylinders) polarizations. The
TM polarization is especially interesting for the present metallic system, in which the
Bragg scattering effect occurs as if in a dielectric photonic crystal with infinite dielectric
contrast. In other words, the TM waves now experience the maximum possible artificial
spatial modulation in a photonic crystal. We calculate the TM band structure in FDTD
by applying Bloch-periodic boundary conditions to a unit cell, and show the results in
Fig. 1. The allowed photonic bands start at the frequency ω = 0.170(2πc/a), and there is
a Bragg band gap between 0.242(2πc/a) and 0.280(2πc/a). Since the first photonic band
below the Bragg band gap has a shape similar to that in a dielectric photonic crystal,
we can deduce a frequency region for negative refraction from the rounded constant-
frequency contours in that band using the approach of [13]. Here, even for the modest
filling ratio, the constant-frequency contour in the first band becomes all-convex for
frequencies starting at 0.217(2πc/a) all the way through the band edge 0.242(2πc/a).
As indicated by the inset of Fig. 1, a light beam incident on the (11) (ΓM) surface (the
black arrows) will then couple to a single Bloch mode in the crystal (the red arrows).
The propagation direction of that Bloch mode, being along the group velocity (i.e. the
gradient direction of the constant-frequency contours), is on the negative side of the
surface normal, giving rise to negative refraction. Furthermore, the phase-space region
of air spanned by all the propagating waves and projected on the (11) direction can
be matched in size to that of the photonic crystal, enabling AANR. This is also indi-
cated in a frequency range in Fig. 1. The existence of AANR is the starting point for
superlensing in photonic crystals [13, 16]. We note that a negative refraction effect also
exists in a crystal made of the same metallic cylinders in air instead of in a background
dielectric. However, the photon frequencies of the metal-in-air case increase by a factor
of

√
ǫ = 3, making the air phase space much larger than that of the crystal and thus

destroying AANR.
We proceed with a computational experiment of negative refraction in the present

photonic crystal. Here, a continuous-wave (CW) Gaussian beam of frequency ω0 =

(C) 2003 OSA 7 April 2003 / Vol. 11,  No. 7 / OPTICS EXPRESS  748
#2075 - $15.00 US Received January 30, 2003; Revised March 04, 2003



Fig. 1. The first few bands of a 2D square lattice of metallic cylinders in dielectric
computed by FDTD. The photonic dispersion relations are indicated by black circles
and connected by red lines. The broken line is the light line centered on the M point.
The green AANR region is the frequency range of negative refraction for all incident
angles. The left inset is a schematic illustration of the photonic crystal (yellow
stands for dielectric and blue stands for metal). The right inset is a portrayal of
the Brillouin zone and the refraction in wavevector space. Air modes and photonic-
crystal modes are indicated by black and red colors, respectively. The long and thin
arrows indicate the phase velocity k, and the short and thick arrows indicate the
group (energy) velocity ∂ω/∂k. The green region is the phase space corresponding
to the AANR frequency range.

0.216(2πc/a) and a half width σ = 5.8λ0 (λ0 = 2πc/ω0) is launched at 45◦ incidence
toward the (11) surface and subsequently reflects away from and refracts into the metal-
lic photonic crystal. In the computation, we use a finite crystal and impose perfectly
matched layer (PML) boundary regions. Figure 2 shows a snapshot of this refraction
process. It can be clearly seen that the overall electromagnetic energy in the metallic
photonic crystal travels on the “wrong” side of the surface normal. The refraction angle
is about −12◦, consistent with results from the wavevector space. If we look closely at
the refracted field profile in the photonic crystal, we can see that the constant-phase
locations lie on parallel straight lines and form “phase fronts” in the photonic crystal.
However, since the constant-phase regions in the crystal are located in discrete cells
and separated from each other, there exist multiple ways to connect them and hence
multiple choices of phase-front definition (Fig. 2, inset). This reflects the fact that, in a
photonic crystal, k is only defined up to a reciprocal lattice vector G. Here, we define
the phase fronts for the refracted beam to be the set of constant-phase lines with the
largest wavelength, which corresponds the smallest |k| and hence the unique k in the
first Brillouin zone. We then choose the gradient direction to this set to be the direction
of the phase-front normal. These refracted phase fronts gradually move into the crystal
as time progresses and their normal points toward the positive side of the surface nor-
mal. This phenomenon is naturally explained by the inset of Fig. 1 which shows that
k experiences positive refraction while ∂ω/∂k goes negative. It also explains the differ-
ent physics of the present negative refraction as compared to that in the left-handed
materials: here negative refraction is realized in the first photonic band that consists
of forward-propagating waves (k · ∂ω/∂k > 0), not backward-propagating waves as in
a left-handed material. The present effect bears certain similarity to the negative re-
fraction of energy and positive refraction of modulation interference fronts, pointed out
recently in left-handed materials [25, 26]. However, it is important to note that in our
simulation only a CW wave of a single frequency is used and the phase fronts studied
here are not the modulation interference fronts, which must be made from multiple
frequencies.

