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Specially designed metal—dielectric composites can have a negative refractive index in the optical range. Spe-
cifically, it is shown that arrays of single and paired nanorods can provide such negative refraction. For pairs
of metal rods, a negative refractive index has been observed at 1.5 um. The inverted structure of paired voids
in metal films can also exhibit a negative refractive index. A similar effect can be accomplished with metal
strips in which the refractive index can reach —2. The refractive index retrieval procedure and the critical role
of light phases in determining the refractive index are discussed. © 2006 Optical Society of America
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1. INTRODUCTION

In recent years, there has been a strong interest in novel
optical media that have become known as left-handed ma-
terials (LHMs) or negative-index materials (NIMs). Such
materials have not been discovered as natural substances
or crystals but rather are artificial, man-made materials.
The optical properties of such media were considered in
early papers by two Russian physicists, Mandel’shtam’?
and Veselago,3 although much earlier works on negative
phase velocity and its consequences belong to Lamb* (in
hydrodynamics) and Schuster® (in optics).

In NIMs, k,E, and H form a left-handed set of vectors
and were therefore named LHMs by Veselago. As a result
of the negative index of refraction and negative phase ve-
locity, these artificial materials exhibit a number of ex-
traordinary features, including an inverse Snell’s law re-
lationship, a reversed Doppler shift, and reversed
Cherenkov radiation. These features suggest a flexible
regulation of light propagation in these media and facili-
tate new, fascinating applications.

The most recent successful efforts to demonstrate nega-
tive refraction have been inspired by Pendry’s revision® of
the Veselago lens, which renewed interest in the practical
aspects of the earlier papers. Pendry predicted that a
NIM lens can act as a superlens by providing spatial reso-
lution beyond the diffraction limit. Figure 1 compares the
simplest case of refraction at a single interface between
vacuum and a common, positive-refractive-index material
[Fig. 1(a)] versus refraction at the interface with a NIM
[Fig. 1(b)]. For any oblique angle of incidence 6;, the tan-
gential wave vector k; of an incident plane wave from the
vacuum side must remain continuous across the inter-
face. This is the case for both positive and negative refrac-
tive indices. However, in contrast to a normal, positive-
refraction material, the wave-vector component normal to
the interface (k,) must change the sign, as the light
passes from vacuum into a NIM. As a result, the total re-
fracted wave vector is on the same side of the normal as
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the incident wave vector. Figure 1(b) illustrates this effect
as the reversed Snell’s law, where the angles of reflection
(6,) and transmission (6,) are reversed (6,= 6,) for the case
of n=-1. This reversal suggests insightful consequences
for the imaging applications of NIMs, the most critical of
which is the perfect lens as illustrated in Fig. 1(c). For re-
fracted rays from a point source, a planar NIM slab of suf-
ficient thickness with n=-1 should first focus the rays in-
side the NIM and then refocus them again behind the
slab. At the perfect lensing condition of n=-1, this focus-
ing property is extraordinary, and the resolution limit in-
trinsic to conventional imaging no longer applies to imag-
ing with a NIM slab as shown by Pendry.6 The essence of
the effect is that a NIM compensates for the usual decay
of the evanescent waves. In contrast to a conventional im-
aging device, in a superlens these evanescent waves are
recovered by the NIM, and the image is perfectly
reconstructed.® The perfect lensing requirements [Re(n)
=-1, Im(n)=0] are difficult conditions to meet. The first
requirement means that n is wavelength dependent and
the perfect lens is restricted to work at a single wave-
length. The second requirement implies that there is no
absorption in the NIM. In reality, losses are always
present in the NIM and can dramatically diminish the
resolution.”®

The development of optical NIMs is closely connected to
studies of periodic arrays of elementary scatterers, in
which, for example, frequency-selective surfaces (F'SSs)
arranged from those arrays have been used as narrow-
band filters for plane waves. The major resonant elements
of optical metal-dielectric composites (metallic spheres,
disks, rods, and their inversions, i.e., circular and elliptic
holes) have been inherited from earlier FSS designs, to-
gether with evident orthotropic properties and angular
dependences. Another source of earlier expertise is found
in the studies of artificial dielectrics (ADs), in which the
homogenization method and approaches to define equiva-
lent electromagnetic material properties have been exam-
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Fig. 1. (a) Snell’s law at an interface between vacuum and a
positive-refractive-index material, (b) reversed Snell’s law at the
interface with NIM (n=-1), and (c) the superlens.

ined under resonant conditions. Predictions of anoma-
lously large effective permeability and permittivity due to
resonant regimes of elementary scatterers have also been
made for ADs arranged from periodic metal-dielectric
structures.’

Although negative permittivity in the optical range is
easy to attain for metals, there is no magnetic response
for naturally occurring materials at such high frequen-
cies. Recent theories and experiments showed that a mag-
netic response and negative permeability can be accom-
plished in the terahertz spectral ranges by using parallel
rods, split-ring resonators, and other structures.!®1® As
predicted'* and experimentally demonstrated,'® u-shaped
structures are particularly well suited for magnetism at
optical frequencies. Recently, light propagation through
an interface that mimics negative refraction has also been
found in two-dimensional (2D) photonic cryst:als16 (PCs).
It has been shown that, under certain conditions, unique
focusing effects in PCs are also possible.!”

Up to the microwave frequencies the fabrication of
metal—-dielectric composites can follow practically any
pattern suggested by either human intuition or computer-
aided tools with evolutionary optimization. Yet at optical
frequencies, the best possible design of metal-dielectric
composite NIM should overcome two substantial difficul-
ties: severe fabrication constraints and increased losses.
For these reasons, this paper addresses the simplest ge-
ometries of resonant 3D structures. Such structures in-
clude coupled metal rods in a dielectric host'®22 (fabri-
cated, for example, through electron-beam lithography)
and inversions of rods, i.e., coupled dielectric holes of el-
liptical (spherical,23 in the limiting case) or rectangular
shape®® (fabricated, for example, by etching trilayer
metal-dielectric-metal films using ion-beam etching or
through interferometric lithography).

The first experimental realization of a negative refrac-
tive index in the optical range (at 1.5 um) was accom-
plished with paired metal nanorods in a dielectric®? and
then for the inverted system of paired dielectric voids in a
metal ?>?* We note that inverted NIMs, i.e., elliptical or
rectangular dielectric voids in metal films,?* are physi-
cally equivalent to paired metal rods in a dielectric host,
in accordance with the Babinet principle.25 We also note
here Ref. 26, which considers other interesting optical
properties of metal rods, although these properties are
not related directly to NIMs.

In the current paper, in addition to paired metal rods
and dielectric voids, we also study 2D coupled-strip com-
posites as a basis for further comprehensive studies of
NIMs.
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2. HOMOGENIZED OPTICAL PARAMETERS
OF NIMS

A. Equivalent Multilayer Structure at Normal Incidence
Our NIM designs are confined in a thin layer placed on a
thick substrate; therefore, a direct measurement cannot
resolve the reversed refraction owing to insufficient opti-
cal length. Fortunately, accurate indirect measurements
work well to retrieve the effective optical constants of the
NIM.

First, we ascribe an effective refractive index to a layer
of the NIM as if it were a layer of a homogeneous medium.
This assumption suggests that the periodic structure of
NIM does not diffract the incident plane wave. Then we
consider a straightforward direct problem of plane-wave
propagation through a multilayer structure of homoge-
neous materials at normal incidence, as shown in Fig. 2.
The electric field at the initial interface on the source side
(E;=E;;) is first compared with the field transmitted
through the same boundary (E~=E, ;) and then compared
with the transmitted field (E*=E,, ) at the last inter-
face of the back side. Then, provided that the multilayer
structure is surrounded by vacuum (i.e., ng=n, =1), the
complex reflection coefficient r=E~/E;-1 and the trans-
mission coefficient t=E*/E; of the entire structure can be
obtained from the following equations:

2
t= , (1)
211+ 212+ 291+ 29

(211 + 219) — (291 + 299)
r= . (2)
Z211t212+291 222

Here 211,219,291, and zgy are the elements of the total
characteristic matrix (Z) of a given multilayer structure
obtained as the matrix product of the individual charac-
teristic matrices of each layer, i.e.,
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Fig. 2. Multilayer structure illuminated from left to right by a
monochromatic plane wave at normal incidence. Each layer is
made of a homogeneous material and characterized by refractive
index (n), impedance (Z), and thickness (A).
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Provided that for each layer the relative bulk material
properties (e, and u,) and therefore the refractive index
(n,=\eu,) and intrinsic impedance (Z,=\u,/e,) are
known, the characteristic matrix of the given layer is de-
fined as

cos(n kA,)
"= - Z; sin(n kA,)

—Z  sin(n kA))

Z cos(n kA,)

, (4)
where A, is the thickness of the vth layer. As a result,
similar to Ref. 27, for a single layer in vacuum, we have a
remarkably symmetric pair of equations:

cosh £=(1-2+r)/(2r), (5)

cos N=(1-r2+t?/(2t), (6)

where (22 coth 1 Z and N=nkA.
If the refractive indices of a source-side medium and a
back-side medium differ from that of vacuum, then using

normalized values of the magnetic field intensity H
=(uo/ €p)2 H and defining the electric transmission coef-
ficient (¢ ,=E,,/E;;) in addition to the magnetic trans-
mission coefficient (tH’,,=I~Jt’,,/E'i,1), we arrive at a matrix
identity for a given layer:

tE,V tE,V 1

tH v tH v+l
In our case, the only unknown parameters in the entire
multilayer structure are those of the NIM (nyp=n, and

Znmn=Z,), and the above equation can be inverted to re-
store the parameters through a set of equations:

Z12)= (t%,v_t%,l&l)/(t?‘l,v_tgl,lﬁl)’ (8)
n,=N/(kA,), 9
where
[ LEAH LB 1l H v
N, =cos (10)
e AH, 1+ EE, ve1lH,y

We assume that the coefficients ¢tz and ¢z are known from
both sides of the layer, either from calculations or through
measurements.