We have calculated the TM AANR frequency range for several other values of cylin-
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Fig. 2. FDTD simulation of negative refraction. Shown is the pattern for the electric
field E perpendicular to the plane (red for positive and blue for negative values). The
dielectric and metallic boundaries are in black. The arrows and texts illustrate the
various beam directions. The inset shows two possible ways of constructing phase
fronts from the field pattern. We choose the set of phase fronts with the maximum
wavelength (a maximum 4-wavelength distance d1 of that set is shown in red) to be
the phase fronts of the refracted beam.
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der radii, and the results are given in Table 1. The AANR frequency range is between
ωl and ωu, and the M edge of the first band is also listed for reference. The data show
a steady increase of all frequencies with cylinder radii. For r/a > 0.3, the TM bands in
metallic photonic crystals have very narrow bandwidths and thus small AANR ranges.
These TM modes in 2D can be easily realized by sandwiching a finite-height 2D crystal
between parallel metallic plates [27]. We have also computed the AANR frequencies in
the first band for the TE polarization, which do not show large shifts with the cylinder
sizes (below 0.25(2πc/a) for all r). In the TE case the metallic photonic crystals behave
in a manner very similar to an air-in-dielectric all-dielectric crystal, in which large filling
ratio (r/a > 0.3) is typically preferred in achieving TE AANR. Thus, a 2D metallic pho-
tonic crystal with large cylinders can allow AANR for the TE polarization but exhibit
complete reflection for TM waves of the same frequency. These results can be compared
to those in all-dielectric photonic crystals, where there exists less distinction in whether
AANR exists between the TE and TM polarizations [13].

Let us turn to 3D periodic systems. We have calculated a body-centered cubic (BCC)
lattice of nonoverlapping metallic spheres in a background dielectric, and found that
AANR in full 3D can be accomplished near the frequency ω = 0.385(2πc/a) for a
modest background permittivity of ǫ = 3 and a sphere diameter of 0.85a, a being the
side length of the conventional cubic cell of the BCC lattice. This situation is analogous
to our recent work on a 3D dielectric photonic crystal [14]. It is worth noting that
this 3D metallodielectric crystal has very important advantages over an all-dielectric
structure in achieving AANR: the index requirement for the background matrix is quite
low and can be satisfied for many materials, and straightforward fabrication procedures
are available at present [19]. All these results are readily amenable to experimental
verification, and the advantages of metallic photonic crystals should make them a very
attractive structure for studies of 3D negative refraction.

Table 1. AANR frequency range for various cylinder radii (TM polarization)

Cylinder radii lower limit upper limit band edge at M
(r/a) (ωla/2πc) (ωua/2πc) (ωMa/2πc)

0.10 0.195 0.196 0.236
0.15 0.196 0.205 0.238
0.20 0.207 0.217 0.242
0.25 0.231 0.238 0.255
0.30 0.257 0.261 0.271

We now examine the subwavelength imaging effect of a planar slab, one of the most
striking consequences for negative refraction. This effect was first proposed in the con-
text of left-handed materials [5], and recently it has been shown that a slab of AANR
dielectric photonic crystal is able to focus a point source into a point-like image with a
width below the diffraction limit [13]. With the AANR frequencies for our metallic pho-
tonic crystals identified above, it is possible to investigate their subwavelength imaging
properties in a similar manner by considering evanescent waves coupling to the bound
states of the slab. Note that amplification of one evanescent wave alone is independent
of negative refraction and can be done using metallic surface plasmons [28].

Below, we focus on a 2D metallic photonic crystal for simplicity. Here, the bound-
photon band structure of a photonic-crystal slab finite in thickness but infinite in the
transverse direction is of interest. We place the slab in the center of a computational
supercell that is exactly one surface-period wide along the transverse direction and a
few times longer than the slab thickness h in the (11) normal direction. The boundary
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conditions of the computational cell are Bloch-periodic on the transverse sides with
PML regions on the normal sides. The bound photon states computed in this way
for the crystal in Fig. 1 are plotted in Fig. 3. As shown in Fig. 3, when h changes
from 5.9a to 6.0a, relatively little variation occurs in the bulk-guided modes, but the
frequencies of the surface mode sweep through the AANR frequency range. Moreover,
flat portions exist in both the surface and the bulk bound states at common frequencies
covering the range of wavevectors outside the light cone. These bound states are the
poles of transmission for evanescent waves, and consequently they can be used to amplify
incident evanescent waves, i.e. to transfer a range of near fields on one side of the slab
to the other side. In this way, images formed by AANR can be further focused to
subwavelength resolutions.

Fig. 3. Bound photon modes inside a slab of metallic photonic crystal plotted on
top of the projected surface band structure. The black circles and lines indicate the
bulk-guided modes. The colored circles and lines represent the surface-guided modes
for two different slab thicknesses. The lightly red region is the bulk band structure
projected to the surface direction, and the lightly blue region is the light cone. Inset
is a schematic illustrations of the photonic-crystals slab of finite thickness h.