B. Restoration of the Refractive Index

Although, Egs. (8) and (9) seem quite straightforward,
physically sound restrictions should be applied to both
expressions.?’ Since the material of the »th layer is pas-
sive, we choose appropriate signs in Eqgs. (8) and (9) in or-
der to obey the restrictions Re(Z) >0 and Im(n)>0. Thus,
the refractive index n,=n’,+w”, is given by

n! =[sign(N")N', + 2l )/(kA,), (11)

n',=sign(N",)N" /(kA,), (12)

where sign(x) is equal to 1 if x=0 and to —1 otherwise;
N’ ,=Re(N,) and N",=Im(N ).

Since n’ has multiple branches, to avoid ambiguities in
selecting a phase-adjusting integer [ in Eq. (11), one
should start the restoration of n’, from a higher wave-
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length (far away from resonances) and obtain physically
sound values of n’,. Then one should move the wave-
length toward smaller values while simultaneously ad-
justing the values of [ in Eq. (11) to obtain a continuous
behavior for n’,. For achieving accurate and unambigu-
ous results, the restored layer should be much thinner
than (at least) the longest wavelength in the sweep range,
and the sweep step size should be adaptively decreased at
resonances to provide an adequate number of points in
steep segments.

In Egs. (8)-(12), the coefficients t¢g,,t5,.,1 and
tr v, i 41 are considered to be known at both sides of the
layer. These coefficients can be recursively restored
through Eq. (7) by either direct propagation or backpropa-
gation.

Consider, for example, the most frequent cases shown
in Fig. 3, where Fig. 3(a) depicts a NIM layer in air (n
=ng=1); Fig. 3(b) shows a NIM layer on thick glass (ng
=1, ng=n,, with n, as the refractive index of glass); and
Fig. 3(c) shows a NIM layer on an indium tin oxide—
(ITO-) coated glass substrate (ny=1, ng=n,, and ng=n1pg).
The refractive index of a single NIM layer in air®’ with

tE,1=1+r, tH’1=1—r‘, (13)

and tg 9=ty 9=t is already given by Egs. (5) and (6).

The NIM-air interface coefficients ¢z ; and ¢z ; of a
NIM layer on a thick bare glass substrate [Fig. 3(b)] are
also defined by Eqs. (13), but the coefficients at the NIM—
substrate interface are given by ¢ o=t and ¢y 9=n4t, i.e.,

1-r2+ng? }

(14)
(ng+ Dt +rt(ng—1)

N;= cos‘1|:
where ¢ is evaluated in the substrate.

Coefficients ¢ ; and ¢z ; at the NIM-air interface of a
NIM layer on an ITO-glass substrate as in Fig. 3(c) are
also defined by Eqgs. (13), but back-side coefficients should
be first calculated (measured) in the substrate at the
ITO—glass interface (t53=t, ty3=nst) and then back-
propagated by using Eq. (7), i.e.,

tE,z t
(tH,2) B Z2(nst)’ (15)

where
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Fig. 3. (a) NIM layer in air (ny=ny=1), (b) a single NIM layer on
a bare glass substrate (ny=1, ny=n,), and (¢) a NIM layer on an
ITO—glass substrate (nyg=1, ny=nypg, nz=ny).
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— 3! sin(ngkAy)

z cos(ngkAg)
2" cos(ngykAs) ’

— gy Sin(nzkAz)

with no=np1o. For all cases in Fig. 3, the values of n’; and
n", are finally calculated by using Eqs. (10)—(12) for v=1.

C. Phase-based Approximations of the Refractive

Index

Consider the simple NIM structure depicted in Fig. 4(a).
The NIM consists of a periodic array of identical gold
strips separated by a silica spacer. The array is periodic in
the vertical direction, and its simple geometry is charac-
terized by a period A, a gold-strip width w, a strip thick-
ness &, and a total NIM layer thickness A;. Figure 4(b)
shows the transverse magnetic field H, between the strips
calculated using the finite-element method (FEM) for two
samples with different gold thicknesses (13 and 19 nm).
All other dimensions in both case are identical (&
=480 nm, w=450 nm, and A;=160 nm). The values of H,
in both field maps of Fig. 4(b) are normalized by the in-
stantaneous magnitude of the incident field, which is ad-
justed to arrive at a positive maximum halfway between
the strips. The magnetic field in both cases is calculated
at a minimal refractive index (i.e., at A=~850 nm for &
=13 nm and A=900 nm for =19 nm) and is normalized
using the maximal incident field. Figures 4(c) and 4(d) de-
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Fig. 4. (a) Cross-section view of a NIM layer arranged from
coupled gold strips separated by a layer of silica. The strips are
infinite along the y axis (which is perpendicular to the cross-
section plane). (b) Transverse magnetic field (H,) between the
strips (for two different thicknesses of gold) for linear E, polar-
ization of the incident field. (¢) and (d) Reflectance (R), absor-
bance (A), and the refractive index (n’) of the strips versus the
wavelength of the incident light.
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pict the reflectance R, absorbance A, and the refractive in-
dex n’ of the strips as functions of the wavelength of in-
cident light.