We perform FDTD simulations with PML boundary conditions for subwavelength
focusing using a metallic-photonic-crystal slab of thickness 6.0a. The results are summa-
rized in Fig. 4, which shows time-averaged intensity (|E|2) distributions of two slightly
different frequencies close to that of the flat bound photon bands in Fig. 3. The two fre-
quencies illustrate the delicate interplay between the propagating and evanescent waves
in image formation. For ω = 0.2120(2πc/a), an isolated intensity maximum with width
about 0.67λ can be realized in the image space z > 0 if the evanescent waves are ampli-
fied to values comparable with those of the propagating waves. However, because of the
resonant nature of the present situation (no loss is assumed) and the extremely small
group velocities of the bound photon modes, some transmitted evanescent waves can
also have such an extraordinarily enhanced amplitude that they dominate over other
evanescent and all propagating waves. This leads to the enhanced resonance effect at
ω = 0.2116(2πc/a), for which large field oscillations exist in both the bulk crystal and
the surfaces, and the transverse image profile becomes delocalized and is no longer an
isolated peak. Both scenarios here demonstrate the amplification effect of evanescent
waves across the photonic-crystal slab. Moreover, the situation in which the propa-
gating and evanescent waves are balanced, i.e. ω = 0.212(2πc/a) in this example, is
particularly interesting because it illustrates the focusing of evanescent waves and the
subwavelength imaging capacity of the metallic photonic crystal. In the present case,
the discreteness of the computational grid limits our tuning capacity for bound photon
states, but in an ideal situation, with a suitably tuned photonic-crystal surface struc-
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ture where the bound photon bands are sufficiently flat and all evanescent waves inside
the first Brillouin zone are amplified, the full imaging width will only be limited by
the surface periodicity and not by the wavelength of light. A distinctive feature for the
metallic photonic crystal studied here is that, since fields cannot enter the ideal metal,
the spatial variation of near-field waves can be stronger than in the dielectric photonic-
crystal case. For example, the intensity is always zero near the metallic components on
the surface, and a strong intensity maximum along z axis always exists in the image
space, even in the limit of extremely large evanescent wave strengths near the surface.
This effect creates a very localized and intense optical focus in free space and might be
useful in realistic applications.

Fig. 4. FDTD simulation of superlensing with metallic photonic crystal. Each col-
umn correspond to the results for a CW point source placed at 0.207a away from
the left surface of the slab, for the frequency value indicated at the top. (a): In-
tensity distribution in the system marked with the directions of coordinate axes x
and z. The intensity is calculated as the averaged square of the electric field value
between 2174 and 2416 periods. A lighter color represents a higher intensity value.
The point source is placed at (z, x) = (−6.21a, 0). (b): Intensity distribution data
plotted along the surface direction in the image space (x = 0, z > 0). (c): Intensity
distribution data measured at the z value of the intensity peak in (b), plotted along
the transverse direction (x).

The numerical calculations in this paper are carried out for ideal systems with
monochromatic sources and lossless metals. These CW results can also be applied to
situations with finite pulses, as long as the pulse bandwidth is sufficiently narrow. An
estimate for the upper limit of the pulse bandwidth at which negative refraction is still
observable is 4%–5%, i.e. the frequency range of AANR. For subwavelength imaging,
which relies on flat bound photon bands with a strong group-velocity dispersion, the
required bandwidth is narrower and should be smaller than roughly 0.2%, corresponding
to the frequency difference in Fig. 4. For small absorption losses in metals, their qual-
itative effect is to introduce a finite decay length to propagating waves in the crystal,
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and negative refraction can be observed as long as this decay length exceeds the sample
dimensions. For evanescent waves, losses bring a finite lifetime to the bound photon
modes and reduce the magnitude of the associated near-field amplification. Provided
that these loss-induced modifications are also small for wavevectors inside a finite re-
gion outside the light cone in Fig. 3, the focusing effect of planar slabs would continue
to be subwavelength. All of these requirements can be easily satisfied in the microwave
regime, suggesting that both AANR and subwavelength imaging in metallic photonic
crystals are amenable to experimental studies. In another work pending publication [16],
we investigated the quantitative effects of absorption losses in all-dielectric photonic-
crystal superlenses, and found that a subwavelength focusing full-width of ∼ 0.5λ may
be achieved using materials with a loss tangent of ∼ 10−4.

In conclusion, we have demonstrated that metallic structures can also be designed
in a simple way to realize both negative refraction and subwavelength imaging without
relying on the concept of a left-handed material. These metallic designs can offer specific
characteristics and realistic advantages as compared to their all-dielectric counterparts.
The present work represents an alternative method of achieving unusual optical phe-
nomena using deliberately designed metallic structures.
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