The simulations indicate that the index of refraction for
the structure in Fig. 4(a) depends dramatically on thick-
ness 6. Notice how a 6 nm increase in thickness (about
30%) weakens the effective diamagnetic properties of the
structure [Fig. 4(b)] and cancels the negative-refraction
effect in Fig. 4(d), simultaneously shifting the resonances
of A and R toward shorter wavelengths in Fig. 4(c). The
quantitative changes in absorbed and reflected energy are
to be expected, and an analysis in terms of reflectivity and
transmission is sometimes used to restore the refractive
index.? Unfortunately, these quantitative differences can
be easily distorted by experiment—simulation mismatches
and measurement errors. The use of only the magnitude
changes of reflectivity and transmission complicates the
examination of the resonant behavior of n, which, for the
most part, follows phase changes in the transmitted and
reflected light. Figure 4 clearly shows that structures
with similar magnitudes of reflectance (transmittance)
may have dramatically different refractive indices, which
emphasizes the role of phase measurements in finding the
refraction.

To show just how indicative the phase changes can be
to the negative-refraction behavior, we consider the fol-
lowing two phase-based approximations for n':

argt T 1 16
!~ = — <
N~ T (Irl<1), (16)
T
argt—argr—g
n' = 1!;: kA (|7'|—> 1), (17)

which are obtained from Eq. (6) for either low or large re-
flectance. For example, taking Eq. (6) at the limit of |r
<1 and using ¢t=exp[«(7—¢1Inl¢|)], we arrive at expression
(16), and the approximation for the imaginary part fol-
lows as n”=Inl¢|/(kA). It is interesting to note that, ac-
cording to expressions (16) and (17), the refractive index
is fully determined by phases only, in the corresponding
limiting cases.

To provide a test example for expressions (16) and (17),
we approximate the values of refractive index obtained
from FEM simulations of the 2D structure of Fig. 4(a).
Figure 5 depicts the refractive index of periodic paired
strips retrieved from the exact retrieval formula of Eq. (6)
and independently obtained from the approximate formu-
las of expressions (16) and (17) for six different geom-
etries. First, note that the negative refractive index can
reach large magnitudes for such structures close to -2
[see Figs. 5(e) and 5(f)]. Common parameters for all cases
are the period (=480 nm) and the total layer thickness
(A=140 nm). The strips in Figs. 5(a), 5(c), and 5(e) are
440 nm wide and 16, 15, and 14 nm thick, respectively.
The 450 nm strips in Figs. 5(b), 5(d), and 5(f) are 17, 16,
and 15 nm thick, respectively. To simulate the complex
permittivity of gold in FEM models, we use the Drude
model with parameters selected to match the experimen-
tal optical constants of bulk gold. Each simulation begins
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w =440 nm

refractive index (n') with phase-based approximations
refractive index (n') with phase-based approximations
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Fig. 5. Refractive index of periodic paired strips obtained for six
different geometries from FEM simulations and approximations
at the same wavelength range. (a), (c), and (e) Strips are 440 nm
wide; (b), (d), and (f), strips are 450 nm wide. Approximating
function V¥ is given by expression (17).

from a wavelength of 2.5 um (not shown) and then con-
tinues toward smaller values with a gradual step-size
variation from 50 to 1 nm at steep segments. The cases of
Fig. 5 are specifically selected to represent the main pos-
sible scenarios, i.e., positive refraction, shown in Figs.
5(a) and 5(b); negative refraction, shown in Figs. 5(e) and
5(f); or a transition to n’ <1, shown in Figs. 5(c) and 5(d).

Notice that expressions (16) and (17) do not include ei-
ther [¢| or |r| and suggest an instrumental role for phase
differences r=argt and p=argr in representing NIM fea-
tures. Indeed, in all cases, both approximations illustrate
well the changes of n’. Certainly, the approximate for-
mula of expression (17) works better than the simpler for-
mula of expression (16). This is because the reflection is
quite large at short waves, and it is increasing toward
longer wavelengths, as shown in Fig. 4(c).

D. High-precision Phase Measurements of Thin NIMs
We performed phase measurements by using polarization
and walk-off interferometry schemes depicted in Fig. 6 for
transmitted light phases (7). The phase differences in re-
flection (p) are measured in a similar manner. In both
schematic diagrams, LC is a liquid-crystal phase compen-
sator, PD is a photodetector, and P is a linear polarizer
(the axes of the input—output polarizers are parallel at
45°).

In the polarization interferometer shown in Fig. 6(a),
the two optical channels have a common geometrical path
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and differ only by the polarization of light. The phase dif-
ferences caused by anisotropy of a refractive material in
transmission A7 (or reflection Ap) are measured between
orthogonally polarized waves Ar=7—7, (or Ap=p—p ).
Notice that the phase acquired in the substrate contrib-
utes nothing to either A7 or Ap.

The walk-off interferometer, shown in Fig. 6(b), has two
optical channels that differ in geometrical path; this
yields a phase shift introduced by a NIM sample in trans-
mission (7,) or reflection (p,) relative to a reference (7,;, or
Pair) SO that 87=7,— 7., or dp=ps—pair- A layer of air with
the same thickness as the NIM layer is used as the refer-
ence. Both the reference and the sample beams go
through the substrate so that the phase acquired in the
substrate does not contribute to the measured phase shift
o7 and &p, provided that the substrate has no deviations
in optical thickness. The walk-off effect in anisotropic
crystals (ACs) is employed to separate the two beams and
then bring them together to produce interference. The
phase shifts o7(dp)) and 67, (dp,) are measured for two
light polarizations by using a set of diode lasers and a
tunable erbium laser, and their difference is compared
with the phase anisotropy Ar(Ap) obtained from polariza-
tion interferometry, since A7=467— 67, and Ap=3Jp,—p, .

The instrumental error of the phase anisotropy mea-
surement by the polarization interferometer is +1.7°. We
note that variations in the substrate thickness do not af-
fect the results of our phase anisotropy measurements,
which is typical for common-path interferometers. In the
case of the walk-off interferometer, the thickness varia-
tion gives an additional source of error, causing the error
for the absolute phase-shift measurements to increase up
to +4°.

As shown in expression (16), in the case of low reflec-
tion and small thickness, Eq. (6) confines the phase dif-
ference to |71=2mmn’A/\, so that n’ <0 results in 7<0. In
experiments using interferometry, the phase shift due to a

(a) Phase Anisotropy

P (45°) P (45°)

E ®

NIM

(b) Absolute Phase Shift
P (45°)

P (45°) M

AC AC

N o —efeettete] LC @

B e T - - \
b4
NIM

Fig. 6. Schematics of (a) polarization and (b) walk-off interfer-
ometers for measuring phase anisotropy and absolute phase in-
duced by a NIM sample. LC is a liquid-crystal phase compensa-
tor, P is 45-deg linear polarizer, AC is an anisotropic calcite
crystal with a walk-off effect, \/2 is a half-wave plate, and PD is
a photodetector.
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Fig. 7. Refractive index of a NIM layer restored from (a) FDTD
simulations and (b) measurements. Approximations in both cases
are obtained using expressions (16) and (17).

NIM layer can be precisely measured relative to a layer of
air of the same thickness: 7e,=7—T7,,, Where the phase
shift in air is a reference phase, 7,;,=27A/\. Then n’ is
negative in the material, provided that 7., <-7,,. In gen-
eral, for a NIM layer with reflection, one should also ac-
count for p as in expression (17). In materials with strong
absorption, the relation between complex parameters ¢,r,
and n is even more complicated, and phase measurements
should be accompained by measurements of the transmit-
tance and reflectance magnitudes in order to use the ac-
curate procedure of Egs. (10)—(12).

To validate the procedure for the restoration of n’ and
the phase-based approximations [expressions (16) and
(17)], we use experimental data of our 3D NIM samp1922
(see Subsection 3.C for more detailed consideration of this
sample B, consisting of pairs of coupled nanorods). The
sample is arranged of a periodic array of coupled gold na-
norods deposited directly on glass. Figure 7 shows the re-
fractive index obtained (a) from FDTD simulations and
(b) from measurements. A segment of the wavelength
range in which the refractive index becomes minimal is
selected. The minimal value of n’ for this structure is
about —0.3 at 1.5 um. In contrast to the examples of Fig.
5, in this case approximations by expression (16) work
better to owing lower reflection.

3. NUMERICAL AND PHYSICAL
EXPERIMENTS WITH NIMS

Up to now, we have seen that a negative refractive index
is provided by resonant coupled metal-dielectric elemen-
tary scatterers. For example, our typical models of Fig.
4(a) display negative refraction up to n=-2, as shown in
Figs. 4(d), 5(e), and 5(f). These strip structures can be
readily fabricated, but losses are still rather large.

We now analyze the NIM—substrate interaction, begin-
ning with the basic cases of a single gold rod on ITO—glass
and pure glass substrates. We then consider several core
3D NIMs that demonstrate a negative refractive index
proven in both experiments and simulations.??24

A. Equivalent Debye Model in FDTD

Rather than utilizing the previously applied FEM to in-
vestigate the resonance behavior of gold strips and to pin-
point a negative refractive index as an effective quantity,
we use for 3D structures a numerical method involving
the well-known finite-difference time-domain (FDTD)
technique.28 The FDTD modeling of plasmonic resonances
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in the optical range is more complicated than either a
standard perfect electric conductor approach for thin skin
depths or a direct application of conductivity.
The Drude model for a given single decay constant (I')
and plasma frequency (w,) is defined as?
2

@p

=g, ——————, 18
slw)=e o(w+iT) (18)
and the equivalent Debye model is defined as
X g
e(w) =g, + ! (19)

. - )
l-iwty iweg

where ¢, is the permittivity at infinite frequencies, x;
=g,— &, 18 the permittivity step, and ¢=1/T" is the relax-
ation time. Note that the Debye model can be straightfor-
wardly derived from the Drude model [Eq. (18)] by using
a partial fraction expansion; this gives )(1=—(w1,,to)2 and
o= a)zsoto.

Using Eq. (19) in D=¢(w)E, we obtain D(w)=g¢[e..E
+1;(w) +I5(w)], where

L(w)= — 2 E(w), (20)
1-iwty

I(w) = - i:e E(0). (21)
0

Separating each term in the time domain, we introduce
a new displacement current vector D(¢)=gg[e, E+L;(¢)
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Fig. 8. (a) and (c), Single-periodic and (b) and (d) double-
periodic models for numerical simulations of noncoupled rods de-
posited on an ITO-glass or bare glass substrate. Geometry in (b)
and (d) represents sample A fabricated by electron-beam
lithography.
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Fig. 9. Index of refraction for (a) parallel, and (b) perpendicular
polarizations of incident light obtained from FDTD simulations
with the geometry of Figs. 8(a) and 8(c). (¢) and (d) Transmit-
tance (T), reflectance (R), and absorbance (A) calculated for the
same polarizations.

+1I5(¢)], where the time-domain versions of Eqgs. (20) and
(21) are defined by the following convolutions:

L) =- o, f exp[— (¢ - DtylE(DdT, (22)
0

t
L(t) = w2ty J E(ndr. (23)
0

Then, except for a new integration term [I,(¢)], the calcu-
lation scheme is similar to the standard eddy current
problem.?

B. Noncoupled Nanorods on an ITO-Glass or Bare
Glass Substrate
Consider, for example, FDTD modeling of the periodic
metal—dielectric structure shown in Figs. 8(a) and 8(c).
The elementary cell of the array is made up of a single
gold nanorod placed on an ITO-glass substrate. The re-
stored values of the refractive index [using Eq. (15) and
then Eqgs. (10)—(12)] are shown in Fig. 9 for (a) parallel
and (b) perpendicular polarizations of the incident light.
Transmittance (T), reflectance (R), and absorbance (A) are
also calculated for the same model with parallel and per-
pendicular polarizations [Figs. 9(c) and 9(d), respectively].
The basic single structure creates an almost zero-
equivalent refractive index, demonstrates resonant absor-
bance for the parallel polarization, and displays a com-
pletely different behavior for the other polarization
direction. (Following characteristic dimensions, resonant
features for perpendicular polarizations are shifted to-
ward much shorter wavelengths.) On obtaining the re-
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sult, we suggest that for the transverse magnetic case,
where the electric field is parallel to the periodic rods, we
observe a coupled resonant behavior because, as shown
below, the electric field is able to circulate in continuous
contours at the rod—substrate interface. We also imply
that strong coupling with a lossy substrate such as ITO
could be unfavorable. For this reason, a novel, to our
knowledge, double-periodic structure has been fabricated,
tested, and simulated using a 3D FDTD code.

A scanning electron microscope (SEM) image of the
new, double-periodic structure (called sample A) is shown
in Fig. 8(b), and a top view of the unit cell is shown in Fig.
8(d). The double-periodic structure consists of two rods
that share the dimensions of the single rod in Figs. 8(a)
and 8(c). We note that, in spite of more sophisticated pe-
riodicity, the double-periodic metallic elements exhibit
similar refractive index behavior and absorbance in both
polarization directions. An example for the parallel polar-
ization is shown in Figs. 10(a) and 10(c). That also sug-
gests that deviations (up to 20%) in periodicity do not
change the equivalent optical properties of the periodic
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Fig. 10. (a) Index of refraction for parallel polarization and (b)
the phase anisotropy in transmission obtained from FDTD simu-
lations with the geometry of Figs. 8(b) and 8(d). (¢) Transmit-
tance (T), reflectance (R), and absorbance (A) calculated for the
same polarization. (d) Calculated values of the normalized trans-
mission (T/T) are compared with the experimental data. (e) The
refractive index for the identical composite structure but without
any background. (f) T, R, and A for this case.
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Electric Field, E, Magnetic field, H,

Y(e)

Fig. 11. (a)-(d) Field maps for noncoupled rods on an ITO-glass
substrate. (e)-(h) Similar maps for the sample without any back-
ground. In (a) and (e) electric field component E, is mapped at xy
cross sections, through the middle of the rod; in (b) and (f), just
10 nm beyond the rod inside ITO. E, in (c¢) and (g) and H, in (d)
and (h) are mapped at the xz cross section through the middle of
the rod. All magnetic field values are normalized by the magnetic
incident field taken at the geometrical center of the rod.

plasmonic structure. We note that in spite of the nonide-
alities of sample A, shown in Fig. 8(a), both the phase an-
isotropy in Fig. 10(b) and the transmittance (T) normal-
ized by the transmittance of the substrate (T,) in Fig.
10(d) satisfactorily match the experimental data.

As illustrated below, the rods are also coupled induc-
tively to the ITO—glass substrate. The electric field com-
ponent E,, which is not mixed with the incident field, is
mapped at xy cross sections taken through the middle of
the rod [see Fig. 11(a)] and just 10 nm beyond the rod in-
side the ITO [Fig. 11(b)]. The rods are shown by dashed
lines in Fig. 11. In both cases the two rods perform almost
like a strip, forming a high-order evanescent mode inside
ITO. In addition to xy cross-sectional field maps, Fig. 11
depicts the values of the electric field component E, in
Fig. 11(c) and magnetic field component H, in Fig. 11(d)
mapped at xz cross sections through the middle of the rod.
The values of H, are normalized by the incident magnetic
field taken at the geometrical center of the rod.

The losses in ITO are large enough to allow for electric
fields to circulate along continuous contours through the
gold-ITO interface. After the incident magnetic field is
added to the induced one, reversed magnetic field zones
are observed right at the gold—ITO interface [see Fig.
11(d)].

With FDTD analysis of noncoupled rods of Fig. 8(d), it
was discovered that a simple substitution of the ITO-
glass substrate with bare glass could provide a negative
refractive index. Figure 10(e) depicts FDTD results for
the noncoupled rods of Fig. 8(d) but without any sub-
strate. The minimal value of n’~-0.2 is achieved at a
wavelength of 0.9 um. The results are consistent with the
more intense and larger field reversal zone shown in Fig.
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11(h). We note a substantially different distribution of the
electric component E, in this case. This observation of
negative refractive index for single, noncoupled rods is in
agreement with earlier theoretical predictions.'®

C. Sample B: Coupled Nanorods on a Bare Glass
Substrate

In addition to results for single, planar, noncoupled rods,
3D coupled rods'®?? with a magnetic field reversal simi-
lar to that above would be desirable. Such a NIM would
consist of periodic arrays of coupled gold rods oriented
parallel to the incident electric field and deposited di-
rectly on glass. An example unit cell is depicted in Figs.
12(a) and 12(c), and the results for the refractive index
and transmittance, reflectance, and absorbance are
shown in Figs. 13(a) and 13(b). The model demonstrates a
refractive index of about —0.5 at 1360 um, although with
substantial losses around this point.

To avoid a probable interaction between the rows of
coupled rods, and to possibly decrease losses, an alterna-
tive sample (sample B) with a skewed symmetry as shown
in Figs. 12(b) and 12(d) has been manufactured and simu-
lated. Sample B requires a unit cell four times larger than
that considered for the structure of Figs. 12(a) and 12(c),
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Fig. 12. (c) Single-periodic and (d) skewed-periodic structures of
coupled gold rods deposited on a bare glass substrate. Both mod-
els used the same rod pairs shown in (a). Geometry in (d) simu-
lates a fabricated sample (sample B). (b) SEM image of sample B.
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Fig. 14. Index of refraction for (a) parallel and (b) perpendicular
polarizations of incident light obtained from FDTD simulations
with the geometry of Figs. 8(b) and 8(d). (¢) and (d) Simulated
and experimental transmittance (T, and T,) and reflectance (
Rgim and R,y,) calculated for the same polarizations.

and, consequently, one would expect a weaker negative-
refraction effect due to a smaller metal filling factor. In-
deed, as shown in Fig. 14(a), the index of refraction ob-
tained from FDTD simulations for parallel polarization is
—-0.2 at 1.5 um with the geometry of Figs. 12(b) and 12(d).
Experimental studies of the NIM provide a value of n=
-0.3+0.1 at 1.5 um?? (see also Fig. 7 above). Both the ex-
perimental and the simulated values of the refractive in-
dex have already been compared with phase-only approxi-
mations in Fig. 7. Simulated and experimental
transmittance (T, and Tey,) and reflectance (R, and
Rexp) calculated for the same polarizations are shown in
Figs. 14(c) and 14(d).

Direct deposition of the gold nanorod pairs on a bare
glass substrate eliminates the damping effect from the
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ITO layer, and larger magnetic reactions are attainable
owing to this fabrication method. For testing our assump-
tions on the effect of an ITO-glass substrate on NIM
properties, we have fabricated a preliminary sample on
an ITO-glass substrate with a geometry close to that of
sample B and compared it with the results from sample
B.

First, in contrast to sample B, the preliminary sample
does not demonstrate a negative refractive index in either
experiment or simulations. Second, the induced electric
mode between the rods appears to be too high, and the
magnitude of the induced magnetic dipole moment is too
low for a good magnetic reaction in this case. That effect
is illustrated in Fig. 15. The figure shows simulated maps
of the electric field E, obtained for the two samples with
similar geometries. Field maps in Figs. 15(a) and 15(b)
represent the sample deposited on an ITO-glass sub-
strate, and the maps in Figs. 15(c) and 15(d) are calcu-
lated for the same geometry deposited on bare glass
(sample B). E, is taken at two xy cross sections, first
through the middle of the rod, as shown in Figs. 15(a) and
15(c), and then at 10 nm beyond the rod inside the sub-
strate, as depicted in Figs. 15(b) and 15(d). Comparison of
Figs. 15(a) and 15(c) allows us to conclude that the elimi-
nation of ITO produces stronger current in the required
mode between the rods. Weaker higher-order current
modes are generated between the rods in the sample with
an ITO-glass substrate, as shown in Fig. 15(a).

In addition, both samples are not optimized for the best
magnetic reaction, since the second rod in both cases does
not channel a sufficient part of the electric field. Indeed,
we have assumed that E, should be at least weaker (or
reversed) just beyond the second rod. Unfortunately, in
both samples, as indicated in Figs. 15(b) and 15(d), E, nei-
ther decays nor changes its direction at the cross section
just behind the rods. In essence, the presence of any sub-
strate alters the symmetry of the interacting rods and re-
strains the magnetic reaction between the rod pair. This
defect could be alleviated by one’s optimizing the design of
the structure.

Electric Field (E;) au.

(T © o

Fig. 15. Simulated maps of E, obtained for two samples. (a) and
(b) Field maps are calculated for the sample deposited on an
ITO-glass substrate; (¢) and (d) field maps are calculated for a
similar sample deposited on bare glass (sample B). Electric field
(E,) is mapped at two xy cross sections: through the middle of the
rod, as in (a) and (c¢), or just 10 nm beyond the rod inside, ITO or
glass, as in (b) and (d).
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D. Inverted Nanorods: Coupled Elliptic Voids in
Metallic Films

To achieve a NIM within a given range of optical wave-
lengths, one could also employ an inverted structure
along with dielectric spacers between coupled metallic el-
ements. Such a design offers a good manufacturability for
a thick multilayer NIM.

An FDTD model is created to match the experimental
sample of Ref. 24; the dimensions used in simulations are
rounded (shown in parentheses). The basis of the struc-
ture consists of a three-layer film composite deposited
over a BK7 glass substrate. The composite consists of two
30 (30) nm layers of gold separated by a 75 (80) nm layer
of AlyO3 as shown in Fig. 16(a). An array of elliptical wells
(voids) is then etched out of the three-layer composite to
give the final sample with a 2D lattice period of 787 (790)
nm. The dimensions of the elementary cell with the well
are depicted in Figs. 16(a) and 16(b). A midsection view of
the elementary cell along the short axis of the elliptic well
is shown in Fig. 16(a).

Figure 17 shows the simulated index of refraction for
(a) parallel and (b) perpendicular polarizations of incident
light for the geometry of Fig. 16 together with phase-
based approximations by expressions (16) and (17). Trans-
mittance (T), reflectance (R), and absorbance (A) are
shown in Figs. 17(c) and 17(d). As expected, a simple ap-
proximation with expression (16) works well in the case of
moderate reflection [see Figs. 17(a) and 17(c)] in compari-
son with the case of large R [see Figs. 17(b) and 17(d)].
The other approximation, expression (17), provides a bet-
ter fit in all cases.

The inverted NIM demonstrates a negative refractive
index of —1.5 at 1.8 um for perpendicular polarization
(the electric field is along the short axis of the elliptic
well) and -0.75 at 1.6 um for parallel polarization (the
electric field is along the long axis of the elliptic well),
which is consistent with the experimental data.?* As ex-
pected for inverted structures, the perpendicular polar-
ization works better than the parallel one.

4. SUMMARY

We have described and discussed several thin composite
metal—dielectric structures that demonstrate an effective
negative refractive index. We considered examples of how
the complex values of the transmission and reflection co-
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Fig. 16. (a) Elementary cell of coupled elliptic voids as an inver-
sion of coupled nanorods. (b) A cross-sectional view of the elemen-
tary cell shown in (a).
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Fig. 17. Index of refraction for (a) parallel polarization, and (b)
perpendicular polarization of incident light is obtained from
simulations for the inverted geometry of Figs. 16(a) and 16(b).
Approximations with expressions (16) and (17) are also tested for
the inverted geometry. Transmittance (T), reflectance (R), and
absorbance (A) calculated for the same polarizations are shown
in (c) and (d).

efficients (¢ and r) taken from either measurements or
simulations could be used to obtain the index of refrac-
tion. From ¢ and r for the incident plane wave, we calcu-
lated the effective refractive index for all the composite
materials considered herein. The description is based on
an effective layer of homogeneous media with the same ef-
fect on ¢ and r as a given layer of a NIM of the same thick-
ness. Characteristic matrices are used to obtain the effec-
tive impedance and the effective refractive index for a
single unknown NIM layer in an arbitrary multilayer
structure.

Our simulations show that a composite NIM based on a
2D periodic array of coupled gold strips separated by a
continuous dielectric layer can have a negative refractive
index to -2.

We also showed the critical importance of phases for re-
trieval of the refractive index. We have found that formu-
las using only the phases of ¢ and r could represent a good
alternative to exact restoration of the refractive index.
Consequently, we propose two interferometry schemes:
the polarization interferometer for measuring phase an-
isotropy between two different polarizations in transmis-
sion (reflection) and the walk-off interferometer for mea-
suring absolute phases.

We found that noncoupled gold rods arranged on an
ITO—glass substrate do not provide a negative refractive
index because of the damping associated with the conduc-
tive features of ITO. We deduce that losses in ITO intro-
duce a barrier to achieving negative refraction with ITO—
glass substrates. Simulations indicate that an identical
structure on a glass substrate could give n’=-0.2.

Experimental studies for a sample based on an array of
paired metal rods on a glass substrate allowed us to ob-
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serve a negative refractive index of —-0.3 at 1.5 um, in
good agreement with our simulations.

Finally, we showed that inverse structures also provide
good results in creating NIMs. We analyzed an inversion
of the coupled rods’ structure, in which the coupled gold
rods were replaced by coupled voids in gold films. Validat-
ing the design suggested in Ref. 24, we obtained refractive
indices of —1.5 at 1.8 um for perpendicular polarization
(the electric field along the short axis of the elliptic well)
and -0.75 at 1.6 um for parallel polarization. Again, us-
ing our suggested phase-based approximations, we found
that, similar to noninverted designs, only the phases of ¢
and r are sufficient to provide estimates of the negative
refraction effect in inverted designs with voids.

We expect that further optimization of design tech-
niques for composite NIMs will provide a stronger effect
at smaller losses, enabling new devices based on scalable
3D NIM structures.
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